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ABSTRACT 

Genetic Susceptibility to Arsenic Exposure and Arsenical Skin Lesion Prevalence  

in Bangladesh  

Maria Argos 

Elevated concentrations of arsenic in groundwater pose a public health threat to 

millions of people worldwide. While arsenic is an established human carcinogen, a mode 

of action has yet to be determined for arsenic carcinogenesis. However, the oxidative 

stress and DNA repair pathways have been implicated in arsenic toxicity and have been 

hypothesized to underlie arsenic carcinogenesis. To date, few epidemiologic studies have 

evaluated genetic susceptibility to arsenical skin lesions based on single nucleotide 

polymorphisms (SNPs) in antioxidant enzyme or DNA repair genes. Utilizing cross-

sectional data from the 2000-2002 survey of the Health Effects of Arsenic Longitudinal 

Study (HEALS) for 610 prevalent arsenical skin lesion cases and 1,079 randomly 

selected controls, I evaluated the associations of SNPs in genes encoding antioxidant 

enzymes and DNA repair enzymes on skin lesion prevalence. I also evaluated potential 

interactions between the SNPS as well as SNP-environment interactions in determining 

skin lesion prevalence.       

In the first study of this dissertation (Chapter 2), I assessed the relationship 

between SNPs in antioxidant enzyme genes and skin lesion prevalence, as well as 

possible interactions of these associations on the additive scale by various environmental 

factors. There were no statistically significant associations between these SNPs (SOD2, 

rs4880; CAT, rs1001179; GPX1, rs1050450; and MPO, rs2333227) and skin lesion 

prevalence. Additionally, there was no evidence of additive interaction by arsenic 



 

exposure levels, body mass index, smoking status, or fruit and vegetable intake with the 

SNPs in relation to skin lesion prevalence. However, there was marginal evidence that 

skin lesion prevalence was increased among individuals who carried 4 or more risk 

alleles compared to individuals carrying 0-3 risk alleles in these SNPs. Additionally, I 

observed a significant departure from additivity for the risk allele score and primary 

methylation index on skin lesion prevalence.  

In the second study of this dissertation (Chapter 3), I assessed the relationship 

between SNPs in DNA repair genes (OGG1, rs1052133; XRCC1, rs25487 and 

rs1799782; XRCC3, rs861539; ERCC2, rs1052559; ERCC5, rs17655; and LIG4, 

rs1805388) and skin lesion prevalence, as well as possible interactions of these 

associations on the additive scale by various environmental factors. In logistic regression 

models controlling for sex, age, and well water arsenic concentration, no associations 

were observed between measured SNPs and skin lesion prevalence. The results did not 

vary by arsenic exposure levels, body mass index, or smoking status. However, I did 

observe a significant inverse association of total fruit and vegetable consumption with 

skin lesion prevalence, and its additive interaction with the polymorphism in ERCC5.         

 In the third study of this dissertation (Chapter 4), I utilized a multi-analytic 

approach to explore gene-gene, gene-environment, and higher-order interactions among 

10 SNPs related to the oxidative stress and DNA repair pathways by MDR, CART, and 

logistic regression models. As shown in Chapters 2 and 3, none of these SNPs were 

associated with skin lesion prevalence, however, were evaluated for potential SNP-SNP 

interactions. MDR and CART modeling approaches were utilized for the selection of 

potential gene-gene and gene-environment interactions. Considerable overlap of the 



 

interactions detected by both these methods was observed, which were further evaluated 

by logistic regression. Results from logistic regression modeling, provided some evidence 

of these statistical interactions; however, their biological interpretation was limited.     

In summary, there was marginal evidence that skin lesion prevalence was 

increased among individuals who carried 4 or more risk alleles in genotyped SNPs 

related to the oxidative stress pathway compared to individuals carrying 0-3 risk alleles in 

these SNPs and, a significant departure from additivity was observed for the risk allele 

score and primary methylation index on skin lesion prevalence. Additionally, a 

significant inverse association of total fruit and vegetable consumption with skin lesion 

prevalence was observed and, a significant interaction between the polymorphism in 

ERCC5 and total fruit and vegetable intake was observed in relation to skin lesion 

prevalence on the additive scale. However, these finding require replication in other 

studies.    
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ARSENIC IN DRINKING WATER IN BANGLADESH 

 Arsenic is a naturally occurring metalloid, ubiquitously present in the 

environment. Through reduction-oxidation reactions, arsenic can be released from soil 

and rock into the surrounding aquifers. Elevated concentrations of arsenic in groundwater 

were first realized in Bangladesh in the 1990s with the appearance of skin lesion 

epidemics in Bangladeshi villages, which accessed drinking water by tubewells that tap 

into the arsenic-enriched aquifers (1). The tubewells were installed through Bangladesh 

governmental initiatives supported by UNICEF beginning in the 1970s to provide safe 

drinking water to the population through the consumption of groundwater. This was an 

effort to reduce mortality and morbidity from cholera and other waterborne diseases that 

had plagued the population, and proved to be effective towards this end with the 

subsequent reduction of infant mortality.  

The permissible level of arsenic in drinking water regulated by the Government of 

Bangladesh is 50 μg/L. In the Health Effects of Arsenic Longitudinal Study (HEALS)—a 

prospective cohort study to examine the health effects of arsenic exposure in a 

Bangladeshi adult population established in 2000 through funding from the National 

Institute of Environmental Health Sciences (NIEHS)-sponsored Columbia University 

Superfund Research Program (Project PI: Habibul Ahsan)—we have the ability to 

characterize exposure distributions and health outcomes within a representative rural 

population in Bangladesh. Within the HEALS study sample alone, 55.3% of the cohort 

has been exposed to arsenic concentrations greater than the Bangladeshi national drinking 

water standard. In 1993, the World Health Organization revised its guideline from 50 

μg/L to 10 μg/L. By this new standard, 76.6% of the study cohort is considered at risk for 
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arsenic toxicity. Estimates from a 1998 British Geological Survey of tubewells in 

Bangladesh indicate that 46% of samples had water arsenic concentrations greater than 

10 μg/L and 27% of samples had water arsenic concentrations greater than 50 μg/L; 

based on population estimates from 1999, it is believed that approximately 28-35 million 

in Bangladesh were exposed to arsenic concentrations greater than 50 μg/L in their 

drinking water and 46-57 million exposed to arsenic concentrations greater than 10 μg/L. 

There has not been reliable data to quantify the global burden of arsenic in drinking water 

worldwide; however, arsenic in drinking water has been detected at concentrations 

greater than 10 μg/L or the prevailing national standard in several countries including 

Argentina, Australia, Bangladesh, Chile, China, Hungary, India, Mexico, Peru, Thailand, 

and the United States of America (2). 

Chronic exposure to arsenic in drinking water, particularly at concentrations >100 

µg/L, has been associated with a multitude of health effects including cancers of the skin, 

lung, liver, bladder and kidney, cardiovascular disease, peripheral neuropathy, obstetric 

outcomes and respiratory diseases (3-16). Additionally, the International Agency for 

Research on Cancer has classified arsenic as a class I human carcinogen (17). Health 

effects at the lower dose range (≤100 µg/L) remain in question due to limited power of 

studies to observe dose-dependent associations in this range.              

 

ARSENIC AND SKIN LESIONS 

 Skin is the major target organ of arsenic, with skin lesions a hallmark 

characteristic of chronic arsenic exposure and an early manifestation of arsenic toxicity 

(18). These lesions are chiefly subclassified as (listed in order of increasing severity): 
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melanosis, leucomelanosis, and keratosis. Melanosis, increased melanin deposition in the 

skin present as diffuse or spotted hyperpigmentation over the trunk and extremities, 

usually is the first effect observed with chronic arsenic ingestion. Melanosis often 

coincides with or progresses to leucomelanosis, which is characterized by diffuse 

hypopigmentation of the skin over the trunk and extremities. The most severe type of 

arsenical skin lesion is keratosis. Arsenical keratoses are thought to be precancerous 

lesions with the potential to become squamous cell or basal cell carcinomas. Classically, 

they are located on the palms and soles but may be found elsewhere on the body, with the 

most characteristic form as punctate papules, yellow in color, with numerous small, 

horny, corn-like elevations, usually 2 to 10 mm in diameter (19, 20). Arsenical keratoses 

may also present as plaques with slightly elevated, erythematous, scaly or pigmented 

features (20). It is estimated that the latency for the appearance of arsenical keratoses is 

extremely variable, but averages around 9 to 19 years (21, 22). The appearance of 

melanosis and leucomenalosis may appear with a shorter latency period following 

chronic arsenic exposure; however, this has not been well documented. Depending on the 

amount of exposure to arsenic, hyperpigmentation can be observed within 6 months.    

 The association between arsenic exposure and arsenical skin lesion prevalence has 

been well-established in various ethnic populations and a dose-response trend has been 

clearly demonstrated. Yoshida et al. (23) published a recent review of the major 

epidemiologic studies examining the association between arsenic and skin lesions. A 

striking aspect of this systematic summary is that a dose-response relationship with 

arsenic exposure was nearly consistently seen across various ethnic populations, despite 

varying definitions of arsenic exposure and skin lesions. This suggests that even with 
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variability in the measurement constructs for exposure and disease classification, the 

effects are probably an underestimate of the true dose-response and the effects are 

plausible. The association between arsenic exposure (as measured by various exposure 

constructs) and prevalent skin lesions (defined as presence of at least 1 type of skin 

lesion) has been previously evaluated in the HEALS cohort and a dose-response trend 

was demonstrated based on quintiles of increasing water arsenic exposure (prevalence 

odds ratios=1.0, 1.91, 3.03, 3.71, and 5.39) (24). In recent prospective analyses from the 

HEALS cohort, we found multivariate adjusted HRs for incident skin lesions comparing 

10.1–50.0, 50.1–100.0, 100.1–200.0, and ≥200.1 µg/L to ≤10 µg/L of well water arsenic 

exposure to be 1.17 (95% CI: 0.92, 1.49), 1.69 (95% CI: 1.33, 2.14), 1.97 (95% CI: 1.58, 

2.46), and 2.98 (95% CI: 2.40, 3.71), respectively (P for trend=0.0001) (25).  

Evidence has suggested that arsenic exposure itself fails to fully explain the 

presence of arsenical skin lesions in an exposed population and that genetic susceptibility 

may play an important role in determining sub-populations at higher risk of developing 

the disease at similarly exposed levels (26). Epidemiologic studies have shown 

interaction with sex, age, body mass index (24), smoking (27), socioeconomic status (28), 

nutritional status (29), and genetic polymorphisms (as reviewed in (30, 31)).   

 

ARSENIC METABOLITES AND SKIN LESIONS 

 Arsenic is primarily present in the inorganic form (arsenate and arsenite) in 

drinking water (32). Once internalized, it goes through a series of reduction and oxidative 

methylation steps (33). While methylation of an exogenous compound is typically 

considered to be a detoxification process, there is mounting evidence that the methylation 
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of arsenic increases it’s toxicity in vivo particularly with the trivalent methylated arsenic 

species that are more toxic than the inorganic and pentavalent methylated arsenic species 

(34-37). The proposed pathway for arsenic methylation (38), with S-adenosyl methionine 

(SAM) serving as the methyl donor (CH3+) is:  

Arsenate + 2 e– → Arsenite + CH3+ → Methylarsonic acid + 2 e– → 

Methylarsonous acid + CH3+ → Dimethylarsinic acid + 2 e– → Dimethylarsinous acid. 

 The chemical structures of these arsenic compounds are shown in Figure 1. 

Typically, ingested inorganic arsenic is excreted as 10–20% inorganic arsenic, 10–15% 

monomethylated arsenic (MMA), and 60–75% dimethylated arsenic (DMA) (39). 

However, there is known inter-individual variability in the methylation capacity of 

arsenic (as reviewed in (40)), which has been hypothesized to partly explain the 

variability in susceptibility to arsenic toxicity. Recent in vitro evidence by Kojima et al. 

showed that arsenic methylation enhanced arsenic-induced oxidative DNA damage (41).   

In a cross-sectional study in the Lagunera region of Mexico, Del Razo et al. 

showed that arsenic-exposed individual with cutaneous symptoms of arsenic toxicity 

compared to exposed individuals without skin lesions had significantly elevated levels of 

%MMA in urine (14.3% versus 9.5%, respectively), higher primary methylation index—

ratio of MMA to inorganic arsenic—(0.5 versus 0.3, respectively), and a lower secondary 

methylation index—ratio of DMA to MMA—(3.5 versus 6.0, respectively) (42). In a 

population-based study conducted by Valenzuela et al. among residents of Zimapan, 

Mexico—an area known to have high arsenic exposure in groundwater caused by mining 

activity in the region—showed that arsenic-exposed individuals with manifest skin 

lesions had a significantly larger mean percentage of MMAIII in their urine as compared 
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to arsenic-exposed individuals with no visible skin lesions (7.7% versus 5.9%, 

respectively), while there was no difference in the percent of MMAV (43). In a Taiwanese 

population, Yu et al. showed in a case-control study that individuals with skin lesions 

(selected with non-melanoma skin cancers, Bowen’s disease, melanosis and 

hyperkeratosis) had significantly larger mean percentage of MMA in urine, lower mean 

percentage of DMA, and higher ratio of MMA to DMA than control subjects (44). They 

showed that individuals with high %MMA (>15.5%) had 5.5 (95% CI=1.2-24.8) times 

the risk of skin lesions compared to individuals with low MMA and, individuals with low 

%DMA (<72.2%) had 3.2 (95% CI=1.1-10.0) times the risk of skin lesions compared to 

individuals with high DMA (44). Finally, in a cross-sectional study in a Bangladeshi 

population, Ahsan et al. previously reported increased prevalence of skin lesions with 

increasing urinary %MMA and decreasing secondary methylation index (45). In 

summary, based on these cross-sectional studies of prevalent skin lesion cases, there is 

good epidemiologic evidence to suggest an association between higher %MMA and 

lower %DMA in urine and increased skin lesion prevalence.    

 

LIFESTYLE FACTORS AND SKIN LESIONS 

There have been several lifestyle factors that have been associated with skin 

lesion prevalence. The associations between body mass index (24), cigarette smoking 

(27), and dietary factors (29, 46) with skin lesions have been previously demonstrated in 

the HEALS cohort. These lifestyle factors all share in common their implication in the 

oxidative stress pathway. There is substantial evidence to suggest that body mass index 

(47, 48), cigarette smoking (49), and fruit/vegetable consumption (49-51) are related to 
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oxidative stress in humans. Additionally, there has been some evidence to suggest that 

these lifestyle factors also play a role in DNA repair capacity (52, 53).   

 

Body Mass Index 

 In a hospital-based cross-sectional study in Bangladesh, it was observed that body 

mass index was inversely associated with skin lesion prevalence and duration (54). In a 

cross-sectional analysis from HEALS, Ahsan et al. showed a dose-response trend for skin 

lesion prevalence based on quintiles of increasing body mass index (prevalence odds 

ratios=1.0, 0.94, 1.01, 0.82, and 0.76), adjusted for potential confounders including well 

water arsenic concentration (24).  

  

Cigarette Smoking 

 In a previous cross-sectional study from HEALS, Ahsan et al. showed marginal 

increased risk of skin lesion prevalence with tobacco smoking, adjusted for potential 

confounders including well water arsenic concentration (24). Additionally, significant 

additive interaction was observed between arsenic exposure and tobacco use in males on 

skin lesion prevalence (27). In recent prospective analyses from HEALS, we observed 

that former smokers (HR=5.10, 95% CI=4.19, 6.21) and current smokers (HR=3.39, 95% 

CI=2.93, 3.92) were at increased risk of incident skin lesions compared to never smokers 

(25). Additionally, we also observed significant additive interaction between arsenic 

exposure and tobacco use in males on skin lesion incidence (55).     
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Dietary Factors 

 Several analyses from the HEALS cohort have evaluated the association of 

dietary factors with skin lesion prevalence and incidence. Zablotska et al. observed 

riboflavin, pyridoxine, folic acid, vitamin A, vitamin C, and vitamin E were all inversely 

associated with skin lesion prevalence (29). In a recent analysis, Pierce et al. observed 

that dietary patterns that were related to increased gourd, root vegetable, and vegetable 

intake were inversely associated with skin lesion incidence (56). In a nested case-control 

study from HEALS, folate deficiency was found to be associated with increased skin 

lesion incidence (57). Additionally, in a prospective analysis, Chen et al. found blood 

selenium to be inversely associated with skin lesion incidence (46).     

 

MECHANISMS OF ARSENIC TOXICITY 

 Arsenic is a well-established human carcinogen (17) and dose-response 

associations with skin lesion prevalence (24) and incidence (25) have been observed—

precursor conditions to non-melanoma skin cancers. However, the mechanisms by which 

arsenic acts remain in question, which has primarily been attributed to the absence of a 

suitable animal model to study arsenic toxicity (58, 59). Yet, several mechanisms of 

arsenic toxicity have been proposed, including genotoxicity (60), increased cell 

proliferation through the activation of signal transduction pathways (61), induction of 

oxidative stress (62-64), altered DNA methylation and gene expression (65), impairment 

of DNA repair (58), increased tumor promotion (66-68), and as a co-carcinogen (69).      
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ARSENIC EXPOSURE AND OXIDATIVE STRESS  

One of the proposed pathways that may be implicated in the association between 

arsenic and skin lesion risk is oxidative stress (62, 63). Arsenic has been shown to induce 

reactive oxygen species (ROS) (70). Oxidative stress is hypothesized to play a role in 

initiation, promotion, and progression within the framework of a multistage 

carcinogenesis model (71). Matsui et al. conducted a study of 8-hydroxy-2'-

deoxyguanosine (8-OHdG), a well established marker of oxidative stress, in skin tissue 

and found 8-OHdG to be significantly higher in arsenic-related Bowen’s disease 

(squamous cell carcinoma in situ) as compared to arsenic-unrelated Bowen’s disease 

(72). Similar findings were seen by An et al., who additionally showed that 8-OHdG was 

elevated in the normal and keratotic skin tissue of arsenic-exposed individuals (73).  

 

GENES ENCODING OXIDATIVE STRESS RELATED ENZYMES 

 There are several well-established antioxidant enzyme genes that are related to the 

oxidative stress pathway: superoxide dismutase 2, mitochondrial (SOD2); catalase (CAT); 

glutathione peroxidase 1 (GPX1); and myeloperoxidase (MPO).   

 

SOD2 

 SOD2 protein plays a major role in maintaining oxidative balance by converting 

superoxide (O2
-)—a precursor molecule for all other ROS—into hydrogen peroxide and 

oxygen (74). Additionally, prior in vitro experiments have shown SOD2 to play a role in 

mitigating arsenic-induced DNA damage from oxidative stress (75, 76). This gene is 

located in chromosome region 6q25.3. A nonsynonymous SNP (C>T, Ala16Val, rs4880) 
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in SOD2 has been extensively studied (77). The C allele retains the alpha helical structure 

of the protein for normal activity of the enzyme (78). This particular SNP in SOD2 has 

been previously shown to be associated with other diseases caused by oxidative stress, 

including lung cancer (79), prostate cancer (80), diabetic neuropathy (81), Alzheimer's 

disease (82), radiation injury in patients treated with radiation therapy for prostate 

adenocarcinoma (83), alcoholic cirrhosis (84), urolithiasis (85), and acoustic neuroma 

(86). While contrary to the biological direction that would be hypothesized based on the 

current literature, Hsueh et al. in a study of arsenic-exposed individuals in Taiwan found 

the C allele of this SNP to be associated with increased risk (OR=2.0; 95% CI=1.0-3.9) 

of hypertension, adjusted for arsenic exposure; there was no evidence of statistical 

interaction between arsenic and SOD2 (87).        

 

CAT 

 CAT protein plays a major role at times of severe oxidative stress by converting 

hydrogen peroxide (H2O2) into water and oxygen (88). Additionally, prior in vitro 

experiments have shown CAT to play a role in mitigating arsenic-induced DNA damage 

from oxidative stress (70, 75, 89). This gene is located in chromosome region 11p13. A 

synonymous SNP (T>C, rs1001179) in CAT has been investigated with regard to arsenic 

toxicity in the epidemiologic literature. The T allele has been associated with higher 

erythrocyte CAT levels (90). Hsueh et al. examined the association of this SNP with 

hypertension and saw no significant independent risk of the SNP among arsenic-exposed 

individuals in Taiwan (87). In pilot work, Ahsan et al. examined this SNP in relation to 
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arsenical keratosis and found a nonsignificant increased risk (OR=1.9; 95% CI=0.8-4.7) 

associated with the T allele, adjusted for arsenic exposure (91).     

 

GPX1 

 GPX1 is the main antioxidant enzyme in normal conditions that functions in the 

detoxification of hydrogen peroxide by using it to oxidize glutathione (92). Additionally, 

prior in vitro experiments have shown GPx to play a role in mitigating arsenic-induced 

DNA damage from oxidative stress (93, 94). This gene is located in chromosome region 

3p21.3. A nonsynonymous SNP (C>T, Pro200Leu, rs1050450) in GPX1 has been 

associated with oxidative stress-related diseases. There is some evidence to suggest that 

the T allele is associated with decreased enzyme activity levels (95, 96), particularly 

among men (97). This particular SNP in GPX1 has been previously shown to be 

associated with other diseases caused by oxidative stress, including lung cancer (98, 99), 

atherosclerosis in diabetics (100), aging and longevity (101), and interaction with SOD2 

for breast cancer risk (102).       

 

MPO 

 MPO has been implicated in oxidative stress because of its utilization of hydrogen 

peroxide to produce the oxidant hypochlorite, which may lead to oxidative damage of 

biological tissues (103). Additionally, prior in vitro experiments have shown MPO to 

play a role in mitigating arsenic-induced DNA damage from oxidative stress (76). This 

gene is located in chromosome region 17q23.1. A synonymous SNP (G>A, rs2333227) in 

MPO has been previously examined with respect to arsenic toxicity. The A allele has 
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been shown to have lower enzyme activity (104) and lower transcriptional activity (105). 

The A allele has been associated with lower risk of aerodigestive tract cancer (106) and 

lung cancer (107) and increased risk of prostate cancer among a subset of men with 

aggressive disease (108). In pilot work, Ahsan et al. examined this SNP in relation to 

arsenical keratosis and found a nonsignificant increased risk (OR=2.1; 95% CI=0.7-6.2) 

associated with the GG genotype, adjusted for arsenic exposure (91). Additionally, 

Huang et al. examined this SNP in relation to urinary arsenic concentrations and found 

marginally increased urinary total arsenic concentrations among smokers with the GG 

genotype compared to the GA/AA genotype (109).    

 

ARSENIC AND DNA REPAIR  

 DNA repair has been an additionally proposed pathway that may be implicated in 

the association between arsenic and skin lesion risk (110). In a cross-sectional study, 

arsenic concentrations in drinking water and toenail clippings were positively associated 

with ERCC1 mRNA expression levels suggesting arsenic exposure may induce a DNA 

repair response (111); although, an inverse association was found in another study (112). 

In vitro experiments have shown that arsenic induces DNA strand breaks in a 

concentration dependent manner (113). Arsenic has been shown to inhibit nucleotide 

excision repair (114, 115). DNA repair deficiency has been associated with increased 

micronuclei frequency (116). Reduced DNA repair capacity has been associated with 

increased arsenical skin lesion risk (117).      
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GENES ENCODING DNA REPAIR PROTEINS 

There are several genes that are known to encode DNA repair proteins including: 

8-oxoguanine DNA glycosylase (OGG1); X-ray repair complementing defective repair in 

Chinese hamster cells 1 (XRCC1); X-ray repair complementing defective repair in 

Chinese hamster cells 3 (XRCC3); excision repair cross-complementing rodent repair 

deficiency, complementation group 2 (ERCC2); excision repair cross-complementing 

rodent repair deficiency, complementation group 5 (ERCC5); and ligase IV, DNA, ATP-

dependent (LIG4). 

 

OGG1 

 OGG1 is a DNA glycosylase involved in base excision repair (BER) of 8-OHdG, 

an adduct formed from oxidative stress (118). During BER, OGG1 removes damaged 

bases by cleaving N-glycosylic bonds (118). Prior in vitro (119) and animal (120, 121) 

studies have shown OGG1 to play a role in mitigating arsenic-induced oxidative damage. 

This gene is located in chromosome region 3p26.2. A nonsynonymous SNP (C>G, 

Ser326Cys, rs1052133) in OGG1 has been previously associated with cancer (122). 

Proteins encoded with the G allele exhibit reduced 8-OHdG repair activity (123). This 

specific polymorphism in OGG1 has been shown to be associated with multiple cancers 

(124-129). Mo et al. showed OGG1 expression to be significantly correlated with water 

arsenic concentration among a Mongolian adult population and associated with 

hyperkeratosis in males (130).   
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XRCC1 

 XRCC1 is a DNA repair enzyme that interacts with polynucleotide kinase (PNK), 

DNA polymerase-beta (POLB) and DNA ligase III (LIG3) as part of a complex to repair 

single-strand breaks and functions in BER to repair damage caused by agents such as 

ROS (131). This gene is located in chromosome region 19q13.2.  

There is a well characterized nonsynonymous SNP (G>A, Arg399Gln, rs25487) 

in this gene. Phenotype studies suggest that the A allele is associated with reduced DNA 

repair (132-135) and ionizing radiation sensitivity (136, 137). The A allele has been 

associated with several cancers, including increased risk of colorectal (138), lung (139), 

and breast cancers (140, 141). Although, carriers of the A allele had a reduced risk of 

non-melanoma skin cancers (142), squamous cell carcinoma of the head and neck (143), 

bladder cancer (144), and lung cancer (145). 

Another known nonsynonymous SNP (C>T, Arg194Trp, rs1799782) in this gene 

has been previously studied in relation to arsenic. The T allele has been associated with 

deficient DNA repair (146). A case-control study of lung cancer found homozygous 

variants (TT genotype) to have a 3-fold increased risk (147); while other case-control 

studies have shown a reduced risk for lung cancer among carriers of the T allele (145, 

148). The T allele has been associated with borderline increased risk of colorectal cancer 

(138)  and squamous cell carcinoma of the head and neck (143), but lower risk of bladder 

cancer (144). Additionally, increased risk of esophageal squamous cell carcinoma was 

observed among homozygous variants (149). The presence of both variants in rs1799782 

(T allele) and rs25487 (A allele) showed an increased risk of gastric cancer (150). Breton 
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et al. demonstrated that the rs1799782 SNP modified the association between arsenic and 

skin lesions, with a three-fold larger odds ratio for skin lesions among individuals in the 

highest tertile of arsenic exposure with the CC genotype compared to TT in the same 

exposure category (151).  

 

XRCC3 

 XRCC3 encodes a protein that forms a complex with RAD51 and RAD51C to 

repair double-strand DNA breaks through the homologous recombination pathway (152-

155). Moreover, studies from our research group have demonstrated arsenic’s ability to 

induce breaks in DNA strands of mammalian cells (156, 157); therefore, reduced ability 

to repair double-strand breaks due to polymorphisms in the XRCC3 gene may be relevant 

for arsenic carcinogenesis. This gene is located in chromosome region 14q32.3. A 

nonsynonymous SNP (C>T, Thr241Met, rs861539) in XRCC3 has been characterized. A 

recent study suggests that the T allele is associated with decreased repair capacity (158). 

The T allele has been associated with increased risk of melanocytic skin cancer (159), 

breast cancer (160), and bladder cancer (161). However, the T allele has also been 

associated with decreased basal cell carcinoma risk (162). Moreover, in a recent case-

control study in West Bengal, India, Kundu et al. observed a significant decreased risk of 

arsenical skin lesions associated with T allele of this polymorphism (163).    

 

ERCC2 

ERCC2 is a DNA helicase involved in transcription and nucleotide excision repair 

(NER) (164). This gene is located in chromosome region 19q13.2–13.3. A 



17 

 

nonsynonymous SNP (A>C, Lys751Gln, rs1052559) in ERCC2 has been previously 

established as a risk factor for various cancers and diseases. ERCC2 deficiency is 

associated with the disease xeroderma pigmentosum—characterized by a deficiency in 

NER and a greatly increased predisposition to skin cancer (165)—trichothiodystrophy 

and Cockayne syndrome (166). A phenotype study showed that carriers of the C allele 

have sub-optimal DNA repair (167). The C allele has been associated with increased risk 

of lung cancer (147), basal cell carcinoma (168), chronic lymphocytic leukemia (169), 

squamous cell carcinomas of the head and neck (170), acute myeloid leukemia (171), and 

breast cancer (170). In pilot work, Ahsan et al. showed a synergistic effect of the AA 

genotype of this SNP and arsenic exposure on increased risk of arsenical keratosis (172). 

However, in a US arsenic-exposed population no effects of this SNP were seen with 

squamous or basal cell carcinoma (173).  

 

ERCC5 

 ERCC5 is a DNA repair protein involved in the NER pathway of UV-induced 

damage (174). While there was no current literature on the association of this gene with 

arsenic, there is evidence of a potential interaction between arsenic and UV (69, 175). 

This gene is located in chromosome region 13q33. A nonsynonymous SNP (G>C, 

Asp1104His, rs17655) in ERCC5 has been examined by prior studies. Case-control 

studies have found the G allele to be associated with a decreased risk of lung cancer and 

squamous cell carcinomas of the oropharynx, larynx and esophagus (176) and of lung 

cancer risk in African Americans (177). Additionally, multifactor dimensionality 

reduction analysis found this SNP to be predictive of lung cancer risk among Hispanics 



18 

 

(177). Additionally, the C allele was associated with marginally increased breast cancer 

risk (178).    

 

LIG4 

LIG4 is a DNA double-strand break repair enzyme whose two main roles are the 

ligation step of the non-homologous end-joining pathway and V(D)J recombination 

(179). Prior in vitro studies have shown DNA ligases to play a role in mitigating arsenic-

induced oxidative damage (180, 181). This gene is located in chromosome region 13q33-

q34. A nonsynonymous SNP (C>T, Thr9Ile, rs1805388) in LIG4 has been previously 

examined. This polymorphism is not believed to significantly alter the structural 

conformation of the protein (182). The T allele of this polymorphism has been shown to 

be associated with a reduced risk of multiple myeloma (183)  as well as glioma (184) and 

non-Hodgkin lymphoma (185).   

 

GENETIC SUSCEPTIBILITY TO ARSENIC-RELATED SKIN LESIONS 

 Genetic susceptibility to arsenic-related skin lesions has been evaluated by several 

candidate gene studies in the last decade. To our knowledge, 18 genes have been 

evaluated in studies examining polymorphisms in relation to prevalent skin lesions, 

which are summarized in Table 1. For most of the candidate genes, only a single SNP in 

each gene has been evaluated and few SNPs or genes have been replicated in a second 

study. The vast majority of these studies suffer from small sample sizes and, significant 

main effects of the SNPs in most instances were not observed. Although some promising 
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results have been detected for various SNPs, the few replication studies that have been 

conducted have found divergent results (i.e., GSTT1, GSTM1, ERCC2).       

 There are only a few pathways that have been examined to date in relation to 

arsenical skin lesions. Several genes related to arsenic or xenobiotic metabolism (e.g., 

PNP, AS3MT, GSTO1, GSTO2, GSTP1, GSTTI, GSTM1, MTHFR) have been examined 

with mixed results. Additionally, several candidate SNPs have been evaluated in DNA 

repair genes (e.g., ERCC2, APEX1, XRCC1, XRCC3, OGG1) as well as oxidative stress-

related genes (e.g., MPO, CAT), inflammation (e.g., TNF, IL10), and tumor suppression 

(e.g., TP53). 

 The limited scope of work that has been done to evaluate genetic susceptibility to 

arsenical skin lesions clearly warrants further investigation. There has been inconsistency 

in case definitions (i.e., severity of skin lesions), differences in arsenic exposure 

distributions across populations as well as other covariates, and under-powered studies to 

be able to synthesize genetic risk factors from the current literature.         

 

DISSERTATION AIMS 

 This dissertation utilized cross-sectional data from the 2000-2002 survey of the 

Health Effects of Arsenic Longitudinal Study (HEALS), with 610 prevalent arsenical 

skin lesion cases and 1,079 controls selected for the present project, which has been 

adequately powered to evaluate SNP and SNP-environment associations (Appendix A). 

Data was utilized on SNPs that were genotyped in the following genes encoding 

antioxidant enzymes: SOD2, GPX1, CAT, and MPO; as well as the following genes 

encoding DNA repair enzymes: OGG1, XRCC1, XRCC3, ERCC2, ERCC5, and LIG4. 
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Data on arsenic exposure levels as well as clinical, sociodemographic and food frequency 

questionnaire data were also utilized. 

Specifically, this dissertation aims: 

 

Chapter 2: Arsenic Exposure, Antioxidant Enzymes, and Skin Lesion Prevalence in 

an Adult Bangladeshi Population. 

Aim: To evaluate whether SNPs in genes encoding antioxidant enzymes (SOD2, GPX1, 

CAT, MPO) are associated with prevalent arsenical skin lesion status in 610 cases and 

1,079 controls from the HEALS cohort. 

Hypotheses: Specifically, I tested the following hypotheses: 

a. SNPs in these candidate genes are associated with arsenical skin lesions.  

b. SNPs in these candidate genes modify the association between arsenic exposure (as 

measured by well water arsenic and urinary total arsenic concentrations) and 

arsenical skin lesions.   

c. SNPs in these candidate genes modify the association between arsenic methylation 

capacity (as measured by urinary arsenic species) and arsenical skin lesions.  

d. SNPs in these candidate genes modify the association between lifestyle factors 

(body mass index, cigarette smoking status, and fruit/vegetable consumption) and 

arsenical skin lesions.  

 

 



21 

 

Chapter 3: Arsenic Exposure, DNA Repair Genes, and Skin Lesion Prevalence in an 

Adult Bangladeshi Population. 

Aim: To evaluate whether SNPs in genes encoding DNA repair proteins (OGG1, XRCC1, 

XRCC3, ERCC2, ERCC5, and LIG4) are associated with prevalent arsenical skin lesion 

status in 610 cases and 1,079 controls from the HEALS cohort.  

Hypotheses: Specifically, I tested the following hypotheses: 

a. SNPs in these candidate genes are associated with arsenical skin lesions.  

b. SNPs in these candidate genes modify the association between arsenic exposure (as 

measured by well water arsenic and urinary total arsenic concentrations) and 

arsenical skin lesions.   

c. SNPs in these candidate genes modify the association between arsenic methylation 

capacity (as measured by urinary arsenic species) and arsenical skin lesions.  

d. SNPs in these candidate genes modify the association between lifestyle factors 

(body mass index, cigarette smoking status, and fruit/vegetable consumption) and 

arsenical skin lesions.  

 

Chapter 4: Gene-Gene, Gene-Environment, and Higher Order Interactions in 

Relation to Arsenic-related Skin Lesions in an Adult Bangladeshi Population. 

Aim: To explore SNP-SNP and higher order associations to predict arsenical skin lesion 

prevalence.  

Hypotheses: Specifically, I tested the following hypotheses: 

a. Explore interactions among SNPs using multifactor dimensionality reduction 

(MDR) and classification and regression trees (CART).  
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b. Explore interactions among SNPs and arsenic exposure (as measured by well water 

arsenic, creatinine-adjusted urinary total arsenic, primary methylation index, and 

secondary methylation index) using MDR and CART. 

c. Model interaction predictions consistent between MDR and CART using logistic 

regression models to estimate interactions on the multiplicative scale.   

d. Evaluate the findings of these modeling scenarios together to propose interactions 

for confirmation in future analyses. 



23 

 

REFERENCES 

 

1. Dhar R, Biswas B, Samanta G, et al. Groundwater arsenic calamity in 
Bangladesh. Current Science. 1997;73(1):48-59. 

2. BGS, DPHE. Arsenic contamination of groundwater in Bangladesh. Kinniburgh 
D, Smedley P, eds. (BGS Technical Report WC/00/19, Volume 2). Keyworth: 
British Geological Survey, 2001. 

3. Smith AH, Goycolea M, Haque R, et al. Marked increase in bladder and lung 
cancer mortality in a region of Northern Chile due to arsenic in drinking water. 
Am J Epidemiol. 1998;147(7):660-669. 

4. Chen CJ, Chen CW, Wu MM, et al. Cancer potential in liver, lung, bladder and 
kidney due to ingested inorganic arsenic in drinking water. British journal of 
cancer. 1992;66(5):888-892. 

5. Hopenhayn-Rich C, Biggs ML, Fuchs A, et al. Bladder cancer mortality 
associated with arsenic in drinking water in Argentina. Epidemiology. 
1996;7(2):117-124. 

6. Hopenhayn-Rich C, Biggs ML, Smith AH. Lung and kidney cancer mortality 
associated with arsenic in drinking water in Cordoba, Argentina. Int J Epidemiol. 
1998;27(4):561-569. 

7. Tseng WP. Effects and dose--response relationships of skin cancer and blackfoot 
disease with arsenic. Environ Health Perspect. 1977;19109-119. 

8. Brouwer OF, Onkenhout W, Edelbroek PM, et al. Increased neurotoxicity of 
arsenic in methylenetetrahydrofolate reductase deficiency. Clinical neurology and 
neurosurgery. 1992;94(4):307-310. 

9. Navas-Acien A, Sharrett AR, Silbergeld EK, et al. Arsenic exposure and 
cardiovascular disease: a systematic review of the epidemiologic evidence. Am J 
Epidemiol. 2005;162(11):1037-1049. 

10. States JC, Srivastava S, Chen Y, et al. Arsenic and cardiovascular disease. Toxicol 
Sci. 2009;107(2):312-323. 



24 

 

11. Tseng CH. Cardiovascular disease in arsenic-exposed subjects living in the 
arseniasis-hyperendemic areas in Taiwan. Atherosclerosis. 2008;199(1):12-18. 

12. Ahmad SA, Sayed MH, Barua S, et al. Arsenic in drinking water and pregnancy 
outcomes. Environ Health Perspect. 2001;109(6):629-631. 

13. Milton AH, Smith W, Rahman B, et al. Chronic arsenic exposure and adverse 
pregnancy outcomes in bangladesh. Epidemiology. 2005;16(1):82-86. 

14. von Ehrenstein OS, Guha Mazumder DN, Hira-Smith M, et al. Pregnancy 
outcomes, infant mortality, and arsenic in drinking water in West Bengal, India. 
Am J Epidemiol. 2006;163(7):662-669. 

15. Milton AH, Rahman M. Respiratory effects and arsenic contaminated well water 
in Bangladesh. International journal of environmental health research. 
2002;12(2):175-179. 

16. Parvez F, Chen Y, Brandt-Rauf PW, et al. Nonmalignant respiratory effects of 
chronic arsenic exposure from drinking water among never-smokers in 
Bangladesh. Environ Health Perspect. 2008;116(2):190-195. 

17. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some 
Drinking-water Disinfectants and Contaminants, including Arsenic. Volume 84. 
Lyon, France, 2004. 

18. Byrd DM, Roegner ML, Griffiths JC, et al. Carcinogenic risks of inorganic 
arsenic in perspective. International archives of occupational and environmental 
health. 1996;68(6):484-494. 

19. Jackson R, Grainge JW. Arsenic and cancer. Canadian Medical Association 
journal. 1975;113(5):396-401. 

20. Duncan K, Geisse J, Leffell D. Chapter 113. Epithelial Precancerous Lesions 
(Chapter). Wolff K, Goldsmith L, Katz S, et al., Eds. Fitzpatrick's Dermatology in 
General Medicine, 7e: The McGraw-Hill Companies, Inc., 2008. 

21. Wong SS, Tan KC, Goh CL. Cutaneous manifestations of chronic arsenicism: 
review of seventeen cases. Journal of the American Academy of Dermatology. 
1998;38(2 Pt 1):179-185. 



25 

 

22. Haque R, Mazumder DN, Samanta S, et al. Arsenic in drinking water and skin 
lesions: dose-response data from West Bengal, India. Epidemiology. 
2003;14(2):174-182. 

23. Yoshida T, Yamauchi H, Fan Sun G. Chronic health effects in people exposed to 
arsenic via the drinking water: dose-response relationships in review. Toxicol 
Appl Pharmacol. 2004;198(3):243-252. 

24. Ahsan H, Chen Y, Parvez F, et al. Arsenic exposure from drinking water and risk 
of premalignant skin lesions in Bangladesh: baseline results from the Health 
Effects of Arsenic Longitudinal Study. Am J Epidemiol. 2006;163(12):1138-1148. 

25. Argos M, Kalra T, Pierce B, et al. A prospective study of arsenic exposure from 
drinking water and incidence of skin lesions in Bangladesh. American Journal of 
Epidemiology. In press. 

26. Concha G, Vogler G, Nermell B, et al. Intra-individual variation in the 
metabolism of inorganic arsenic. International archives of occupational and 
environmental health. 2002;75(8):576-580. 

27. Chen Y, Graziano JH, Parvez F, et al. Modification of risk of arsenic-induced skin 
lesions by sunlight exposure, smoking, and occupational exposures in 
Bangladesh. Epidemiology. 2006;17(4):459-467. 

28. Argos M, Parvez F, Chen Y, et al. Socioeconomic status and risk for arsenic-
related skin lesions in Bangladesh. Am J Public Health. 2007;97(5):825-831. 

29. Zablotska LB, Chen Y, Graziano JH, et al. Protective effects of B vitamins and 
antioxidants on the risk of arsenic-related skin lesions in Bangladesh. Environ 
Health Perspect. 2008;116(8):1056-1062. 

30. Ghosh P, Banerjee M, Giri AK, et al. Toxicogenomics of arsenic: classical ideas 
and recent advances. Mutat Res. 2008;659(3):293-301. 

31. Hernandez A, Marcos R. Genetic variations associated with interindividual 
sensitivity in the response to arsenic exposure. Pharmacogenomics. 
2008;9(8):1113-1132. 



26 

 

32. Andreae MO. Determination of arsenic species in natural waters. Analytical 
chemistry. 1977;49(6):820-823. 

33. Aposhian HV. Enzymatic methylation of arsenic species and other new 
approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol. 1997;37397-419. 

34. Le XC, Ma M, Cullen WR, et al. Determination of monomethylarsonous acid, a 
key arsenic methylation intermediate, in human urine. Environ Health Perspect. 
2000;108(11):1015-1018. 

35. Del Razo LM, Styblo M, Cullen WR, et al. Determination of trivalent methylated 
arsenicals in biological matrices. Toxicol Appl Pharmacol. 2001;174(3):282-293. 

36. Ahmad S, Anderson WL, Kitchin KT. Dimethylarsinic acid effects on DNA 
damage and oxidative stress related biochemical parameters in B6C3F1 mice. 
Cancer Lett. 1999;139(2):129-135. 

37. Styblo M, Drobna Z, Jaspers I, et al. The role of biomethylation in toxicity and 
carcinogenicity of arsenic: a research update. Environ Health Perspect. 2002;110 
Suppl 5767-771. 

38. Challenger F. Biological methylation. Chem Rev. 1945;36(3):315-361. 

39. Hopenhayn-Rich C, Smith AH, Goeden HM. Human studies do not support the 
methylation threshold hypothesis for the toxicity of inorganic arsenic. 
Environmental research. 1993;60(2):161-177. 

40. Tseng CH. A review on environmental factors regulating arsenic methylation in 
humans. Toxicol Appl Pharmacol. 2009;235(3):338-350. 

41. Kojima C, Ramirez DC, Tokar EJ, et al. Requirement of arsenic biomethylation 
for oxidative DNA damage. Journal of the National Cancer Institute. 
2009;101(24):1670-1681. 

42. Del Razo LM, Garcia-Vargas GG, Vargas H, et al. Altered profile of urinary 
arsenic metabolites in adults with chronic arsenicism. A pilot study. Archives of 
toxicology. 1997;71(4):211-217. 



27 

 

43. Valenzuela OL, Borja-Aburto VH, Garcia-Vargas GG, et al. Urinary trivalent 
methylated arsenic species in a population chronically exposed to inorganic 
arsenic. Environ Health Perspect. 2005;113(3):250-254. 

44. Yu RC, Hsu KH, Chen CJ, et al. Arsenic methylation capacity and skin cancer. 
Cancer Epidemiol Biomarkers Prev. 2000;9(11):1259-1262. 

45. Ahsan H, Chen Y, Kibriya MG, et al. Arsenic metabolism, genetic susceptibility, 
and risk of premalignant skin lesions in Bangladesh. Cancer Epidemiol 
Biomarkers Prev. 2007;16(6):1270-1278. 

46. Chen Y, Hall M, Graziano JH, et al. A prospective study of blood selenium levels 
and the risk of arsenic-related premalignant skin lesions. Cancer Epidemiol 
Biomarkers Prev. 2007;16(2):207-213. 

47. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity 
and its impact on metabolic syndrome. The Journal of clinical investigation. 
2004;114(12):1752-1761. 

48. Keaney JF, Jr., Larson MG, Vasan RS, et al. Obesity and systemic oxidative 
stress: clinical correlates of oxidative stress in the Framingham Study. 
Arteriosclerosis, thrombosis, and vascular biology. 2003;23(3):434-439. 

49. Lesgards JF, Durand P, Lassarre M, et al. Assessment of lifestyle effects on the 
overall antioxidant capacity of healthy subjects. Environ Health Perspect. 
2002;110(5):479-486. 

50. Talegawkar SA, Beretta G, Yeum KJ, et al. Total antioxidant performance is 
associated with diet and serum antioxidants in participants of the diet and physical 
activity substudy of the Jackson Heart Study. The Journal of nutrition. 
2009;139(10):1964-1971. 

51. Staruchova M, Volkova K, Lajdova A, et al. Importance of diet in protection 
against oxidative damage. Neuro endocrinology letters. 2006;27 Suppl 2112-115. 

52. Tyson J, Caple F, Spiers A, et al. Inter-individual variation in nucleotide excision 
repair in young adults: effects of age, adiposity, micronutrient supplementation 
and genotype. The British journal of nutrition. 2009;101(9):1316-1323. 



28 

 

53. Raji NS, Surekha A, Rao KS. Improved DNA-repair parameters in PHA-
stimulated peripheral blood lymphocytes of human subjects with low body mass 
index. Mechanisms of ageing and development. 1998;104(2):133-148. 

54. Mitra AK, Bose BK, Kabir H, et al. Arsenic-related health problems among 
hospital patients in southern Bangladesh. J Health Popul Nutr. 2002;20(3):198-
204. 

55. Melkonian S, Argos M, Pierce BL, et al. A prospective study of the synergistic 
effects of arsenic exposure and smoking, sun exposure, fertilizer use, and 
pesticide use on risk of premalignant skin lesions in Bangladeshi men. Am J 
Epidemiol. 2011;173(2):183-191. 

56. Pierce BL, Argos M, Chen Y, et al. Arsenic exposure, dietary patterns, and skin 
lesion risk in bangladesh: a prospective study. Am J Epidemiol. 2011;173(3):345-
354. 

57. Pilsner JR, Liu X, Ahsan H, et al. Folate deficiency, hyperhomocysteinemia, low 
urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for 
arsenic-induced skin lesions. Environ Health Perspect. 2009;117(2):254-260. 

58. Rossman TG. Mechanism of arsenic carcinogenesis: an integrated approach. 
Mutat Res. 2003;533(1-2):37-65. 

59. Tokar EJ, Benbrahim-Tallaa L, Ward JM, et al. Cancer in experimental animals 
exposed to arsenic and arsenic compounds. Critical reviews in 
toxicology.40(10):912-927. 

60. Colognato R, Coppede F, Ponti J, et al. Genotoxicity induced by arsenic 
compounds in peripheral human lymphocytes analysed by cytokinesis-block 
micronucleus assay. Mutagenesis. 2007;22(4):255-261. 

61. Simeonova PP, Wang S, Toriuma W, et al. Arsenic mediates cell proliferation and 
gene expression in the bladder epithelium: association with activating protein-1 
transactivation. Cancer Res. 2000;60(13):3445-3453. 

62. Shi H, Shi X, Liu KJ. Oxidative mechanism of arsenic toxicity and 
carcinogenesis. Mol Cell Biochem. 2004;255(1-2):67-78. 



29 

 

63. Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in 
oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1-40. 

64. Kitchin KT, Conolly R. Arsenic-induced carcinogenesis--oxidative stress as a 
possible mode of action and future research needs for more biologically based risk 
assessment. Chem Res Toxicol. 2010;23(2):327-335. 

65. Huang C, Ke Q, Costa M, et al. Molecular mechanisms of arsenic carcinogenesis. 
Mol Cell Biochem. 2004;255(1-2):57-66. 

66. Yamamoto S, Konishi Y, Matsuda T, et al. Cancer induction by an organic 
arsenic compound, dimethylarsinic acid (cacodylic acid), in F344/DuCrj rats after 
pretreatment with five carcinogens. Cancer Res. 1995;55(6):1271-1276. 

67. Wanibuchi H, Yamamoto S, Chen H, et al. Promoting effects of dimethylarsinic 
acid on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced urinary bladder 
carcinogenesis in rats. Carcinogenesis. 1996;17(11):2435-2439. 

68. Yamanaka K, Ohtsubo K, Hasegawa A, et al. Exposure to dimethylarsinic acid, a 
main metabolite of inorganic arsenics, strongly promotes tumorigenesis initiated 
by 4-nitroquinoline 1-oxide in the lungs of mice. Carcinogenesis. 
1996;17(4):767-770. 

69. Rossman TG, Uddin AN, Burns FJ. Evidence that arsenite acts as a cocarcinogen 
in skin cancer. Toxicol Appl Pharmacol. 2004;198(3):394-404. 

70. Kessel M, Liu SX, Xu A, et al. Arsenic induces oxidative DNA damage in 
mammalian cells. Mol Cell Biochem. 2002;234-235(1-2):301-308. 

71. Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu 
Rev Pharmacol Toxicol. 2004;44239-267. 

72. Matsui M, Nishigori C, Toyokuni S, et al. The role of oxidative DNA damage in 
human arsenic carcinogenesis: detection of 8-hydroxy-2'-deoxyguanosine in 
arsenic-related Bowen's disease. J Invest Dermatol. 1999;113(1):26-31. 

73. An Y, Gao Z, Wang Z, et al. Immunohistochemical analysis of oxidative DNA 
damage in arsenic-related human skin samples from arsenic-contaminated area of 
China. Cancer Lett. 2004;214(1):11-18. 



30 

 

74. Skrzycki M, Majewska M, Podsiad M, et al. Expression and activity of 
superoxide dismutase isoenzymes in colorectal cancer. Acta biochimica Polonica. 
2009;56(4):663-670. 

75. Nordenson I, Beckman L. Is the genotoxic effect of arsenic mediated by oxygen 
free radicals? Hum Hered. 1991;41(1):71-73. 

76. Wang TS, Hsu TY, Chung CH, et al. Arsenite induces oxidative DNA adducts 
and DNA-protein cross-links in mammalian cells. Free Radic Biol Med. 
2001;31(3):321-330. 

77. Rosenblum JS, Gilula NB, Lerner RA. On signal sequence polymorphisms and 
diseases of distribution. Proc Natl Acad Sci U S A. 1996;93(9):4471-4473. 

78. Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, et al. Structural 
dimorphism in the mitochondrial targeting sequence in the human manganese 
superoxide dismutase gene. A predictive evidence for conformational change to 
influence mitochondrial transport and a study of allelic association in Parkinson's 
disease. Biochem Biophys Res Commun. 1996;226(2):561-565. 

79. Zejnilovic J, Akev N, Yilmaz H, et al. Association between manganese 
superoxide dismutase polymorphism and risk of lung cancer. Cancer Genet 
Cytogenet. 2009;189(1):1-4. 

80. Kang D, Lee KM, Park SK, et al. Functional variant of manganese superoxide 
dismutase (SOD2 V16A) polymorphism is associated with prostate cancer risk in 
the prostate, lung, colorectal, and ovarian cancer study. Cancer Epidemiol 
Biomarkers Prev. 2007;16(8):1581-1586. 

81. Mollsten A, Marklund SL, Wessman M, et al. A functional polymorphism in the 
manganese superoxide dismutase gene and diabetic nephropathy. Diabetes. 
2007;56(1):265-269. 

82. Wiener HW, Perry RT, Chen Z, et al. A polymorphism in SOD2 is associated 
with development of Alzheimer's disease. Genes Brain Behav. 2007;6(8):770-
775. 

83. Burri RJ, Stock RG, Cesaretti JA, et al. Association of single nucleotide 
polymorphisms in SOD2, XRCC1 and XRCC3 with susceptibility for the 



31 

 

development of adverse effects resulting from radiotherapy for prostate cancer. 
Radiat Res. 2008;170(1):49-59. 

84. Nahon P, Sutton A, Pessayre D, et al. Genetic dimorphism in superoxide 
dismutase and susceptibility to alcoholic cirrhosis, hepatocellular carcinoma, and 
death. Clin Gastroenterol Hepatol. 2005;3(3):292-298. 

85. Tugcu V, Ozbek E, Aras B, et al. Manganese superoxide dismutase (Mn-SOD) 
gene polymorphisms in urolithiasis. Urol Res. 2007;35(5):219-224. 

86. Rajaraman P, Hutchinson A, Rothman N, et al. Oxidative response gene 
polymorphisms and risk of adult brain tumors. Neuro Oncol. 2008;10(5):709-715. 

87. Hsueh YM, Lin P, Chen HW, et al. Genetic polymorphisms of oxidative and 
antioxidant enzymes and arsenic-related hypertension. J Toxicol Environ Health 
A. 2005;68(17-18):1471-1484. 

88. Kinnula VL, Everitt JI, Mangum JB, et al. Antioxidant defense mechanisms in 
cultured pleural mesothelial cells. American journal of respiratory cell and 
molecular biology. 1992;7(1):95-103. 

89. Wang TS, Huang H. Active oxygen species are involved in the induction of 
micronuclei by arsenite in XRS-5 cells. Mutagenesis. 1994;9(3):253-257. 

90. Forsberg L, Lyrenas L, de Faire U, et al. A common functional C-T substitution 
polymorphism in the promoter region of the human catalase gene influences 
transcription factor binding, reporter gene transcription and is correlated to blood 
catalase levels. Free Radic Biol Med. 2001;30(5):500-505. 

91. Ahsan H, Chen Y, Kibriya MG, et al. Susceptibility to arsenic-induced 
hyperkeratosis and oxidative stress genes myeloperoxidase and catalase. Cancer 
Lett. 2003;201(1):57-65. 

92. Halliwell B. Free radicals and metal ions in health and disease. The Proceedings 
of the Nutrition Society. 1987;46(1):13-26. 

93. Wang TS, Shu YF, Liu YC, et al. Glutathione peroxidase and catalase modulate 
the genotoxicity of arsenite. Toxicology. 1997;121(3):229-237. 



32 

 

94. Lee TC, Ho IC. Modulation of cellular antioxidant defense activities by sodium 
arsenite in human fibroblasts. Archives of toxicology. 1995;69(7):498-504. 

95. Hamanishi T, Furuta H, Kato H, et al. Functional variants in the glutathione 
peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness 
of carotid arteries and risk of macrovascular diseases in japanese type 2 diabetic 
patients. Diabetes. 2004;53(9):2455-2460. 

96. Hu YJ, Diamond AM. Role of glutathione peroxidase 1 in breast cancer: loss of 
heterozygosity and allelic differences in the response to selenium. Cancer Res. 
2003;63(12):3347-3351. 

97. Bastaki M, Huen K, Manzanillo P, et al. Genotype-activity relationship for Mn-
superoxide dismutase, glutathione peroxidase 1 and catalase in humans. 
Pharmacogenet Genomics. 2006;16(4):279-286. 

98. Rosenberger A, Illig T, Korb K, et al. Do genetic factors protect for early onset 
lung cancer? A case control study before the age of 50 years. BMC cancer. 
2008;860. 

99. Raaschou-Nielsen O, Sorensen M, Hansen RD, et al. GPX1 Pro198Leu 
polymorphism, interactions with smoking and alcohol consumption, and risk for 
lung cancer. Cancer Lett. 2007;247(2):293-300. 

100. Nemoto M, Nishimura R, Sasaki T, et al. Genetic association of glutathione 
peroxidase-1 with coronary artery calcification in type 2 diabetes: a case control 
study with multi-slice computed tomography. Cardiovascular diabetology. 
2007;623. 

101. Soerensen M, Christensen K, Stevnsner T, et al. The Mn-superoxide dismutase 
single nucleotide polymorphism rs4880 and the glutathione peroxidase 1 single 
nucleotide polymorphism rs1050450 are associated with aging and longevity in 
the oldest old. Mechanisms of ageing and development. 2009;130(5):308-314. 

102. Cox DG, Tamimi RM, Hunter DJ. Gene x Gene interaction between MnSOD and 
GPX-1 and breast cancer risk: a nested case-control study. BMC cancer. 
2006;6217. 

103. Babior BM. Phagocytes and oxidative stress. The American journal of medicine. 
2000;109(1):33-44. 



33 

 

104. Van Schooten FJ, Boots AW, Knaapen AM, et al. Myeloperoxidase (MPO) -
463G->A reduces MPO activity and DNA adduct levels in bronchoalveolar 
lavages of smokers. Cancer Epidemiol Biomarkers Prev. 2004;13(5):828-833. 

105. Piedrafita FJ, Molander RB, Vansant G, et al. An Alu element in the 
myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic 
acid response element. J Biol Chem. 1996;271(24):14412-14420. 

106. Cascorbi I, Henning S, Brockmoller J, et al. Substantially reduced risk of cancer 
of the aerodigestive tract in subjects with variant--463A of the myeloperoxidase 
gene. Cancer Res. 2000;60(3):644-649. 

107. London SJ, Lehman TA, Taylor JA. Myeloperoxidase genetic polymorphism and 
lung cancer risk. Cancer Res. 1997;57(22):5001-5003. 

108. Choi JY, Neuhouser ML, Barnett MJ, et al. Iron intake, oxidative stress-related 
genes (MnSOD and MPO) and prostate cancer risk in CARET cohort. 
Carcinogenesis. 2008;29(5):964-970. 

109. Huang YK, Huang YL, Hsueh YM, et al. Arsenic exposure, urinary arsenic 
speciation, and the incidence of urothelial carcinoma: a twelve-year follow-up 
study. Cancer Causes Control. 2008;19(8):829-839. 

110. Kitchin KT. Recent advances in arsenic carcinogenesis: modes of action, animal 
model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol. 
2001;172(3):249-261. 

111. Mo J, Xia Y, Ning Z, et al. Elevated ERCC1 gene expression in blood cells 
associated with exposure to arsenic from drinking water in Inner Mongolia. 
Anticancer research. 2009;29(8):3253-3259. 

112. Andrew AS, Karagas MR, Hamilton JW. Decreased DNA repair gene expression 
among individuals exposed to arsenic in United States drinking water. Int J 
Cancer. 2003;104(3):263-268. 

113. Dong JT, Luo XM. Arsenic-induced DNA-strand breaks associated with DNA-
protein crosslinks in human fetal lung fibroblasts. Mutat Res. 1993;302(2):97-102. 



34 

 

114. Bau DT, Wang TS, Chung CH, et al. Oxidative DNA adducts and DNA-protein 
cross-links are the major DNA lesions induced by arsenite. Environ Health 
Perspect. 2002;110 Suppl 5753-756. 

115. Schwerdtle T, Walter I, Mackiw I, et al. Induction of oxidative DNA damage by 
arsenite and its trivalent and pentavalent methylated metabolites in cultured 
human cells and isolated DNA. Carcinogenesis. 2003;24(5):967-974. 

116. Mateuca RA, Roelants M, Iarmarcovai G, et al. hOGG1(326), XRCC1(399) and 
XRCC3(241) polymorphisms influence micronucleus frequencies in human 
lymphocytes in vivo. Mutagenesis. 2008;23(1):35-41. 

117. Banerjee M, Sarma N, Biswas R, et al. DNA repair deficiency leads to 
susceptibility to develop arsenic-induced premalignant skin lesions. Int J Cancer. 
2008;123(2):283-287. 

118. Lu AL, Li X, Gu Y, et al. Repair of oxidative DNA damage: mechanisms and 
functions. Cell Biochem Biophys. 2001;35(2):141-170. 

119. Pu YS, Jan KY, Wang TC, et al. 8-Oxoguanine DNA glycosylase and MutY 
homolog are involved in the incision of arsenite-induced DNA adducts. Toxicol 
Sci. 2007;95(2):376-382. 

120. Wanibuchi H, Salim EI, Kinoshita A, et al. Understanding arsenic carcinogenicity 
by the use of animal models. Toxicol Appl Pharmacol. 2004;198(3):366-376. 

121. Kinoshita A, Wanibuchi H, Morimura K, et al. Carcinogenicity of dimethylarsinic 
acid in Ogg1-deficient mice. Cancer science. 2007;98(6):803-814. 

122. Ishida T, Hippo Y, Nakahori Y, et al. Structure and chromosome location of 
human OGG1. Cytogenet Cell Genet. 1999;85(3-4):232-236. 

123. Kohno T, Shinmura K, Tosaka M, et al. Genetic polymorphisms and alternative 
splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in 
damaged DNA. Oncogene. 1998;16(25):3219-3225. 

124. Sugimura H, Kohno T, Wakai K, et al. hOGG1 Ser326Cys polymorphism and 
lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev. 1999;8(8):669-
674. 



35 

 

125. Wikman H, Risch A, Klimek F, et al. hOGG1 polymorphism and loss of 
heterozygosity (LOH): significance for lung cancer susceptibility in a caucasian 
population. Int J Cancer. 2000;88(6):932-937. 

126. Xing DY, Tan W, Song N, et al. Ser326Cys polymorphism in hOGG1 gene and 
risk of esophageal cancer in a Chinese population. Int J Cancer. 2001;95(3):140-
143. 

127. Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and 
associations with cancer risk. Cancer Epidemiol Biomarkers Prev. 
2002;11(12):1513-1530. 

128. Le Marchand L, Donlon T, Lum-Jones A, et al. Association of the hOGG1 
Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers 
Prev. 2002;11(4):409-412. 

129. Xu J, Zheng SL, Turner A, et al. Associations between hOGG1 sequence variants 
and prostate cancer susceptibility. Cancer Res. 2002;62(8):2253-2257. 

130. Mo J, Xia Y, Wade TJ, et al. Chronic arsenic exposure and oxidative stress: 
OGG1 expression and arsenic exposure, nail selenium, and skin hyperkeratosis in 
Inner Mongolia. Environ Health Perspect. 2006;114(6):835-841. 

131. Whitehouse CJ, Taylor RM, Thistlethwaite A, et al. XRCC1 stimulates human 
polynucleotide kinase activity at damaged DNA termini and accelerates DNA 
single-strand break repair. Cell. 2001;104(1):107-117. 

132. Abdel-Rahman SZ, El-Zein RA. The 399Gln polymorphism in the DNA repair 
gene XRCC1 modulates the genotoxic response induced in human lymphocytes 
by the tobacco-specific nitrosamine NNK. Cancer Lett. 2000;159(1):63-71. 

133. Duell EJ, Wiencke JK, Cheng TJ, et al. Polymorphisms in the DNA repair genes 
XRCC1 and ERCC2 and biomarkers of DNA damage in human blood 
mononuclear cells. Carcinogenesis. 2000;21(5):965-971. 

134. Lei Y, Hwang S, Chang C, et al. Effects on sister chromatid exchange frequency 
of polymorphisms in DNA repair gene XRCC1 in smokers. Mutat Res. 
2002;519(1-2):93. 



36 

 

135. Lunn RM, Langlois RG, Hsieh LL, et al. XRCC1 polymorphisms: effects on 
aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res. 
1999;59(11):2557-2561. 

136. Hu JJ, Smith TR, Miller MS, et al. Amino acid substitution variants of APE1 and 
XRCC1 genes associated with ionizing radiation sensitivity. Carcinogenesis. 
2001;22(6):917-922. 

137. Hu JJ, Smith TR, Miller MS, et al. Genetic regulation of ionizing radiation 
sensitivity and breast cancer risk. Environ Mol Mutagen. 2002;39(2-3):208-215. 

138. Abdel-Rahman SZ, Soliman AS, Bondy ML, et al. Inheritance of the 194Trp and 
the 399Gln variant alleles of the DNA repair gene XRCC1 are associated with 
increased risk of early-onset colorectal carcinoma in Egypt. Cancer Lett. 
2000;159(1):79-86. 

139. Divine KK, Gilliland FD, Crowell RE, et al. The XRCC1 399 glutamine allele is a 
risk factor for adenocarcinoma of the lung. Mutat Res. 2001;461(4):273-278. 

140. Duell EJ, Millikan RC, Pittman GS, et al. Polymorphisms in the DNA repair gene 
XRCC1 and breast cancer. Cancer Epidemiol Biomarkers Prev. 2001;10(3):217-
222. 

141. Kim SU, Park SK, Yoo KY, et al. XRCC1 genetic polymorphism and breast 
cancer risk. Pharmacogenetics. 2002;12(4):335-338. 

142. Nelson HH, Kelsey KT, Mott LA, et al. The XRCC1 Arg399Gln polymorphism, 
sunburn, and non-melanoma skin cancer: evidence of gene-environment 
interaction. Cancer Res. 2002;62(1):152-155. 

143. Olshan AF, Watson MA, Weissler MC, et al. XRCC1 polymorphisms and head 
and neck cancer. Cancer Lett. 2002;178(2):181-186. 

144. Stern MC, Umbach DM, van Gils CH, et al. DNA repair gene XRCC1 
polymorphisms, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers 
Prev. 2001;10(2):125-131. 



37 

 

145. David-Beabes GL, London SJ. Genetic polymorphism of XRCC1 and lung cancer 
risk among African-Americans and Caucasians. Lung Cancer. 2001;34(3):333-
339. 

146. Shen MR, Jones IM, Mohrenweiser H. Nonconservative amino acid substitution 
variants exist at polymorphic frequency in DNA repair genes in healthy humans. 
Cancer Res. 1998;58(4):604-608. 

147. Chen S, Tang D, Xue K, et al. DNA repair gene XRCC1 and XPD 
polymorphisms and risk of lung cancer in a Chinese population. Carcinogenesis. 
2002;23(8):1321-1325. 

148. Ratnasinghe D, Yao SX, Tangrea JA, et al. Polymorphisms of the DNA repair 
gene XRCC1 and lung cancer risk. Cancer Epidemiol Biomarkers Prev. 
2001;10(2):119-123. 

149. Xing D, Qi J, Miao X, et al. Polymorphisms of DNA repair genes XRCC1 and 
XPD and their associations with risk of esophageal squamous cell carcinoma in a 
Chinese population. Int J Cancer. 2002;100(5):600-605. 

150. Shen H, Xu Y, Qian Y, et al. Polymorphisms of the DNA repair gene XRCC1 and 
risk of gastric cancer in a Chinese population. Int J Cancer. 2000;88(4):601-606. 

151. Breton CV, Zhou W, Kile ML, et al. Susceptibility to arsenic-induced skin lesions 
from polymorphisms in base excision repair genes. Carcinogenesis. 
2007;28(7):1520-1525. 

152. Liu N, Lamerdin JE, Tebbs RS, et al. XRCC2 and XRCC3, new human Rad51-
family members, promote chromosome stability and protect against DNA cross-
links and other damages. Mol Cell. 1998;1(6):783-793. 

153. Liu N, Schild D, Thelen MP, et al. Involvement of Rad51C in two distinct protein 
complexes of Rad51 paralogs in human cells. Nucleic Acids Res. 
2002;30(4):1009-1015. 

154. Pierce AJ, Johnson RD, Thompson LH, et al. XRCC3 promotes homology-
directed repair of DNA damage in mammalian cells. Genes Dev. 
1999;13(20):2633-2638. 



38 

 

155. Brenneman MA, Weiss AE, Nickoloff JA, et al. XRCC3 is required for efficient 
repair of chromosome breaks by homologous recombination. Mutat Res. 
2000;459(2):89-97. 

156. Liu F, Jan KY. DNA damage in arsenite- and cadmium-treated bovine aortic 
endothelial cells. Free Radic Biol Med. 2000;28(1):55-63. 

157. Liu SX, Athar M, Lippai I, et al. Induction of oxyradicals by arsenic: implication 
for mechanism of genotoxicity. Proc Natl Acad Sci U S A. 2001;98(4):1643-1648. 

158. Matullo G, Palli D, Peluso M, et al. XRCC1, XRCC3, XPD gene polymorphisms, 
smoking and (32)P-DNA adducts in a sample of healthy subjects. Carcinogenesis. 
2001;22(9):1437-1445. 

159. Winsey SL, Haldar NA, Marsh HP, et al. A variant within the DNA repair gene 
XRCC3 is associated with the development of melanoma skin cancer. Cancer 
Res. 2000;60(20):5612-5616. 

160. Kuschel B, Auranen A, McBride S, et al. Variants in DNA double-strand break 
repair genes and breast cancer susceptibility. Hum Mol Genet. 2002;11(12):1399-
1407. 

161. Matullo G, Guarrera S, Carturan S, et al. DNA repair gene polymorphisms, bulky 
DNA adducts in white blood cells and bladder cancer in a case-control study. Int J 
Cancer. 2001;92(4):562-567. 

162. Thirumaran RK, Bermejo JL, Rudnai P, et al. Single nucleotide polymorphisms in 
DNA repair genes and basal cell carcinoma of skin. Carcinogenesis. 
2006;27(8):1676-1681. 

163. Kundu M, Ghosh P, Mitra S, et al. Precancerous and non-cancer disease endpoints 
of chronic arsenic exposure: the level of chromosomal damage and XRCC3 
T241M polymorphism. Mutat Res. 2011;706(1-2):7-12. 

164. Chen J, Suter B. Xpd, a structural bridge and a functional link. Cell cycle. 
2003;2(6):503-506. 



39 

 

165. Tomescu D, Kavanagh G, Ha T, et al. Nucleotide excision repair gene XPD 
polymorphisms and genetic predisposition to melanoma. Carcinogenesis. 
2001;22(3):403-408. 

166. Cleaver JE, Thompson LH, Richardson AS, et al. A summary of mutations in the 
UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and 
trichothiodystrophy. Hum Mutat. 1999;14(1):9-22. 

167. Lunn RM, Helzlsouer KJ, Parshad R, et al. XPD polymorphisms: effects on DNA 
repair proficiency. Carcinogenesis. 2000;21(4):551-555. 

168. Dybdahl M, Vogel U, Frentz G, et al. Polymorphisms in the DNA repair gene 
XPD: correlations with risk and age at onset of basal cell carcinoma. Cancer 
Epidemiol Biomarkers Prev. 1999;8(1):77-81. 

169. Ganster C, Neesen J, Zehetmayer S, et al. DNA repair polymorphisms associated 
with cytogenetic subgroups in B-cell chronic lymphocytic leukemia. Genes, 
chromosomes & cancer. 2009;48(9):760-767. 

170. Mitra AK, Singh N, Garg VK, et al. Statistically significant association of the 
single nucleotide polymorphism (SNP) rs13181 (ERCC2) with predisposition to 
Squamous Cell Carcinomas of the Head and Neck (SCCHN) and Breast cancer in 
the north Indian population. J Exp Clin Cancer Res. 2009;28104. 

171. Shi JY, Ren ZH, Jiao B, et al. Genetic variations of DNA repair genes and their 
prognostic significance in patients with acute myeloid leukemia. Int J Cancer. 
2011;128(1):233-238. 

172. Ahsan H, Chen Y, Wang Q, et al. DNA repair gene XPD and susceptibility to 
arsenic-induced hyperkeratosis. Toxicol Lett. 2003;143(2):123-131. 

173. Applebaum KM, Karagas MR, Hunter DJ, et al. Polymorphisms in nucleotide 
excision repair genes, arsenic exposure, and non-melanoma skin cancer in New 
Hampshire. Environ Health Perspect. 2007;115(8):1231-1236. 

174. Thompson LH, Carrano AV, Sato K, et al. Identification of nucleotide-excision-
repair genes on human chromosomes 2 and 13 by functional complementation in 
hamster-human hybrids. Somatic cell and molecular genetics. 1987;13(5):539-
551. 



40 

 

175. Rossman TG. Enhancement of UV-mutagenesis by low concentrations of arsenite 
in E. coli. Mutat Res. 1981;91(3):207-211. 

176. Cui Y, Morgenstern H, Greenland S, et al. Polymorphism of Xeroderma 
Pigmentosum group G and the risk of lung cancer and squamous cell carcinomas 
of the oropharynx, larynx and esophagus. Int J Cancer. 2006;118(3):714-720. 

177. Chang JS, Wrensch MR, Hansen HM, et al. Nucleotide excision repair genes and 
risk of lung cancer among San Francisco Bay Area Latinos and African 
Americans. Int J Cancer. 2008;123(9):2095-2104. 

178. Rajaraman P, Bhatti P, Doody MM, et al. Nucleotide excision repair 
polymorphisms may modify ionizing radiation-related breast cancer risk in US 
radiologic technologists. Int J Cancer. 2008;123(11):2713-2716. 

179. Tomkinson AE, Mackey ZB. Structure and function of mammalian DNA ligases. 
Mutat Res. 1998;407(1):1-9. 

180. Lynn S, Lai HT, Gurr JR, et al. Arsenite retards DNA break rejoining by 
inhibiting DNA ligation. Mutagenesis. 1997;12(5):353-358. 

181. Li JH, Rossman TG. Inhibition of DNA ligase activity by arsenite: a possible 
mechanism of its comutagenesis. Molecular toxicology. 1989;2(1):1-9. 

182. O'Driscoll M, Cerosaletti KM, Girard PM, et al. DNA ligase IV mutations 
identified in patients exhibiting developmental delay and immunodeficiency. 
Molecular cell. 2001;8(6):1175-1185. 

183. Roddam PL, Rollinson S, O'Driscoll M, et al. Genetic variants of NHEJ DNA 
ligase IV can affect the risk of developing multiple myeloma, a tumour 
characterised by aberrant class switch recombination. Journal of medical genetics. 
2002;39(12):900-905. 

184. Liu Y, Zhou K, Zhang H, et al. Polymorphisms of LIG4 and XRCC4 involved in 
the NHEJ pathway interact to modify risk of glioma. Hum Mutat. 2008;29(3):381-
389. 



41 

 

185. Hill DA, Wang SS, Cerhan JR, et al. Risk of non-Hodgkin lymphoma (NHL) in 
relation to germline variation in DNA repair and related genes. Blood. 
2006;108(9):3161-3167. 

186. De Chaudhuri S, Ghosh P, Sarma N, et al. Genetic variants associated with 
arsenic susceptibility: study of purine nucleoside phosphorylase, arsenic (+3) 
methyltransferase, and glutathione S-transferase omega genes. Environ Health 
Perspect. 2008;116(4):501-505. 

187. Valenzuela OL, Drobna Z, Hernandez-Castellanos E, et al. Association of 
AS3MT polymorphisms and the risk of premalignant arsenic skin lesions. Toxicol 
Appl Pharmacol. 2009;239(2):200-207. 

188. Ghosh P, Basu A, Mahata J, et al. Cytogenetic damage and genetic variants in the 
individuals susceptible to arsenic-induced cancer through drinking water. Int J 
Cancer. 2006;118(10):2470-2478. 

189. McCarty KM, Ryan L, Houseman EA, et al. A case-control study of GST 
polymorphisms and arsenic related skin lesions. Environ Health. 2007;65. 

190. Banerjee N, Nandy S, Kearns JK, et al. Polymorphisms in the TNF-&alpha; and 
IL10-gene promoters and risk of arsenic-induced skin lesions and other non-
dermatological health effects. Toxicol Sci. 2011;In press. 

191. De Chaudhuri S, Mahata J, Das JK, et al. Association of specific p53 
polymorphisms with keratosis in individuals exposed to arsenic through drinking 
water in West Bengal, India. Mutat Res. 2006;601(1-2):102-112. 

192. Banerjee M, Sarkar J, Das JK, et al. Polymorphism in the ERCC2 codon 751 is 
associated with arsenic-induced premalignant hyperkeratosis and significant 
chromosome aberrations. Carcinogenesis. 2007;28(3):672-676. 

193. McCarty KM, Smith TJ, Zhou W, et al. Polymorphisms in XPD (Asp312Asn and 
Lys751Gln) genes, sunburn and arsenic-related skin lesions. Carcinogenesis. 
2007;28(8):1697-1702. 

 
 



 

 

42

TABLE 1.  Studies evaluating genetic susceptibility assessed by single nucleotide polymorphisms to arsenical skin lesions 

First 
author 
(year) 

Design Location Endpoint 
Assessment 

SNPs 
Assessed 

Allele 
Frequency 

No. of 
Cases 

No. of 
Controls 

Measure of Effect 95% CI 

PNP 
De 
Chaudhuri 
(2008) 
(186) 

Case-
control 

West 
Bengal, 
India 

Presence of 
more than 1 
characteristic 
skin lesion 

rs1049562 T=0.13 229 199 OR=1.69 (CT+TT vs CC) 1.08, 2.66 
rs1049564 A=0.12 OR=1.66 (GA+AA vs GG) 1.04, 2.64 
rs1130650 T=0.13 OR=1.67 (CT+TT vs CC) 1.05, 2.66 

AS3MT 
De 
Chaudhuri 
(2008) 
(186) 

Case-
control 

West 
Bengal, 
India 

Presence of 
more than 1 
characteristic 
skin lesion 

rs11191439 C=0.05 229 199 OR=1.02 (TC+CC vs TT) 0.53, 1.98 

Valenzuela 
(2009) 
(187) 

Case-
control 

Mexico Presence of at 
least 1 
characteristic 
skin lesion 

rs7085104 G=0.38 71 51 OR=1.60 (AA+AG vs GG) 0.6, 4.3 
rs11191439 C=0.066 OR=4.28 (TC+CC vs TT) 1.0, 18.5 
rs11191453 C=0.21 OR=0.76 (TT vs TC) 0.3, 1.9 

GSTO1 
Ahsan 
(2007) (45) 

Case-
control 

Bangladesh Presence of at 
least 1 
characteristic 
skin lesion 

rs4925 A=0.18 594 1041 OR=0.98 (CA vs CC) 
OR=1.73 (AA vs CC) 

0.74, 1.29 
0.91, 3.30 

rs11509438 T=0.10 OR=0.85 (AT vs AA) 
OR=0.45 (TT vs AA) 

0.60, 1.19 
0.14, 1.44 

rs11509437 A=0.10 OR=0.88 (GA vs GG) 
OR=0.52 (AA vs GG) 

0.63, 1.24 
0.18, 1.52 

De 
Chaudhuri 
(2008) 
(186) 

Case-
control 

West 
Bengal, 
India 

Presence of 
more than 1 
characteristic 
skin lesion 

rs4925 A=0.13 229 199 OR=1.34 (CA+AA vs CC) 0.84, 2.13 
rs11509437 −=0.03 OR=1.44 (−/AGG vs AGG/AGG)  0.67, 3.17 
rs11509438 A=0.11 OR=0.72 (GA+AA vs AA) 0.45, 1.16 
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GSTO2 
De 
Chaudhuri 
(2008) 
(186) 

Case-
control 

West 
Bengal, 
India 

Presence of 
more than 1 
characteristic 
skin lesion 

rs156697 G=0.28 229 199 OR=0.88 (AG+GG vs AA) 0.60, 1.29 

GSTP1 
Ghosh 
(2006) 
(188) 

Case-
control 

West 
Bengal, 
India 

Presence of at 
least 1 
characteristic 
skin lesion 

rs1695 G=0.14 86 110 OR=0.91 (AG vs AA)  
OR=1.26 (GG vs AA) 

0.46, 1.80 
0.25, 6.40 

rs1138272       T=0.04 OR=2.09 (CT vs CC) 

OR=N.E. (TT vs CC) 
0.67, 6.53 
– 

McCarty 
(2007) 
(189) 

Case-
control 

Bangladesh Presence of at 
least 1 
characteristic 
skin lesion 

rs1695 G=0.27 592 597 OR=0.89 (AG vs AA) 
OR=1.86 (GG vs AA) 

0.68, 1.17 
1.15, 3.00 

GSTT1 
Ghosh 
(2006) 
(188) 

Case-
control 

West 
Bengal, 
India 

Presence of at 
least 1 
characteristic 
skin lesion 

GSTT1 null null=0.13 244 178 OR=0.91 (−/+, +/+ vs −/−) 0.33, 1.47 

McCarty 
(2007) 
(189) 

Case-
control 

Bangladesh Presence of at 
least 1 
characteristic 
skin lesion 

GSTT1 null null=0.18 592 597 OR=1.56 (wt vs null) 1.10, 2.19 

GSTM1 
Ghosh 
(2006) 
(188) 

Case-
control 

West 
Bengal, 
India 

Presence of at 
least 1 
characteristic 
skin lesion 

GSTM1 null 
 

null=0.18 244 178 OR=1.73 (−/+, +/+ vs −/−)  1.24, 2.22 

McCarty 
(2007) 
(189) 

Case-
control 

Bangladesh Presence of at 
least 1 
characteristic 
skin lesion 

GSTM1 null null=0.41 592 597 OR=0.99 (wt vs null) 0.77, 1.28 
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MTHFR 
Ahsan 
(2007) (45) 

Case-
control 

Bangladesh Presence of at 
least 1 
characteristic 
skin lesion 

rs1801133 T=0.12 594 1041 OR=1.14 (CT vs CC)  
OR=1.56 (TT vs CC) 

0.84, 1.54 
0.57, 4.30 

rs1801131 C=0.37 OR=1.11 (CA vs CC) 
OR=1.37 (AA vs CC) 

0.75, 1.66 
0.91, 2.06 

TNF 
Banerjee 
(2011) 
(190) 

Case-
control 

West 
Bengal, 
India 

Presence of at 
least 1 
characteristic 
skin lesion 

rs1800629 N.E.1 207 190 OR=3.04 (GA/AA vs GG) 1.78, 5.21 

IL10 
Banerjee 
(2011) 
(190) 

Case-
control 

West 
Bengal, 
India 

Presence of at 
least 1 
characteristic 
skin lesion 

rs1800890 N.E.1 207 190 OR=2.03 (TA/AA vs TT) 1.26, 3.28 

TP53 
De 
Chaudhuri 
(2006) 
(191) 

Case-
control 

West 
Bengal, 
India 

Keratosis rs178783622 16bp 
dup=0.13 

177 189 OR=2.09 (−/− vs −/
ACCTGGAGGGCTGGGG+ 
ACCTGGAGGGCTGGGG/ 
ACCTGGAGGGCTGGGG) 

1.26, 3.46 

rs1042522 G=0.43 OR=2.09 (CC vs GG+GC) 1.32, 3.30 
rs1625895 A=0.15 OR=5.31 (AA vs AG+GG) 0.60, 46.96 

ERCC2 
Ahsan 
(2003) 
(172) 

Case-
control 

Bangladesh Hyperkeratosis rs13181 N.E.1 29 105 OR=1.7 (AA vs AC/CC) 0.7, 4.3 

Banerjee 
(2007) 
(192) 

Case-
control 

West 
Bengal, 
India 

Hyperkeratosis rs13181 A=0.4 165 153 OR=4.77 (AA vs AC/CC) 2.75, 8.23 

                                                            
1 N.E., Not estimateable from reported data.  
2 Deletion insertion polymorphism 
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McCarty 
(2007) 
(193) 

Case-
control 

Bangladesh Presence of at 
least 1 
characteristic 
skin lesion 

rs13181 A=0.4 555 560 OR=0.92 (AC vs AA) 
OR=0.98 (CC vs AA) 

0.69, 1.23  
0.66, 1.45 

rs1799793 A=0.3 OR=0.87 (AG vs GG) 
OR=0.76 (AA vs GG) 

0.65, 1.15  
0.50, 1.15 

APEX1 
Breton 
(2007) 
(151) 

Case-
control 

Bangladesh Presence of at 
least 1 
characteristic 
skin lesion 

rs3136820 
(rs1130409) 

G=0.26 792 792 OR=0.96 (TG vs TT) 
OR=1.93 (GG vs TT) 

0.75, 1.22 
1.15, 3.19 

XRCC1 
Breton 
(2007) 
(151) 

Case-
control 

Bangladesh Presence of at 
least 1 
characteristic 
skin lesion 

rs1799782 T=0.11 792 792 OR=1.01 (TC vs CC) 
OR=0.52 (TT vs CC) 

0.76, 1.35 
0.17, 1.66 

rs25487 A=0.37 OR=1.17 (GA vs GG) 
OR=1.39 (AA vs GG) 

0.91, 1.52 
0.96, 2.03 

XRCC3 
Kundu 
(2011) 
(163) 

Case-
control 

West Bengal, 
India 

Presence of at 
least 1 
characteristic 
skin lesion 

rs861539 T=0.28 206 215 OR=0.45 (CT/TT vs CC) 0.30, 0.67 

OGG1 
Breton 
(2007) 
(151) 

Case-
control 

Bangladesh Presence of at 
least 1 
characteristic 
skin lesion 

rs1052133 G=0.32 
 

792 792 OR=1.04 (GC vs CC) 
OR=0.87 (GG vs CC) 

0.81, 1.32 
0.58, 1.32 

MPO 
Ahsan 
(2003) 
(91) 

Case-
control 

Bangladesh Hyperkeratosis rs2333227 A=0.14 30 104 OR=2.1 (GG vs GA+AA) 0.7, 6.2 

CAT 
Ahsan 
(2003) 
(91) 

Case-
control 

Bangladesh Hyperkeratosis rs1001179 T=0.19 30 104 OR=1.9 (CT+TT vs CC) 0.8, 4.7 
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Figure 1.  Chemical structure of inorganic and organic arsenic species 
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Chapter 2 

Arsenic Exposure, Antioxidant Enzymes, and Skin Lesion Prevalence in an Adult 

Bangladeshi Population  
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ABSTRACT 

One of the proposed pathways that may be related to arsenic toxicity is oxidative stress 

and therefore, may play a role in the association between arsenic and skin lesion risk. The 

objective of this analysis was to assess the relationship between SNPs in antioxidant 

enzyme genes and skin lesion prevalence among 610 population-based prevalent skin 

lesion cases and 1,079 controls enrolled in the HEALS cohort. There were no statistically 

significant associations between these SNPs (SOD2, rs4880; CAT, rs1001179; GPX1, 

rs1050450; and MPO, rs2333227) and skin lesion prevalence. The results did not vary by 

arsenic exposure levels (as measured by well water arsenic concentration, urinary total 

arsenic concentration, primary methylation index, and secondary methylation index), 

body mass index, smoking status, or fruit and vegetable intake. However, there was 

marginal evidence that skin lesion prevalence was increased among individuals who 

carried 4 or more risk alleles compared to individuals carrying 0-3 risk alleles in these 

SNPs. Additionally, we observed a significant departure from additivity for the risk allele 

score and primary methylation index on skin lesion prevalence. There was no evidence 

that these SNPs were associated with skin lesion severity, such as pigmentation changes 

and keratosis. In summary, there is some evidence of a cumulative effect of these 

antioxidant SNPs that should be explored further, particularly in conjunction with arsenic 

methylation ability.          
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INTRODUCTION  

While arsenic is a well-established human carcinogen (1) and has additionally 

been associated with an array of chronic diseases (2-15), the underlying mechanism of 

arsenic toxicity has not yet been determined. Dose-response associations between arsenic 

exposure with both prevalent and incident skin lesions have been observed (16, 17). One 

of the proposed pathways that may modify the association between arsenic and skin 

lesion risk is oxidative stress (18, 19). Arsenic has been shown to induce reactive oxygen 

species (ROS) (20). Oxidative stress is hypothesized to play a role in initiation, 

promotion, and progression within the framework of a multistage carcinogenesis model 

(21). Matsui et al. conducted a study of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a well 

established marker of oxidative stress, in skin tissue and found 8-OHdG to be 

significantly higher in arsenic-related Bowen’s disease (squamous cell carcinoma in situ) 

as compared to arsenic-unrelated Bowen’s disease (22). Similar findings were seen by An 

et al., who additionally showed that 8-OHdG was elevated in the normal and keratotic 

skin tissue of arsenic-exposed individuals (23). The antioxidant defense system is 

comprised of a cell’s enzymatic and non-enzymatic antioxidants (18). The construct 

measured for the purposes of this analysis is the enzymatic antioxidant potential of the 

individual based on SNPs in genes selected from the oxidative stress pathway.   

 DNA was genotyped for four SNPs in the following antioxidant enzyme genes: 

superoxide dismutase 2, mitochondrial (SOD2; rs4880); catalase (CAT; rs1001179); 

glutathione peroxidase 1 (GPX1; rs1050450); and myeloperoxidase (MPO; rs2333227). 

SOD2 protein plays a major role in maintaining oxidative balance by converting 
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superoxide (O2
-)—a precursor molecule for all other ROS—into hydrogen peroxide and 

oxygen (24). CAT protein plays a major role at times of severe oxidative stress by 

converting hydrogen peroxide into water and oxygen (25). GPX1 is the main antioxidant 

enzyme in normal conditions that functions in the detoxification of hydrogen peroxide by 

using it to oxidize glutathione (26). MPO has been implicated in oxidative stress because 

of its utilization of hydrogen peroxide to produce the oxidant hypochlorite, which may 

lead to oxidative damage of biological tissues (27). Additionally, prior in vitro 

experiments have shown SOD2 (28, 29), CAT (20, 28, 30), GPx (31, 32), and MPO  (29) 

to play roles in mitigating arsenic-induced DNA damage from oxidative stress. 

 In this study, we evaluate whether SNPs in genes encoding antioxidant enzymes 

(SOD2, GPX1, CAT, MPO) are associated with prevalent arsenical skin lesion status in 

610 cases and 1,079 controls from the Health Effects of Arsenic Longitudinal Study 

(HEALS) cohort. 

 

MATERIALS AND METHODS 

Study population 

HEALS is an ongoing, population-based cohort study examining both the short- 

and long-term health effects of arsenic exposure. The study was launched in Araihazar, 

Bangladesh, in 2000. The selection of cohort participants, study design and methods have 

been described in detail elsewhere (33).  

The HEALS cohort served as the study population for the prevalent cases and 

controls utilized in these analyses. Between October 2000 and May 2002, married 
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individuals were sampled—an eligibility criteria to minimize loss to follow-up—who 

were aged 18–75 years and residents of the study area for at least 5 years. From the 

12,050 residents who met the eligibility criteria from an enumerated total 65,876  persons 

in the study area, 11,746 (97.5% response rate) men and women (4,801 married couples 

and 2,144 married individuals whose spouses did not participate) were enrolled into the 

HEALS cohort. Among the 11,746 enrolled baseline cohort participants, 11,224 

participants (95.6%) provided urine samples. At baseline, 610 cases of skin lesions were 

identified among the 11,224 cohort members who provided urine samples and were 

included as prevalent cases in this study. Of the remaining participants with an available 

urine sample and known to be free of skin lesions at baseline (n=10,614), a ~10% random 

sample (n=1,079) was selected and included as controls in this study.  

Structured baseline questionnaires were administered to participants in Bengali by 

trained interviewers, who were blind to the water arsenic concentration of the 

participants’ wells. The questionnaires assessed sociodemographic characteristics, current 

and past tubewell use, typical water consumption patterns, food frequency of thirty-nine 

items common to the population (34), occupational exposures, and smoking habits. The 

study physicians also conducted a clinical examination, which included a skin evaluation 

for the detection of arsenical skin lesions based on a structured protocol (16, 33). Venous 

blood and spot urine samples were also collected from each participant on the day of the 

interview.                
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The study protocol was approved by the Institutional Review Boards of Columbia 

University, The University of Chicago, and the Bangladesh Medical Research Council. 

Informed consent was obtained from all participants prior to baseline interview.  

 

Arsenic exposure assessment 

Three primary measures of arsenic exposure were estimated for each case-control 

participant: well water arsenic concentration, creatinine-adjusted urinary total arsenic 

concentration, and urinary arsenic metabolites.   

At the baseline survey, participants were asked to identify the well they primarily 

used as their source of drinking water, from which we were able to assign the appropriate 

well water arsenic concentration exposure. Well water arsenic concentrations of all 5,966 

tubewells in the study area were measured by graphite furnace atomic absorption 

spectrometry, with a detection limit of 5 μg/L. Samples below the limit of detection were 

subsequently reanalyzed by inductively coupled plasma-mass spectrometry (ICP-MS), 

with a detection limit of 0.1 μg/L (35).  

Urinary total arsenic concentration was measured in a spot urine sample collected 

at baseline by graphite furnace atomic absorption spectrometry, with a detection limit of 

2 μg/L (36). Urinary creatinine was measured by a colorimetric Sigma Diagnostics Kit 

(Sigma, St. Louis, MO), and urinary total arsenic was subsequently divided by creatinine 

to obtain a creatinine-adjusted urinary total arsenic concentration, expressed as μg/g 

creatinine (37). 
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Urinary arsenic metabolites were measured based on the method by Reuter et al. 

(38) using high-performance liquid chromatography separation of arsenobetaine, 

arsenocholine, arsenate (AsV), arsenite (AsIII), total monomethyl arsenic (MMAIII + 

MMAV), and total dimethyl arsenic (DMAIII + DMAV) followed by detection by ICP-

MS-dynamic reaction cell. Total inorganic arsenic (AsIII + AsV) is utilized in these 

analyses since AsIII can oxidize to AsV during sample transport, storage, and preparation.  

For purposes of analysis, well water arsenic was categorized into quartiles based 

on the distribution in the controls; however, since the first and second quartiles roughly 

corresponded to the World Health Organization’s guideline for arsenic in drinking water 

(10 μg/L) and the national standard for arsenic in drinking water in Bangladesh (50 

μg/L), respectively, we adjusted the cutoff points slightly to correspond to these 

regulatory levels. Urinary total arsenic concentration and arsenic metabolite metrics were 

quartiled based on the distribution in the controls. The percentages of MMA, DMA and 

inorganic arsenic were calculated after exclusion of arsenobetaine and arsenocholine 

from the total. In addition, two methylation indices were constructed: primary 

methylation index (PMI)—the ratio of MMA to inorganic arsenic—and secondary 

methylation index (SMI)—the ratio of DMA to MMA.  

Individuals who were missing data on a particular arsenic exposure measure were 

excluded from the analysis of that specific exposure. Well water arsenic and urinary total 

arsenic concentrations were available for all cases and controls. Arsenic metabolite data 

was missing for 18 case subjects and 37 control subjects.  
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Single nucleotide polymorphism assessment 

High-throughput DNA extraction was completed in 96-well format using the 

QIAmp DNA 96 DNA Blood kit (Qiagen, Valencia, CA). Replica plates were made with 

12.5 ng DNA in 2.5 µL per well. In the first step, the genomic DNA was amplified by 

PCR using appropriate primers. After PCR amplification, the primers and 

deoxynucleotide triphosphates in 10 µL PCR product were digested with the 10 µL 

shrimp alkaline phosphatase cocktail containing 1.0 µL (1 unit/µL) of shrimp alkaline 

phosphatase, 0.1 µL of Escherichia coli exonuclease I (10 units/µL; U.S. Biochemical, 

Cleveland, OH), 1.0 µL of 10x shrimp alkaline phosphatase buffer, and 7.9 µL of DNase 

and RNase-free water for 45 min at 37°C followed by heating at 95°C for 15 min for 

enzyme deactivation. Then, single nucleotide extension was carried out in the presence of 

the appropriate allele-specific dideoxynucleotide triphosphates fluorescence labeled with 

either R110 or TAMRA (PerkinElmer, Waltham, MA). For single nucleotide extension 

reactions, both the forward and reverse probes were initially tested to select the better 

probe based on clear signal clustering. Reaction mixture (13 µL/well) containing 0.025 

µL AcycloPrime enzyme, 0.5 µL terminator dye, 1 µL reaction buffer, 0.25 µL extension 

probe (10 pmol/µL), and 11.225 µL water was added to 7 µL of digested PCR product to 

make 20 µL reaction volume. Thermocycling was done at 95°C for 3 min followed by 

optimum number of cycles of 95°C for 15 s and 55°C for 30 s. Finally, the fluorescence 

was measured with Wallac 1420 Multilabel Counter Victor 3 (PerkinElmer, Waltham, 

MA). In addition to our assay-specific quality control samples, 10% of the samples were 

run in duplicate after relabeling to keep laboratory researchers blinded to its identity. 
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Concordance based on the duplicates was >0.92. Call rates for the SNPs of interest 

ranged from 95.2% to 97.9%, as shown in Table 1. 

 

Skin lesion assessment 

 Arsenical skin lesion assessment was conducted through skin examination at the 

baseline interview following a structured protocol by a trained study physician (16, 33). 

Arsenical skin lesions were categorized as the presence of melanosis on the body surface, 

leucomelanosis on the body surface, and keratosis on the hands or feet. For the purposes 

of this study, cases were selected as having the presence of any type of arsenical skin 

lesion. 

The distribution of skin lesion severity among the 610 cases was as follows: 359 

cases had melanosis only, 20 had leucomelanosis only, 10 had melanosis and 

leucomelanosis, 170 had melanosis and keratosis, 40 had leucomelanosis and keratosis, 

and 11 had melanosis, leucomelanosis, and keratosis.  

Individuals without keratotic arsenical lesions are generally thought to have a 

milder form of skin lesions, manifest as changes in the dermal pigmentation of the skin. 

This suggests that there is some heterogeneity of the skin lesion definition; therefore, 

subset analyses were conducted to evaluate the association of SNPs with skin lesion 

severity. Skin lesion severity was stratified into absence of keratotic skin lesions (n=389) 

and presence of keratotic skin lesions (n=221).        
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Covariates 

 All covariate data was derived from the baseline interview. Demographic factors 

included sex and reported age at baseline. Self-reported smoking history was ascertained 

and categorized as ever versus never smoker for the purposes of these analyses. At the 

time of the baseline interview, height and weight of each participant was measured by the 

study physician; body mass index was constructed as weight in kilograms divided by 

height in meters squared and categorized by the World Health Organization cutoff points 

for underweight, normal weight, and overweight/obese.  

Fruit and vegetable consumption as well as total caloric intake was constructed 

based on the reported intake from the food frequency questionnaire (FFQ) (34). 

Participants were exclude from this analysis if they did not complete or reported an 

unlikely total caloric intake value on the FFQ (<500 or >4000 kcal/ day; n=47 missing 

and n=29 extreme values (total n=76 excluded)). A single variable for total fruit and 

vegetable intake was constructed by summing the average daily amount of fruit and 

vegetables consumed that was reported for 26 food items (Table B.1). The total fruit and 

vegetable intake was then tertiled based on the distribution in controls for the purposes of 

these analyses.    

 

Statistical analysis 

Hardy Weinberg Equilibrium (HWE) was calculated for the controls based on 

Pearson (χ2) tests and α. Violation of HWE is calculated based on statistical departure 
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from expected HWE frequencies based on the exact test. α is used to denote the 

magnitude of departure from HWE. 

 

where Pgg, PGg, and PGG are the genotype proportions (39).  

 The association between each SNP and arsenical skin lesion status was estimated 

by prevalence odds ratios (PORs) and their 95% confidence intervals (CIs) from logistic 

regression models employed by the LOGISTIC procedure in SAS. The PORs were 

adjusted for sex, age, and well water arsenic concentration, primarily because of the 

strong association of these covariates with the outcome. The genotype-specific PORs 

were estimated for each SNP using the homozygous major genotype as the reference 

category. Additionally, the per allele POR was estimated assuming a log-additive model. 

In these models, a single ordinal variable was included indicating the number of minor 

alleles (0, 1, 2) and the associated Wald statistic was interpreted as the P for trend.  

A summary risk allele count was created for the measured biallelic SNPs by 

summing the number of risk alleles carried by an individual, based on a priori knowledge 

of the SNP alleles on protein structure and function (SOD2=T allele, GPX1=T allele, 

CAT=C allele, MPO=A allele). For purposes of analysis, the risk allele count was 

dichotomized.    

 We also evaluated interactions of genetic factors with arsenic exposure (as 

measured by well water arsenic and urinary total arsenic concentrations) as well as 

arsenic methylation capacity in relation to arsenical skin lesions on the additive scale 
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using both genotype status and risk allele count in separate analyses. Multivariate 

adjusted estimates were used to estimate the relative excess risk for interaction (RERI), 

calculated as   

  RERI = exp(β1+β2+β3) – exp(β1) − exp(β2) +1.  

Here β1 is the coefficient of the ordinal arsenic exposure measure, β2 is the coefficient of 

the dichotomous SNP effect modifier measure, and β3 is the coefficient of the cross-

product of the ordinal arsenic exposure and dichotomous SNP measure (40, 41). Bias 

corrected and accelerated (BCa) 95% CIs of the RERI were estimated via 1000 bootstrap 

samples. CIs of the RERI were also calculated using the delta method described by 

Hosmer and Lemeshow with similar results (not shown) (42). We also evaluated effect 

modification of the associations between lifestyle factors (BMI, smoking status, and fruit 

and vegetable intake) and skin lesions by each SNP and risk allele count in separate 

analyses on the additive scale, adjusting for well water arsenic exposure and other 

covariates. In these analyses, β1 is the coefficient of the ordinal lifestyle measure, β2 is 

the coefficient of the dichotomous SNP effect modifier measure, and β3 is the coefficient 

of the cross-product of the ordinal lifestyle measure and dichotomous SNP effect 

modifier—with the exception of smoking status that was modeled as a dichotomous 

lifestyle measure.   

In exploratory subset analyses, skin lesion severity was evaluated by stratifying 

arsenical skin lesion status into absence of keratotic skin lesions and presence of keratotic 

skin lesions. Prevalent skin lesion cases with melanosis and/or leucomelanosis but not 

keratosis (n=389) were classified as non-keratotic skin lesions and, individuals with 
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keratosis (n=221) were classified as keratotic skin lesions. Ordered polytomous 

regression models were employed by the LOGISTIC procedure in SAS, comparing non-

keratotic skin lesions (coded=1) and keratotic skin lesions (coded=2) to the controls 

(coded=0, reference category).   

 

RESULTS 

Sample characteristics 

Information on the genotyped antioxidant enzyme SNPs is shown in Table 1. 

Based on the α statistic, no SNPs were observed to deviate from Hardy-Weinberg 

equilibrium indicating no major evidence of genotyping errors for each SNP. The 

distribution of selected characteristics in the total HEALS cohort and by the 610 

prevalent skin lesion cases and 1,079 controls are shown in Table 2. Since a random 

sample of the baseline cohort without skin lesions was selected as control participants for 

genotyping, the distribution of characteristics in the controls is not appreciably different 

from the total baseline cohort except for the distribution of age, where we see that control 

subjects were underrepresented in the 31–40 age range and overrepresented in the 41–50 

age range relative to the total cohort. Similar to the previous HEALS cohort analysis for 

skin lesion prevalence (16), we observed based on the selected cases and controls for this 

analysis that males, older age, low BMI (<18.5 kg/m2), current or past cigarette smoking, 

and no formal education were associated with increased skin lesion prevalence. 

Additionally, clear dose-response associations were observed with arsenic exposure as 
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measured by well water arsenic and urinary total arsenic concentrations (Table 2), as 

well as with the distribution of urinary arsenic metabolites (Table 3).      

 

Evaluation of associations with single and cumulative SNP effects 

No significant associations were observed between each of the antioxidant 

enzyme SNPs and skin lesion prevalence, based on the genotype and per allele POR 

estimates (Table 4). A risk allele score for the genotyped SNPs was constructed based on 

a priori evidence of the risk allele for each SNP and showed evidence of marginal 

increased risk when 4 or more risk alleles were present (adjusted POR=1.2, 95% CI=0.9, 

1.6; Table 5). These results did not vary by skin lesion severity, classified as non-

keratotic and keratotic skin lesions (Table B.2). Additionally, in exploratory analyses we 

evaluated these associations in male participants only since their baseline skin lesion 

prevalence was appreciably higher than females and, we did not observe notable 

differences in the distribution of SNPs or the associations of the SNPs with skin lesion 

prevalence in males as compared to the total study sample, precluding evidence of 

interaction by sex (Table B.3).   

 

Additive interaction evaluation 

We evaluated whether the associations between antioxidant enzyme SNPs and 

skin lesion prevalence were modified by various arsenic exposure measures and lifestyle 

factors on the additive scale. Departure from additivity was evaluated by well water 

arsenic concentration (Table 6), creatinine-adjusted urinary total arsenic concentration 
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(Table 7), primary methylation index (Table 8), secondary methylation index (Table 9), 

BMI (Table 10), cigarette smoking status (Table 11), and total fruit and vegetable intake 

(Table 12). A significant departure from additivity was observed for the risk allele score 

and primary methylation index on skin lesion prevalence (RERI=0.22, 95% CI=0.03, 

0.36; Table 8). On the additive scale, we observed that skin lesion prevalence was greater 

in individuals carrying 4 or more risk alleles with each 1 quartile increase in primary 

methylation index than would be expected based on the additive independent effects of 

risk allele score and primary methylation index alone. We did not observed any other 

evidence of interaction on the additive scale by measures of arsenic exposure, arsenic 

metabolism, or lifestyle factors as characterized by RERI estimates that were not 

appreciably different from zero.  

 

DISCUSSION 

In this population-based case-control study of arsenical skin lesion prevalence in a 

Bangladeshi population, we systematically evaluated four candidate SNPs in antioxidant 

enzymes. There were no statistically significant associations between these SNPs (SOD2, 

rs4880; CAT, rs1001179; GPX1, rs1050450; and MPO, rs2333227) and skin lesion 

prevalence. However, there was marginal evidence that skin lesion prevalence was 

increased among individuals who carried 4 or more risk alleles compared to individuals 

carrying 0-3 risk alleles in these SNPs. Additionally, we observed a significant departure 

from additivity for the risk allele score and primary methylation index on skin lesion 

prevalence.  
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Our observation of significant modification of the association between primary 

methylation index and skin lesion prevalence by the risk allele score on the additive scale 

is consistent with evidence from the current literature. Individuals with a higher 

proportion of MMA to inorganic arsenic in their urine (represented by a larger primary 

methylation index score) were observed to have increased prevalence of arsenical skin 

lesions compared to those with a lower relative proportion, which is consistent with other 

studies examining the association between skin lesion prevalence and urinary arsenic 

metabolites (16, 43-47) as well as blood arsenic metabolites (48). Notably, a cross-

sectional study among arsenic-exposed individuals showed that lower primary 

methylation index was associated with lower plasma antioxidant capacity (49). Moreover, 

in vitro studies have shown that MMA induces reactive oxygen species, particularly the 

trivalent form of this organic arsenic species (50, 51). In the recent study by Bailey et al 

(51), in vitro experiments using normal human epidermal keratinocytes showed that 

MMAIII exhibited the greatest potential for skin carcinogenesis through the induction of 

oxidative stress, increased transcript levels of keratinocyte growth factors, and 

modulation of MAPK and NF-κB pathways, compared to the trivalent forms of inorganic 

arsenic and DMA. In a comparative functional genomics analysis in yeast, Jo et al (52) 

showed that glutathione (related to cellular antioxidant status) was more important in 

MMAIII toxicity than trivalent inorganic arsenic toxicity. Therefore, the fact that an 

interaction was observed only with the primary methylation index and not other measures 

of arsenic exposure that do not reflect the distribution of arsenic metabolites but rather 

capture the total burden of arsenic exposure, is quite consistent with the fact that 
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oxidative stress may be a mechanism that is associated only with MMA—a construct that 

is best captured by the primary methylation index. Thus, individuals who do not fully 

methylate arsenic efficiently and are carriers of several risk allele variants in antioxidant 

enzyme genes could potentially be at increased risk due to this gene-environment 

interaction.              

In pilot work conducted by Ahsan et al (53) in the same cohort population as this 

analysis but using a non-overlapping set of prevalent skin lesion cases with keratosis and 

control subjects, non-significant increased risks were shown for the GG genotype of 

MPO (rs2333227) and the CT/TT genotype of CAT (rs1001179). Based on the 

polytomous regression analysis conducted in this current study, stratifying cases by 

presence of keratosis did not reveal any significant difference in estimates between 

keratotic versus non-keratotic cases for the SNPs. However, examination of the PORs 

from this analysis showed a trend toward an increased risk for the T allele of CAT (per 

allele POR=1.3, 95% CI=1.0,1.7) among keratotic skin lesion cases compared to controls, 

which was not observed among non-keratotic skin lesion cases compared to controls 

(POR=0.8, 95% CI=0.8, 1.1). Examination of the PORs for MPO showed less 

appreciable differences in the risk estimates for the A allele (non-keratotic skin lesions 

POR=0.9, 95% CI=0.7, 1.2; keratotic skin lesions POR=1.2, 95% CI=0.9, 1.7), with a 

more notable difference in estimates among individuals with the AA genotype (non-

keratotic skin lesions POR=1.1, 95% CI=0.4, 3.0; keratotic skin lesions POR=1.7, 95% 

CI=0.5, 5.1). However, only 5 keratotic cases had the AA genotype which urges caution 

for the interpretation of the POR estimate. Additionally, increased prevalence for MPO 
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would potentially be suggested for the A allele in this study, which is the opposite of 

what was observed previously for the G allele by Ahsan et al. Since both the pilot work 

and the stratified analysis in this study were based on a small number of cases (n=30 and 

n=221, respectively), further investigation of these potential findings is warranted in a 

larger sample of well-defined keratotic skin lesion cases to draw more definitive 

conclusions.          

 The major strengths of this study were the measurement of genetic variants, large 

size of the study sample, the wide range of arsenic exposure, and the multiple constructs 

of arsenic exposure. The advantage of measuring genetic variants is because they can be 

measured with little measurement error and bias. Additionally, SNPs are time-

independent measures (54), which strengthens causal inference of the associations 

evaluated in this analysis between the measured SNPs and prevalent skin lesions. 

Conversely, the amount of oxidative stress could have been measured but there would 

have been major limitations in the temporality of these measures with the use of prevalent 

cases. Additionally, in very early or mild cases of skin lesions (some forms of melanosis) 

may not be readily visible with clinical examination; therefore, oxidative stress 

biomarkers could also suffer from reverse causation if it was not ensured that the 

measures were taken at an appropriate period before disease onset. A major strength of 

this study is the assessment of arsenic exposure. Arsenic exposure was ascertained based 

on well water arsenic concentration, as well as urinary arsenic measures including total 

arsenic concentration and arsenic metabolites, which allowed us to evaluate various 
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constructs of exposure including total exposure burden as well as exposure methylation 

ability.      

 While there are many strengths of this study, there are several limitations that are 

acknowledged. The antioxidant defense system is comprised of enzymatic and non-

enzymatic antioxidants. The focus of this study was to examine the influence of 

polymorphisms of selected enzymatic antioxidants. The role of non-enzymatic 

antioxidants and activity of enzymatic antioxidants are unmeasured; therefore, the total 

antioxidant potential of the cell remains unknown. Additionally, arsenic serves as a proxy 

measure to the actual measure of interest, which is arsenic-induced oxidative stress. 

There is evidence from prior studies to suggest that MMA may be the most relevant 

arsenic species to the oxidative stress pathway, as discussed previously; however, we can 

only infer from this work that individuals with a higher concentration of MMA 

experience higher levels of oxidative stress and have not measured it directly. 

Alternatively, biomarkers of oxidative stress could have been measured. The assessment 

of the effect of SNPs on prevalent skin lesions is also limited for the evaluation of 

mechanistic hypotheses and phenotype considerations since the association may be 

related to disease prevalence or progression and not disease incidence. Therefore, 

findings from these analyses should be replicated with incident cases. However, we deem 

the effect of disease prevalence to be minimal since arsenical skin lesions are typically 

not fatal. Additionally, in the subset analysis we conducted to evaluate the associations of 

SNPs with arsenical skin lesion severity, it did not appear that these SNPs were related to 

disease progression. Finally, the SNPs and genes for which there is data available were 
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selected based on a candidate-gene approach, and only a single SNP in each gene of 

interest was examined. Future studies should take a more comprehensive genomewide 

approach for evaluating genetic variants in the antioxidant enzyme pathway in relation to 

skin lesion status. Findings from this type of “discovery” approach could then be 

evaluated in candidate-gene studies employing SNPs which comprehensively tag the 

genes of interest.  

The findings of this study have potentially important scientific and public health 

implications for arsenic in drinking water. Prior epidemiologic research has suggested 

oxidative stress as a potential mechanism of arsenic toxicity, which observations from 

this study suggest is a viable mechanism for arsenic toxicity and warrants further 

investigation. Additionally, individuals deficient in arsenic metabolism (as characterized 

by the primary methylation index) and carried multiple risk alleles in antioxidant 

enzymes had increased prevalence of skin lesions, which highlights potential pathways 

for intervention in individuals with manifest skin lesions.     

In conclusion, there was marginal evidence that skin lesion prevalence was 

increased among individuals who carried 4 or more risk alleles compared to individuals 

carrying 0-3 risk alleles in antioxidant enzyme SNPs (SOD2, rs4880; CAT, rs1001179; 

GPX1, rs1050450; and MPO, rs2333227). Additionally, we observed a significant 

departure from additivity for the risk allele score and primary methylation index on skin 

lesion prevalence, indicating that skin lesion prevalence was greater in individuals 

carrying 4 or more risk alleles and with poorer arsenic methylation ability than was 

expected based on the additive independent effects of these characteristics alone. Further 
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investigation into cumulative effects of variants in antioxidant enzyme genes is 

warranted, particularly among individuals deficient in arsenic methylation.      
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TABLE 1. Single Nucleotide Polymorphisms 

Gene SNP  
rs number Chromosome SNP Amino acid 

substitution 
Genotyping 
success rate (%) α 

SOD2 4880 6 Ex2+24C>T A16V 96.5 0.03 
CAT  1001179  11 -329T>C   96.3 0.01 
GPX1  1050450  3 Ex1-226C>T  P200L  96.4 -0.03 
MPO  2333227  17 -642G>A   96.8 -0.03 
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TABLE 2.  Selected Characteristics for the Study Sample, Araihazar, Bangladesh, 2000-2002  

Characteristic 
HEALS Cohort 

(n=11,746) 
Cases 

(n=610) 
Controls 
(n=1,079) POR3 

(95% CI) N % N % N % 
Sex        

Male 5,042 42.9 507 82.6 440 40.8 1.0 
Female 6,704 57.1 106 17.4 639 59.2 0.1 (0.1, 0.1) 

Age, years        
18-30 3,653 31.1 161 26.4 386 35.8 1.0 
31-40 4,186 35.7 224 36.7 237 22.0 2.5 (1.8, 3.4)  
41-50 2,730 23.2 60 9.8 355 32.9 5.6 (4.0, 7.8) 
51-75 1,176 10.0 165 27.0 100 9.3 9.8 (6.7, 14.1) 

BMI4, kg/m2         
<18.50 4,555 39.7 305 50.4 402 37.5 1.0 
18-50-24.99 6,107 53.3 280 46.3 589 54.9 0.6 (0.5, 0.8) 
≥25.00 805 7.0 20 3.3 81 7.6 0.3 (0.2, 0.5) 

Cigarette smoking        
Never 7,568 64.5 177 29.0 698 64.7 1.0 
Ever 4,173 35.5 433 71.0 381 35.3 4.5 (3.6, 5.6) 

Fruit/vegetable intake, g/day        
74.0-415.5 3,868 33.4 232 39.9 344 33.3 1.0 
415.6-593.0 3,752 32.4 168 28.9 344 33.3 0.7 (0.6, 0.9) 
≥593.1 3,950 34.2 181 31.2 344 33.3 0.8 (0.6, 1.0) 

Well water arsenic, μg/L5        
0.1-10 2,743 23.4 72 11.8 265 24.6 1.0 
10.1-50 2,511 21.4 97 15.9 248 23.0 1.4 (1.0, 2.0) 
50.1-150 3,600 30.7 202 33.1 330 30.6 2.2 (1.6, 3.1) 
150.1-864  2,889 24.6 239 39.2 236 21.9 3.7 (2.7, 5.1) 

Urinary total arsenic, μg/g6        
16-103 2,725 24.2 64 10.5 269 24.9 1.0 
104-192 2,713 24.2 121 19.8 271 25.1 1.9 (1.3, 2.6) 
193-339 2,822 25.1 164 26.9 269 24.9 2.6 (1.8, 3.6) 
340-8556 2,964 26.4 261 42.8 270 25.1 4.1 (2.9, 5.6) 

 

                                                            
3 POR, Prevalence odds ratio; unadjusted.  
4 BMI cut-point defined by WHO BMI classification for underweight, normal, and overweight/obese.  
5 Water arsenic concentration cut-points roughly correspond to quartiles of the exposure distribution for the 
controls but have been slightly adjust to reflect policy relevant parameters.   
6 Creatinine-adjusted urinary total arsenic concentration.  
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TABLE 3.  Urinary Arsenic Metabolite Distribution for the Study Sample, Araihazar, Bangladesh, 2000-
2002  

Characteristic 
Cases 

(n=610)7 
Controls 

(n=1,079)8 
Crude Effect 

Estimate 
N % N % POR 95% CI 

% Total MMA       
<8.650 59 10.0 260 25.0 1.0  
8.650-11.765 130 22.0 261 25.0 2.2 1.5, 3.1 
11.766-14.903 146 24.7 269 25.0 2.5 1.7, 3.5 
14.904-33.415 257 43.4 260 25.0 4.4 3.1, 6.0 

% Total DMA       
<63.500 192 32.4 260 25.0 1.0  
63.500-69.215 152 25.7 260 25.0 0.8 0.6, 1.0 
69.216-74.480 124 21.0 262 25.1 0.6 0.5, 0.8 
74.481-90.828 124 21.0 260 24.9 0.6 0.5, 0.9 

% Inorganic arsenic9        
<10.81 152 25.7 260 25.0 1.0  
10.81-14.20 145 24.5 261 25.0 0.9 0.7, 1.3 
14.21-18.31 141 23.8 262 25.1 0.9 0.7, 1.2 
18.32-69.30 154 26.0 259 24.9 1.0 0.7, 1.3 

Primary methylation index10,11       
<0.580 70 11.8 260 25.0 1.0  
0.580-0.835 132 22.3 259 25.0 1.9 1.3, 2.6 
0.836-1.154 171 28.9 260 25.0 2.4 1.8, 3.4 
1.155-19.570 218 36.9 260 25.0 3.1 2.3, 4.3 

Secondary methylation index12,13       
<4.316 236 39.9 259 25.0 1.0  
4.316-5.855 153 25.9 259 25.0 0.6 0.5, 0.8 
5.856-8.211 128 21.7 259 25.0 0.5 0.4, 0.7 
8.212-32.300 74 12.5 259 25.0 0.3 0.2, 0.4 

 

                                                            
7 All arsenic metabolites data missing for 18 case subjects.  
8 All arsenic metabolite data missing for 37 control subjects.  
9 Inorganic arsenic is sum of arsenate and arsenite.   
10 The primary methylation index was calculated as % MMA / % Inorganic arsenic.  
11 Primary methylation index missing for 1 additional case and 3 additional controls subjects due to 0 
values.   
12 The secondary methylation index was calculated as % DMA / % MMA. 
13 Secondary methylation index missing for 1 additional case and 6 additional control subjects due to 0 
values.   
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TABLE 4.  Prevalence Odds Ratios and 95% CIs for Skin Lesion Prevalence in Relation to Antioxidant 
Enzyme SNPs, Araihazar, Bangladesh, 2000-2002  

SNP MAF14 

Cases 
(n=610) 

Controls 
(n=1,079) 

Crude 
Estimate P for 

trend 

Multivariate 
Estimate15 P for 

trend N % N % POR 95% 
CI 

POR 95% 
CI 

SOD2 T=0.45           
CC  173 30.6 302 31.5 1.0   1.0   
CT  268 47.3 456 47.5 1.0 0.8, 1.3  1.0 0.8, 1.3  
TT  125 22.1 202 21.0 1.1 0.8, 1.4  1.0 0.7, 1.4  

Per allele      1.0 0.9, 1.2 0.61 1.0 0.9, 1.2 0.91 
GPX1 T=0.19           

CC  372 65.4 623 65.2 1.0   1.0   
CT  174 30.6 297 31.1 1.0 0.8, 1.2  1.0 0.7, 1.3  
TT  23 4.0 36 3.8 1.1 0.6, 1.8  1.2 0.6, 2.3  

Per allele      1.0 0.8, 1.2 0.98 1.0 0.8, 1.3 0.87 
CAT T=0.23           

CC  358 63.5 571 59.5 1.0   1.0   
CT  185 32.8 343 35.8 0.9 0.7, 1.1  1.0 0.8, 1.3  
TT  21 3.7 45 4.7 0.7 0.4, 1.3  0.9 0.5, 1.7  

Per allele      0.9 0.7, 1.0 0.11 1.0 0.8, 1.2 0.80 
MPO A=0.14           

GG  423 74.3 709 73.6 1.0   1.0   
GA  134 23.6 237 24.6 0.9 0.7, 1.2  1.0 0.7, 1.3  
AA  12 2.1 17 1.8 1.2 0.6, 2.5  1.3 0.5, 3.1  

Per allele      0.9 0.8, 1.2 0.88 1.0 0.8, 1.3 0.94 
 

                                                            
14 Minor allele frequency in the controls.   
15 Adjusted for sex, age, and well water arsenic concentration. 
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TABLE 5.  Prevalence Odds Ratios and 95% CIs for Skin Lesion Prevalence in Relation to Antioxidant 
Enzyme Risk Allele Count, Araihazar, Bangladesh, 2000-2002  

Risk Allele 
Count 

Cases 
(n=517) 

Controls 
(n=868) 

Crude Estimate 
P for 
trend 

Multivariate 
Estimate16 P for 

trend N % N % POR 95% CI POR 95% 
CI 

0–3 309 59.8 559 64.4 1.0   1.0   
4–7 208 40.2 309 35.6 1.2 1.0, 1.6 0.08 1.1 0.9, 1.5 0.29 
 

                                                            
16 Adjusted for sex, age, and well water arsenic concentration. 
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TABLE 6.  Prevalence Odds Ratios17 and 95% CIs for Skin Lesion Prevalence in Relation to Antioxidant 
Enzyme SNPs by Well Water Arsenic Concentration, Araihazar, Bangladesh, 2000-2002 

SNP 
Well Water Arsenic Concentration (μg/L) 

RERI 0.1-50 50.1-100 100.1-150 150.1-864 
SOD2     0.01 

(-0.20, 0. 20) CC 1.00 1.23 (0.62, 2.45) 1.67 (0.88, 3.16) 3.69 (1.99, 6.86) 
CT/TT 1.0018 1.33 (0.74, 2.40) 2.14 (1.24, 3.71) 3.23 (1.84, 5.65)  

GPX1     -0.13 
(-0.42, 0.10) CC 1.00 1.42 (0.87, 2.31) 1.94 (1.24, 3.04) 4.08 (2.61, 6.37) 

CT/TT 1.0019 1.37 (0.76, 2.45) 2.49 (1.53, 4.08) 2.66 (1.59, 4.45)  
CAT     0.14 

(-0.87, 0.66) TT 1.00 1.52 (0.27, 8.48) 1.76 (0.34, 9.16) 2.86 (0.48, 17.03) 
CT/CC 1.0020 1.51 (0.43, 5.33) 2.20 (0.63, 7.67) 3.72 (1.06, 12.99)  

MPO     -0.02 
(-0.22, 0.23) GG 1.00 1.71 (1.05, 2.78) 3.23 (2.07, 5.04) 4.09 (2.60, 6.43) 

GA/AA 1.0021 1.76 (0.92, 3.35) 1.64 (0.91, 2.96) 6.05 (3.42, 10.73)  
      

Risk allele     0.05  
(-0.20, 0.27) 0–3 1.00 1.72 (1.02, 2.91) 2.22 (1.36, 3.64) 3.79 (2.32, 6.18)  

4–7 1.0022 1.65 (0.89, 3.04) 2.79 (1.66, 4.69) 4.02 (2.35, 6.89)  

                                                            
17 Adjusted for sex and age.  
18 POR = 0.82 comparing CT/TT to CC in this lowest exposure quartile. 
19 POR = 1.11 comparing CT/TT to CC in this lowest exposure quartile. 
20 POR = 1.04 comparing CT/CC to TT in this lowest exposure quartile. 
21 POR = 1.51 comparing GA/AA to GG in this lowest exposure quartile. 
22 POR = 1.37 comparing 4-7 to 0-3 in this lowest exposure quartile. 
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TABLE 7.  Prevalence Odds Ratios23 and 95% CIs for Skin Lesion Prevalence in Relation to Antioxidant 
Enzyme SNPs by Creatinine-adjusted Urinary Total Arsenic Concentration, Araihazar, Bangladesh, 2000-
2002 

SNP 
Creatinine-adjusted urinary total arsenic concentration (μg/g) 

RERI 
16-103 104-192 193-339 340-8556 

SOD2     0.02 
(-0.23, 0.23) CC 1.00 1.58 (0.78, 3.19) 3.14 (1.56, 6.30) 4.71 (2.44, 9.08) 

CT/TT 1.0024 1.88 (1.01, 3.51) 2.44 (1.32, 4.49) 5.43 (2.97, 9.95)  
GPX1     -0.07 

(-0.32, 0.16) CC 1.00 1.86 (1.14, 3.01) 2.55 (1.58, 4.12) 5.28 (3.36, 8.31) 
CT/TT 1.0025 1.63 (0.93, 2.86) 2.78 (1.65, 4.70) 4.44 (2.64, 7.46)  

CAT     0.17 
(-0.62, 0.65) TT 1.00 3.33 (0.54, 20.56) 1.41 (0.29, 6.82) 3.73 (0.72, 19.35) 

CT/CC 1.0026 1.62 (0.52, 4.98) 2.41 (0.78, 7.40) 4.69 (1.53, 14.35)  
MPO     -0.03 

(-0.26, 0.23) GG 1.00 1.87 (1.16, 3.00) 2.73 (1.72, 4.32) 5.37 (3.42, 8.42) 
GA/AA 1.0027 1.88 (1.02, 3.47) 2.65 (1.43, 4.91) 5.04 (2.91, 8.74)  
      

Risk allele     0.05 
(-0.24, 0.30) 0–3 1.00 2.13 (1.24, 3.64) 2.75 (1.62, 4.68) 5.55 (3.32, 9.30) 

4–7 1.0028 2.00 (1.10, 3.66) 3.81 (2.13, 6.82) 5.48 (3.15, 9.51)  
 

                                                            
23 Adjusted for sex and age. 
24 POR = 1.03 comparing CT/TT to CC in this lowest exposure quartile. 
25 POR = 1.24 comparing CT/TT to CC in this lowest exposure quartile. 
26 POR = 0.98 comparing CT/CC to TT in this lowest exposure quartile. 
27 POR = 1.09 comparing GA/AA to GG in this lowest exposure quartile. 
28 POR = 1.65 comparing 4-7 to 0-3 in this lowest exposure quartile. 
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TABLE 8.  Prevalence Odds Ratios29 and 95% CIs for Skin Lesion Prevalence in Relation to Antioxidant 
Enzyme SNPs by Primary Methylation Index, Araihazar, Bangladesh, 2000-2002 

 SNP 
Primary Methylation Index 

RERI <0.580 0.580-0.835 0.836-1.154 1.155-19.570 
SOD2     0.10 

(-0.14, 0.26) CC 1.00 1.56 (0.76, 3.20) 1.48 (0.74, 2.98) 1.22 (0.61, 2.44) 
CT/TT 1.0030 1.37 (0.72, 2.62) 1.37 (0.72, 2.59) 1.51 (0.80, 2.85)  

GPX1     -0.03 
(-0.26, 0.17) CC 1.00 1.44 (0.88, 2.37) 1.29 (0.79, 2.10) 1.59 (0.98, 2.58) 

CT/TT 1.0031 1.34 (0.73, 2.45) 1.72 (0.99, 2.97) 1.24 (0.72, 2.14)  
CAT     0.24 

(-0.50, 0.58) TT 1.00 0.65 (0.10, 4.22) 0.42 (0.07, 2.40) 0.60 (0.12, 3.04) 
CT/CC 1.0032 0.84 (0.23, 3.10) 0.82 (0.22, 3.01) 0.83 (0.23, 3.05)  

MPO     -0.03 
(-0.34, 0.15) GG 1.00 1.40 (0.88, 2.20) 1.52 (0.97, 2.37) 1.42 (0.92, 2.20) 

GA/AA 1.0033 1.38 (0.76, 2.47) 1.20 (0.68, 2.10) 1.33 (0.76, 2.35)  
      

Risk allele     0.22 
(0.03, 0.36) 0–3 1.00 1.16 (0.69, 1.95) 1.10 (0.67, 1.82) 1.07 (0.65, 1.77) 

4–7 1.0034 1.28 (0.72, 2.28) 1.36 (0.78, 2.37) 1.68 (0.98, 2.90)  
 
 

                                                            
29 Adjusted for sex and age. 
30 POR = 0.91 comparing CT/TT to CC in this lowest exposure quartile. 
31 POR = 0.94 comparing CT/TT to CC in this lowest exposure quartile. 
32 POR = 0.52 comparing CT/CC to TT in this lowest exposure quartile. 
33 POR = 0.98 comparing GA/AA to GG in this lowest exposure quartile. 
34 POR = 0.63 comparing 4-7 to 0-3 in this lowest exposure quartile. 
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TABLE 9.  Prevalence Odds Ratios35 and 95% CIs for Skin Lesion Prevalence in Relation to Antioxidant 
Enzyme SNPs by Secondary Methylation Index, Araihazar, Bangladesh, 2000-2002 

 SNP 
Secondary Methylation Index 

RERI <4.316 4.316-5.855 5.856-8.211 8.212-32.300 
SOD2     0.004 

(-0.25, 0.17) CC 1.00 1.01 (0.58, 1.75) 1.00 (0.56, 1.76) 0.51 (0.25, 1.04) 
CT/TT 1.0036 0.87 (0.55, 1.37) 0.80 (0.50, 1.28) 0.70 (0.42, 1.17)  

GPX1     -0.03 
(-0.29, 0.16) CC 1.00 0.70 (0.48, 1.03) 0.69 (0.46, 1.03) 0.54 (0.34, 0.86) 

CT/TT 1.0037 0.80 (0.51, 1.27) 0.69 (0.42, 1.14) 0.49 (0.27, 0.89)  
CAT     0.03 

(-0.77, 0.45) TT 1.00 0.64 (0.14, 2.97) 0.37 (0.07, 2.02) 0.63 (0.11, 3.54) 
CT/CC 1.0038 0.83 (0.30, 2.35) 0.80 (0.28, 2.26) 0.57 (0.20, 1.65)  

MPO     0.09 
(-0.08, 0.24) GG 1.00 0.99 (0.69, 1.41) 0.81 (0.56, 1.18) 0.64 (0.41, 1.00) 

GA/AA 1.0039 0.63 (0.37, 1.08) 0.75 (0.44, 1.29) 0.46 (0.24, 0.88)  
      

Risk allele     -0.03 
(-0.38, 0.20) 0–3 1.00 0.75 (0.50, 1.13) 0.66 (0.43, 1.02) 0.48 (0.29, 0.80) 

4–7 1.0040 0.95 (0.59, 1.52) 0.85 (0.52, 1.41) 0.59 (0.33, 1.05)  

                                                            
35 Adjusted for sex and age. 
36 POR = 1.12 comparing CT/TT to CC in this lowest exposure quartile.  
37 POR = 0.85 comparing CT/TT to CC in this lowest exposure quartile. 
38 POR = 1.09 comparing CT/CC to TT in this lowest exposure quartile. 
39 POR = 1.31 comparing GA/AA to GG in this lowest exposure quartile. 
40 POR = 1.02 comparing 4-7 to 0-3 in this lowest exposure quartile. 
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TABLE 10.  Prevalence Odds Ratios41 and 95% CIs for Skin Lesion Prevalence in Relation to Antioxidant 
Enzyme SNPs by Body Mass Index, Araihazar, Bangladesh, 2000-2002 

SNP 
Body Mass Index (kg/m2) 

RERI <18.5 18.5-24.9 >25.0 
SOD2    0.13 

(-0.27, 0.38) CC 1.00 0.98 (0.63, 1.53) 0.51 (0.18, 1.41) 
CT/TT 1.0042 0.86 (0.58, 1.27) 0.58 (0.27, 1.25)  

GPX1    -0.22 
(-0.97, 0.15) CC 1.00 0.69 (0.51, 0.94) 0.42 (0.20, 0.91) 

CT/TT 1.0043 0.81 (0.56, 1.15) 0.45 (0.18, 1.11)  
CAT    0.28 

(-1.03, 0.75) TT 1.00 0.98 (0.27, 3.62) 1.06 (0.12, 9.29) 
CT/CC 1.0044 0.99 (0.35, 2.82) 0.53 (0.16, 1.74)  

MPO    0.10 
(-0.41, 0.41) GG 1.00 0.83 (0.62, 1.10) 0.48 (0.24, 0.97) 

GA/AA 1.0045 0.82 (0.56, 1.21) 0.33 (0.10, 1.09)  
     

Risk allele    0.02 
(-0.63, 0.40) 0–3 1.00 0.73 (0.52, 1.02) 0.54 (0.24, 1.22) 

4–7 1.0046 0.93 (0.64, 1.35) 0.45 (0.17, 1.16)  

                                                            
41 Adjusted for sex, age, and well water arsenic concentration.  
42 POR = 1.16 comparing CT/TT to CC in this lowest exposure tertile.  
43 POR = 0.85 comparing CT/TT to CC in this lowest exposure tertile. 
44 POR = 1.30 comparing CT/CC to TT in this lowest exposure tertile. 
45 POR = 1.07 comparing GA/AA to GG in this lowest exposure tertile. 
46 POR = 1.08 comparing 4-7 to 0-3 in this lowest exposure tertile. 
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TABLE 11.  Prevalence Odds Ratios 47 and 95% CIs for Skin Lesion Prevalence in Relation to Antioxidant 
Enzyme SNPs by Smoking Status, Araihazar, Bangladesh, 2000-2002 

 SNP 
Smoking Status 

RERI Never Ever 
SOD2   -0.41 

(-1.4, 0.20) CC 1.00 1.56 (0.97, 2.52) 
CT/TT 1.0048 1.37 (0.89, 2.11)  

GPX1   -0.28 
(-0.97, 0.30) CC 1.00 1.39 (0.96, 2.01) 

CT/TT 1.0049 1.26 (0.83, 1.90)  
CAT   0.19 

(-1.44, 1.14) TT 1.00 1.07 (0.31, 3.66) 
CT/CC 1.0050 1.25 (0.47, 3.32)  

MPO   0.24 
(-0.40, 0.78) GG 1.00 1.19 (0.84, 1.69) 

GA/AA 1.0051 1.26 (0.84, 1.91)  
    

Risk allele   -0.65 
(-1.65, 0.09) 0–3 1.00 1.64 (1.11, 2.42) 

4–7 1.0052 1.53 (1.01, 2.33)  

                                                            
47 Adjusted for sex, age, and well water arsenic concentration.  
48 POR = 1.21 comparing CT/TT to CC in this lowest exposure category. 
49 POR = 1.15 comparing CT/TT to CC in this lowest exposure category. 
50 POR = 0.99 comparing CT/CC to TT in this lowest exposure category. 
51 POR = 0.83 comparing GA/AA to GG in this lowest exposure category. 
52 POR = 1.54 comparing 4-7 to 0-3 in this lowest exposure category. 
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TABLE 12.  Prevalence Odds Ratios 53 and 95% CIs for Skin Lesion Prevalence in Relation to Antioxidant 
Enzyme SNPs by Fruit and Vegetable Intake, Araihazar, Bangladesh, 2000-2002 

SNP 
Fruit and vegetable intake 

RERI 74.0-415.5 415.6-593.0 ≥593.1 
SOD2    0.18 

(-0.15, 0.45) CC 1.00 0.66 (0.38, 1.16) 0.64 (0.37, 1.11) 
CT/TT 1.0054 0.62 (0.39, 1.00) 0.52 (0.32, 0.84)  

GPX1    0.18 
(-0.17, 0.50) CC 1.00 0.67 (0.46, 0.99) 0.55 (0.37, 0.82) 

CT/TT 1.0055 0.56 (0.35, 0.90) 0.55 (0.34, 0.87)  
CAT    -0.19 

(-2.07, 0.69) TT 1.00 0.39 (0.08, 1.89) 0.40 (0.09, 1.79) 
CT/CC 1.0056 0.47 (0.15, 1.44) 0.42 (0.14, 1.30)  

MPO    -0.13 
(-0.54, 0.21) GG 1.00 0.56 (0.39, 0.81) 0.49 (0.33, 0.71) 

GA/AA 1.0057 0.54 (0.33, 0.88) 0.52 (0.31, 0.88)  
     

Risk allele    0.18 
(-0.01, 0.34) 0–3 1.00 0.64 (0.37, 1.12) 0.66 (0.38, 1.13)  

4–7 1.0058 0.70 (0.45, 1.17) 0.61 (0.38, 0.97)  
  

                                                            
53 Adjusted for sex, age, well water arsenic concentration, total energy intake, and BMI.  
54 POR = 1.21 comparing CT/TT to CC in this lowest exposure tertile.  
55 POR = 1.36 comparing CT/TT to CC in this lowest exposure tertile. 
56 POR = 0.85 comparing CT/CC to TT in this lowest exposure tertile. 
57 POR = 0.82 comparing GA/AA to GG in this lowest exposure tertile. 
58 POR = 1.43 comparing 4-7 to 0-3 in this lowest exposure tertile. 
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Chapter 3 

Arsenic Exposure, DNA Repair Genes, and Skin Lesion Prevalence in an Adult 

Bangladeshi Population  
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ABSTRACT 

One of the proposed pathways that may be related to arsenic toxicity is deficient DNA 

repair and therefore, may play a role in the association between arsenic and skin lesion 

risk. The objective of this analysis was to assess the relationship between SNPs in DNA 

repair genes (OGG1, rs1052133; XRCC1, rs25487 and rs1799782; XRCC3, rs861539; 

ERCC2, rs1052559; ERCC5, rs17655; and LIG4, rs1805388) and skin lesion prevalence 

among 610 population-based prevalent skin lesion cases and 1,079 controls enrolled in 

the HEALS cohort. In logistic regression models controlling for sex, age, and well water 

arsenic concentration, no associations were observed between measured SNPs and skin 

lesion prevalence. The results did not vary by arsenic exposure levels (as measured by 

well water arsenic concentration, urinary total arsenic concentration, primary methylation 

index, and secondary methylation index), body mass index, or smoking status. However, 

we did observe a significant inverse association of total fruit and vegetable consumption 

with skin lesion prevalence, and its additive interaction with the polymorphism in 

ERCC5, which warrants investigation in future studies.        
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INTRODUCTION  

DNA repair is a proposed pathway that may modify the association between 

arsenic and skin lesion risk (1). In a cross-sectional study, arsenic concentrations in 

drinking water and toenail clippings were positively associated with ERCC1 mRNA 

expression levels suggesting arsenic exposure may induce a DNA repair response (2); 

although, an inverse association was found in another study (3). In vitro experiments 

have shown that arsenic induces DNA strand breaks in a concentration dependent manner 

(4). Arsenic has been shown to inhibit nucleotide excision repair (5, 6). DNA repair 

deficiency has been associated with increased micronuclei frequency (7). Reduced DNA 

repair capacity has been associated with increased arsenical skin lesion risk (8).   

DNA was genotyped for seven SNPs in the following DNA repair protein genes: 

8-oxoguanine DNA glycosylase (OGG1; rs1052133); X-ray repair complementing 

defective repair in Chinese hamster cells 1 (XRCC1; rs25487 and rs1799782); X-ray 

repair complementing defective repair in Chinese hamster cells 3 (XRCC3; rs861539); 

excision repair cross-complementing rodent repair deficiency, complementation group 2 

(ERCC2; rs1052559); excision repair cross-complementing rodent repair deficiency, 

complementation group 5 (ERCC5; rs17655); and ligase IV, DNA, ATP-dependent 

(LIG4; rs1805388). OGG1 is a DNA glycosylase involved in base excision repair (BER) 

of 8-OHdG, an adduct formed from oxidative stress (9). XRCC1 is a DNA repair enzyme 

that interacts with polynucleotide kinase (PNK), DNA polymerase-beta (POLB) and 

DNA ligase III (LIG3) as part of a complex to repair single-strand breaks and functions 

in BER to repair damage caused by agents such as ROS (10). XRCC3 encodes a protein 
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that forms a complex with RAD51 and RAD51C to repair double-strand DNA breaks 

through the homologous recombination pathway (11-14). ERCC2 is a DNA helicase 

involved in transcription and nucleotide excision repair (NER) (15). ERCC5 is a DNA 

repair protein involved in the NER pathway of UV-induced damage (16). LIG4 is a DNA 

double-strand break repair enzyme whose two main roles are the ligation step of the non-

homologous end-joining pathway and V(D)J recombination (17).  

 In this study, we evaluate whether SNPs in genes encoding DNA repair enzymes 

(OGG1, XRCC1, XRCC3, ERCC2, ERCC5, LIG4) were associated with prevalent 

arsenical skin lesion status in 610 cases and 1,079 controls from the Health Effects of 

Arsenic Longitudinal Study (HEALS) cohort. 

 

MATERIALS AND METHODS 

Study population 

HEALS is an ongoing, population-based cohort study examining both the short- 

and long-term health effects of arsenic exposure. The study was launched in Araihazar, 

Bangladesh, in 2000. The selection of cohort participants, study design and methods have 

been described in detail elsewhere (18).  

The HEALS cohort served as the source of prevalent cases and controls utilized in 

these analyses. Between October 2000 and May 2002, married individuals were 

sampled—an eligibility criteria to minimize loss to follow-up—who were aged 18–75 

years and residents of the study area for at least 5 years. From the 12,050 residents who 

met the eligibility criteria from an enumerated total 65,876  persons in the study area, 
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11,746 (97.5% response rate) men and women (4,801 married couples and 2,144 married 

individuals whose spouses did not participate) were enrolled into the HEALS cohort. 

Among the 11,746 enrolled baseline cohort participants, 11,224 participants (95.6%) 

provided urine samples. At baseline, 610 cases of skin lesions were identified among the 

11,224 cohort members who provided urine samples and were included as prevalent 

cases in this study. Of the remaining participants with an available urine sample and 

known to be free of skin lesions at baseline (n=10,614), a ~10% random sample 

(n=1,079) was selected and included as controls in this study.  

Structured baseline questionnaires were administered to participants in Bengali by 

trained interviewers, who were blind to the water arsenic concentration of the 

participants’ wells. The questionnaires assessed sociodemographic characteristics, current 

and past tubewell use, typical water consumption patterns, food frequency of thirty-nine 

items common to the population (19), occupational exposures, and smoking habits. The 

study physicians also conducted a clinical examination, which included a skin evaluation 

for the detection of arsenical skin lesions based on a structured protocol (18, 20). Venous 

blood and spot urine samples were also collected from each participant on the day of the 

interview.                

The study protocol was approved by the Institutional Review Boards of Columbia 

University, The University of Chicago, and the Bangladesh Medical Research Council. 

Informed consent was obtained from all participants prior to baseline interview.  

 

 



91 

 

 

Arsenic exposure assessment 

Three primary measures of arsenic exposure were estimated for each case-control 

participant: well water arsenic concentration, creatinine-adjusted urinary total arsenic 

concentration, and urinary arsenic metabolites.   

At the baseline survey, participants were asked to identify the well they primarily 

used as their source of drinking water, from which we were able to assign the appropriate 

well water arsenic concentration exposure. Well water arsenic concentrations of all 5,966 

tubewells in the study area were measured by graphite furnace atomic absorption 

spectrometry, with a detection limit of 5 μg/L. Samples below the limit of detection were 

subsequently reanalyzed by inductively coupled plasma-mass spectrometry (ICP-MS), 

with a detection limit of 0.1 μg/L (21).  

Urinary total arsenic concentration was measured in a spot urine sample collected 

at baseline by graphite furnace atomic absorption spectrometry, with a detection limit of 

2 μg/L (22). Urinary creatinine was measured by a colorimetric Sigma Diagnostics Kit 

(Sigma, St. Louis, MO), and urinary total arsenic was subsequently divided by creatinine 

to obtain a creatinine-adjusted urinary total arsenic concentration, expressed as μg/g 

creatinine (23). 

Urinary arsenic metabolites were measured based on the method by Reuter et al. 

(24) using high-performance liquid chromatography separation of arsenobetaine, 

arsenocholine, arsenate (AsV), arsenite (AsIII), total monomethyl arsenic (MMAIII + 

MMAV), and total dimethyl arsenic (DMAIII + DMAV) followed by detection by ICP-
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MS-dynamic reaction cell. Total inorganic arsenic (AsIII + AsV) is utilized in these 

analyses since AsIII can oxidize to AsV during sample transport, storage, and preparation.  

For purposes of analysis, well water arsenic was categorized into quartiles based 

on the distribution in the controls; however, since the first and second quartiles roughly 

corresponded to the World Health Organization’s guideline for arsenic in drinking water 

(10 μg/L) and the national standard for arsenic in drinking water in Bangladesh (50 

μg/L), respectively, we adjusted the cut points slightly to correspond to these regulatory 

levels. Urinary total arsenic concentration and arsenic metabolite metrics were quartiled 

based on the distribution in the controls. The percentages of MMA, DMA and inorganic 

arsenic were calculated after exclusion of arsenobetaine and arsenocholine from the total. 

In addition, two methylation indices were constructed: primary methylation index 

(PMI)—the ratio of MMA to inorganic arsenic—and secondary methylation index 

(SMI)—the ratio of DMA to MMA.  

Individuals who were missing data on a particular arsenic exposure measure were 

excluded from the analysis of that specific exposure. Well water arsenic and urinary total 

arsenic concentrations were available for all cases and controls. Arsenic metabolite data 

was missing for 18 case subjects and 37 control subjects.  

 

Single nucleotide polymorphism assessment 

High-throughput DNA extraction was completed in 96-well format using the 

QIAmp DNA 96 DNA Blood kit (Qiagen, Valencia, CA). Replica plates were made with 

12.5 ng DNA in 2.5 µL per well. In the first step, the genomic DNA was amplified by 
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PCR using appropriate primers. After PCR amplification, the primers and 

deoxynucleotide triphosphates in 10 µL PCR product were digested with the 10 µL 

shrimp alkaline phosphatase cocktail containing 1.0 µL (1 unit/µL) of shrimp alkaline 

phosphatase, 0.1 µL of Escherichia coli exonuclease I (10 units/µL; U.S. Biochemical, 

Cleveland, OH), 1.0 µL of 10x shrimp alkaline phosphatase buffer, and 7.9 µL of DNase 

and RNase-free water for 45 min at 37°C followed by heating at 95°C for 15 min for 

enzyme deactivation. Then, single nucleotide extension was carried out in the presence of 

the appropriate allele-specific dideoxynucleotide triphosphates fluorescence labeled with 

either R110 or TAMRA (PerkinElmer, Waltham, MA). For single nucleotide extension 

reactions, both the forward and reverse probes were initially tested to select the better 

probe based on clear signal clustering. Reaction mixture (13 µL/well) containing 0.025 

µL AcycloPrime enzyme, 0.5 µL terminator dye, 1 µL reaction buffer, 0.25 µL extension 

probe (10 pmol/µL), and 11.225 µL water was added to 7 µL of digested PCR product to 

make 20 µL reaction volume. Thermocycling was done at 95°C for 3 min followed by 

optimum number of cycles of 95°C for 15 s and 55°C for 30 s. Finally, the fluorescence 

was measured with Wallac 1420 Multilabel Counter Victor 3 (PerkinElmer, Waltham, 

MA). In addition to our assay-specific quality control samples, 10% of the samples were 

run in duplicate after relabeling to keep laboratory researchers blinded to its identity. 

Concordance based on the duplicates was >0.92. Call rates for the SNPs of interest 

ranged from 95.0% to 97.9%, as shown in Table 1. 
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Skin lesion assessment 

 Arsenical skin lesion assessment was conducted through skin examination at the 

baseline interview following a structured protocol by a trained study physician (18, 20). 

Arsenical skin lesions were categorized as the presence of melanosis on the body surface, 

leucomelanosis on the body surface, and keratosis on the hands or feet. For the purposes 

of this study, cases were selected as having the presence of any type of arsenical skin 

lesion. 

The distribution of skin lesion severity among the 610 cases was as follows: 359 

cases had melanosis only, 20 had leucomelanosis only, 10 had melanosis and 

leucomelanosis, 170 had melanosis and keratosis, 40 had leucomelanosis and keratosis, 

and 11 had melanosis, leucomelanosis, and keratosis.  

Individuals without keratotic arsenical lesions are generally thought to have a 

milder form of skin lesions, manifest as changes in the dermal pigmentation of the skin. 

This suggests that there is some heterogeneity of the skin lesion definition; therefore, 

subset analyses were conducted to evaluate the association of SNPs with skin lesion 

severity. Skin lesion severity was stratified into absence of keratotic skin lesions (n=389) 

and presence of keratotic skin lesions (n=221).        

 

Covariates 

 All covariate data was derived from the baseline interview. Demographic factors 

included sex and reported age at baseline. Self-reported smoking history was ascertained 

and categorized as ever versus never smoker for the purposes of these analyses. At the 
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time of the baseline interview, height and weight of each participant was measured by the 

study physician; body mass index was constructed as weight in kilograms divided by 

height in meters squared and categorized by the World Health Organization cutoff points 

for underweight, normal weight, and overweight/obese.  

Fruit and vegetable consumption as well as total caloric intake was constructed 

based on the reported intake from the food frequency questionnaire (FFQ) (19). 

Participants were exclude from this analysis if they did not complete or reported an 

unlikely total caloric intake value on the FFQ (<500 or >4000 kcal/ day; n=47 missing 

and n=29 extreme values (total n=76 excluded)). A single variable for total fruit and 

vegetable intake was constructed by summing the average daily amount of fruit and 

vegetables consumed that was reported for 26 food items (Table B.1). The total fruit and 

vegetable intake was then tertiled based on the distribution in controls for the purposes of 

these analyses.  

 

Statistical analysis 

Hardy Weinberg Equilibrium (HWE) was calculated for the controls based on 

Pearson (χ2) tests and α. Violation of HWE is calculated based on statistical departure 

from expected HWE frequencies based on the exact test. α is used to denote the 

magnitude of departure from HWE. 

 

where Pgg, PGg, and PGG are the genotype proportions (25).  
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 The association between each SNP and arsenical skin lesion status was estimated 

by prevalence odds ratios (PORs) and their 95% confidence intervals (CIs) from logistic 

regression models employed by the LOGISTIC procedure in SAS. The PORs were 

adjusted for sex, age, and well water arsenic concentration, primarily because of the 

strong association of these covariates with the outcome. The genotype-specific PORs 

were estimated for each SNP using the homozygous major genotype as the reference 

category. Additionally, the per allele POR was estimated assuming a log-additive model. 

In these models, a single ordinal variable was included indicating the number of minor 

alleles (0, 1, 2) and the associated Wald statistic was interpreted as the P for trend.  

Haplotypes were constructed for the 2 SNPs in XRCC1 (rs25487 and rs1799782) 

using a maximum likelihood approach implemented in Hapstat, version 3.0 (26). 

Individuals who had genotype data for both SNPs were included (n=546 cases; n=926 

controls). Logistic regression was used to assess the association of skin lesion prevalence 

with the specific haplotypes. The haplotype with major alleles was used as the reference 

category. PORs and their 95% confidence intervals were adjusted for sex, age, and well 

water arsenic concentration. 

A summary risk allele count was created for the measured biallelic SNPs by 

summing the number of risk alleles carried by an individual, based on a priori knowledge 

of the SNP alleles on protein structure and function (OGG1=G allele, XRCC1 

(rs25487)=A allele, XRCC1 (rs1799782)=T allele,  XRCC3=T allele, ERCC2=C allele, 

ERCC5=C allele). For purposes of analysis, the risk allele count was dichotomized based 

on the distribution in the controls. Due to the fact that there was not a substantial amount 
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of variability in the LIG4 SNP genotype in this population and the α statistic suggested a 

deviation from HWE in the control subjects, this SNP was excluded from the risk allele 

score and from evaluation of interaction.     

 We also evaluated possible additive interaction between arsenic exposure and 

each SNP and the risk allele count in separate analyses in relation to skin lesion 

prevalence. Multivariate adjusted estimates were used to estimate the relative excess risk 

for interaction (RERI), calculated as   

  RERI = exp(β1+β2+β3) – exp(β1) − exp(β2) +1.  

Here β1 is the coefficient of the ordinal arsenic exposure measure, β2 is the 

coefficient of the dichotomous SNP effect modifier measure, and β3 is the coefficient of 

the cross-product of the ordinal arsenic exposure and dichotomous SNP effect modifier 

(27, 28). Bias corrected and accelerated (BCa) 95% CIs of the RERI were estimated via 

1000 bootstrap samples. CIs of the RERI were also calculated using the delta method 

described by Hosmer and Lemeshow with similar results (not shown) (29). We also 

evaluated effect modification of the associations between lifestyle factors (BMI, smoking 

status, and fruit and vegetable intake) and skin lesions by each SNP and risk allele count 

in separate analyses on the additive scale, adjusting for well water arsenic exposure and 

other covariates. In these analyses, β1 is the coefficient of the ordinal lifestyle measure, 

β2 is the coefficient of the dichotomous SNP effect modifier measure, and β3 is the 

coefficient of the cross-product of the ordinal lifestyle measure and dichotomous SNP 

effect modifier—with the exception of smoking status, which was modeled as a 

dichotomous lifestyle measure. 
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In exploratory subset analyses, skin lesion severity was evaluated by stratifying 

arsenical skin lesion status into absence of keratotic skin lesions and presence of keratotic 

skin lesions. Prevalent skin lesion cases with melanosis and/or leucomelanosis but not 

keratosis (n=389) were classified as non-keratotic skin lesions and, individuals with 

keratosis (n=221) were classified as keratotic skin lesions. Ordered polytomous 

regression models were employed by the LOGISTIC procedure in SAS, comparing non-

keratotic skin lesions (coded=1) and keratotic skin lesions (coded=2) to the controls 

(coded=0, reference category).   

 

RESULTS 

Sample characteristics 

Information on the genotyped DNA repair SNPs is shown in Table 1. Based on 

the α statistic, there was evidence that the LIG4 SNP (rs1805388) deviated from Hardy-

Weinberg equilibrium indicating a potential source of genotyping error for this SNP; 

therefore, it was excluded from interaction analyses and the risk allele score. The 

distribution of selected characteristics in the total HEALS cohort and by the 610 

prevalent skin lesion cases and 1,079 controls are shown in Table 2. Since a random 

sample of the baseline cohort without skin lesions was selected as control participants for 

genotyping, the distribution of characteristics in the controls is not appreciably different 

from the total baseline cohort except for the distribution of age, where we see that control 

subjects were underrepresented in the 31–40 age range and overrepresented in the 41–50 

age range relative to the total cohort. Similar to the previous HEALS cohort analysis for 
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skin lesion prevalence (20), we observed based on the selected cases and controls for this 

analysis that males, older age, low BMI (<18.5 kg/m2), current or past cigarette smoking, 

and total fruit and vegetable intake were associated with increased skin lesion prevalence. 

Additionally, clear dose-response associations were observed with arsenic exposure as 

measured by well water arsenic and urinary total arsenic concentrations (Table 2), as 

well as with the distribution of urinary arsenic metabolites (Table 3).      

 

Evaluation of associations with single and cumulative SNP effects 

No significant associations were observed between each of the DNA repair SNPs 

and skin lesion prevalence, based on the genotype and per allele POR estimates (Table 

4). Haplotypes were constructed for the 2 SNPs in XRCC1 and no individuals were found 

to carry two copies of the minor alleles in both XRCC1 polymorphisms. There were no 

significant associations of haplotypes with skin lesion prevalence (Table 5). A risk allele 

score for the genotyped SNPs was constructed based on a priori evidence of the risk 

allele for each SNP and was not associated with skin lesion prevalence (Table 6). These 

results did not vary by skin lesion severity, classified as non-keratotic and keratotic skin 

lesions based on polytomous regression analysis (Table C.1). Additionally, in 

exploratory analyses we evaluated these associations in male participants only since their 

baseline skin lesion prevalence was appreciably higher than females and, we did not 

observe notable differences in the distribution of SNPs or the associations of the SNPs 

with skin lesion prevalence in males as compared to the total study sample, precluding 

evidence of interaction by sex (Table C.2).   
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Additive interaction evaluation 

We evaluated whether the associations between DNA repair SNPs and skin lesion 

prevalence were modified by various arsenic exposure measures and lifestyle factors on 

the additive scale. Departure from additivity was evaluated by well water arsenic 

concentration (Table 7), creatinine-adjusted urinary total arsenic concentration (Table 8), 

primary methylation index (Table 9), secondary methylation index (Table 10), BMI 

(Table 11), cigarette smoking status (Table 12), and total fruit and vegetable intake 

(Table 13). A significant departure from additivity was observed for the SNP in ERCC5 

and total fruit and vegetable intake on skin lesion prevalence (RERI=-0.78, 95% CI=1.43, 

-0.29; Table 13). On the additive scale, we observed that skin lesion prevalence was 

greater in individuals with the GC/CC genotype of the ERCC5 SNP with each 1 tertile 

increase in total fruit and vegetable intake than would be expected based on the additive 

independent effects of the ERCC5 variant and total fruit and vegetable intake alone. 

There were also significant main effects for tertiles of total fruit and vegetable intake, 

adjusted for sex, age, well water arsenic concentration, BMI, and total caloric intake 

(tertile 2 versus 1 POR=0.68, 95% CI=0.50, 0.91; tertile 3 versus 1 POR=0.57, 95% 

CI=0.42, 0.78). We did not observed any other evidence of interaction on the additive 

scale by measures of arsenic exposure, arsenic metabolism, or lifestyle factors as 

characterized by RERI estimates that were not appreciably different from zero.  
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DISCUSSION 

In this population-based case-control study of arsenical skin lesion prevalence in a 

Bangladeshi population, we systematically evaluated seven candidate SNPs in known 

DNA repair genes. There were no statistically significant associations between these 

SNPs (OGG1, rs1052133; XRCC1, rs25487 and rs1799782; XRCC3, rs861539; ERCC2, 

rs1052559; ERCC5, rs17655; and LIG4, rs1805388) and skin lesion prevalence. 

However, we observed a significant departure from additivity for the ERCC5 variant and 

total fruit and vegetable intake on skin lesion prevalence, adjusted for arsenic exposure 

and other covariates.  

The findings from this analysis further support previous research from this cohort. 

It was previously shown in a cross-sectional analysis of the prevalent skin lesions cases 

utilized in this analysis, that riboflavin, pyridozine, folic acid, vitamin A, vitamin C, and 

vitamin E intakes (as ascertained from the FFQ) were all inversely associated with skin 

lesion prevalence (30). In a recent analysis by Pierce et al (31) utilizing data from the 

HEALS cohort, it was shown that a diet comprised of vegetable intake was associated 

with a reduced risk of incident skin lesions. Additionally, it was also shown in a nested 

case-control study in the HEALS study population that folate deficiency was associated 

with skin lesion incidence (32).    

ERCC5 is known to be involved in nucleotide excision repair (NER), particularly 

of UV-induced DNA damage (16). One mechanism by which arsenic is hypothesized to 

cause carcinogenesis is through an indirect mechanism, as a co-carcinogen, by inhibiting 

DNA repair pathways necessary to remove lesions generated by other environmental 
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carcinogens (33, 34). Numerous studies have shown that arsenic inhibits NER (5, 6, 35) 

and the repair of bulky DNA adducts in vitro and in laboratory animals (36-38). In recent 

epidemiologic studies by Andrew et al, arsenic exposure through drinking water was 

associated in a dose-dependent manner to decreased expression of NER genes and 

diminished repair of lesions in human lymphocytes (3, 39). Moreover, in a recent 

epidemiologic investigation of lung cancer in a Danish population, it was shown that 

polymorphisms in other NER-related genes interacted with intake of fruit on lung cancer 

risk (40). However, others have not show an effect of fruit and vegetable intake on DNA 

repair activity in leucocytes (41). To our knowledge, this is the first study to examine 

ERCC5 in relation to arsenic toxicity; therefore, replication of a potential involvement of 

ERCC5 in arsenic-related disease in future studies is needed.                        

In pilot work conducted by Ahsan et al (42) in the same cohort population as this 

analysis but using a non-overlapping set of prevalent skin lesion cases with keratosis and 

control subjects, evidence of an increased trend for the association between tertiles of 

creatinine-adjusted urinary total arsenic concentration and skin lesion prevalence were 

observed among individuals with the AA genotype of ERCC2 (rs1052559) compared to 

the AC/CC genotype trends; however, a formal statistical test of interaction was not 

presented. In this current study, we did not observe any evidence of interaction between 

the same genotyped polymorphism in ERCC2 and skin lesion prevalence. Based on the 

polytomous regression analysis conducted in this current study, stratifying cases by 

presence of keratosis did not reveal any significant difference in estimates between 

keratotic versus non-keratotic cases for ERCC2. Additionally, we evaluated the joint 
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effect of creatinine-adjusted urinary total arsenic concentration and the ERCC2 SNP 

among the keratotic cases only compared to the control subjects and did not observe any 

evidence of a difference in prevalence trends (Table C.3). Since both the pilot work and 

the stratified analysis in this study were based on a small number of cases (n=29 and 

n=208, respectively), further investigation of this potential finding is warranted in a larger 

sample of well-defined keratotic skin lesion cases to draw more definitive conclusions.          

 The major strengths of this study were the use of a validated FFQ, measurement 

of genetic variants, large size of the study sample, the wide range of arsenic exposure, 

and the multiple constructs of arsenic exposure. First, we used a validated FFQ. Our 

study instrument contains the food items most commonly consumed by our study 

population based on comparison with food diaries in this population (19) and captures the 

major variability in diet. While the actual food intakes may not be accurately estimated 

by the FFQ within our study population, it is likely that it does rank participants 

reasonably well into tertiles of food intakes. Second, the advantage of measuring genetic 

variants is that they can be measured with little measurement error and bias. Additionally, 

SNPs are time-independent measures (43), which strengthens causal inference of the 

associations evaluated in this analysis between the measured SNPs and prevalent skin 

lesions. Conversely, the amount of DNA damage could have been measured but there 

would have been major limitations in the temporality of these measures with the use of 

prevalent cases. Additionally, in very early or mild cases of skin lesions (some forms of 

melanosis) may not be readily visible with clinical examination; therefore, biomarkers of 

DNA damage could also suffer from reverse causation if it was not ensured that the 
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measures were taken at an appropriate period before disease onset. Third, because we do 

not expect nutritional or genetics effects to be particularly large, the large sample size 

enhances our ability to detect associations. Finally, arsenic exposure was ascertained 

based on well water arsenic concentration, as well as urinary arsenic measures including 

total arsenic concentration and arsenic metabolites, which allowed us to evaluate various 

constructs of exposure including total exposure burden as well as exposure methylation 

ability.      

 While there are many strengths of this study, there are several limitations that are 

acknowledged. A limitation of this study is that the FFQ measures average diet; the food 

intake of the individual at the time of interview may have varied from the diet that the 

individual had at the time of skin lesion development for the prevalent cases or due to 

seasonal variability or fluctuations in household income for the cases and controls from 

the actual representative diet of the individual. Second, we conducted a series of analyses 

to evaluate main effects and interactions in this study that were pre-specified in our 

hypotheses. While there is evidence for the biologically plausibly of an interaction 

between intake of fruit and vegetable and the polymorphism in ERCC5 on skin lesion 

prevalence, we urge caution in the interpretation of this finding, without replication in 

other studies. It is possible that measurement error in the fruit and vegetable intake 

variable or SNP assessment could have produced the heterogeneity that appears between 

this SNP and fruit and vegetable intake since it is the only significant result we find 

among several comparisons. Third, the assessment of the effect of SNPs on prevalent 

skin lesions is also limited for the evaluation of mechanistic hypotheses and phenotype 
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considerations since the association may be related to disease prevalence or progression 

and not disease incidence. Therefore, findings from these analyses should be replicated 

with incident cases. However, we deem the effect of disease prevalence to be minimal 

since arsenical skin lesions are typically not fatal. Additionally, in the subset analysis we 

conducted to evaluate the associations of SNPs with arsenical skin lesion severity, it did 

not appear that these SNPs were related to disease progression. Finally, the SNPs and 

genes for which there is data available were selected based on a candidate-gene approach. 

Therefore, only a single SNP in the majority of genes of interest were examined. Future 

studies should take a more comprehensive genomewide approach for evaluating genetic 

variants in the DNA repair pathway in relation to skin lesion status. Findings from this 

type of “discovery” approach could then be evaluated in candidate-gene studies 

employing SNPs which comprehensively tag the genes of interest.  

The findings of this study have potentially important scientific and public health 

implications for arsenic in drinking water. Prior epidemiologic research has suggested 

DNA repair as a potential mechanism of arsenic toxicity, which observations from this 

study suggest is a viable mechanism for arsenic toxicity and warrants further 

investigation. Additionally, individuals deficient in fruit and vegetable intake and carried 

a risk allele in ERCC5 had increased prevalence of skin lesions, which highlights 

potential pathways for intervention in individuals with manifest skin lesions. 

In conclusion, our results suggest that the genetic polymorphisms in DNA repair 

genes measured in this study are not related to skin lesion prevalence in this Bangladeshi 

population. The significant inverse association of total fruit and vegetable consumption 
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with skin lesion prevalence, and its additive interaction with a polymorphism in ERCC5 

warrant investigation in future studies.     
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TABLE 1. Single Nucleotide Polymorphisms 

Gene SNP  
rs number Chromosome SNP Amino acid 

substitution 

Genotyping 
success rate 
(%) 

α 

OGG1 1052133 3 Ex6-315C>G S326C 97.7 -0.01 
ERCC2 1052559 

(13181) 
19 Ex23+61A>C 

  
K751Q   97.9 0.01 

ERCC5 17655 13 Ex15-344G>C D1104H 96.8 -0.05 
LIG4 1805388 13 Ex3+54C>T T9I   96.6 -0.18 
XRCC1 1799782 19 Ex6-22C>T   R194W 95.2 0.07 
XRCC1 25487 19 Ex10-4A>G  Q399R 96.3 -0.01 
XRCC3 861539 14 Ex8-53C>T T241M   95.0 0.05 
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TABLE 2.  Selected Characteristics for the Study Sample, Araihazar, Bangladesh, 2000-2002  

Characteristic 
HEALS Cohort 

(n=11,746) 
Cases 

(n=610) 
Controls 
(n=1,079) POR59 

(95% CI) N % N % N % 
Sex        

Male 5,042 42.9 507 82.6 440 40.8 1.0 
Female 6,704 57.1 106 17.4 639 59.2 0.1 (0.1, 0.1) 

Age, years        
18-30 3,653 31.1 161 26.4 386 35.8 1.0 
31-40 4,186 35.7 224 36.7 237 22.0 2.5 (1.8, 3.4)  
41-50 2,730 23.2 60 9.8 355 32.9 5.6 (4.0, 7.8) 
51-75 1,176 10.0 165 27.0 100 9.3 9.8 (6.7, 14.1) 

BMI60, kg/m2         
<18.50 4,555 39.7 305 50.4 402 37.5 1.0 
18-50-24.99 6,107 53.3 280 46.3 589 54.9 0.6 (0.5, 0.8) 
≥25.00 805 7.0 20 3.3 81 7.6 0.3 (0.2, 0.5) 

Cigarette smoking        
Never 7,568 64.5 177 29.0 698 64.7 1.0 
Ever 4,173 35.5 433 71.0 381 35.3 4.5 (3.6, 5.6) 

Fruit/vegetable intake, g/day        
74.0-415.5 3,868 33.4 232 39.9 344 33.3 1.0 
415.6-593.0 3,752 32.4 168 28.9 344 33.3 0.7 (0.6, 0.9) 
≥593.1 3,950 34.2 181 31.2 344 33.3 0.8 (0.6, 1.0) 

Well water arsenic, μg/L61        
0.1-10 2,743 23.4 72 11.8 265 24.6 1.0 
10.1-50 2,511 21.4 97 15.9 248 23.0 1.4 (1.0, 2.0) 
50.1-150 3,600 30.7 202 33.1 330 30.6 2.2 (1.6, 3.1) 
150.1-864  2,889 24.6 239 39.2 236 21.9 3.7 (2.7, 5.1) 

Urinary total arsenic, μg/g62        
16-103 2,725 24.2 64 10.5 269 24.9 1.0 
104-192 2,713 24.2 121 19.8 271 25.1 1.9 (1.3, 2.6) 
193-339 2,822 25.1 164 26.9 269 24.9 2.6 (1.8, 3.6) 
340-8556 2,964 26.4 261 42.8 270 25.1 4.1 (2.9, 5.6) 

 

                                                            
59 POR, Prevalence odds ratio; unadjusted.  
60 BMI cut-point defined by WHO BMI classification for underweight, normal, and overweight/obese.  
61 Water arsenic concentration cut-points roughly correspond to quartiles of the exposure distribution for 
the controls but have been slightly adjust to reflect policy relevant parameters.   
62 Creatinine-adjusted urinary total arsenic concentration. 
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TABLE 3.  Urinary Arsenic Metabolite Distribution for the Study Sample, Araihazar, Bangladesh, 2000-
2002  

Characteristic 
Cases 

(n=610)63 
Controls 

(n=1,079)64 
Crude Effect 

Estimate 
N % N % POR 95% CI 

% Total MMA       
<8.650 59 10.0 260 25.0 1.0  
8.650-11.765 130 22.0 261 25.0 2.2 1.5, 3.1 
11.766-14.903 146 24.7 269 25.0 2.5 1.7, 3.5 
14.904-33.415 257 43.4 260 25.0 4.4 3.1, 6.0 

% Total DMA       
<63.500 192 32.4 260 25.0 1.0  
63.500-69.215 152 25.7 260 25.0 0.8 0.6, 1.0 
69.216-74.480 124 21.0 262 25.1 0.6 0.5, 0.8 
74.481-90.828 124 21.0 260 24.9 0.6 0.5, 0.9 

% Inorganic arsenic65        
<10.81 152 25.7 260 25.0 1.0  
10.81-14.20 145 24.5 261 25.0 0.9 0.7, 1.3 
14.21-18.31 141 23.8 262 25.1 0.9 0.7, 1.2 
18.32-69.30 154 26.0 259 24.9 1.0 0.7, 1.3 

Primary methylation index66,67       
<0.580 70 11.8 260 25.0 1.0  
0.580-0.835 132 22.3 259 25.0 1.9 1.3, 2.6 
0.836-1.154 171 28.9 260 25.0 2.4 1.8, 3.4 
1.155-19.570 218 36.9 260 25.0 3.1 2.3, 4.3 

Secondary methylation index68,69       
<4.316 236 39.9 259 25.0 1.0  
4.316-5.855 153 25.9 259 25.0 0.6 0.5, 0.8 
5.856-8.211 128 21.7 259 25.0 0.5 0.4, 0.7 
8.212-32.300 74 12.5 259 25.0 0.3 0.2, 0.4 

 

                                                            
63 All arsenic metabolites data missing for 18 case subjects.  
64 All arsenic metabolite data missing for 37 control subjects.  
65 Inorganic arsenic is sum of arsenate and arsenite.   
66 The primary methylation index was calculated as % MMA / % Inorganic arsenic.  
67 Primary methylation index missing for 1 additional case and 3 additional controls subjects due to 0 
values.   
68 The secondary methylation index was calculated as % DMA / % MMA. 
69 Secondary methylation index missing for 1 additional case and 6 additional control subjects due to 0 
values.   
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TABLE 4.  Prevalence Odds Ratios and 95% CIs for Skin Lesion Prevalence in Relation to DNA Repair 
SNPs, Araihazar, Bangladesh, 2000-2002  

Characteristic MAF70 

Cases 
(n=610) 

Controls 
(n=1,079) 

Crude 
Estimate P71 

Multivariate 
Estimate72 P71 

N % N % POR  
(95% CI) 

POR 
(95% CI) 

OGG1 G=0.31         
CC  264 46.0 460 47.2 1.0  1.0  
CG  259 45.1 423 43.4 1.1 (0.9, 1.3)  0.9 (0.7, 1.2)  
GG  51 8.9 92 9.4 1.0 (0.7, 1.4)  0.8 (0.5, 1.3)  
Per allele      1.0 (0.9, 1.2) 0.85 0.9 (0.8, 1.1) 0.42 

ERCC2 C=0.33         
AA  242 43.4 421 44.5 1.0  1.0  
AC  262 46.9 419 44.3 1.1 (0.9, 1.4)  1.1 (0.8, 1.4)  
CC  54 9.7 105 11.1 0.9 (0.6, 1.3)  0.9 (0.6, 1.3)  
Per allele      1.0 (0.9, 1.2) 0.94 1.0 (0.8, 1.2) 0.91 

ERCC5 C=0.27         
GG  298 52.8 503 52.0 1.0  1.0  
GC  223 39.5 400 41.4 0.9 (0.8, 1.2)  0.9 (0.7, 1.2)  
CC  43 7.6 64 6.6 1.1 (0.8, 1.7)  1.1 (0.7, 1.7)  
Per allele      1.0 (0.8, 1.2) 0.95 1.0 (0.8, 1.2) 0.98 

LIG4 T=0.09         
CC  473 82.8 788 82.3 1.0  1.0  
CT  92 16.1 165 17.2 0.9 (0.7, 1.2)  1.0 (0.7, 1.3)  
TT  6 1.0 4 0.4 2.5 (0.7, 8.9)  2.6 (0.6, 11.4)  
Per allele      1.0 (0.8, 1.3) 0.95 1.1 (0.8, 1.4) 0.70 

XRCC1 (Ex6) T=0.10         
CC  445 79.5 763 80.6 1.0  1.0  
CT  104 18.6 170 18.0 1.0 (0.8, 1.4)  1.2 (0.8, 1.6)  
TT  11 2.0 13 1.4 1.4 (0.6, 3.3)  1.5 (0.5, 4.1)  
Per allele      1.1 (0.9, 1.4) 0.45 1.2 (0.9, 1.6) 0.23 

XRCC1 (Ex10) A=0.33         
GG  240 42.5 423 44.1 1.0  1.0  
GA  251 44.4 429 44.8 1.0 (0.8, 1.3)  1.0 (0.8, 1.3)  
AA  74 13.1 106 11.1 1.2 (0.9, 1.7)  1.3 (0.9, 1.9)  
Per allele      1.1 (0.9, 1.3) 0.30 1.1 (0.9, 1.3) 0.29 

XRCC3 T=0.20         
CC  352 63.4 619 65.3 1.0  1.0  
CT  180 32.4 287 30.3 1.1 (0.9, 1.4)  1.1 (0.8, 1.4)  
TT  23 4.1 42 4.4 1.0 (0.6, 1.6)  0.7 (0.4, 1.3)  
Per allele      1.0 (0.9, 1.3) 0.60 1.0 (0.8, 1.2) 0.95 

 

                                                            
70 Minor allele frequency in the controls.   
71 P for trend. 
72 Adjusted for sex, age, and well water arsenic concentration. 
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TABLE 5.  Prevalence Odds Ratios and 95% CIs for Skin Lesion Prevalence in Relation to XRCC1 
Haplotypes, Araihazar, Bangladesh, 2000-2002 

rs1799782/rs25487 Case Frequency 
(N=546) 

Control Frequency 
(N=926) 

Crude POR 
(95% CI) 

POR 
(95% CI)73 

CG 0.537 0.559 1.0 1.0 
CA 0.352 0.336 1.1 (0.9, 1.3) 1.1 (0.9, 1.3) 
TG 0.112 0.105 1.1 (0.9, 1.4) 1.1 (0.9, 1.4) 

                                                            
73 Adjusted for sex, age, and well water arsenic concentration. 
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TABLE 6.  Prevalence Odds Ratios and 95% CIs for Skin Lesion Prevalence in Relation to DNA Repair 
Risk Allele Count, Araihazar, Bangladesh, 2000-2002 

Risk Allele 
Count74 

Cases 
(n=481) 

Controls 
(n=824) 

 Crude Estimate  
Multivariate 
Estimate75 

N % N %  POR 95% CI POR 95% CI 
0–3 287 59.7 516 62.6  1.0   1.0  
4–8 194 40.3 308 37.4  1.1 0.9, 1.4  1.1 0.8, 1.4 
 

                                                            
74 LIG4 excluded from the risk allele count. 
75 Adjusted for sex, age, and well water arsenic concentration. 
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TABLE 7.  Prevalence Odds Ratios76 and 95% CIs for Skin Lesion Prevalence in Relation to DNA Repair 
SNPs by Well Water Arsenic Concentration, Araihazar, Bangladesh, 2000-2002 

SNP Well Water Arsenic Concentration (µg/L) RERI 
0.1-50 50.1-100 100.1-150 150.1-864 

OGG1 -0.03 
(-0.25, 0.16) CC 1.00 1.90 (1.06, 3.39) 2.39 (1.41, 4.06) 4.40 (2.54, 7.63) 

CG/GG 1.0077 1.40 (0.78, 2.49) 2.50 (1.47, 4.22) 4.15 (2.46, 7.01) 
ERCC2 -0.01 

(-0.25, 0.25) AA 1.00 1.56 (0.83, 2.93) 3.31 (1.87, 5.86) 4.91 (2.74, 8.77) 
AC/CC 1.0078 2.03 (1.12, 3.71) 2.83 (1.62, 4.93) 5.36 (3.05, 9.41) 

ERCC5 -0.05 
(-0.25, 0.16) GG 1.00 1.79 (1.01, 3.16) 2.95 (1.78, 4.91) 4.28 (2.58, 7.10) 

GC/CC 1.0079 1.63 (0.93, 2.86) 2.16 (1.29, 3.61) 4.82 (2.84, 8.18) 
XRCC1 (Ex6) 0.03 

(-0.39, 0.36) CC 1.00 1.32 (0.84, 2.09) 2.26 (1.49, 3.40) 4.01 (2.64, 6.08) 
CT/TT 1.0080 1.97 (0.97, 4.01) 2.60 (1.47, 4.59) 4.15 (2.25, 7.64) 

XRCC1 (Ex10) 0.04 
(-0.15, 0.23) GG 1.00 1.13 (0.61, 2.10) 2.06 (1.19, 3.55) 3.19 (1.84, 5.54) 

GA/AA 1.0081 1.42 (0.80, 2.50) 1.91 (1.13, 3.22) 3.65 (2.15, 6.22) 
XRCC3 0.02 

(-0.22, 0.25) CC 1.00 1.24 (0.75, 2.06) 2.15 (1.36, 3.39) 3.88 (2.45, 6.16) 
CT/TT 1.0082 1.76 (0.99, 3.13) 2.47 (1.49, 4.09) 3.54 (2.10, 5.97) 

Risk allele 0.08 
(-0.16, 0.36) 0-3 1.00 1.35 (0.76, 2.39) 2.16 (1.31, 3.56) 4.47 (2.68, 7.46) 

4-8 1.0083 1.57 (0.86, 2.87) 2.59 (1.50, 4.48) 4.77 (2.69, 8.45) 
 
 

                                                            
76 Adjusted for sex and age. 
77 POR = 1.19 comparing CG/GG to CC in this lowest exposure quartile. 
78 POR = 1.55 comparing AC/CC to AA in this lowest exposure quartile. 
79 POR = 1.35 comparing GC/CC to GG in this lowest exposure quartile. 
80 POR = 1.40 comparing CT/TT to CC in this lowest exposure quartile. 
81 POR = 0.87 comparing GA/AA to GG in this lowest exposure quartile. 
82 POR = 0.85 comparing CT/TT to CC in this lowest exposure quartile. 
83 POR = 1.12 comparing 4-8 to 0-3 in this lowest exposure quartile. 
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TABLE 8.  Prevalence Odds Ratios84 and 95% CIs for Skin Lesion Prevalence in Relation to DNA Repair 
SNPs by Creatinine-adjusted Urinary Total Arsenic Concentration, Araihazar, Bangladesh, 2000-2002 

SNP Creatinine-adjusted urinary total arsenic concentration (μg/g) RERI 
16-103 104-192 193-339 340-8556 

OGG1 -0.01 
(-0.21, 0.19) CC 1.00 2.98 (1.65, 5.36) 3.26 (1.86, 5.70) 6.09 (3.50, 10.60) 

CG/GG 1.0085 1.72 (0.98, 3.03) 3.12 (1.77, 5.49) 6.76 (3.96, 11.54) 
ERCC2 0.03 

(-0.22, 0.29) AA 1.00 2.34 (1.24, 4.39) 3.66 (1.98, 6.78) 6.79 (3.71, 12.43) 
AC/CC 1.0086 2.45 (1.33, 4.53) 3.48 (1.90, 6.37) 7.18 (4.00, 12.87) 

ERCC5 -0.03 
(-0.27, 0.17) GG 1.00 1.50 (0.86, 2.64) 2.59 (1.52, 4.42) 5.11 (3.07, 8.51) 

GC/CC 1.0087 1.73 (1.00, 3.00) 2.36 (1.37, 4.08) 4.85 (2.86, 8.23) 
XRCC1 (Ex6) 0.08 

(-0.22, 0.45) CC 1.00 1.82 (1.17, 2.84) 2.88 (1.86, 4.46) 5.15 (3.38, 7.85) 
CT/TT 1.0088 2.20 (1.13, 4.28) 2.26 (1.21, 4.23) 6.93 (3.83, 12.53) 

XRCC1 (Ex10) 0.06 
(-0.13, 0.23) GG 1.00 1.55 (0.85, 2.80) 2.49 (1.40, 4.41) 3.98 (2.30, 6.90) 

GA/AA 1.0089 1.56 (0.90, 2.71) 2.18 (1.27, 3.75) 5.05 (2.97, 8.60) 
XRCC3 0.11 

(-0.07, 0.33) CC 1.00 1.72 (1.05, 2.81) 2.08 (1.28, 3.39) 4.34 (2.73, 6.90) 
CT/TT 1.0090 1.33 (0.75, 2.36) 3.05 (1.77, 5.27) 5.23 (3.10, 8.82) 

Risk allele 0.16 
(-0.08, 0.45) 0-3 1.00 1.49 (0.85, 2.59) 2.65 (1.56, 4.53) 4.60 (2.75, 7.69) 

4-8 1.0091 1.69 (0.93, 3.04) 2.93 (1.61, 5.33) 6.32 (3.57, 11.21) 
 
 

                                                            
84 Adjusted for sex and age. 
85 POR = 1.54 comparing CG/GG to CC in this lowest exposure quartile. 
86 POR = 1.64 comparing AC/CC to AA in this lowest exposure quartile. 
87 POR = 0.95 comparing GC/CC to GG in this lowest exposure quartile. 
88 POR = 1.67 comparing CT/TT to CC in this lowest exposure quartile. 
89 POR = 0.87 comparing GA/AA to GG in this lowest exposure quartile. 
90 POR = 0.76 comparing CT/TT to CC in this lowest exposure quartile. 
91 POR = 0.90 comparing 4-8 to 0-3 in this lowest exposure quartile. 
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TABLE 9.  Prevalence Odds Ratios92 and 95% CIs for Skin Lesion Prevalence in Relation to DNA Repair 
SNPs by Primary Methylation Index, Araihazar, Bangladesh, 2000-2002 

SNP Primary Methylation Index RERI 
<0.580 0.580-0.835 0.836-1.154 1.155-19.570 

OGG1 -0.11 
(-0.42, 0.10) CC 1.00 1.17 (0.66, 2.10) 1.49 (0.86, 2.59) 1.52 (0.88, 2.62) 

CG/GG 1.0093 1.74 (1.01, 3.01) 1.36 (0.79, 2.34) 1.35 (0.79, 2.31) 
ERCC2 0.11 

(-0.12, 0.26) AA 1.00 1.20 (0.66, 2.20) 1.33 (0.74, 2.41) 1.05 (0.59, 1.87) 
AC/CC 1.0094 1.38 (0.77, 2.47) 1.18 (0.67, 2.09) 1.34 (0.76, 2.36) 

ERCC5 0.13 
(-0.03, 0.27) GG 1.00 1.51 (0.89, 2.58) 1.67 (0.99, 2.82) 1.11 (0.65, 1.88) 

GC/CC 1.0095 1.25 (0.71, 2.19) 1.03 (0.60, 1.79) 1.64 (0.97, 2.77) 
XRCC1 (Ex6) 0.18 

(-0.12, 0.36) CC 1.00 1.42 (0.91, 2.22) 1.47 (0.95, 2.27) 1.30 (0.84, 2.00) 
CT/TT 1.0096 1.63 (0.85, 3.13) 1.51 (0.82, 2.79) 2.16 (1.17, 3.97) 

XRCC1 (Ex10) 0.06 
(-0.17, 0.23) GG 1.00 1.67 (0.91, 3.04) 1.55 (0.87, 2.78) 1.36 (0.77, 2.39) 

GA/AA 1.0097 1.49 (0.85, 2.60) 1.55 (0.89, 2.68) 1.66 (0.96, 2.88) 
XRCC3 -0.05 

(-0.38, 0.16) CC 1.00 1.46 (0.89, 2.41) 1.43 (0.88, 2.32) 1.55 (0.97, 2.50) 
CT/TT 1.0098 1.56 (0.88, 2.77) 1.62 (0.95, 2.79) 1.50 (0.87, 2.58) 

Risk allele 0.10 
(-0.18, 0.28) 0-3 1.00 1.38 (0.80, 2.39) 1.39 (0.82, 2.38) 1.23 (0.73, 2.07) 

4-8 1.0099 1.48 (0.81, 2.69) 1.31 (0.74, 2.30) 1.74 (0.96, 3.13) 
 
 

                                                            
92 Adjusted for sex and age. 
93 POR = 0.99 comparing CG/GG to CC in this lowest exposure quartile. 
94 POR = 0.80 comparing AC/CC to AA in this lowest exposure quartile. 
95 POR = 0.83 comparing GC/CC to GG in this lowest exposure quartile. 
96 POR = 0.87 comparing CT/TT to CC in this lowest exposure quartile. 
97 POR = 1.11 comparing GA/AA to GG in this lowest exposure quartile. 
98 POR = 1.20 comparing CT/TT to CC in this lowest exposure quartile. 
99 POR = 1.02 comparing 4-8 to 0-3 in this lowest exposure quartile. 
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TABLE 10.  Prevalence Odds Ratios100 and 95% CIs for Skin Lesion Prevalence in Relation to DNA 
Repair SNPs by Secondary Methylation Index, Araihazar, Bangladesh, 2000-2002 

SNP Secondary Methylation Index RERI 
<4.316 4.316-5.855 5.856-8.211 8.212-32.300 

OGG1 0.01 
(-0.21, 0.18) CC 1.00 0.84 (0.54, 1.33) 0.59 (0.37, 0.94) 0.71 (0.42, 1.21) 

CG/GG 1.00101 0.76 (0.49, 1.17) 0.94 (0.59, 1.48) 0.47 (0.27, 0.80) 
ERCC2 -0.03 

(-0.29, 0.17) AA 1.00 0.82 (0.51, 1.29) 0.77 (0.47, 1.27) 0.54 (0.30, 0.97) 
AC/CC 1.00102 0.79 (0.50, 1.23) 0.82 (0.52, 1.30) 0.65 (0.39, 1.09) 

ERCC5 0.09 
(-0.10, 0.23) GG 1.00 0.93 (0.61, 1.42) 0.86 (0.55, 1.34) 0.72 (0.43, 1.18) 

GC/CC 1.00103 0.78 (0.50, 1.21) 0.77 (0.49, 1.21) 0.47 (0.27, 0.82) 
XRCC1 (Ex6) -0.06 

(-0.50, 0.20) CC 1.00 0.75 (0.53, 1.07) 0.71 (0.50, 1.03) 0.56 (0.37, 0.85) 
CT/TT 1.00104 1.13 (0.64, 2.02) 1.09 (0.60, 1.98) 0.57 (0.27, 1.21) 

XRCC1 (Ex10) -0.06 
(-0.31, 0.14) GG 1.00 0.81 (0.50, 1.30) 0.60 (0.36, 1.00) 0.55 (0.32, 0.94) 

GA/AA 1.00105 0.75 (0.49, 1.15) 0.83 (0.53, 1.29) 0.58 (0.34, 0.98) 
XRCC3 -0.22 

(-0.67, 0.05) CC 1.00 0.78 (0.53, 1.14) 0.70 (0.47, 1.06) 0.41 (0.26, 0.67) 
CT/TT 1.00106 0.83 (0.52, 1.31) 0.71 (0.44, 1.14) 0.81 (0.46, 1.41) 

Risk allele 0.10 
(-0.16, 0.27) 0-3 1.00 0.78 (0.50, 1.20) 0.85 (0.55, 1.32) 0.63 (0.38, 1.05) 

4-8 1.00107 1.00 (0.62, 1.61) 0.78 (0.46, 1.32) 0.57 (0.30, 1.07) 
 

                                                            
100 Adjusted for sex and age. 
101 POR = 0.99 comparing CG/GG to CC in this lowest exposure quartile. 
102 POR = 1.03 comparing AC/CC to AA in this lowest exposure quartile. 
103 POR = 1.14 comparing GC/CC to GG in this lowest exposure quartile. 
104 POR = 0.90 comparing CT/TT to CC in this lowest exposure quartile. 
105 POR = 0.98 comparing GA/AA to GG in this lowest exposure quartile. 
106 POR = 0.86 comparing CT/TT to CC in this lowest exposure quartile. 
107 POR = 1.18 comparing 4-8 to 0-3 in this lowest exposure quartile.  
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TABLE 11.  Prevalence Odds Ratios108 and 95% CIs for Skin Lesion Prevalence in Relation to DNA 
Repair SNPs by Body Mass Index, Araihazar, Bangladesh, 2000-2002 

SNP Body Mass Index RERI 
<18.5 18.5-24.9 >25.0 

OGG1 -0.16 
(-0.71, 0.17) CC 1.00 0.75 (0.52, 1.08) 0.37 (0.15, 0.92) 

CG/GG 1.00109 0.72 (0.51, 1.03) 0.46 (0.21, 1.02) 
ERCC2 -0.05 

(-0.67, 0.30) AA 1.00 0.72 (0.50, 1.05) 0.40 (0.14, 1.12) 
AC/CC 1.00110 0.79 (0.56, 1.13) 0.52 (0.24, 1.09) 

ERCC5 -0.24 
(-0.94, 0.16) GG 1.00 0.75 (0.53, 1.05) 0.25 (0.10, 0.65) 

GC/CC 1.00111 0.73 (0.52, 1.02) 0.61 (0.27, 1.36) 
XRCC1 (Ex6) 0.24 

(-0.41, 0.53) CC 1.00 0.88 (0.66, 1.16) 0.47 (0.24, 0.92) 
CT/TT 1.00112 0.80 (0.51, 1.26) 1.06 (0.27, 4.12) 

XRCC1 (Ex10) -0.06 
(-0.65, 0.28) GG 1.00 0.79 (0.54, 1.16) 0.36 (0.14, 0.91) 

GA/AA 1.00113 0.83 (0.58, 1.18) 0.59 (0.26, 1.34) 
XRCC3 0.10 

(-0.39, 0.38) CC 1.00 0.89 (0.65, 1.22) 0.37 (0.17, 0.84) 
CT/TT 1.00114 0.80 (0.56, 1.15) 0.71 (0.29, 1.74) 

Risk allele 0.07 
(-0.64, 0.39) 0-3 1.00 0.72 (0.51, 1.02) 0.47 (0.20, 1.11) 

4-8 1.00115 0.81 (0.55, 1.18) 0.53 (0.20, 1.36) 
 

                                                            
108 Adjusted for sex, age, and well water arsenic concentration. 
109 POR = 0.85 comparing CG/GG to CC in this lowest exposure tertile. 
110 POR = 1.02 comparing AC/CC to AA in this lowest exposure tertile. 
111 POR = 0.89 comparing GC/CC to GG in this lowest exposure tertile. 
112 POR = 1.48 comparing CT/TT to CC in this lowest exposure tertile. 
113 POR = 1.05 comparing GA/AA to GG in this lowest exposure tertile. 
114 POR = 1.21 comparing CT/TT to CC in this lowest exposure tertile. 
115 POR = 1.14 comparing 4-8 to 0-3 in this lowest exposure tertile. 
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TABLE 12.  Prevalence Odds Ratios116 and 95% CIs for Skin Lesion Prevalence in Relation to DNA 
Repair SNPs by Smoking Status, Araihazar, Bangladesh, 2000-2002 

SNP Smoking Status RERI 
Never Ever 

OGG1 -0.23 
(-0.86, 0.26) CC 1.00 1.33 (0.88, 2.00) 

CG/GG 1.00117 1.13 (0.76, 1.68) 
ERCC2 0.34 

(-0.22, 0.77) AA 1.00 1.01 (0.65, 1.55) 
AC/CC 1.00118 1.21 (0.80, 1.84) 

ERCC5 0.36 
(-0.14, 0.79) GG 1.00 1.06 (0.71, 1.57) 

GC/CC 1.00119 1.20 (0.80, 1.80) 
XRCC1 (Ex6) -0.55 

(-1.59, 0.31) CC 1.00 1.41 (1.00, 1.98) 
CT/TT 1.00120 1.39 (0.87, 2.22) 

XRCC1 (Ex10) -0.35 
(-1.24, 0.25) GG 1.00 1.40 (0.92, 2.16) 

GA/AA 1.00121 1.32 (0.87, 2.00) 
XRCC3 0.35 

(-0.28, 0.90) CC 1.00 1.16 (0.80, 1.69) 
CT/TT 1.00122 1.38 (0.92, 2.07) 

Risk allele -0.12 
(-0.96, 0.49) 0-3 1.00 1.35 (0.90, 2.05) 

4-8 1.00123 1.44 (0.92, 2.24) 
 

                                                            
116 Adjusted for sex, age, and well water arsenic concentration. 
117 POR = 1.04 comparing CG/GG to CC in this lowest exposure category. 
118 POR = 0.86 comparing AC/CC to AA in this lowest exposure category. 
119 POR = 0.78 comparing GC/CC to GG in this lowest exposure category. 
120 POR = 1.54 comparing CT/TT to CC in this lowest exposure category. 
121 POR = 1.27 comparing GA/AA to GG in this lowest exposure category. 
122 POR = 0.87 comparing CT/TT to CC in this lowest exposure category. 
123 POR = 1.20 comparing 4-8 to 0-3 in this lowest exposure category. 
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TABLE 13.  Prevalence Odds Ratios124 and 95% CIs for Skin Lesion Prevalence in Relation to DNA 
Repair SNPs by Fruit and Vegetable Intake, Araihazar, Bangladesh, 2000-2002 

SNP 
Fruit and vegetable intake, g/day 

RERI 74.0-415.5 415.6-593.0 ≥593.1 
OGG1 -0.19 

(-0.63, 0.12) CC 1.00 0.65 (0.41, 1.01) 0.48 (0.30, 0.76) 
CG/GG 1.00125 0.56 (0.36, 0.87) 0.53 (0.34, 0.82)  

ERCC2 -0.16 
(-0.61, 0.17) AA 1.00 0.54 (0.33, 0.86) 0.46 (0.29, 0.74) 

AC/CC 1.00126 0.66 (0.43, 1.02) 0.49 (0.31, 0.77)  
ERCC5 -0.78 

(-1.43, -0.29) GG 1.00 0.48 (0.31, 0.73) 0.32 (0.20, 0.50) 
GC/CC 1.00127 0.48 (0.30, 0.75) 0.51 (0.33, 0.79)  

XRCC1 (Ex6) 0.04 
(-0.56, 0.49) CC 1.00 0.57 (0.40, 0.81) 0.54 (0.38, 0.78) 

CT/TT 1.00128 1.01 (0.58, 1.74) 0.52 (0.29, 0.94)  
XRCC1 (Ex10) -0.04 

(-0.47, 0.27) GG 1.00 0.67 (0.42, 1.05) 0.47 (0.29, 0.77) 
GA/AA 1.00129 0.66 (0.43, 1.02) 0.61 (0.40, 0.93)  

XRCC3 0.18 
(-0.18, 0.47) CC 1.00 0.69 (0.47, 1.03) 0.65 (0.44, 0.96) 

CT/TT 1.00130 0.80 (0.51, 1.28) 0.53 (0.33, 0.85)  
 

Risk allele -0.34 
(-0.99, 0.07) 0-3 1.00 0.51 (0.33, 0.79) 0.44 (0.28, 0.68) 

4-8 1.00131 0.73 (0.45, 1.19) 0.33 (0.32, 0.87)  
  

                                                            
124 Adjusted for sex, age, well water arsenic concentration, total caloric intake, and BMI.  
125 POR = 0.83 comparing CG/GG to CC in this lowest exposure tertile. 
126 POR = 0.85 comparing AC/CC to AA in this lowest exposure tertile. 
127 POR = 0.52 comparing GC/CC to GG in this lowest exposure tertile. 
128 POR = 0.99 comparing CT/TT to CC in this lowest exposure tertile. 
129 POR = 1.05 comparing GA/AA to GG in this lowest exposure tertile. 
130 POR = 1.33 comparing CT/TT to CC in this lowest exposure tertile. 
131 POR = 0.70 comparing 4-8 to 0-3 in this lowest exposure tertile. 
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Chapter 4 

Gene-Gene, Gene-Environment, and Higher Order Interactions in Relation to 

Arsenic-related Skin Lesions in an Adult Bangladeshi Population 
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ABSTRACT 

 The oxidative stress and DNA repair pathways have been implicated in arsenic 

toxicity and have been hypothesized to underlie arsenic carcinogenesis. The object of this 

analysis was to explore gene-gene, gene-environment, and higher-order interactions 

among 10 single nucleotide polymorphisms (SNPs) related to the oxidative stress and 

DNA repair pathways by multifactor dimensionality reduction (MDR), classification and 

regression trees (CART) and logistic regression models. Data from 610 prevalent skin 

lesion cases and 1,079 controls from the Health Effects of Arsenic Longitudinal Study 

(HEALS) were utilized in these analyses. Based on single SNP evaluation in logistic 

regression models, none of the SNPs were associated with skin lesion prevalence, 

however, were evaluated for potential epistatic effects. Our analytic method utilized 

MDR and CART modeling approaches for the selection of potential gene-gene and gene-

environment interactions. Considerable overlap of the interactions detected by both these 

methods was observed, which were further evaluated by logistic regression. Results from 

logistic regression modeling indicated evidence for some of these statistical interactions; 

however, further investigation and replication of the statistical interactions detected in 

this study is needed.      
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INTRODUCTION 

Globally, more than 100 million people, including approximately 28–57 million 

in Bangladesh, are chronically exposed to arsenic through naturally contaminated 

drinking water (1). The International Agency for Research on Cancer has categorized 

arsenic as a class I human carcinogen (2). Arsenic in drinking water has been associated 

with increased risk of a wide range of health outcomes including cancers of the skin, 

lung, bladder, liver, and kidney (3-7), neurological disease (8), cardiovascular disease (9), 

as well as other non-malignant diseases (10, 11). While most arsenic-related cancers have 

long average latency periods, skin lesions appear within a relatively shorter period of 

time following exposure to arsenic (12, 13). Additionally, skin lesions are considered 

precursors to a majority of the arsenic-induced basal and squamous cell skin cancers (14).  

Due to the absence of a suitable animal model for the evaluation of arsenic 

toxicity, a mode of action has yet to be determined for arsenic carcinogenesis (15, 16). 

Although, the oxidative stress and DNA repair pathways have been implicated in arsenic 

toxicity and have been hypothesized to underlie arsenic carcinogenesis (17). To date, few 

epidemiologic studies have evaluated genetic susceptibility to arsenical skin lesions based 

on single nucleotide polymorphisms (SNPs) in antioxidant enzyme or DNA repair genes. 

Only a single prior study by Ahsan et al. has evaluated SNPs in antioxidant enzyme genes 

(MPO and CAT) in relation to skin lesion prevalence and no significant main effects of 

the SNPs were observed (18). There have been 5 epidemiologic studies which have 

evaluated polymorphisms in DNA repair genes (ERCC2, APEX1, XRCC1, XRCC3, and 

OGG1) in relation to skin lesion prevalence and observations have been conflicting (19-

23). Banerjee et al. observed a significant increased risk of hyperkeratosis in relation to 
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the C allele of a polymorphism in ERCC2 (rs13181) (20), while others have not (19, 23). 

Breton et al. observed a significant increased risk of skin lesions in relation to the GG 

genotype compared to the TT genotype of a polymorphism in APEX1 (rs3136820) (21); 

however, this SNP has not been replicated in other studies with respect to skin lesion risk. 

Significant marginal effects of XRCC1, XRCC3, and OGG1 in relation to skin lesions 

have not been observed (21, 22).         

It has been previously described that genes may exhibit epistatic effects 

particularly for complex diseases, when no marginal effect of the gene is detected (24). 

There are several statistical approaches for evaluating gene-gene as well as gene-

environment interactions. Historically, epidemiologists have favored logistic regression 

for evaluating interaction within a case-control setting. With technological advances in 

genotyping, the number of SNPs that can be typed within a study has increasingly grown, 

which in turn has made the number of possible interactions to explore very large. For 

example, all possible pair-wise interactions between SNPs would equal N!/[2! (N−2)!], 

where N is the number of SNPs. For the 11 SNPs examined in this study, there would be 

55 SNP-pair interactions to evaluate. Therefore, for hypotheses where an a priori 

interaction is not specified, logistic regression is not an optimal tool for exploratory 

analyses of SNP-SNP interactions. Recently, dimensionality reduction approaches have 

been applied to these research questions, including multifactor dimensionality reduction 

(MDR) (25-29), classification and regression trees (CART) (30), and random forests (RF) 

(31). García-Magariños et al. (32) conducted a simulation study to evaluate the ability of 

these three methods as well as logistic regression to detect SNP-SNP interactions under 

different modeling scenarios (e.g., sample size, missing data, minor allele frequencies, 
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and penetrance); they concluded that CART performed well under all scenarios and was 

less computationally intensive than the other approaches. Additionally, Schwender et al. 

(33) conducted several classification methods in an analysis of 25 SNPs in a case-control 

study of breast cancer and also showed that the misclassification rate for the various 

methods applied was similar.  

In this study, we utilized data from 610 prevalent skin lesion cases and 1,079 

controls from the Health Effects of Arsenic Longitudinal Study (HEALS) cohort to 

evaluate gene-gene and gene-environment interactions in relation to skin lesion 

prevalence based on MDR, CART, and logistic regression analyses for SNPs in the 

oxidative stress (SOD2, rs4880; CAT, rs1001179; GPX1, rs1050450; and MPO, 

rs2333227) and DNA repair pathways (OGG1, rs1052133; XRCC1, rs25487 and 

rs1799782; XRCC3, rs861539; ERCC2, rs1052559; ERCC5, rs17655; and LIG4, 

rs1805388), as well as various measures of arsenic exposure in relation to skin lesion 

prevalence. 

 

MATERIALS AND METHODS 

Study Population 

HEALS is an ongoing, population-based cohort study examining both the short- 

and long-term health effects of arsenic exposure. The study was launched in Araihazar, 

Bangladesh, in 2000. The selection of cohort participants, study design and methods have 

been described in detail elsewhere (34).  

The prevalent cases and controls utilized in these analyses were selected from the 

baseline survey of the HEALS cohort. Between October 2000 and May 2002, married 
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individuals were sampled—an eligibility criteria to minimize loss to follow-up—who 

were aged between 18 and 75 years and were residents of the study area for at least 5 

years. From the 12,050 residents who met the eligibility criteria from an enumerated total 

65,876  persons in the study area, 11,746 (97.5% response rate) men and women (4,801 

married couples and 2,144 married individuals whose spouses did not participate) were 

enrolled into the HEALS cohort. Among the 11,746 enrolled baseline cohort participants, 

11,224 participants (95.6%) provided urine samples. At baseline, 610 cases of arsenical 

skin lesions were identified among the 11,224 cohort members who provided urine 

samples and were included as prevalent cases in this study. Of the remaining participants 

with an available urine sample and known to be free of skin lesions at baseline 

(n=10,614), a ~10% random sample (n=1,079) was selected and included as controls in 

this study.  

The distribution of skin lesion severity among the 610 cases was as follows: 359 

cases had melanosis only, 20 had leucomelanosis only, 10 had melanosis and 

leucomelanosis, 170 had melanosis and keratosis, 40 had leucomelanosis and keratosis, 

and 11 had melanosis, leucomelanosis, and keratosis.  

The study protocol was approved by the Institutional Review Boards of Columbia 

University, The University of Chicago, and the Bangladesh Medical Research Council. 

Informed consent was obtained from all participants prior to baseline interview.  

 

Single Nucleotide Polymorphism Assessment 

High-throughput DNA extraction was completed in 96-well format using the 

QIAmp DNA 96 DNA Blood kit (Qiagen, Valencia, CA). Replica plates were made with 
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12.5 ng DNA in 2.5 µL per well. In the first step, the genomic DNA was amplified by 

PCR using appropriate primers. After PCR amplification, the primers and 

deoxynucleotide triphosphates in 10 µL PCR product were digested with the 10 µL 

shrimp alkaline phosphatase cocktail containing 1.0 µL (1 unit/µL) of shrimp alkaline 

phosphatase, 0.1 µL of Escherichia coli exonuclease I (10 units/µL; U.S. Biochemical, 

Cleveland, OH), 1.0 µL of 10x shrimp alkaline phosphatase buffer, and 7.9 µL of DNase 

and RNase-free water for 45 min at 37°C followed by heating at 95°C for 15 min for 

enzyme deactivation. Then, single nucleotide extension was carried out in the presence of 

the appropriate allele-specific dideoxynucleotide triphosphates fluorescence labeled with 

either R110 or TAMRA (PerkinElmer, Waltham, MA). For single nucleotide extension 

reactions, both the forward and reverse probes were initially tested to select the better 

probe based on clear signal clustering. Reaction mixture (13 µL/well) containing 0.025 

µL AcycloPrime enzyme, 0.5 µL terminator dye, 1 µL reaction buffer, 0.25 µL extension 

probe (10 pmol/µL), and 11.225 µL water was added to 7 µL of digested PCR product to 

make 20 µL reaction volume. Thermocycling was done at 95°C for 3 min followed by 

optimum number of cycles of 95°C for 15 s and 55°C for 30 s. Finally, the fluorescence 

was measured with Wallac 1420 Multilabel Counter Victor 3 (PerkinElmer, Waltham, 

MA). In addition to our assay-specific quality control samples, 10% of the samples were 

run in duplicate after relabeling to keep laboratory researchers blinded to its identity. 

Concordance based on the duplicates was >0.92. Call rates for the SNPs of interest 

ranged from 95.0% to 97.9%, as shown in Table 1. 
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Skin Lesion Assessment 

 Arsenical skin lesion assessment was conducted through skin examination at the 

baseline interview following a structured protocol by a trained study physician (34, 35). 

Arsenical skin lesions were categorized as the presence of melanosis on the body surface, 

leucomelanosis on the body surface, and keratosis on the hands or feet. For the purposes 

of this study, cases were selected as having the presence of any type of arsenical skin 

lesion.      

 

Arsenic exposure assessment 

Three primary measures of arsenic exposure were estimated for each case-control 

participant: well water arsenic concentration, creatinine-adjusted urinary total arsenic 

concentration, and urinary arsenic metabolites.   

At the baseline survey, participants were asked to identify the well they primarily 

used as their source of drinking water, from which we were able to assign the appropriate 

well water arsenic concentration exposure. Well water arsenic concentrations of all 5,966 

tubewells in the study area were measured by graphite furnace atomic absorption 

spectrometry, with a detection limit of 5 μg/L. Samples below the limit of detection were 

subsequently reanalyzed by inductively coupled plasma-mass spectrometry (ICP-MS), 

with a detection limit of 0.1 μg/L (36).  

Urinary total arsenic concentration was measured in a spot urine sample collected 

at baseline by graphite furnace atomic absorption spectrometry, with a detection limit of 

2 μg/L (37). Urinary creatinine was measured by a colorimetric Sigma Diagnostics Kit 

(Sigma, St. Louis, MO), and urinary total arsenic was subsequently divided by creatinine 
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to obtain a creatinine-adjusted urinary total arsenic concentration, expressed as μg/g 

creatinine (38). 

Urinary arsenic metabolites were measured based on the method by Reuter et al. 

(39) using high-performance liquid chromatography separation of arsenobetaine, 

arsenocholine, arsenate (AsV), arsenite (AsIII), total monomethyl arsenic (MMAIII + 

MMAV), and total dimethyl arsenic (DMAIII + DMAV) followed by detection by ICP-

MS-dynamic reaction cell. Total inorganic arsenic (AsIII + AsV) is utilized in these 

analyses since AsIII can oxidize to AsV during sample transport, storage, and preparation.  

For purposes of analysis, well water arsenic was categorized into quartiles based 

on the distribution in the controls; however, since the first and second quartiles roughly 

corresponded to the World Health Organization’s guideline for arsenic in drinking water 

(10 μg/L) and the national standard for arsenic in drinking water in Bangladesh (50 

μg/L), respectively, we adjusted the cutoff points slightly to correspond to these 

regulatory levels. Urinary total arsenic concentration and arsenic metabolite metrics were 

quartiled based on the distribution in the controls. The percentages of MMA, DMA and 

inorganic arsenic were calculated after exclusion of arsenobetaine and arsenocholine 

from the total. In addition, two methylation indices were constructed: primary 

methylation index (PMI)—the ratio of MMA to inorganic arsenic—and secondary 

methylation index (SMI)—the ratio of DMA to MMA.  

 

Statistical Analysis 

Hardy Weinberg Equilibrium (HWE) was calculated for the controls based on 

Pearson (χ2) tests and α. Violation of HWE is calculated based on statistical departure 
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from expected HWE frequencies based on the exact test. α is used to denote the 

magnitude of departure from HWE. 

 

where Pgg, PGg, and PGG are the genotype proportions (40).  

 The association between each SNP and arsenical skin lesion status was estimated 

by prevalence odds ratios (PORs) and their 95% confidence intervals (CIs) from logistic 

regression models employed by the LOGISTIC procedure in SAS. The PORs were 

adjusted for sex, age, and well water arsenic concentration, primarily because of the 

strong association of these covariates with the outcome. The genotype-specific PORs 

were estimated for each SNP using the homozygous major genotype as the reference 

category.  

Two approaches were selected to evaluate SNP-SNP and higher order interactions 

(i.e., MDR and CART). Due to the fact that there was not a substantial amount of 

variability in the LIG4 SNP genotype in this population and the α statistic suggested a 

deviation from HWE in the control subjects, this SNP was excluded from evaluation of 

interaction.  

SNP-SNP interactions were first evaluated using MDR among the 10 genotyped 

SNPs, with no additional predictors specified. SNP-SNP interactions were then evaluated 

with the addition of various measures of arsenic exposure to the interaction models (i.e., 

well water arsenic concentration, creatinine-adjusted urinary total arsenic concentration, 

primary methylation index, and secondary methylation index). Each construct of arsenic 

exposure was modeled separately with the set of 10 SNPs. MDR is a nonparametric 

method that reduces data into a single dimensional variable (classifying individuals as 
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high and low risk groups), determined by the ratio of diseased to non-diseased individuals 

(28). Each model is constructed using ten-fold cross-validation, where 9/10 of the data 

are used to construct the models and 1/10 of the data are used to estimate the testing 

accuracy (i.e., the proportion of individuals the model correctly classifies). All SNPs 

were modeled as ordinal variables, coded as 0, 1, or 2, which represented the number of 

minor alleles carried. All measures of arsenic exposure were modeled as ordinal 

variables, coded as 0, 1, 2, or 3, which represented increasing quartile of exposure level. 

Individuals with data missing for any of the variables were excluded from the analysis. 

MDR analyses were conducted using MDR software (version 2.0 beta 8.3) (41).          

CART was utilized to assess SNP-SNP interactions based on the same strategy; 

first, interactions were evaluated among the 10 SNPs and then various constructs of 

arsenic exposure were integrated into the interaction models. CART analysis is a 

nonparametric recursive partitioning approach that constructs a decision tree using ten-

fold cross-validation (42). It is characterized by two central features in tree 

construction—1) recursive partitioning which splits the root node into offspring nodes 

and continues into further generation of nodes and 2) pruning which removes from the 

bottom up splits that are based on unreliably small sample sizes (42). All SNPs were 

modeled as ordinal variables, coded as 0, 1, or 2, which represented the number of minor 

alleles carried. All measures of arsenic exposure were modeled as ordinal variables, 

coded as 0, 1, 2, or 3, which represented increasing quartiles of exposure level. 

Participants with data missing for any of the variables were excluded from the analysis. 

Individuals were classified in the tree based on the Gini splitting rule and, the tree was 



136 

 

pruned to minimum cross-validated error in the terminal nodes (30). CART analyses 

were conducted using DTREG software (43).       

Logistic regression was finally employed to assess interactions that were 

predicted by both MDR and CART to evaluate how well the results converged. Logistic 

regression was conducted using the LOGISTIC procedure in SAS. The likelihood ratio 

test was used to evaluate interaction on the multiplicative scale by comparing the full 

model containing interactions terms to the reduced model without the interaction terms.  

 

RESULTS 

 Deviation from the expected genotype frequency distribution was observed for 

LIG4 so we elected to eliminate this SNP from evaluation of interaction analyses (Table 

1). Characteristics of the study populations are shown in Table 2. There was a higher 

prevalence of skin lesions among males and older individuals as well as evidence of a 

dose-response trend with increasing quartiles of well water arsenic concentration, 

creatinine-adjusted urinary total arsenic concentration, and the primary methylation 

index. An inverse trend was observed with increasing quartiles of the secondary 

methylation index. 

 Genotype frequencies of the SNPs as well as associations with skin lesion 

prevalence are shown in Table 3. There were no significant marginal effects observed; 

adjustment for sex, age, and well water arsenic concentration did not appreciably change 

the effect estimates (data not shown). The conditional effects of the SNPs (e.g., with the 

inclusion of all the SNPs in a single logistic regression model) were also evaluated and, 

we did not observe any significant associations with skin lesions (Table D.2). 
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Furthermore, utilizing Hierarchical Bayes modeling (44) to integrate information on the 

shared pathways (i.e., oxidative stress and DNA repair, Table D.1) of the SNPs did not 

yield considerably different results from the conditional model (Table D.2).      

 The results of the MDR interaction models are shown in Table 4, with the results 

for the best 1, 2, and 3 factor models indicated. Five different interaction modeling 

scenarios were evaluated, which included SNP-SNP and environment-SNP interactions. 

A different pattern of interactions was generally observed for each of the exposure 

modeling scenarios; however, in each case, the measure of arsenic exposure was the 

single most important predictor of skin lesions. Overall, the interaction model between 

well water arsenic concentration and the polymorphism in MPO provided the highest 

testing accuracy (0.6152) and maximum cross-validation consistency (10/10) for skin 

lesion prevalence. Based on these 2 factors, individuals who were classified as high risk 

were 2.6 (95% CI=2.0, 3.3) times more likely to have skin lesions than individuals who 

were classified as low risk (shown in Figure D.1).  

 The results of the CART analyses are shown in Figures D.4-D.8 for all prediction 

models. Again, a different pattern of interactions was generally observed for each of the 

exposure modeling scenarios; however, in each model that included arsenic exposure, 

arsenic was the single most important predictor of skin lesions indicated by the first split 

in each of the graphs by the arsenic variable. 

A comparison of the MDR and CART interaction models revealed consistency for 

the following interactions in the SNPs only model: 1) ERCC5*XRCC1 (Ex10) and 2) 

OGG1*ERCC5*XRCC1 (Ex10). In the model that included well water arsenic 

concentration, only the interaction between arsenic and MPO was observed in both 
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methods. The model that included primary methylation index showed consistency by 

both methods for: 1) PMI*OGG1 and 2) PMI*SOD2*OGG1. These interactions were 

subsequently evaluated by logistic regression.    

Both MDR and CART predicted an interaction between the polymorphisms in 

ERCC5 and XRCC1 (Ex10), which was confirmed by logistic regression (Table 5). 

Overall, the inclusion of interaction terms between ERCC5 and XRCC1 (Ex10) in the 

model were significant (adjusted model: χ2=13.8, 4 d.f., P for interaction=0.008). There 

was a significant antagonist interaction between the GC genotype of ERCC5 and the GA 

genotype of XRCC1 (Ex10). The data were too sparse to evaluate the three-way 

interaction between the polymorphisms in OGG1, ERCC5, and XRCC1 (Ex10), as shown 

in Figure D.2b. Evaluation of the interaction between well water arsenic concentration 

(dichotomized into lowest two quartiles versus highest two quartiles) and the 

polymorphism in MPO did not reveal any significant interaction overall by logistic 

regression modeling (Table 6); although, there appeared to be a slight reduction in risk 

among individuals with the GA genotype of MPO. When well water arsenic 

concentration was included in the model by 3 indicator variables to specify quartiles of 

exposure, the interaction term for the third quartile of exposure and the GA genotype of 

MPO showed statistical evidence of antagonism (βGxE=-1.1708, P value=0.0028). This 

antagonistic interaction was predicted by MDR, as shown in Figure D.1, with the 

individuals in the corresponding cell labeled low risk. Evaluation of the interaction 

between the primary methylation index (dichotomized into lowest two quartiles versus 

highest two quartiles) and the polymorphism in OGG1 did not reveal any significant 

interaction overall by logistic regression modeling (Table 7); nor was there any evidence 
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of interaction when the primary methylation index was modeled by 3 indicator variables 

(data not shown). Based on the MDR model (Figure D.3a), it appears there was positive 

interaction between low PMI and the CG genotype of OGG1, with those individuals 

classified as high risk, and an antagonistic interaction predicted between high PMI and 

the GG genotype of OGG1, with those individuals classified as low risk, that was not 

statistically observable in the logistic regression modeling. Finally, the three-way 

interaction between PMI, OGG1 and SOD2 was evaluated by logistic regression (Table 

8). There was evidence of a significant multiplicative SNP-SNP interaction between 

OGG1 and SOD2 (χ2=12.4, 4 d.f., P for interaction=0.01), with evidence for a significant 

antagonistic interaction between the CG genotype of OGG1 and the CT genotype of 

SOD2 as well as a significant antagonistic interaction between the GG genotype of 

OGG1 and the CT genotype of SOD2, also depicted in the MDR model (Figure D.3b). In 

an effort to evaluate the three-way interaction with PMI in the logistic regression models, 

the models were stratified by low and high PMI. While the multiplicative interaction was 

not statistically significant, the SNP-SNP interaction marginally appeared in the high 

PMI exposure group and was not apparent in the low PMI exposure group (P for 

interaction=0.06 and 0.29, respectively).       

 

DISCUSSION  

 In this study, we evaluated potential gene-gene interactions of 10 SNPs genotyped 

in candidate genes in the oxidative stress and DNA repair pathways. We additionally 

evaluated gene-environment interactions through the inclusion of various constructs of 

arsenic exposure (well water arsenic concentration, creatinine-adjusted urinary total 
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arsenic concentration, primary methylation index, and secondary methylation index) with 

the SNPs in the predictor variable sets for MDR and CART. The approach taken was to 

use the MDR and CART methods to select concordant interactions for evaluation by 

logistic regression. Several gene-gene and gene-environment interactions were consistent 

between MDR and CART including: ERCC5*XRCC1 (Ex10); OGG1*ERCC5*XRCC1 

(Ex10); well water arsenic*MPO; PMI*OGG1; and, PMI*SOD2*OGG1. These selected 

interactions were evaluated for statistical evidence of multiplicative interaction by 

logistic regression, which revealed significant antagonistic interactions for 

ERCC5*XRCC1 (Ex10) and PMI*SOD2*OGG1.        

The ERCC5 gene codes for a DNA repair protein involved in the NER pathway of 

UV-induced damage (45). This gene is located in chromosome region 13q33. A 

nonsynonymous SNP (G>C, Asp1104His, rs17655) in ERCC5 was examined in this 

study. While there is no current literature on the association of this gene with arsenic or 

skin lesions, there is evidence of a potential interaction between arsenic and UV (46, 47) 

in relation to skin lesions. XRCC1 is a DNA repair enzyme that interacts with 

polynucleotide kinase (PNK), DNA polymerase-beta (POLB) and DNA ligase III (LIG3) 

as part of a complex to repair single-strand breaks and functions in BER to repair damage 

caused by agents such as reactive oxygen species (48). This gene is located in 

chromosome region 19q.13.2. A nonsynonymous SNP (C>T, Arg194Trp, rs1799782) in 

this gene was genotyped in this study, of which the T allele has been associated with 

deficient DNA repair (49). In this study, there was statistically significant antagonistic 

interaction between the heterozygous genotypes of both ERCC5 and XRCC1 (Ex10). 

Both these genes have been previously examined in epidemiologic investigations related 
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to carcinogenesis (50-52); although, an interaction between these genes has not been 

previously reported.  

In this study we also observed significant antagonistic interaction between OGG1 

and SOD2, particularly among individuals with higher levels of the primary methylation 

index. OGG1 is a DNA glycosylase involved in base excision repair (BER) of 8-

hydroxydeoxyguanosine (8-OHdG), an adduct formed from oxidative stress (53). During 

BER, OGG1 removes damaged bases by cleaving N-glycosylic bonds (53). Prior in vitro 

(54) and animal (55, 56) studies have shown OGG1 to play a role in mitigating arsenic-

induced oxidative damage. This gene is located in chromosome region 3p26.2. A 

nonsynonymous SNP (C>G, Ser326Cys, rs1052133) in OGG1 was genotyped in this 

study. Proteins encoded with the G allele exhibit reduced 8-OHdG repair activity (57). 

Additionally, SOD2 protein plays a major role in maintaining oxidative balance by 

converting superoxide (O2
-)—a precursor molecule for all other reactive oxygen 

species—into hydrogen peroxide and oxygen (58). Additionally, prior in vitro 

experiments have shown SOD2 to play a role in mitigating arsenic-induced DNA damage 

from oxidative stress (59, 60). This gene is located in chromosome region 6q25.3. A 

nonsynonymous SNP (C>T, Ala16Val, rs4880) in SOD2 was genotyped in this study. 

The C allele retains the alpha helical structure of the protein for normal activity of the 

enzyme (61). Finally, inefficient arsenic methylation (i.e., represented by elevated 

concentrations of MMA to inorganic arsenic in urine) has been consistently observed as a 

risk factor for skin lesion prevalence in previous epidemiologic studies (62-65). A recent 

cross-sectional study among arsenic-exposed individuals showed that lower primary 

methylation index was associated with lower plasma antioxidant capacity (66). Moreover, 
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in vitro studies have shown that MMA induces reactive oxygen species, particularly the 

trivalent form of this organic arsenic species (67, 68). In a study by Bailey et al. (68), in 

vitro experiments using normal human epidermal keratinocytes showed that MMAIII 

exhibited the greatest potential for skin carcinogenesis through the induction of oxidative 

stress, compared to the trivalent forms of inorganic arsenic and DMA. In a comparative 

functional genomics analysis in yeast, Jo et al. (69) showed that glutathione (related to 

cellular antioxidant status) was more important in MMAIII toxicity than trivalent 

inorganic arsenic toxicity. We observed a significant antagonistic interaction between the 

CG genotype of OGG1 and the CT genotype of SOD2 as well as a significant 

antagonistic interaction between the GG genotype of OGG1 and the CT genotype of 

SOD2. Both these genes have been associated with cancer outcomes (70-72), although an 

interaction between them has not been previously reported.  

There are several strengths of this study. First, the main strength of this study was 

our multi-analytic approach to the assessment of gene-gene, gene-environment, and 

higher-order interactions. We utilized two nonparametric approaches (i.e., MDR and 

CART) to select promising interactions for evaluation by logistic regression. MDR and 

CART proved to be powerful analytic methods for the detection of statistical gene-gene 

and gene-environment interactions, including higher-order interactions, with a limited 

sample size. MDR has been previously shown to undercover gene-gene and gene-

environment interactions in the absence of any significant marginal effects of the factors 

(73, 74). Even with the potential noise present in the predictor variable sets—with the 

inclusion of several SNPs unrelated to the outcome—both the MDR and CART methods 

consistently selected arsenic exposure as the most important predictor of skin lesions 
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when included in the predictor variable sets. Second, the measurement of various 

constructs of arsenic exposure was evaluated. Different components of arsenic have been 

assessed in this study population including well water arsenic concentration (a measure of 

external exposure), urinary total arsenic concentration (a measure of internal dose), as 

well as arsenic metabolites (a measure of biological response). It is possible that genes 

interact differently with each of the components of arsenic exposure, which we were able 

to systematically evaluate in this study.   

There are several limitations of this study that we also consider. First, significant 

interactions observed in these analyses may not be causal, but simply due to chance. We 

did not observe any significant marginal effects of the SNPs, and while it is possible that 

epistatic effects could still be present, we may have simply added noise to the predictor 

variable sets by including these SNPs. Second, the interactions observed were all 

antagonistic interactions between the heterozygous genotypes. The biological basis of 

this type of relationship is difficult to conceive. Third, the evaluation of three-way 

interactions using logistic regression in this study was hampered by the small sample size 

to asses these higher order interactions.     

In summary, our analytic method utilized MDR and CART modeling approaches 

for the selection of potential gene-gene and gene-environment interactions. We observed 

considerable overlap of the interactions detected by both these methods, which were 

further evaluated by logistic regression. Results from logistic regression modeling, 

confirmed some of these statistical interactions; however, further investigation and 

replication of the statistical interactions detected in this study is needed.   
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TABLE 1. Single Nucleotide Polymorphisms 

Gene SNP  
rs number Chromosome SNP Amino acid 

substitution 

Genotyping 
success rate 

(%) 
α 

Antioxidant enzymes genes 
SOD2 4880 6 Ex2+24C>T A16V 96.5 0.03 
CAT  1001179  11 -329T>C   96.3 0.01 
GPX1  1050450  3 Ex1-226C>T  P200L 96.4 -0.03 
MPO  2333227  17 -642G>A   96.8 -0.03 
DNA repair genes 
OGG1 1052133 3 Ex6-315C>G S326C 97.7 -0.01 
ERCC2 1052559 19 Ex23+61A>C  K751Q 97.9 0.01 
ERCC5 17655 13 Ex15-344G>C D1104H 96.8 -0.05 
LIG4 1805388 13 Ex3+54C>T T9I 96.6 -0.18 
XRCC1 1799782 19 Ex6-22C>T   R194W 95.2 0.07 
XRCC1 25487 19 Ex10-4A>G  Q399R 96.3 -0.01 
XRCC3 861539 14 Ex8-53C>T T241M 95.0 0.05 
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TABLE 2. Selected Characteristics of the Study Sample, Araihazar, Bangladesh, 2000-2002 

Characteristic 
Cases 

(n=610) 
Controls 
(n=1,079) POR132 

(95% CI) N % N % 
Sex      

Male 507 82.6 440 40.8 1.0 
Female 106 17.4 639 59.2 0.1 (0.1, 0.1) 

Age, years      
18-30 161 26.4 386 35.8 1.0 
31-40 224 36.7 237 22.0 2.5 (1.8, 3.4)  
41-50 60 9.8 355 32.9 5.6 (4.0, 7.8) 
51-75 165 27.0 100 9.3 9.8 (6.7, 14.1) 

Well water arsenic, μg/L133      
0.1-10 72 11.8 265 24.6 1.0 
10.1-50 97 15.9 248 23.0 1.4 (1.0, 2.0) 
50.1-150 202 33.1 330 30.6 2.2 (1.6, 3.1) 
150.1-864  239 39.2 236 21.9 3.7 (2.7, 5.1) 

Urinary total arsenic, μg/g134      
16-103 64 10.5 269 24.9 1.0 
104-192 121 19.8 271 25.1 1.9 (1.3, 2.6) 
193-339 164 26.9 269 24.9 2.6 (1.8, 3.6) 
340-8556 261 42.8 270 25.1 4.1 (2.9, 5.6) 

Primary methylation index135      
<0.580 70 11.8 260 25.0 1.0  
0.580-0.835 132 22.3 259 25.0 1.9 (1.3, 2.6) 
0.836-1.154 171 28.9 260 25.0 2.4 (1.8, 3.4) 
1.155-19.570 218 36.9 260 25.0 3.1 (2.3, 4.3) 

Secondary methylation index136      
<4.316 236 39.9 259 25.0 1.0 
4.316-5.855 153 25.9 259 25.0 0.6 (0.5, 0.8) 
5.856-8.211 128 21.7 259 25.0 0.5 (0.4, 0.7) 
8.212-32.300 74 12.5 259 25.0 0.3 (0.2, 0.4) 

 
 

                                                            
132 POR, Prevalence odds ratio; unadjusted.  
133 Water arsenic concentration cut-points roughly correspond to quartiles of the exposure distribution for 
the controls but have been slightly adjust to reflect policy relevant parameters.   
134 Creatinine-adjusted urinary total arsenic concentration cut-points are quartiles of the exposure 
distribution in control subjects. 
135 The primary methylation index was calculated as % MMA / % Inorganic arsenic.  
136 The secondary methylation index was calculated as % DMA / % MMA. 
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TABLE 3.  Prevalence Odds Ratios and 95% CIs for Skin Lesion Prevalence in Relation to SNPs 

SNP MAF137 Cases Controls POR138  
(95% CI) N % N % 

Antioxidant enzymes genes 
SOD2 T=0.45      

CC  173 30.6 302 31.5 1.0  
CT  268 47.3 456 47.5 1.0 (0.8, 1.3) 
TT  125 22.1 202 21.0 1.1 (0.8, 1.4) 

GPX1 T=0.19      
CC  372 65.4 623 65.2 1.0 
CT  174 30.6 297 31.1 1.0 (0.8, 1.2) 
TT  23 4.0 36 3.8 1.1 (0.6, 1.8) 

CAT T=0.23      
CC  358 63.5 571 59.5 1.0 
CT  185 32.8 343 35.8 0.9 (0.7, 1.1) 
TT  21 3.7 45 4.7 0.7 (0.4, 1.3) 

MPO A=0.14      
GG  423 74.3 709 73.6 1.0 
GA  134 23.6 237 24.6 0.9 (0.7, 1.2) 
AA  12 2.1 17 1.8 1.2 (0.6, 2.5) 

DNA repair genes 
OGG1 G=0.31      

CC  264 46.0 460 47.2 1.0 
CG  259 45.1 423 43.4 1.1 (0.9, 1.3) 
GG  51 8.9 92 9.4 1.0 (0.7, 1.4) 

ERCC2 C=0.33      
AA  242 43.4 421 44.5 1.0 
AC  262 46.9 419 44.3 1.1 (0.9, 1.4) 
CC  54 9.7 105 11.1 0.9 (0.6, 1.3) 

ERCC5 C=0.27      
GG  298 52.8 503 52.0 1.0 
GC  223 39.5 400 41.4 0.9 (0.8, 1.2) 
CC  43 7.6 64 6.6 1.1 (0.8, 1.7) 

LIG4 T=0.09      
CC  473 82.8 788 82.3 1.0 
CT  92 16.1 165 17.2 0.9 (0.7, 8.9) 
TT  6 1.0 4 0.4 2.5 (0.7, 8.9) 

XRCC1 (Ex6) T=0.10      
CC  445 79.5 763 80.6 1.0 
CT  104 18.6 170 18.0 1.0 (0.8, 1.4) 
TT  11 2.0 13 1.4 1.4 (0.6, 3.3) 

XRCC1 (Ex10) A=0.33      
GG  240 42.5 423 44.1 1.0 
GA  251 44.4 429 44.8 1.0 (0.8, 1.3) 
AA  74 13.1 106 11.1 1.2 (0.9, 1.7) 

XRCC3 T=0.20      
CC  352 63.4 619 65.3 1.0 
CT  180 32.4 287 30.3 1.1 (0.9, 1.4) 
TT  23 4.1 42 4.4 1.0 (0.6, 1.6) 

                                                            
137 Minor allele frequency in the controls. 
138 Unadjusted. 
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TABLE 4.  MDR Interaction Models for Single Nucleotide Polymorphisms and Arsenic Exposure in 
Relation to Skin Lesion Prevalence 

No. of 
factors Model Testing 

accuracy 

Cross-
validation 
consistency 

POR  
(95% CI)139 

SNPs only 
1 CAT 0.4916 4/10 1.2 (0.9, 1.5) 
2 ERCC5, XRCC1 (Ex10) 0.5172 8/10 1.5 (1.2, 1.9) 
3 OGG1, ERCC5, XRCC1 (Ex10)  0.4921 6/10 1.8 (1.4, 2.3) 
     
Well water arsenic and SNPs 
1 Water arsenic 0.5957 10/10 2.3 (1.8, 2.9) 
2 Water arsenic, MPO 0.6152 10/10 2.6 (2.0, 3.3) 
3 Water arsenic, MPO, ERCC2 0.5704 3/10 2.8 (2.2, 3.5) 
     
Creatinine-adjusted urinary total arsenic and SNPs 
1 Urinary arsenic 0.6011 10/10 2.3 (1.8, 3.0) 
2 Urinary arsenic, XRCC1 (Ex6) 0.6077 10/10 2.5 (1.9, 3.2) 
3 Urinary arsenic, ERCC5, XRCC1 (Ex10) 0.5616 3/10 2.7 (2.1, 3.5) 
     
Primary methylation index and SNPs 
1 PMI 0.5650 10/10 1.8 (1.4, 2.3) 
2 PMI, OGG1 0.5606 6/10 2.3 (1.8, 3.0) 
3 PMI, SOD2, OGG1 0.5461 5/10 2.6 (2.0, 3.3) 
     
Secondary methylation index and SNPs 
1 SMI 0.5630 10/10 2.0 (1.5, 2.5) 
2 SMI, MPO 0.5758 5/10 2.3 (1.8, 2.9) 
3 SMI, CAT, ERCC2 0.5813 8/10 2.8 (2.2, 3.6) 
 

                                                            
139 High risk versus low risk groups.  
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TABLE 5. Logistic Regression Evaluation of ERCC5*XRCC1 (Ex10) Interaction Detected by Both MDR and CART for Skin Lesion Prevalence 

SNPs  Cases 
N (%) 

Controls 
N (%) 

Crude POR  
(95% CI) 

Adjusted POR140  
(95% CI) 

ERCC5 XRCC1 (Ex10)     
GG GG   139 (25.4)   197 (21.1) 1.0 1.0 
GG GA   115 (21.0)   231 (24.8) 0.7 (0.5, 0.9) 0.7 (0.5, 0.9) 
GG AA   38 (6.9)   54 (5.8) 1.0 (0.6, 1.6) 1.1 (0.6, 1.9) 
GC GG    77 (14.0)   186 (19.9) 0.6 (0.4, 0.8) 0.6 (0.4, 0.8) 
GC GA   110 (20.1)   157 (16.8) 1.0 (0.7, 1.4) 1.1 (0.7, 1.5) 
GC AA   28 (5.1)   46 (4.9) 0.9 (0.5, 1.5) 0.9 (0.5, 1.6) 
CC GG   16 (2.9)   28 (3.0) 0.8 (0.4, 1.5) 0.9 (0.4, 1.8) 
CC GA   21 (3.8)   31 (3.3) 1.0 (0.5, 1.7) 0.8 (0.4, 1.5) 
CC AA    4 (0.7)    3 (0.3) 1.9 (0.4, 8.6) 2.1 (0.4, 12.2) 

P for interaction   0.008141 0.008 
 

                                                            
140 Adjusted for well water arsenic concentration, sex and age. 
141 χ2 test for likelihood ratio test for interaction terms, P value. 



 

 

157

 

TABLE 6. Logistic Regression Evaluation of Well Water Arsenic*MPO Interaction Detected by Both MDR and CART for Skin Lesion Prevalence 

Factors  Cases 
N (%) 

Controls 
N (%) 

Crude POR  
(95% CI) 

Adjusted POR142  
(95% CI) 

Well water arsenic MPO     
0.1-50 GG 112 (19.7) 335 (34.8) 1.0 1.0 
0.1-50 GA 43 (7.6) 110 (11.4) 1.2 (0.8, 1.8) 1.1 (0.7, 1.8) 
0.1-50 AA 6 (1.1) 10 (1) 1.8 (0.6, 5.0) 1.9 (0.6, 6.3) 
50.1-864 GG 311 (54.7) 374 (38.8) 2.5 (1.9, 3.2) 2.7 (2.0, 3.6) 
50.1-864 GA 91 (16) 127 (13.2) 2.1 (1.5, 3.0) 2.3 (1.6, 3.4) 
50.1-864 AA 6 (1.1) 7 (0.7) 2.6 (0.8, 7.8) 3.0 (0.8, 10.6) 

P for interaction   0.19143 0.29 
 

                                                            
142 Adjusted for sex and age. 
143 χ2 test for likelihood ratio test for interaction terms, P value. 
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TABLE 7. Logistic Regression Evaluation of Primary Methylation Index*OGG1 Interaction Detected by Both MDR and CART for Skin Lesion Prevalence 

Factors  Cases 
N (%) 

Controls 
N (%) 

Crude POR  
(95% CI) 

Adjusted POR144  
(95% CI) 

Primary methylation index OGG1     
<0.580-0.835 CC 78 (14) 216 (23.1) 1.0 1.0 
<0.580-0.835 CG 95 (17.1) 197 (21) 1.3 (0.9, 1.9) 1.3 (0.9, 2.0) 
<0.580-0.835 GG 19 (3.4) 46 (4.9) 1.1 (0.6, 2.1) 1.1 (0.6, 2.1) 
0.836-19.570 CC 176 (31.7) 228 (24.3) 2.1 (1.5, 3.0) 1.4 (0.9, 2.0) 
0.836-19.570 CG 157 (28.2) 210 (22.4) 2.1 (1.5, 2.9) 1.2 (0.9, 1.8) 
0.836-19.570 GG 31 (5.6) 40(4.3) 2.1 (1.3, 3.7) 1.1 (0.6, 2.0) 

P for interaction   0.38145 0.36 

                                                            
144 Adjusted for sex and age. 
145 χ2 test for likelihood ratio test for interaction terms, P value. 
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TABLE 8. Logistic Regression Evaluation of Primary Methylation Index*OGG1*SOD2 Interaction Detected by Both MDR and CART 

  Cases 
N (%) 

Controls 
N (%) 

Overall POR  
(95% CI) Low PMI High PMI 

OGG1 SOD2      
CC CC 65 (11.7) 150 (16.0) 1.0 1.0 1.0 
CG CC 88 (15.9) 120 (12.8) 1.7 (1.1, 2.5) 2.1 (1.1, 4.1) 1.6 (0.9, 2.7) 
GG CC 18 (3.2) 27 (2.9) 1.5 (0.8, 3.0) 1.5 (0.5, 4.2) 2.2 (0.9, 5.8) 
CC CT 129 (23.2) 188 (20.0) 1.6 (1.1, 2.3) 1.5 (0.8, 2.8) 1.7 (1.1, 2.8) 
CG CT 115 (20.6) 206 (21.9) 1.3 (0.9, 1.9) 1.6 (0.9, 2.9) 1.2 (0.7, 1.9) 
GG CT 18 (3.2) 48 (5.1) 0.9 (0.5, 1.6) 0.8 (0.3, 2.4) 1.0 (0.4, 2.2) 
CC TT 61 (10.9) 103 (11.0) 1.4 (0.9, 2.1) 1.1 (0.5, 2.3) 1.6 (0.9, 2.9) 
CG TT 50 (9.0) 84 (8.9) 1.4 (0.9, 2.2) 1.4 (0.6, 3.0) 1.5 (0.8, 2.7) 
GG TT 13 (2.3) 14 (1.5) 2.1 (0.9, 4.8) 2.7 (0.7, 11.2) 2.1 (0.7, 6.2) 

P for interaction   0.01146 0.29 0.06 
 
 
 

                                                            
146 χ2 test for Likelihood ratio test for interaction terms, P value. 
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OBJECTIVES 

 The aims of this dissertation were to 1) evaluate the effect of single nucleotide 

polymorphisms (SNPs) in antioxidant enzymes genes in relation to skin lesion 

prevalence, 2) to evaluate the effect of SNPs in DNA repair genes in relation to skin 

lesion prevalence, 3) to evaluate SNP-environment interactions between SNPs on these 

pathways and environmental factors (i.e., arsenic exposure measures and lifestyle factors) 

using logistic regression to assess interaction on the additive scale, and 4) to evaluate 

gene-gene, gene-environment, and higher-order interactions of these genetic and 

environmental factors using a multi-analytic approach including nonparametric (i.e, 

MDR and CART) as well as parametric (i.e, logistic regression) methods.  

 

SUMMARY OF RESULTS 

In Chapter 2, we assessed the relationship between SNPs in antioxidant enzyme 

genes and skin lesion prevalence, as well as possible interactions of these associations on 

the additive scale by various environmental factors. There were no statistically significant 

associations between these SNPs (SOD2, rs4880; CAT, rs1001179; GPX1, rs1050450; 

and MPO, rs2333227) and skin lesion prevalence. The results did not vary by arsenic 

exposure levels (as measured by well water arsenic concentration, urinary total arsenic 

concentration, primary methylation index, and secondary methylation index), body mass 

index, smoking status, or fruit and vegetable intake. However, there was marginal 

evidence that skin lesion prevalence was increased among individuals who carried 4 or 

more risk alleles compared to individuals carrying 0-3 risk alleles in these SNPs. 
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Additionally, we observed a significant departure from additivity for the risk allele score 

and primary methylation index on skin lesion prevalence. There was no evidence that 

these SNPs were associated with skin lesion severity, such as pigmentation changes and 

keratosis.  

In Chapter 3, we assessed the relationship between SNPs in DNA repair genes 

(OGG1, rs1052133; XRCC1, rs25487 and rs1799782; XRCC3, rs861539; ERCC2, 

rs1052559; ERCC5, rs17655; and LIG4, rs1805388) and skin lesion prevalence, as well 

as possible interactions of these associations on the additive scale by various 

environmental factors. In logistic regression models controlling for sex, age, and well 

water arsenic concentration, no associations were observed between measured SNPs and 

skin lesion prevalence. The results did not vary by arsenic exposure levels (as measured 

by well water arsenic concentration, urinary total arsenic concentration, primary 

methylation index, and secondary methylation index), body mass index, or smoking 

status. However, we did observe a significant inverse association of total fruit and 

vegetable consumption with skin lesion prevalence, and its additive interaction with the 

polymorphism in ERCC5.         

 In Chapter 4, we utilized a multi-analytic approach to explore gene-gene, gene-

environment, and higher-order interactions among 10 single nucleotide polymorphisms 

(SNPs) related to the oxidative stress and DNA repair pathways by MDR, CART, and 

logistic regression models. As shown in Chapters 2 and 3, none of these SNPs were 

associated with skin lesion prevalence, however, were evaluated for potential epistatic 

effects. Our analytic method utilized MDR and CART modeling approaches for the 
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selection of potential gene-gene and gene-environment interactions. Considerable overlap 

of the interactions detected by both these methods was observed, which were further 

evaluated by logistic regression. Results from logistic regression modeling, confirmed 

some of these statistical interactions; however, their biological interpretation is limited. 

Therefore, further investigation and replication of the statistical interactions detected in 

this study is needed.      

 

STRENGTHS AND LIMITATIONS 

 To our knowledge, this is the first study to assess polymorphisms in a number of 

oxidative stress and DNA repair genes in relation to skin lesion prevalence, which have 

not been previously examined but have been implicated in arsenic toxicity and serve as 

good candidate genes for evaluation of genetic susceptibility.  There are several strengths 

and weakness of the study that we consider.   

 

Arsenic Exposure Constructs 

A strength of the analyses conducted in this dissertation was the availability of 

various constructs of arsenic exposure assessment. Arsenic exposure was ascertained 

based on well water arsenic concentration, as well as urinary arsenic measures including 

total arsenic concentration and arsenic metabolites. Different components of arsenic were 

captured by these various measurements including a measure of external exposure by 

well water arsenic concentration, a measure of internal dose by urinary total arsenic 

concentration, as well as measures of biological response by the urinary arsenic 
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metabolites. While the arsenic exposure assessments were reasonably correlated within 

this study, there was still some variability across measures in this population and, it is 

possible that genes may interact differently with each of the components of arsenic 

exposure, which we were able to systematically evaluate this in this study.  

With respect to the measurement of arsenic metabolites, due to laboratory 

limitations, total MMA and DMA species (i.e., trivalent and pentavalent species) were 

assessed jointly. However, there is evidence in the literature to show that the trivalent 

organic arsenic species may be more toxic (1, 2) and the estimation of the distribution of 

the trivalent metabolites would be useful in future studies.  

Additionally, in the context of oxidative stress, arsenic exposure served as a proxy 

measure to the actual measure of interest, which is arsenic-induced oxidative stress. For 

the purposes of this dissertation, the assumption was made that individuals with a higher 

concentration of arsenic exposure experienced higher levels of oxidative stress. 

Alternatively, biomarkers of oxidative stress could have been measured.    

 

Skin Lesion Assessment 

 For the purposes of this study, prevalent skin lesion cases were selected as having 

the presence of any type of arsenical skin lesion (i.e., melanosis, leucomelanosis, or 

keratosis). In exploratory subset analyses, skin lesion severity was evaluated by 

stratifying arsenical skin lesion status into absence of keratotic skin lesions and presence 

of keratotic skin lesions. While we did not see any significantly different effects by skin 

lesion severity, the sample size to detect any small effects that would be expected for 
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single SNPs was actually rather quite small. Future studies should be conducted with 

precise case definitions and be well-powered to examine such differences.  

The assessment of the effect of SNPs on prevalent skin lesions is also a limitation 

for the evaluation of mechanistic hypotheses and phenotype considerations since the 

association may be related to disease prevalence or progression and not disease 

incidence. Therefore, findings from these analyses should be replicated with incident 

cases. However, we deem the effect of disease prevalence to be minimal since arsenical 

skin lesions are typically not fatal.   

 

Genetic Susceptibility Assessment 

 The advantage of using genetic variants is a strength of this type of research 

because they can be measured with little measurement error and bias. Additionally, SNPs 

are time-independent measures, which strengthen causal inference of the associations 

evaluated in this dissertation between the measured SNPs and skin lesion prevalence. 

However, a limitation in causal inference is that assumptions regarding the association of 

the gene with skin lesion prevalence cannot be derived from the null findings of the 

single SNPs in this study, since they may not be correlated with a causal variant in the 

gene and do not fully tag the variability in the gene. Therefore, our inferences are limited 

to the measured SNPs themselves.     

Conversely, the amount of oxidative stress or DNA breaks could have been 

measured but there would have been major limitations in the temporality of these 

measures with the use of prevalent cases. Additionally, in very early or mild cases of skin 
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lesions (some forms of melanosis) may not be readily visible with clinical examination; 

therefore, oxidative stress or DNA repair biomarkers could also suffer from reverse 

causation if it was not ensured that the measures were taken at an appropriate period 

before disease onset. The antioxidant defense system is comprised of both enzymatic and 

non-enzymatic antioxidants. The focus of this dissertation was to examine the influence 

of polymorphisms of selected enzymatic antioxidants. The role of non-enzymatic 

antioxidants and activity of enzymatic antioxidants were unmeasured, therefore the total 

antioxidant potential of the cell remains unknown.  

The effect of any single SNP on skin lesion prevalence is likely to be small; 

therefore, consideration of the cumulative effect of SNPs through the construction of the 

risk allele score was a strength in the analytic method of this dissertation.  

Finally, the SNPs and genes for which there is data available were selected based 

on a candidate-gene approach. Therefore, a limited number of SNPs and genes were 

examined in this dissertation research. Future studies could take a comprehensive 

genomewide approach for evaluating associations between tens of thousands of SNPs 

simultaneously (using a microarray platform) and skin lesion status. Findings from this 

type of “discovery” approach could then be evaluated in candidate-gene studies 

employing SNPs which comprehensively tag the genes of interest.    

 

Analytic Methods for Gene-Gene and Gene-Environment Interactions 

 The evaluation of SNP-SNP interactions in this study had several complications. 

We evaluated 10 SNPs in 9 genes that are known key players in the oxidative stress and 
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DNA repair pathways. However, the genes themselves have yet to be implicated in skin 

lesion prevalence although the pathways have been hypothesized to have a role in arsenic 

toxicity with supporting evidence from in vitro and human studies. Therefore, it is not 

clear whether these SNPs could possibly have epistatic effects in relation to skin lesion 

prevalence or are noise SNPs. Based on the evidence from this study, we conclude that 

the genotyped SNPs had no independent marginal or epistatic effects with respect to skin 

lesion prevalence. As discussed previously, we cannot derive conclusions based on the 

SNPs as to whether gene-gene interactions are present between genes included in this 

study since the SNPs measured do not sufficiently represent the variability in the genes 

that may be related to susceptibility, either through linkage with a single causal SNP or 

tagging the gene in manner to represent the full variability of the coding variation.  

 A statistical issue with the evaluation of gene-gene and gene-environment 

interactions is that while the nonparametric methods  (i.e., MDR and CART) were quite 

powerful and efficient in evaluating two- and three-way interactions, the potential 

interactions these methods yielded were statistical interactions and their interpretation 

had limited biological relevance, based on the fact that significant interaction effects were 

primarily observed between heterozygous genotypes. Moore and Williams have 

discussed the challenge in interpreting statistical epistasis as biological epistasis (3), 

which has also been a theme in the epidemiologic literature with respect to interactions 

(4).  

However, a major strength of this work was the use of the multi-analytic approach 

to assess possible interactions, with final evaluation in logistic regression modeling. The 
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evaluation of interactions in logistic regression, however, was on the multiplicative scale. 

The additive scale may also be of interest for the evaluation of gene-gene interactions; 

although, assessment of interactions on this scale currently has limited implementation 

due to lack of flexibility in the modeling of parameters for additive interaction estimation 

and is limited to evaluation of two-way interactions. Additionally, logistic regression is 

suited to evaluate only lower-order interactions. With higher-order interactions the 

models become too complex and the sample size becomes an issue for their evaluation (5, 

6).               

 

Statistical Conclusion Validity 

 Multiple comparisons were a possible threat to statistical validity in this study. In 

Chapters 2 and 3, we conducted several tests of SNP-environment interactions. Since we 

had specific pre-specified hypotheses regarding these interactions, we did not take 

measures to adjust the P values for multiple comparisons. However, we acknowledge that 

significant findings in this study could have arisen by chance and require replication by 

other studies.   

 

Study Sample 

 Individuals in this study were selected from the Health Effects of Arsenic 

Longitudinal Study (HEALS). This sampling scheme was efficient because it provided 

comprehensive exposure, covariate, and outcome data as well as biological samples for 

all study participants. However, participants in HEALS were recruited from several 
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villages in Araihazar, a rural 25 km2 area in Bangladesh. The customary cultural practice 

among individuals in the region is subsequent to marriage for the wife to move to the 

spouse’s village; therefore, men remain in their home village and there is a patrilineal 

family structure within the villages. Therefore, it is possible that participants selected for 

this study may have had some degree of relatedness which would have introduced 

confounding into this study similar to population stratification (7, 8). Since the pedigree 

information for these families was not collected, the number and extent to which 

participants were related is unknown. However, evaluation of the number of individuals 

who shared a tubewell (a proxy for family unit) among the selected cases and controls 

shows that tubewells were utilized by a range of 1 to 6 individuals, with 1.3 users on 

average per tubewell. Thus, we do not deem relatedness to be a major issue in this study.  

 

PUBLIC HEALTH RELEVANCE 

While there is substantial evidence of dose-response associations between arsenic 

in drinking water and various health outcomes, studies have shown that remediation of 

arsenic exposure alone does not reduce arsenic-related health risks in the population (9-

11). In a recent publication using prospective data from the HEALS cohort, we showed 

utilizing repeated measures of urinary total arsenic exposure over time that once 

chronically exposed decreasing exposure for a short amount of time did not reduce one’s 

risk of mortality (9). Additionally, other studies have shown that mortality attributed to 

cancers and heart disease did not begin to decline until approximately 2 decades after 

preventing exposure to high-arsenic well water (10, 11). Therefore, evidence from these 
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prior studies and our data suggest that it may be important to consider other health 

prevention and promotion strategies in conjunction with remediation for arsenic-exposed 

populations. Evaluation of genetic determinants of skin lesion prevalence could 

contribute to a greater understanding of the genetic and molecular pathways that underlie 

arsenic toxicity and may inform future interventions of arsenic-exposed populations. In 

addition to elucidating biological mechanisms of action, investigating genetic 

susceptibility may help identify individuals with higher risk to arsenic-related toxicity, 

aiding in prevention and intervention of arsenic-exposed populations.  

 

In summary, there was marginal evidence that skin lesion prevalence was 

increased among individuals who carried 4 or more risk alleles in genotyped SNPs 

related to the oxidative stress pathway compared to individuals carrying 0-2 risk alleles in 

these SNPs and, we observed a significant departure from additivity for the risk allele 

score and primary methylation index on skin lesion prevalence. Additionally, we 

observed a significant inverse association of total fruit and vegetable consumption with 

skin lesion prevalence, and an additive interaction with the polymorphism in ERCC5 in 

the DNA repair pathway and fruit and vegetable intake in relation to skin lesion 

prevalence. However, these finding require replication in other studies.     
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FIGURE A.1.  Power calculations for case-control association of SNPs147 
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GRR=Genotype Relative Risk 
147 Power estimated based on 610 cases, 1,079 controls, α=0.05, and prevalence of disease=0.0624. 
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FIGURE A.2.  Power calculations for additive interaction of ordinal SNPs and effect 
modifiers148 

 

 

                                                            
DAF=Disease Allele Frequency 
148 Power estimated based on 610 cases, 1,079 controls, α=0.05, prevalence of disease=0.0624, ORG=1.25, 
ORE=3.50. 
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FIGURE A.3.  Power calculations for additive interaction of dichotomous SNPs and 
effect modifiers149 

 

 

                                                            
DAF=Disease Allele Frequency 
149 Power estimated based on 610 cases, 1,079 controls, α=0.05, prevalence of disease=0.0624, ORG=1.25, 
ORE=1.60. 
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TABLE B.1.  Prevalence Odds Ratios and 95% CIs for Skin Lesion Prevalence in Relation to Tertile of 
Food Item Intake, Araihazar, Bangladesh, 2000-2002 

Food Item 
Food Item Tertile of Intake 

P for trend Q1 Q2 Q3 
POR POR150 95% CI POR 95% CI 

Lentils 1.0 0.7 0.5, 0.9 0.3 0.3, 0.6 0.0001 
Watermelon 1.0 0.2 0.07, 0.9 0.4 0.3, 0.6 0.0001 
Mango 1.0 0.5 0.4, 0.7 0.8 0.6, 1.1 0.1572 
Banana 1.0 0.5 0.4, 0.7 0.6 0.5, 0.9 0.0030 
Jackfruit 1.0 0.8 0.6, 1.1 1.1 0.9, 1.5 0.3272 
Guava 1.0 0.3 0.2, 0.5 0.4 0.3, 0.6 0.0001 
Potato 1.0 0.6 0.4, 0.8 1.0 0.7, 1.3 0.8624 
Spinach 1.0 0.7 0.5, 0.9 0.6 0.5, 0.9 0.0025 
Bottle gourd 1.0 0.7 0.5, 0.9 0.8 0.6, 1.1 0.0868 
Pumpkin 1.0 0.5 0.4, 0.7 -- -- 0.0001 
Beans 1.0 0.6 0.4, 0.8 1.0 0.8, 1.4 0.7550 
Eggplant 1.0 1.0 0.7, 1.4 0.5 0.4, 0.6 0.0001 
Okra 1.0 0.7 0.5, 0.9 0.6 0.5, 0.8 0.0013 
Spinach stalks 1.0 0.6 0.5, 0.8 0.4 0.3, 0.5 0.0001 
Bitter gourd 1.0 1.1 0.8, 1.4 1.0 0.8, 1.3 0.9300 
Green papaya 1.0 0.4 0.3, 0.6 -- -- 0.0001 
Ridge gourd 1.0 1.2 0.8, 1.8 0.8 0.6, 1.1 0.1613 
Snake gourd 1.0 0.8 0.6, 1.0 0.6 0.5, 0.8 0.0008 
Yam 1.0 1.0 0.7, 1.3 0.6 0.4, 0.8 0.0005 
Cauliflower 1.0 0.6 0.4, 0.8 0.5 0.4, 0.7 0.0001 
Cabbage 1.0 0.4 0.3, 0.5 0.3 0.2, 0.4 0.0001 
Tomato 1.0 0.9 0.7, 1.3 1.3 1.0, 1.8 0.0505 
Parwar (squash) 1.0 0.7 0.5, 0.9 0.4 0.3, 0.6 0.0001 
Ghosala (squash) 1.0 0.6 0.4, 0.9 0.7 0.6, 0.9 0.0157 
Radish 1.0 0.8 0.6, 1.1 0.6 0.4, 0.8 0.0009 
Sweet potato 1.0 0.6 0.5, 0.8 0.7 0.6, 0.9 0.0202 

                                                            
150 Adjusted for sex, age, well water arsenic concentration, total caloric intake, and BMI. 
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TABLE B.2.  Prevalence Odds Ratios and 95% CIs for Skin Lesion Prevalence in Relation to Antioxidant 
Enzyme SNPs by Skin Lesion Severity, Araihazar, Bangladesh, 2000-2002   

SNP 

Controls 
(n=1,079) 

Non-keratotic lesions 
(n=389) 

Keratotic lesions 
(n=221) 

N % N % POR
151 95% CI N % POR23 95% 

CI 
SOD2           

CC 302 31.5 111 31.0 1.0  62 29.8 1.0  
CT 456 47.5 162 45.3 0.9 0.7, 1.3 106 51.0 1.1 0.8, 1.6 
TT 202 21.0 85 23.7 1.1 0.8, 1.6 40 19.2 0.9 0.6, 1.5 

Per allele     1.0 0.9, 1.3   1.0 0.8, 1.2 
GPX1           

CC 623 65.2 239 66.6 1.0  133 63.3 1.0  
CT 297 31.1 106 29.5 0.9 0.7, 1.2 68 32.4 1.1 0.7, 1.5 
TT 36 3.7 14 3.9 1.1 0.5, 2.3 9 4.3 1.4 0.6, 3.2 

Per allele     1.0 0.8, 1.2   1.1 0.8, 1.5 
CAT           

CC 571 59.5 242 67.4 1.0  116 56.6 1.0  
CT 343 35.8 107 29.8 0.8 0.6, 1.1 78 38.0 1.3 0.9, 1.9 
TT 45 4.7 10 2.8 0.6 0.3, 1.3 11 5.4 1.6 0.7, 3.4 

Per allele     0.8 0.6, 1.1   1.3 1.0, 1.7 
MPO           

GG 709 73.6 280 77.1 1.0  143 69.4 1.0  
GA 237 24.6 76 20.9 0.8 0.6, 1.2 58 28.2 1.2 0.8, 1.8 
AA 17 1.8 7 2.0 1.1 0.4, 3.0 5 2.4 1.7 0.5, 5.1 

Per allele     0.9 0.7, 1.2   1.2 0.9, 1.7 
           
Risk allele count          

0–3 559 64.4 194 59.9 1.0  115 59.6 1.0  
4–7 309 35.6 130 40.1 1.1 0.9, 1.5 78 40.4 1.2 0.8, 1.6 

 

                                                            
151 Adjusted for sex, age, and well water arsenic concentration. 
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TABLE B.3.  Prevalence Odds Ratios and 95% CIs for Skin Lesion Prevalence in Relation to Antioxidant 
Enzyme SNPs Among Male Study Participants, Araihazar, Bangladesh, 2000-2002   

SNP 

Cases 
(n=507) 

Controls 
(n=440) 

Crude Estimate 
P for 
trend 

Multivariate 
Estimate152 P for 

trend N % N % POR 95% 
CI 

POR 95% 
CI 

SOD2           
CC 141 30.2 125 31.3 1.0   1.0   
CT 225 48.2 180 45.0 1.1 0.8, 1.5  1.1 0.8, 1.5  
TT 101 21.6 95 23.7 0.9 0.6, 1.4  1.0 0.7, 1.4  
Per allele     1.0 0.8, 1.2 0.83 1.0 0.8, 1.2 0.95 

GPX1           
CC 307 65.5 255 65.5 1.0   1.0   
CT 146 31.1 122 31.4 1.0 0.7, 1.3  1.0 0.7, 1.4  
TT 16 3.4 12 3.1 1.1 0.5, 2.4  1.0 0.4, 2.3  
Per allele     1.0 0.8, 1.3 0.91 1.0 0.8, 1.3 0.97 

CAT           
CC 298 63.7 240 61.2 1.0   1.0   
CT 154 32.9 133 33.9 0.9 0.7, 1.2  1.0 0.7, 1.4  
TT 16 3.4 19 4.9 0.7 0.3, 1.3  0.7 0.4, 1.6  
Per allele     0.9 0.7, 1.1 0.32 0.9 0.7, 1.2 0.70 

MPO           
GG 349 74.0 293 73.6 1.0   1.0   
GA+AA 123 26.0 105 26.4 1.0 0.7, 1.3 0.91 1.0 0.7, 1.4 0.94 
           

Risk allele count           
0–3 262 60.8 223 62.3 1.0   1.0   
4–7 169 39.2 135 37.7 1.1 0.8, 1.4 0.67 1.0 0.8, 1.4 0.74 

 
 
 

                                                            
152 Adjusted for age and well water arsenic concentration. 
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TABLE C.1.  Prevalence Odds Ratios and 95% CIs for Skin Lesion Prevalence in Relation to DNA Repair 
SNPs by Skin Lesion Severity, Araihazar, Bangladesh, 2000-2002  

SNP 

Controls 
(n=1,079) 

Non-keratotic lesions 
(n=389) 

Keratotic lesions 
(n=221) 

N % N % POR
153 

95% 
CI N % POR 

25 
95% 
CI 

OGG1           
CC 460 47.2 164 44.8 1.0  100 48.1 1.0  
CG 423 43.4 163 44.5 1.0 0.7, 1.3 96 46.1 0.9 0.6, 1.3 
GG 92 9.4 39 10.7 1.0 0.6, 1.6 12 5.8 0.5 0.2, 0.9 
Per allele     1.0 0.8, 1.2   0.8 0.6, 1.0 

ERCC2           
AA 421 44.5 156 44.6 1.0  86 41.4 1.0  
AC 419 44.3 160 45.7 1.1 0.8, 1.4 102 49.0 1.2 0.8, 1.7 
CC 105 11.1 34 9.7 0.8 0.5, 1.4 20 9.6 0.9 0.5, 1.6 
Per allele     1.0 0.8, 1.2   1.0 0.8, 1.3 

ERCC5           
GG 503 52.0 194 54.2 1.0  104 50.5 1.0  
GC 400 41.4 144 40.2 0.9 0.7, 1.2 79 38.3 1.0 0.7, 1.4 
CC 64 6.6 20 5.6 0.8 0.4, 1.4 23 11.2 1.7 0.9, 3.1 
Per allele     0.9 0.7, 1.1   1.2 0.9, 1.5 

LIG4           
CC 788 82.3 307 84.3 1.0  166 80.2 1.0  
CT/TT 169 17.7 57 15.7 0.3 0.1, 1.4 41 19.8 0.8 0.1, 8.8 

XRCC1 (Ex6)           
CC 763 80.6 278 78.3 1.0  167 81.5 1.0  
CT 170 18.0 69 19.4 1.2 0.9, 1.7 35 17.1 1.0 0.7, 1.6 
TT 13 1.4 8 2.3 1.7 0.6, 5.0 3 1.4 1.1 0.3, 4.5 
Per allele     1.3 0.9, 1.7   1.0 0.7, 1.5 

XRCC1 (Ex10)           
GG 423 44.1 154 43.0 1.0  86 41.6 1.0  
GA 429 44.8 152 42.5 0.9 0.7, 1.3 99 47.8 1.1 0.8, 1.6 
AA 106 11.1 52 14.5 1.4 0.9, 2.1 22 10.6 1.1 0.6, 1.9 
Per allele     1.1 0.9, 1.4   1.1 0.8, 1.4 

XRCC3           
CC 619 65.3 222 62.9 1.0  130 64.4 1.0  
CT 287 30.3 114 32.3 1.1 0.8, 1.5 66 32.7 1.1 0.8, 1.6 
TT 42 4.4 17 4.8 0.9 0.4, 1.6 6 2.9 0.5 0.2, 1.3 
Per allele     1.0 0.8, 1.3   0.9 0.7, 1.2 
           

Risk allele count          
0–3 516 62.6 180 60.2 1.0  107 58.8 1.0  
4–8 308 37.4 119 39.8 1.1 0.8, 1.5 75 41.2 1.2 0.8, 1.7 

 
 

                                                            
153 Adjusted for sex, age, and well water arsenic concentration. 
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TABLE C.2.  Prevalence Odds Ratios and 95% CIs for Skin Lesion Prevalence in Relation to DNA Repair 
SNPs Among Male Study Participants, Araihazar, Bangladesh, 2000-2002 

SNP 
Cases 

(n=504) 
Controls 
(n=440) 

Crude Estimate P for 
trend 

Multivariate 
Estimate154 P for 

trend N % N % POR 95% CI POR 95% CI 
OGG1           

CC 215 45.4 181 44.8 1.0   1.0   
CG 215 45.4 180 45.6 1.0 0.8, 1.3  0.9 0.7, 1.2  
GG 44 9.2 43 10.6 0.9 0.5, 1.4  0.8 0.5, 1.3  
Per allele     1.0 0.8, 1.2 0.66 0.9 0.7, 1.1 0.30 

ERCC2           
AA 206 44.3 175 45.4 1.0   1.0   
AC 213 45.8 164 42.6 1.1 0.8, 1.5  1.1 0.8, 1.4  
CC 46 9.9 46 12.0 0.8 0.5, 1.3  0.9 0.5, 1.4  
Per allele     0.9 0.8, 1.2 0.84 1.0 0.8, 1.2 0.77 

ERCC5           
GG 237 51.3 217 54.4 1.0   1.0   
GC 188 40.7 153 38.3 1.1 0.8, 1.5  1.1 0.8, 1.5  
CC 37 8.0 29 7.3 1.2 0.7, 2.0  1.2 0.7, 2.0  
Per allele     1.1 0.9, 1.4 0.38 1.1 0.9, 1.4 0.70 

LIG4           
CC 384 81.7 343 86.4 1.0   1.0   
CT 81 17.2 51 12.8 1.4 1.0, 2.1  1.4 0.9, 2.1  
TT 5 1.1 3 0.8 1.5 0.3, 6.3  1.7 0.4, 7.7  
Per allele     1.4 1.0, 1.9 0.07 1.4 1.0, 2.0 0.07 

XRCC1 (Ex6)           
CC 374 80.6 312 81.5 1.0   1.0   
CT 80 17.2 68 17.7 1.0 0.7, 1.4  1.0 0.7, 1.4  
TT 10 2.2 3 0.8 2.8 0.8, 10.2  2.6 0.6, 10.9  
Per allele     1.1 0.8, 1.5 0.46 1.1 0.8, 1.5 0.58 

XRCC1 (Ex10)           
GG 197 42.2 165 42.0 1.0   1.0   
GA 212 45.4 183 46.6 1.0 0.7, 1.3  1.0 0.7, 1.3  
AA 58 12.4 45 11.4 1.1 0.7, 1.7  1.1 0.7, 1.8  
Per allele     1.0 0.8, 1.2 0.87 1.0 0.8, 1.3 0.70 

XRCC3           
CC 292 63.5 254 65.0 1.0   1.0   
CT 150 32.6 113 28.9 1.1 0.9, 1.5  1.1 0.8, 1.5  
TT 18 3.9 24 6.1 0.6 0.3, 1.2  0.6 0.3, 1.1  
Per allele     1.0 0.8, 1.2 0.85 0.9 0.7, 1.2 0.62 
           

Risk allele count           
0–3 241 60.2 207 61.1 1.0   1.0   
4–8 159 39.8 132 38.9 1.0 0.8, 1.4  1.0 0.7, 1.4  

 

                                                            
154 Adjusted for age and well water arsenic concentration. 
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TABLE C.3.  Prevalence Odds Ratios155 and 95% CIs for Keratosis in Relation to ERCC2 by Creatinine-
adjusted Urinary Total Arsenic Concentration, Araihazar, Bangladesh, 2000-2002 

SNP Creatinine-adjusted urinary total arsenic concentration (μg/g) 
16-103 104-192 193-339 340-8556 

ERCC2 
AA 1.00 1.97 (0.78, 4.97) 3.57 (1.46, 8.73) 5.41 (2.26, 12.96) 
AC/CC 1.00 2.93 (1.22, 7.04) 2.58 (1.03, 6.33) 6.31 (2.73, 14.62) 

 

                                                            
155 Adjusted for sex and age.  
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 Hierarchial Bayes modeling. In supplementary analyses, we attempted to exploit 

the information of the pathway information of the SNPs utilizing Hierarchial Bayes 

modeling. The marginal effects of the SNPs are summarized in Table D.2 based on 

dichotomous SNP classifications, as indicated in the table with the heterozygous and 

homozygous genotypes containing the risk allele combined. A logistic regression model 

was run for each SNP individually to yield the marginal effects. For simplicity, 

unadjusted estimates are presented for all analyses, since adjustment did not appreciably 

change the PORs. We then summarized the conditional effect of the SNPs by running a 

single logistic regression model with all the SNPs simultaneously (Table D.2). Finally, 

we specified a two-stage model to conduct Hierarchical Bayes modeling (44). In the first-

stage we ran the conditional logistic regression model to generate the log odds estimates 

and the covariance matrix between the SNPs. Based on existing knowledge of the gene 

functions, we specified the design matrix (Table D.1) for the pathways for use in the 

second-stage regression model. A value of 1 was assigned to SNPs that were involved in 

a particularly pathway, otherwise 0 was assigned. In the second-stage model, we 

regressed the prior information of the pathways on the log odds of each SNP, specifying a 

residual variance (τ2) of 0.25. In general, we found Hierchical modeling yielded similar 

results to the conditional approach (Table D.2) and did not produce any significant 

associations between SNPs and skin lesion prevalence.           
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TABLE D.1.  Second-stage Design Matrix 
for Multilevel Model 

SNP 
Pathway 

Antioxidant DNA 
Repair 

SOD2 1 0 

GPX1 1 0 

CAT 1 0 

MPO 1 0 

OGG1 1 1 

ERCC2 0 1 

ERCC5 0 1 

LIG4 0 1 

XRCC1 (Ex6) 0 1 

XRCC1 (Ex10) 0 1 

XRCC3 0 1 
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TABLE D.2.  Hierarchical Bayes Regression Estimates and 95% CIs for the Study Sample, Araihazar, 
Bangladesh, 2000-2002 

SNP Marginal Model Conditional Model Hierarchical Model 
POR 95% CI   POR 95% CI   POR 95% CI 

SOD2 - CT/TT 1.04 0.83, 1.30 1.06 0.82, 1.38 1.06 0.83, 1.37 

GPX1 - CT/TT 0.99 0.80, 1.23 1.07 0.83, 1.37 1.06 0.83, 1.36 

CAT - TC/CC 1.27 0.75, 2.16 1.44 0.77, 2.67 1.32 0.77, 2.27 

MPO - GA/AA 0.96 0.76, 1.22 0.91 0.69, 1.20 0.92 0.70, 1.20 

OGG1 - CG/GG 1.05 0.85, 1.29 1.06 0.83, 1.34 1.06 0.84, 1.34 

ERCC2 - AC/CC 1.05 0.85, 1.29 1.02 0.80, 1.30 1.02 0.81, 1.29 

ERCC5 - GC/CC 0.97 0.79, 1.19 0.91 0.72, 1.16 0.92 0.72, 1.16 

LIG4 - TC/CC 0.40 0.11, 1.41 1.26 0.23, 6.92 1.06 0.43, 2.61 

XRCC1 (Ex6) - CT/TT 1.08 0.83, 1.40 1.02 0.75, 1.38 1.02 0.76, 1.36 

XRCC1 (Ex10) - GA/AA 1.07 0.87, 1.32 1.07 0.84, 1.37 1.07 0.84, 1.36 

XRCC3 - CT/TT 1.09 0.87, 1.35   0.94 0.73, 1.20   0.94 0.74, 1.20 
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FIGURE D.1.  Graphical Presentation of MDR Interaction Model for Well Water Arsenic 

Concentration and MPO for Skin Lesion Prevalence 

 

Overall best model was the two factor model, which classified individuals based on well 

water arsenic concentration and MPO. The low risk group is indicated in light grey and 

the high risk group is indicated in dark grey.  
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FIGURE D.2a.  Graphical Presentation of MDR Interaction Model for SNPs  

 

a. Two factor model yielded XRCC1 (Ex10) (rs25487) and ERCC5 (rs17655) as the best 

model. The low risk group is indicated in light grey and the high risk group is indicated in 

dark grey.  
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FIGURE D.2b.  Graphical Presentation of MDR Interaction Model for SNPs  

 

b. Three factor model yielded OGG1 (rs1052133), XRCC1 (Ex10) (rs25487), and ERCC5 

(rs17655) as the best model. The low risk group is indicated in light grey, the high risk 

group in dark grey, and missing cells in white.  
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FIGURE D.3a.  Graphical Presentation of MDR Interaction Models for Primary 

Methylation Index and SNPs 

 

a. Two factor model yielded primary methylation index and OGG1 (rs1052133) as the 

best model. The low risk group is indicated in light grey and the high risk group is 

indicated in dark grey.  
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FIGURE D.3b.  Graphical Presentation of MDR Interaction Models for Primary Methylation Index and SNPs 

 

 

b. Three factor model yielded primary methylation index, OGG1 (rs1052133), and SOD2 (rs4880) as the best model. The low risk 

group is indicated in light grey and the high risk group is indicated in dark grey.  
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FIGURE D.4.  Graphical Presentation of CART Model for Single Nucleotide Polymorphisms 

 

 



 

 

195

 
FIGURE D.5.  Graphical Presentation of CART Model for Well Water Arsenic and Single Nucleotide Polymorphisms 
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FIGURE D.6.  Graphical Presentation of CART Model for Urinary Total Arsenic and Single Nucleotide Polymorphisms  
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FIGURE D.7.  Graphical Presentation of CART Model for Primary Methylation Index and Single Nucleotide Polymorphisms  
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FIGURE D.8.  Graphical Presentation of CART Model for Secondary Methylation Index and Single Nucleotide Polymorphisms  

 
 


