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ABSTRACT

On Using Graphical Calculi: Centers, Zeroth Hochschild Homology and Possible

Compositions of Induction and Restriction Functors in Various Diagrammatical Algebras

Joelle Brichard

This thesis is divided into three chapters, each using certain graphical calculus in a slightly different

way. In the first chapter, we compute the dimension of the center of the 0-Hecke algebra Hn and of the

Nilcoxeter algebra NCn using a calculus of diagrams on the Moebius band. In the case of the Nilcoxeter

algebra, this calculus is shown to produce a basis for Z(NCn) and the table of multiplication in this basis

is shown to be trivial. We conjecture that a basis for Z(Hn) can also be obtained in a specific way from

this topological calculus. In the second chapter, we also use a calculus of diagrams on the annulus and

the Moebius band to determine the zeroth Hochschild Homology of Kuperberg’s webs for rank two Lie

algebras. We use results from Sikora and Westbury to prove the linear independence of these webs on

these surfaces. In the third chapter, we use other diagrams to attempt to find explicitely the possible

compositions of the induction and restriction functors in the cyclotomic quotients of the NilHecke algebra.

We use a computer program to obtain partial results.
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Chapter 1

Introduction

This thesis focuses on algebras that can be represented in a diagramatical way and on properties which

are more easily analysed using these diagrams.

The goal of Chapter 2 is to learn about the centers of two generic algebras; the Nilcoxeter algebra

NCn and the 0-Hecke algebra Hn. These algebras have appeared in the context of categorification of

superalgebras and rings of quasi-symmetric functions. Both of these algebras are Frobenius, although they

are not symmetric. Section 2.2 introduces an isomorphism between the center of a symmetric Frobenius

algebras and the dual of the quotient space A/[A,A] of the algebra by its commutator subspace. In

the case of non-symmetric Frobenius algebras, we need to use the Nakayama automorphism to define

a twisted commutator subspace. The center of a non-symmetric Frobenius algebra is then shown to be

isomorphic to the dual of the quotient space A/[A,A]t of the algebra by its twisted commutator subspace.

In Section 2.3, we remark that for A = NCn or A = Hn, A/[A,A] corresponds to the space of diagrams

on the annulus and A/[A,A]t to the space of diagrams on the Moebius band. Section 2.4 then classifies

diagrams from NCn on the Moebius band, starting with diagrams of a single connected component called

prime diagrams. We show that there is a unique prime diagram going around the Moebius band n times.

We then list all the ways these connected components can be combined to create more complex diagrams.

This allows us to find the dimension of the center of NCn in Section 2.5.1. Using the isomorphism of

Section 2.2, we find a concrete diagrammatical basis for the center of NCn in Section 2.5.2 and then show

in Section 2.5.3 that the product structure of the center, in that basis, is trivial.

In Section 2.6, we use the previous results and apply them to Hn. We show that Hn has the same

irreducible and independent diagrams on the Moebius band as NCn and that, therefore, the dimension

of its center is the same as the dimension of NCn. However, we are unable to find, in general, a
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diagrammatical basis for the center of Hn and its product structure. The added difficulty comes from

the fact that, as far as we know, there is no grading on Hn.

Chapter 3 looks at algebras coming from Kuperberg’s spiders. These spiders come from the represen-

tation theories of rank 2 Lie algebras and their quantum deformation. Here again we study the diagrams

corresponding to each algebra on the annulus and on the Moebius band. Unfortunately, these algebras

are not Frobenius, so the spaces of diagrams on the annulus and Moebius band do not correspond to

the centers. Nevertheless, they do correspond to the zeroth Hochschild homology of the algebra as a

bimodule over itself, with a twisted action in the case of diagrams on the Moebius band.

In Section 3.2, we classify the irreducible diagrams for the rank 2 webs on the annulus and on the

Moebius band. In most cases, the only irreducible diagrams are non-trivial loops. However, it is not

obvious that these irreducible diagrams are linearly independent, and indeed, some are not. In Section

3.3, we use results from [21] to either show that the reduction rules we have from Kuperberg’s definition

are both terminal and confluent and that the irreducible diagrams in fact form a basis or that these

rules are not terminal and confluent. In the second case, new rules are introduced that make the new

set terminal and confluent. In some cases, the new rules change the set of irreducible diagrams found

in Section 3.2. These results allow us to find the dimension of the zeroth Hochschild homology of these

algebras.

Finally Chapter 4 is an attempt at finding concrete realizations of the natural transformations between

the compositions of the induction and restriction functors in the cyclotomic quotient of the NilHecke

algebra. Most of what we know about these quotients now come from their relation with the cohomology

of Grassmanians as described in [16]. After finding a diagramatical basis of monomials for these quotients

in Section 4.4, we describe, in Section 4.5, a computer program that we used to derive constraints as

linear equations on certain of the bimodule maps we were looking for. The partial results are shown in

Section 4.6. We were able to find the maps associated with the crossings, dots, counter-clockwise cup

and clockwise cap in all generality. The clockwise cup and counter-clockwise cap were the difficult ones

and we were only able to find them explicitely for m ≤ 3 and all possible levels N . It is conjectured that

a different basis, perhaps one not made of monomials, is needed to generalize these results.
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Chapter 2

The Centers of the Nilcoxeter and

0-Hecke Algebras

2.1 Generic Algebras

Given a Coxeter system (W,S) and an associative unital commutative algebra A, we start by defining

the generic algebra EA(as, bs). This approach is taken from [7]. Generic algebras depend on parameters

{as, bs ∈ A}s∈S subject to the condition that as = at and bs = bt whenever s and t are conjugates in W .

EA(as, bs) are generated by elements Tw for w ∈W with relations

1. TsTw = Tsw if l(sw) > l(w),

2. TsTw = asTw + bsTsw if l(sw) < l(w).

The two algebras of concern in this Chapter are both examples of this type of generic algebras with

Coxeter group Sn. Other important examples include the group algebra A[W ] which is obtained by

setting all as = 0 and bs = 1. Hecke algebras are also examples of this construction for A = Z[q, q−1] and

with as = q − 1 and bs = q for all s ∈ S. For more on Coxeter groups and Hecke algebras see [8] and [7].

There is another set of relations equivalent to the ones above:

1. TsTw = Tsw if l(sw) > l(w),

2. T 2
s = asTs + bsTe,

with Te the identity element. E is generated as an algebra by the Ts, s ∈ S and 1 = Te.

Any generic algebra with Coxeter group Sn, is given by the following three types of relations:
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1. TiTi+1Ti = Ti+1TiTi+1

2. TiTj = TjTi for |i− j| > 1

3. T 2
i = aiTi + biTe,

for 1 ≤ i ≤ n− 1.

2.1.1 The Nilcoxeter Algebra

The Nilcoxeter algebra, which we denote NCn, is an example of a generic algebra associated to Sn where

we set as = bs = 0 for all s ∈ S. This algebra first appeared in [1] in relation to the cohomology of flag

varieties. It was also studied by Lascoux and Schützenberger [15], Macdonald [18], Fomin and Stanley

[5] and others. Khovanov has shown in [9] that it categorifies the polynomial representation of the Weyl

algebra and work by Khovanov and Lauda showed its relevance to the categorification of quantum groups

[12]. In terms of the generators Ti, where Ti = Tsi , for si ∈ Sn the transposition (i i+ 1), the Nilcoxeter

algebra is defined by:

1. TiTi+1Ti = Ti+1TiTi+1

2. TiTj = TjTi for |i− j| > 1

3. T 2
i = 0.

We therefore also have

TiTw =

 Tsiw if l(siw) > l(w)

0 if l(siw) < l(w)
.

2.1.2 The 0-Hecke Algebra

The 0-Hecke algebra, here denoted Hn, is the Hecke algebra associated to Sn with q = 0. Equivalently,

it is the generic algebra where we have set as = 1 and bs = 0 for all s ∈ S. That is, the third relation on

the Ti now becomes

T 2
i = Ti.

This implies that

TiTw =

 Tsiw if l(siw) > l(w)

Tw if l(siw) < l(w)
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Norton studied the Hecke algebra of a Coxeter group at q = 0 for all types in [20]; she classified the

irreducible modules, described the decomposition of the algebra into left ideals as well as the Cartan

invariants. In [3], Carter gave decomposition numbers for Hn in the type A case. Krob and Thibon gave

a representation-theoretic interpretation of non-commutative algebras [13] and works by Duchamp, Hivert

and Thibon [4] showed that the representations of Hn in type A categorify the ring of quasi-symmetric

functions.

2.2 The Centers of Frobenius Algebras

A finite dimensional, unital, associative algebra A defined over a field k is said to be a Frobenius algebra

if A is equipped with a non-degenerate trace map ε : A → k. We now derive some general facts about

the centers of Frobenius algebras and then introduce a trace map which makes both NCn and Hn into

Frobenius algebras. The facts derived here are crucial to our approach to describing the centers of NCn

and Hn.

2.2.1 Symmetric Frobenius Algebras

To investigate the centers of Frobenius algebras, it is sometimes convenient to use a duality relation

between the center Z(A) of A and a quotient of A by certain subspaces. In the case of symmetric

Frobenius algebras, this subspace is simply the commutator subspace generated by all elements of the

form ab− ba for a, b ∈ A.

To see this, let A be a Frobenius algebra over a field k, ε : A → k its trace map and assume that A

is a symmetric algebra, meaning that ε(ab) = ε(ba) for all a, b. Denote by A∗ =Homk(A, k), the dual of

A. Then ε extends to an isomorphism of A-bimodules:

φ : A → A∗

1 7→ ε

a 7→ ε( ∗a).

Let [A,A] denote the commutator subspace of A: the space spanned by elements of the form ab− ba for

a, b ∈ A.
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Proposition: If A is a symmetric Frobenius algebra, then

(A/[A,A])∗ ' Z(A),

as vector spaces.

Let

Ψ : Z(A) → (A/[A,A])∗

z 7→ zε : A → k; zε(a) = ε(za) = ε(az).

Ψ is well-defined:

zε([a, b]) = zε(ab− ba) = ε(zab− zba) = ε(bza)− ε(zba) = ε(zba)− ε(zba) = 0

since z is a central element and A is symmetric.

Ψ is injective: since the map A → A∗ is an isomorphism and the map Z(A) → A is an inclusion, the

composition Z(A) → A → A∗ is injective. Moreover, we have seen that the map Z(A) → A∗ factors

through Z(A)→ (A/[A,A])∗, which means that Ψ : Z(A)→ (A/[A,A])∗ is injective as well.

Ψ is surjective: let α ∈ (A/[A,A])∗. Because

π : A → A/[A,A]

is surjective, its dual

π∗(A/[A,A])∗ → A∗

must be injective. We know from the isomorphism φ : A → A∗ that π∗(α) = zε for some z ∈ A. We

must check that z ∈ Z(A). Now, since α ∈ (A/[A,A])∗, zε([a, b]) = 0 for all a, b ∈ A. Hence

ε(z[a, b]) = ε(zab)− ε(zba) = ε(zab)− ε(azb) = ε([z, a]b) = 0.

Since the trace ε is non-degenerate, this cannot be true for all b ∈ A unless [z, a] = 0. This is true for all

a ∈ A as well, so we conclude that z ∈ Z(A), with Ψ(z) = α.
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2.2.2 Non-Symmetric Frobenius Algebras

We now look at the case when A is not a symmetric Frobenius algebra. Since

ε : A → k

is non-degenerate, one can define an automorphism f : A → A called a Nakayama automorphism such

that ε(ab) = ε(bf(a)). Note that we then have f(ab) = f(a)f(b). Using this automorphism, one can state

a duality very similar to the one we have derived in the case of the symmetric Frobenius algebras.

Given the automorphism f on A, let us denote the ”twisted” commutator of a and b by [a, b]t =

ab− f(b)a. Similarly, let [A,A]t be the subalgebra of A spanned by elements ab− bf(a). We also define

the twisted center of A as follows:

TZ(A) = {b ∈ A|ab− f(b)a = 0 for all a ∈ A}.

Proposition: Using the above notation,

Z(A) w (A/[A,A]t)
∗ (2.1)

TZ(A) w (A/[A,A])∗. (2.2)

(1) The proof closely resembles the one for A symmetric. Let

Ψ : Z(A) → (A/[A,A]t)
∗

z 7→ zε : A → k; zε(a) = ε(za).

Ψ is well-defined:

zε([a, b]t) = zε(ab− f(b)a) = ε(zab− zf(b)a) = ε(a(zb))− ε(f(b)za) = 0

since z is central and ε(ab) = ε(bf(a)).

Ψ is injective: The proof is exactly as for A symmetric.

Ψ is surjective: Let α ∈ (A/[A,A]t)
∗ and π∗ : (A/[A,A]t)

∗ → A∗. Then π∗(α) = zε for some z ∈ A and

zε([a, b]t) = 0 for all a, b ∈ A. We must verify that z is in the center Z(A).
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0 = zε([a, b]t) = ε(zab)− ε(zf(b)a) = ε(f(b)za)− ε(zf(b)a) = ε([f(b), z]a).

Since this is true for all a ∈ A and since ε is non-degenerate, then [f(b), z] must vanish for all b ∈ A,

which means that z is central.

(2) Let

Ψ : TZ(A) → (A/[A,A])∗

c 7→ cε : A → k; cε(a) = ε(ca).

Ψ is well-defined:

cε([a, b]) = ε(cab)− ε(cba) = ε(cab)− ε(f(a)cb) = ε((ca− f(a)c)b) = ε(0) = 0.

Ψ is injective: The proof is as before.

Ψ is surjective: We have as before cε = π∗(α) and we need to check that c ∈ TZ(A).

0 = cε([a, b]t) = ε(cab)− ε(cba) = ε(cab)− ε(f(a)cb) = ε([c, a]tb)

so that [c, a]t = 0 and c ∈ TZ(A).

Note that A/[A,A] and A/[A,A]t are no longer algebras, but vector spaces, both for A = NCn and

A = Hn.

2.2.3 The Nilcoxeter and 0-Hecke Algebras as Non-Symmetric Frobenius Al-

gebras

We can endow the 0-Hecke and Nilcoxeter algebras with trace mapε, making them Frobenius algebras.

Some of our constructions and arguments will be similar for both NCn and Hn. In these cases we denote

either of them by An, where An is generated by T1, T2, . . . , Tn−1 or simply by A. Then ε : A → k is

defined as ε(Tσ) = 1 if l(σ) is maximal (the maximal permutation has length n(n− 1)/2 for the algebra

on n strands) and ε(Tσ) = 0 otherwise. With a slight abuse of notation, we now refer to σ or even Tσ as

maximal when l(σ) is maximal. The maximal Tσ is called maxn.

We would like to show that ε is a non-degenerate trace map and makes NCn and Hn into Frobenius

algebras.
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ε being non-degenerate follows from that for any σ ∈ Sn, there exist γ, γ′ ∈ Sn such that TσTγ =

Tγ′Tσ = maxn. The properties of the length function on Sn and the multiplication rules derived in 2.1.1

and 2.1.2 imply that this is indeed the case.

The 0-Hecke and Nilcoxeter algebras are not symmetric. However, one can define an involution f on

A for both A = NCn and A = Hn:

f(Ti) = Tn−i, 1 ≤ i ≤ n− 1

f(ab) = f(a)f(b).

It is clear that ∀σ, f(Tσ) = Tγ for some γ, and that l(σ) = l(γ). It immediately follows that σ is

maximal if and only if γ is maximal, so that ε(Tσ) = 0 if and only if ε(Tγ) = 0. Hence, ε(a) = ε(f(a)) for

all a ∈ A.

2.3 Topological Calculi of Diagrams

In order to determine the dimension of the center of our Frobenius algebra A = NCn or A = Hn, we

make use of the relation

Z(A) w (A/[A,A]t)
∗

and determine the dimension of A/[A,A]t. A basis element of A can be represented as a monotonic

immersion of n unit intervals [0, 1] in R× [0, 1], subject to some relations. We can see this element as n

strings each going from a top position 1 ≤ i ≤ n at 1 to a bottom position 1 ≤ j ≤ n at 0. A generator Ti

of A is represented by the crossing of the i and i+ 1 strings. The braid relations of A allow us to change

this diagram of strings using the third Reidemeister move (TiTi+1Ti = Ti+1TiTi+1) and to move far away

crossings up and down with respect to each other (TiTj = TjTi for |i− j| > 1). We read diagrams from

top to bottom.

2.3.1 Diagrams on a Flat Band

A diagram like the one described above, a monotonic immersion of n unit intervals [0, 1] in R × [0, 1],

can be used to represent a basis element of the symmetric group ring C[Sn] if we impose the usual

Reidemeister moves as relations. By changing the relations appropriately, it can also represent a basis
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Figure 2.1: These diagrams show the graphical relations common to C[Sn], NCn and Hn. The relation
used to simplify T 2

i is what distinguishes these algebras.

element of NCn or Hn. To si ∈ Sn or Ti ∈ A we assign a crossing of the i and i+ 1 strands, to a product

sisj or TiTj we assign a crossing of the i and i + 1 strands followed by a crossing of the j and j + 1

strands and to a linear combination of basis elements we assign a formal sum of diagrams. The relations

imposed are:

for a basis element of C[Sn]:

1. sisi+1si = si+1sisi+1

2. sisj = sjsi for |i− j| > 1

3. s2
i = 1

for a basis element of NCn:

1. TiTi+1Ti = Ti+1TiTi+1

2. TiTj = TjTi for |i− j| > 1

3. T 2
i = 0

and for a basis element of Hn:

1. TiTi+1Ti = Ti+1TiTi+1

2. TiTj = TjTi for |i− j| > 1

3. T 2
i = Ti.
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Figure 2.2: This first diagram is equivalent to three distinct diagrams in C[Sn], Hn and NCn respectively.

Figure 2.3: Multiplication of basis elements corresponds to concatenation of diagrams.

Right multiplication of two basis elements b1, b2 then becomes the juxtaposition of the diagram for b2

under the diagram for b1, then rescaled to be in R× [0, 1] as shown in Figure 2.3.

To each word w = si1 . . . sik in Sn there is assigned an element Tw = Ti1 . . . Tik of A and a diagram

D. In the Nilcoxeter algebra case, if w is not reduced, then, Tw = 0 and D = 0. In the 0-Hecke algebra

case, Tw = Tw′ for some reduced word w′ and likewise, D = D′ for some reduced diagram D′. Note that

in general w and w′ are not equivalent words in Sn. Moreover, because a reduced word in Sn can be

related to any other equivalent reduced word through the braid relations alone, diagrams in NCn or Hn

corresponding to reduced words equivalent in Sn are also equivalent in NCn or Hn. Conversely, if two

reduced diagrams are equivalent, then the reduced words to which they correspond are also equivalent in

Sn.

2.3.2 Diagrams on a Cylinder: The Quotients of the Nilcoxeter and 0-Hecke

Algebras by Their Commutator Subgroups

Looking at diagrams on R×S1 instead of R×[0, 1] imposes the new relation ab = ba on A as shown in

Figure 2.4. This is equivalent to working in A/[A,A].

Figure 2.5 examplifies some of the consequences of this new relation for A = NCn. Recall that

A/[A,A] is no longer an algebra but a vector space, both in the case A = NCn and A = Hn, since
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= =

Figure 2.4: Being on a cylinder imposes the relation ab = ba since the top crossing can be carried around
the cylinder to become the bottom crossing.

Figure 2.5: These first two diagrams represent basis elements equivalent in A/[A,A] but not in A for
A = NCn. The third one represent the zero element in A/[A,A] for A = NCn. This is because of the
new relation ab = ba which is imposed by working on a cylinder instead of a flat band.

multiplication is no longer well-defined.

2.3.3 Diagrams on the Moebius band : The Quotients of the Nilcoxeter and

0-Hecke Algebras by Their Twisted Commutator Subgroups

= =

Figure 2.6: Being on the Moebius band imposes the new relation ab = bf(a) with f(Ti) = Tn−i since a
crossing Ti can be dragged along the Moebius band to become Tn−i.

A basis element of A/[A,A]t can be represented as a diagram of n strings living on a Moebius band.

On the Moebius band, a crossing Ti, if last in the diagram, can be pushed around the band to become a

crossing Tn−i first in the diagram. Figure 2.6 shows how this can be done. Thus, TTi = Tn−iT as desired

in A/[A,A]t. Indeed, on the Moebius band, this new relation corresponds exactly to the involution used

to define the relation on A/[A,A]t. We typically represent these diagrams on a flat band, but one should

mentally identify the top and bottom of the band in opposite directions so as to form a Moebius band.
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Figure 2.7 gives an example of Nilcoxeter diagrams which are equivalent on the Moebius band but not

on a flat band or on a cylinder. The elements they represent are therefore identified in A/[A,A]t.

Figure 2.7: The first two diagrams of this Figure are representations of the same element in A/[A,A]t.
On the Moebius band, if the left crossing is pushed once around, it becomes the right crossing. This
corresponds to the identification of diagrams in A under the involution f(Ti) = Tn−i. The second diagram
is 0 in A/[A,A]t for A= NCn.

With the goal of understanding the center of A, we classify these diagrams on the Moebius band.

The cases A = NCn and A = Hn are very similar. We therefore carry out this classification in detail for

A = NCn and later give a summary of the corresponding results for A = Hn.

2.4 Nilcoxeter Diagrams on the Moebius band

To begin our study of diagrams on the Moebius band, we fix some notation. First note that on the Moebius

band, as well as on the cylinder, these n strings could actually be any number c ≤ n of immersed circles.

Each circle is called a component of the diagram and the number of times a single immersed circle goes

around the Moebius band, i.e. the degree of that immersion, is called the thickness of that component.

The sum of the individual thicknesses of the components of a diagram is n, the thickness of the diagram.

Figure 2.8 shows four diagrams of thickness four that decompose into components of different thicknesses.

In general, one can see that a diagram on Moebius band of thickness 2k with no crossing must consist of

k components each of thickness 2; one of the components having both top and bottom positions 1 and

n, another positions 2 and n − 1, etc. The diagram corresponding to the image of maxn in A/[A,A]t,

the diagram with the maximum number of crossings, must consist of n components each of thickness 1;

one component having top position 1 and bottom position n, another top position 2 and bottom position
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n− 1, etc.

Figure 2.8: These four non-zero diagrams are all of total thickness four but decompose into different
prime components.

We now want to introduce the notion of a path p. A path is defined in a specific component C of a

diagram D. If C has thickness m and D has thickness n, we define p as a sequence (p(0), p(1), . . . , p(m−1))

where 1 ≤ p(i) ≤ n, p(i) ∈ {top position of a strand which belongs to C} is the top position of the strand

of C after going around the Moebius band i times starting at p(0). We always consider this sequence

mod(n) and all statements made about it should be understood as such. Figure 2.9 gives an example of

a path for the central component of thickness four of this composite diagram of total thickness six. The

starting position of this path is p(0) = 3.

Figure 2.9: The central component of thickness four of this diagram was here marked with the path
(p(0), p(1), p(2), p(3)) = (3, 4, 2, 5). The other component has thickness two.

For each component C, this sequence is determined by D once p(0) is chosen. Hence, two paths p, p′

in the same component can only differ by an integer l ≤ m, the lag of one path behind the other such

that p(i) = p′(i+ l).
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2.4.1 Prime Diagrams

A prime diagram is a diagram consisting of a single component. We will see that there is a unique prime

diagram of thickness n for each n.

The Minimum Number of Crossings of a Prime Diagram

First, let us look at the minimal number of crossings such a diagram must have. If, instead of being on

the Moebius band, we were on a simple cylinder S1 × [1, n], the minimal condition for the n strands to

be connected, to be part of the same component, would be clear: the diagram would have to correspond

to an n-cycle in Sn, in particular, it would need to have at least the n− 1 possible crossings T1,. . . , Tn−1.

In fact, it needs to have exactly each possible crossing once since on the cylinder, two strings are part of

the same component if and only if they cross exactly once. Similarly, since, on Moebius band, the string

with top position i and the one with bottom position n− i+ 1 are already part of the same component,

one can quickly see that on the Moebius band, a diagram of thickness n needs at least one of Ti or Tn−i

for each 1 ≤ i ≤ b(n− 1)/2c to be connected. Thus, we know:

Lemma: The minimum number of crossings required for a diagram of NCnwith n strand to be a

prime diagram is b(n− 1)/2c.

The Exact Number of Crossings of a Prime Diagram of NCn

We need the following result to determine the maximum number of crossings that a non-zero prime

diagram can have.

Lemma: A diagram D on the Moebius band is zero if and only if there is more than one crossing

between two fixed paths.

The first implication is clear: if there are two consecutive crossings Ti for some i in D, then these

two crossings must occur between the same two paths. Conversely, given two paths p and p′, one can see

them as being both “on top” of the other strands of D for each i. One can then slide a crossing occuring

between these two paths around the Moebius band to the next or previous i. The only obstacle to doing

this is if there is already a crossing between these paths at this i, in which case we have two consecutive

crossings and D = 0. If there are two crossings between these two paths occuring at different i, one can

then move one of them around the Moebius band until they are consecutive and annihilate the diagram.

Figure 2.10 shows how this is done for a specific example.

We have already shown that in order for D to be prime, it must have at least b(n− 1)/2c crossings.

We now check that this is actually the maximum number of crossings a prime diagram of thickness n can
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01 2 3 4
0 1 234

1

2

01 2 3 4
0 1 234

1

2

0 123 4
01 23 4

1

2

0 123 4
01 23 4

1

2

Figure 2.10: Two paths and two crossings have been marked on this Figure. Crossing 1 occurs at i = 0
and crossing 2 at i = 1. The bold strands are considered to be ”on top” of the others, allowing us to
see easily how to move crossings between them. One can first slide crossing 1 down the diagram. Then
it can be pushed around the Moebius band to i = 1 so that the two crossings now both occur at i = 1.
They become consecutive and D is seen to be zero. Note that these two paths actually cross a third time
originally at i = 3.

have if it is to be non-zero.

We want to prove the following:

Proposition: A prime diagram of thickness n has exactly b(n− 1)/2c crossings.

Let us for a moment fix a component C of thickness m. We want to look at (unordered) pairs of

paths in C, but some pairs are redundant. For instance, in Figure 2.9, we would like the two pairs of

paths (p = (3, 4, 2, 5), p′ = (2, 5, 3, 4)) and (q = (4, 2, 5, 3), q′ = (5, 3, 2, 4)) to be equivalent. We therefore

consider pairs of paths modulo relative starting points, that is we impose the relation

(p, p′) ≡ (q, q′)⇔ (p(i), p′(i)) = (q(i+ c), q′(i+ c))

for some integer c (remember that we are working mod(m)). Note that if p′ lags on p by l, then p lags

on p′ by m − l. Since we are looking at unordered pairs and since any two pairs with the same lag are

equivalent by the above relation, any pair of paths (p, p′) such that p(i) = p′(i + l) is equivalent to any

pair (q, q′) such that q(i) = q′(i + n − l) since then q′(i) = q(i + l). The pairs of paths modulo relative

starting points are therefore indexed by an integer 1 ≤ l ≤ bm/2c. In our example of Figure 2.9, we

thus have a total of 2 classes of pairs of paths, those which have a lag of 1 or equivalently of 3 such as
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(p = (1, 3, 4, 2), p′ = (2, 4, 1, 3)), and those which have a lag of 2 such as (q = (1, 3, 4, 2), q′ = (3, 1, 2, 4)).

Remember that when the same pair of paths intersects twice, the diagram is zero. Moreover, a crossing

belongs to a pair of paths if and only if it also belongs to all equivalent pairs. Thus, there can be only one

crossing per equivalence class of pairs of paths for the component to be non-zero. Since there are bm/2c

equivalence classes of pairs of paths, there can be a maximum of bm/2c crossings within a component of

thickness m for the diagram D to be non-zero.

In this section, we are concerned with prime diagrams, so now let D=C. For a prime diagram of

odd thickness n, the maximum number of crossings we have just derived bn/2c = b(n − 1)/2c, the

minimum number of crossings previously derived, and the claim is proved. For D of even thickness n,

we will show that D cannot actually realize this maximum of bn/2c crossings; it has either no more than

n/2− 1 = b(n− 1)/2c crossings or is zero, which completes the proof of our claim for all prime diagrams.

In fact, we show that a non-zero even prime diagram cannot have a middle crossing Tn/2. First, note

that the paths p and p′, p(0) < p′(0) never intersect iff

p(2k) < p′(2k)

and

p(2k + 1) > p′(2k + 1)

for all k (again, we consider both 2k and 2k+1 as integers mod(n)).

First, let us look at diagrams D that contain no middle crossing Tn/2 and consider the paths

(p, p′); p(0) = n/2, p′(0) = n/2 + 1. Since no strand ever crosses the middle point of the diagram,

we have

p(2k) ≤ n/2, p′(2k) ≥ n/2 + 1

and

p(2k + 1) ≥ n/2 + 1, p′(2k + 1) ≤ n/2

such that p(2k) < p′(2k) and p(2k+1) > p′(2k+1) and p, p′ do not intersect. Having at least one class of

pairs of paths which do not intersect, such a diagram D has a maximum of n/2−1 = b(n−1)/2c crossings.

Assume then that D does contain a middle crossing Tn/2. Without loss of generality, assume that Tn/2

is the top crossing of the diagram and consider the same paths (p, p′); p(0) = n/2, p′(0) = n/2 + 1. Now,

since these paths cross immediately, p(1) ≤ n/2 < n/2 + 1 ≤ p′(1). Suppose that these paths do not
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intersect again, then

p(2k) > p′(2k)

and

p(2k − 1) < p′(2k − 1)

for k > 0. But we know that

n/2 = p(0) = p(n) = p(2(n/2)) < p′(2(n/2)) = p′(n) = p′(0) = n/2 + 1,

which is a contradiction. Therefore, (p,p’) must intersect more than once and D is zero.

The Crossings of a Prime Diagram

We have now shown that a prime diagram of thickness n must have exactly b(n − 1)/2c crossings.

Moreover, we know that these crossings are exactly Ti or Tn−i for each 1 ≤ i ≤ b(n− 1)/2c. In any case,

each Ti appears at most once, which allows us to push all of the crossings to the left side of the diagram

and thus assume that the bn/2c crossings are exactly the Ti for 1 ≤ i ≤ b(n− 1)/2c. Indeed, to see this

first assume inductively that all Tj , for j > n− i, have already been pushed to the left side. We can do

this since there is at most one Tn−2 crossing that could prevent Tn−1 from being moved. If there is a

Tn−2 crossing above or below Tn−1, the latter is free to be pushed in the other direction and if there is no

Tn−2 then the Tn−1 crossing can be pushed either up or down the Moebius band to become T1. Consider

now what could block Tn−i. Everything to its right has already been pushed, so only Tn−i−1 above or

below it can block it. It is therefore free to be pushed in the other direction. Therefore, from now on

when we think of a prime diagram, we always represent it with its crossings being T1, T2, . . . , Tb(n−1)/2c

in some order. It remains to show that these b(n− 1)/2c! diagrams are in fact all equal in A/[A,A]t.

Uniqueness of Prime Diagrams

Proposition: T1T2 . . . Tb(n−1)/2c = Tσ(1)Tσ(2) . . . Tσ(b(n−1)/2c) ∈ A/[A,A]t for all σ ∈ Sb(n−1)/2c. First,

let us look at the case when σ is a cyclic permutation. Fix m = b(n− 1)/2c. Now,

T1(T2 . . . Tm) = (T2 . . . Tm)Tn−1 = Tn−1(T2 . . . Tm) = (T2 . . . Tm)Tn−(n−1)=1

since |(n− 1)− i| > 1 for 2 ≤ i ≤ m. More generally, if we have any diagram D = Tσ′(1)Tσ′(2) . . . Tσ′(m)

for σ′ ∈ Sm, then



19

Tσ′(1)(Tσ′(2) . . . Tσ′(m)) =(Tσ′(2) . . . Tσ′(m))Tn−σ′(1) =

Tn−σ′(1)(Tσ′(2) . . . Tσ′(m)) = (Tσ′(2) . . . Tσ′(m))Tσ′(1) (∗)

because in fact n − σ′(1) > m + 1 so that |(n − σ′(1)) − i| > 1 for 1 ≤ i ≤ m unless n is odd and

σ′(1) = m. Then n − σ′(1) = m + 1, but we still have that |(m + 1) − σ′(j)| > 1 for 2 ≤ j ≤ m since

σ′(j) 6= m for j 6= 1 so that (*) still holds. Diagramatically, we have taken the top crossing and pushed

it onto the right side of the diagram, where it is free to be pushed to the top again. We can then push it

back to the bottom left side of the diagram. Hence the Lemma holds for σ a cyclic permutation. Figure

2.11 shows how this is done for a simple example.

Figure 2.11: This Figure shows how one can cyclically permute the crossings of a non-zero prime diagram.

Now let us compose a permutation σ′ with a transposition (i i+ 1). Since we already know that this

diagram is invariant under cyclic permutations of its crossings, we can actually assume that i = 1. If

σ′(2) 6= σ′(1)±1, σ′(1) and σ′(2) commute and we are done. Without loss of generality, assume therefore
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that σ′(2) = σ′(1) + 1. Let k be such that σ′(k) = σ′(2) + 1. So

Tσ′(2)Tσ′(1)(. . . Tσ′(k) . . . Tσ′(m)) =

(Tn−σ′(k) . . . Tn−σ′(m))(Tσ′(2)Tσ′(1))(. . . Tσ′(k−1)) =

Tσ′(2)(Tn−σ′(k) . . . Tn−σ′(m)Tσ′(1) . . . Tσ′(k−1)) =

(Tn−σ′(k) . . . Tn−σ′(m)Tσ′(1) . . . Tσ′(k−1))Tσ′(2) =

(Tn−σ′(k) . . . Tn−σ′(m))Tσ′(1)Tσ′(2)(. . . Tσ′(k−1)) =

Tσ′(1)Tσ′(2)(. . . Tσ′(k) . . . Tσ′(m))

using the fact that it is invariant under cyclic permutations. Thus this diagram is in fact invariant under

all permutations σ ∈ Sb(n−1)/2c.

This Lemma now allows us to conclude that there is exactly one prime diagram of thickness n for

each n. This diagram can be represented as D = T1T2 . . . Tb(n−1)/2c).

2.4.2 Composite Diagrams

We now need to see how prime diagrams can be combined into non-zero composite diagrams. At first

glance, there seems to be a number of ways to combine diagrams. However, results from ?? imply that,

given isotopic diagrams D and D′, if D has more crossings than D′, then D = 0.

Thus all non-zero diagrams in A/[A,A]t with the same prime components C1, . . . , Ck have the same

number of crossings and that number is the minimum of the isotopy class. Note that such a minimum

must exist and that the corresponding diagram, having no two paths crossing more than once since it is

minimal, is non-zero.

Note also that the relations on these diagrams being local, any relation on a prime component continues

to hold when the component is combined in a composite diagram.

Combining Even Prime Diagrams

Consider a diagram D with even prime components C1, C2 of respective thicknesses 2k1, 2k2. Since even

prime diagrams have no middle crossings, we can combine C1 and C2 by either nesting C2 inside C1,

which means having C1 at positions 1, 2 . . . , k1, k1 + 2k2 + 1, k1 + 2k2 + 2 . . . , 2k1 + 2k2 both on top and

bottom and C2 at positions k1 + 1, k1 + 2, . . . k1 + 2k2 or vice versa. Neither of these two arrangements

will add crossings between C1 and C2: if C1 has k1 − 1 crossings and C2 has k2 − 1 crossings and D has
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Figure 2.12: These two diagrams are both non-zero since they are minimal and their decomposition into
prime components is the same. However, they do not represent the same element of A/[A,A]t. This
shows that prime component decompositions does not quite determine unique elements in A/[A,A]t.

k1 + k2 − 2 crossings in either arrangement, which are therefore both minimal. Let D be the diagram

with C1 in the center and D′ the one with C2 in the center. Then an isotopy from D to D′ requires the

second Reidemeister move which creates double crossings and the isotopy therefore goes through zero.

Hence, D and D′ are distinct non-zero diagrams in A/[A,A]t. One can also quickly see that D 6= D′

by noticing that the crossings of a particular component always involve only strands of that component,

no matter the chosen representation, and so D and D′ will always have different representations, unless

C1 = C2.

Combining Odd and Even Components

Next, given a component K (prime or composite) of total odd thickness with k crossings, and even

prime components C1, . . . , Cm, with n1, . . . , nm crossings respectively, the minimal arragements have no

intercomponent crossings: they have k+n1 + · · ·+nm crossings. These arrangements all involve K in the

center, disjoint from the even components, which are split each in the middle around K. If C1, . . . , Cm

are all distinct, then there are m! arrangements of this type. By the same argument as in the case

of two even diagrams, there is no isotopy between these arrangements that does not require the second

Reidemeister move, so these m! diagrams are in fact distinct. Figure 2.14 is an example of such a minimal
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Figure 2.13: This is a non minimal arrangement of two even prime components. The strands are numbered
with their positions in their respective prime components to show their assignment functions fCi more
clearly. The inter-component crossings can be avoided by splitting one of the components in two and
placing the other in the center. This diagram, not being minimal, is zero.

arrangement. Since K has odd thickness and thus cannot be split in its middle, if it is not in the center,

then it is also not disjoint from the even components. The corresponding diagram is then not minimal

and is therefore zero.

Combining Odd Prime Diagrams

Let us now see how to combine two odd diagrams C1, C2 of thicknesses 2k1 + 1, 2k2 + 1 respectively, into

a diagram D. To try to find a combination, one can start by numbering 2k1 + 1 of the 2k1 + 2k2 + 2 := n

top positions of D with numbers 1, .., 2k1 + 1 in a certain color. These would be the top position for the

strands of C1. First note that once these top positions for C1 are chosen, the bottom ones are determined.

Indeed, if the number i was assigned to the top position j of D, then the number n− i is assigned to the

bottom position n − j + 1. We call this assignment from {1, 2, . . . , 2ki + 1} ↪→ {1, 2, . . . , n}, fCi
. There

seems to be many ways one can choose the positions of C1 and C2 in D, but we will see that there is in

fact a unique choice that makes D non-zero.

Lemma: There is a unique non-zero diagram D with prime components C1, . . . Cm of respective

thicknesses 2k1 + 1, . . . 2km + 1.

We describe an arrangement and then argue that it is the unique one with the minimum number of
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Figure 2.14: This is a minimal diagram with one odd (composite) and one even prime component. The
strands are numbered with their positions in their respective prime components to show their assignment
functions fCi

more clearly. Minimal arrangements of this kind always involve placing the odd component
in the center so as to not create inter-component crossings.

crossings. Without loss of generality, assume that

2k1 + 1 ≤ 2k2 + 1 ≤ · · · ≤ 2km + 1.

Let n := 2k1 + 2k2 + · · · + 2km + m be the total thickness of D. We build the diagram component by

component. Let Di be the diagram of thickness ni := 2k1 + 2k2 + · · · + 2ki + i with prime components

C1, . . . , Ci obtained after the ith step of this procedure. The following assignment functions are the ones

yielding the unique minimal diagram Di+1:

fCi+1(j) =

 j j ≤ ki+1

j + ni + ki+1 j > ki+1

and

fDi(l) = l + ki+1,

which means that we keep the previous composite Di in the center and give Ci+1 the edge positions.

First, we want to minimize the number of extra crossings of a component with itself. If possible, it

is clear that a minimal diagram is one where the placement of each component does not add crossings

between strands of the same component. If f is not monotonic, extra crossings might be created, while

none are added if f is monotonic. Therefore, we need monotonic assignment functions to create minimal
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Figure 2.15: The strands of these two diagrams are numbered with their positions in their respective
prime components to show their assignment functions fCi more clearly. Diagram (a) is non-minimal
because the thickest odd component was placed in the center of the diagram, creating 1 × 5 inter-
component crossings, while diagram (b), by placing the thickest component on the outside, minimized
inter-component crossings to 1× 1.

diagrams. Note that for each component of thickness m, if f ′ = m+ 1− f then f and f ′ are equivalent

on the Moebius band. Indeed, f and f ′ make for diagrams that are reflections of each oher and those are

quickly seen to be the same by rotating the Moebius band. We therefore only consider strictly increasing

monotonic assignment functions f . Moreover, all assignment functions fCi for Ci a prime component

which do not increase the number of crossings within Ci itself are equivalent since all diagrams of Ci with

the minimal number of crossings are equivalent.

We also want to minimize crossings between Di and Ci+1, which means that we want to avoid

alternating positions, ie. situations like

fDi
(j) < fCi+1

(k) < fDi
(l)

which add unnecessary intercomponent crossings. For a component C of thickness m in a diagram of

total thickness n, the botttom j position is the same as the top j position whenever

f(j) = n+ 1− f(m+ 1− j).
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Figure 2.16: The assignment function fC1 shown by the numbered strands is not monotonic and thus
does not preserve the number of crossings of that prime component of thickness five. This diagram is
therefore zero.

When this is not true, we have additional intercomponent crossings. Therefore, minimizing the crossings

means that we want one component in the center and one on the outside of the diagram, each symmetric

in their assignment.

Figure 2.17: The assignment functions fCi
shown by the numbered strands is not symmetric and does

not minimize the number of intercomponent crossings. This diagram is therefore zero.

Inductively, we see that in any diagram, there is one strand per odd component crossing the center

line of the diagram. Therefore, if Di is placed as the outside component in Di+1, there are i× (2ki+1 + 1)

crossings between Di and Ci+1, since Di is composed of i odd prime components and one strand for each

of these prime components will cross the 2ki+1 + 1 strands of Ci. Now, an odd component cannot really
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be split in two and placed on the outside because of the symmetry requirement. Placing it on the outside

therefore implies taking the first and last k position, both top and bottom to minimize crossings. The

remaining position has bottom position assignment ni+1 + 1− j if it has top assignment j. Ci+1 being an

odd prime component, we know that, in the standard representation of this diagram, the strand having

top position ki+1 + 1 has bottom position 1 in Ci+1 and the one having bottom position ki+1 + 1 has

top position ki+1. This means that in Di+1, if fCi+1(ki+1) = j, the strand having top position ki+1 + 1

in Ci+1 will cross Di j − ki+1 times and the one with bottom position ki+1 + 1 in Ci+1 will cross Di

ni+1 + 1− j − (ki+1 + 1) times for a total of

j − ki+1 + ni+1 + 1− j − (ki+1 + 1) = ni+1 − (2ki+1 + 1) = ni

times. Now, i× (2ki+1 + 1) > ni since we have ordered the components such that

k1 ≤ k2 ≤ k3 ≤ . . . .

Therefore, placing the (thickest) prime odd component Ci+1 as the outside component always yields a

minimal diagram. It remains to see whether the diagram is invariant under the choice of fCi+1(ki+1) = j,

the position in Di+1 of the middle position of Ci+1. This can be seen by pushing the crossing Tj−1

around the Moebius band so that it becomes Tni+1 + 1− j − 1. The diagram thus becomes exactly the

diagram with fCi+1(ki+1) = j − 1. Doing the opposite, we get the diagram with fCi+1(ki+1) = j + 1,

and so we see that Di+1 is invariant under the choice of j. There is therefore a unique diagram D on the

Moebius band with prime components C1, . . . , Cm.

This completes the classification of Nilcoxeter diagrams on the Moebius band. We have learned that

there is a unique prime diagram of thickness n for each n, that there is a unique diagram with only odd

prime components C1, . . . , Cm and that in general, the number of arrangements depends on the number

of even prime components of each thickness.

2.5 The Center of the Nilcoxeter Algebra

2.5.1 The Dimension of the Center

We have now enumerated all the possible arrangements of prime components into composite diagrams.

Given m even prime components C1, . . . , Cm, having ij of them with thickness 2j, and odd prime com-
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ponents C ′1, . . . , C
′
m, one can make exactly m!

Πj(ij !) distinct non-zero diagrams D with this prime decom-

position. We can now count the number of non-zero diagrams of thickness n in A/[A,A]t, each of which

is a basis element of A/[A,A]t. This number is also the dimension of the center Z of A:

Proposition:

dim(Z) =
∑
λ`n

nλ!

mλ
,

where λ runs over all partitions of n, nλ is the number of even parts in λ and mλ = Πj(ij !).

For instance, for n = 3 we have partitions

(1, 1, 1), (1, 2), (3)

and the formula gives us

dim(Z) = 0!/0! + 1!/1! + 0!/0! = 3.

A more interesting case is n = 6 where we have partitions

(1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 4), (1, 5), (1, 2, 3), (2, 2, 2), (2, 4), (3, 3), (6).

The formula then is

dim(Z) = 0!/0! + 1!/1! + 0!/0! + 2!/2! = 1!/1! + 0!/0! + 1!/1! + 3!/3! + 2!/1!1! + 0!/0! + 1!/1! = 12.

The partition (2, 4) gives us two distinct diagrams while all the others give unique diagrams.

2.5.2 A Basis for the Center

We now know the dimension of the center of NCn, but we would also like to have a basis for this center.

Recall that we used the fact that

Z(A) w (A/[A,A]t)
∗

and that this isomorphism is given by the trace map ε. Therefore, we just need to find the dual of the

diagrams we counted in the previous section.

Theorem:The classes of diagrams of thickness n on the Moebius band are in bijection with the basis

elements of Z(NCn) via the algorithm described below.

First, given an element Tα ∈ A, we call Tβ complementary to Tα if ε(TαTβ) = 1, α, β ∈ Sn. Note that



28

for A = NCn, this is equivalent to αβ = maxn. There is a unique reduced complementary Tβ for each

Tα up to the relations in NCn.

Now, we need to find the element of Z(A) corresponding to a basis element of A/[A,A]t. Since

the distinct diagrams of thickness n formed a basis for the vector space A/[A,A]t, their corresponding

elements in Z(A) are also linearly independent and therefore form a linear basis for Z(A). The element

z of Z(A) corresponding to a given basis element b is such that ε(bz) = 1 for any b ∈ A with π(b) = b,

π : A → A/[A,A]t being the projection map. To find these elements of Z(A), we first need to find the

elements of the coset of A corresponding to a given element of A/[A,A]t. The element of Z(A) we want

is then the sum of the complementary elements of the elements of that coset.

Let us compute an example for n = 3. Take the identity element in A/[A,A]t represented by three

non-intersecting strands on the Moebius band. Its coset in A is just itself: Te. Its complementary

element is Tmaxn , our first basis element for Z(A). Conversely, the coset of Tmaxn ∈ A/[A,A]t is again

just Tmaxn
∈ A and its complementary element is the identity Te ∈ Z(A), our second basis element.

Now let us consider T1 ∈ A/[A,A]t. Its coset is {T1, T2} ⊂ A since T1 is equivalent to T2 in A/[A,A]t.

Their complementary elements are Ts2s1 = T2T1 and Ts1s2 = T1T2 respectively. Our third basis element

is therefore T2T1 + T1T2. This ends our computation of the basis of Z(A) for n = 3. See Figure 2.18 for

the diagrams corresponding to this computation.

Figure 2.18: This figures shows the cosets corresponding to diagrams on the Moebius band of total
thickness three and the basis elements of Z(NCn) formed by taking the sum of their complements.

The Nilcoxeter algebra is a graded algebra with the grading given by the length function on Sn.

Equivalently, the grading of a basis element is given by the number of crosssings in its corresponding

diagram. Note that the process described above to find a basis for Z(A) yields a homogeneous basis

since every element of the coset of an element of A/[A,A]t has the same length, or the same number of

crossings and so do their complements.
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2.5.3 Multiplication in the Center of NCn

We would now like to know what the multiplication table looks like in the basis we have described in the

previous section.

Here is our first claim:

Lemma: Every diagram corresponding to a basis element of A/[A,A]t other than Tmaxn
has a vertical

line as its first or last strand. Equivalently, a basis element of A/[A,A]t other than Tmaxn
cannot have

both T1 and Tn−1 in its expression. First, let us look at a non-zero diagram D on the Moebius band

corresponding to a partition of n which has at least one even part. Then, we know that one of these even

prime diagrams is on the outside of D and disjoint from its other components. We also know that all

the elements in the coset of this prime even diagram have at least one such vertical strand as either their

first or last strand. Since this even component is disjoint from all the other components of the diagram,

this vertical strand clearly remains in all elements of the coset of D. Figure 2.19 shows this for all the

diagrams in the coset corresponding to the partition 6 = 4 + 1 + 1.

Figure 2.19: These are the diagrams in the coset corresponding to the partition 6 = 4 + 1 + 1. Note that
the even component of thickness four is always disjoint from the odd components of thickness one. Since
the prime diagram of thickness four always has a vertical strand either as its first or last strand, so do
all these composite diagrams.

We now look at a non-zero diagram D on the Moebius band which is composed solely of odd prime

components. Since D is not the diagram for Tmaxn
, one of its prime components has thickness greater than

one. Let the thickest prime component C of D have thickness 2k + 1. Remember from the classification

of these diagram that this means that this component C must be the component occupying positions 1

and n both at the top and at the bottom of the diagram. This is true for any diagram equivalent to

D. Once again, every diagram of an odd prime component must have a vertical strand at position 1 or

2k+ 1. This is true also of C in D since C occupies positions 1 and n both at the top and bottom of the

diagram. Figure 2.20 shows that this is true in the case of the diagrams corresponding to the partition

4 = 3 + 1.

Our main result for this section:
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Figure 2.20: These are the diagrams in the coset corresponding to the partition 4 = 3 + 1. Note that the
prime component of thickness three is on the outside of the odd component of thickness one. Since the
prime diagram of thickness three always has a vertical strand either as its first or last strand, so do all
these composite diagrams.

Theorem:The multiplication table for the center of NCn in the basis described above is trivial.

This vertical strand in every element of the cosets of our basis elements means that their complement

must have either a strand going from top position 1 to bottom position n or from top position n to bottom

position 1, depending on whether the vertical strand is at position 1 or n, since Tmaxn has both of these

diagonals. Since every basis element of Z(A) is a sum of such complements, every diagram appearing in

any basis element of Z(A) has such a diagonal.

+ + +

Figure 2.21: This is the basis element of Z(NCn) for n = 4 corresponding to the partition 4 = 3 + 1. It
is the sum of the complements of the elements in the corresponding coset in NCnshown in Figure 2.20.

Multiplying two elements with the opposite diagonals obviously yields a non-minimal, and therefore

trivial diagram since the strand in the product corresponding to these diagonals crosses every other strand

twice.

* = = 0

Figure 2.22: This is an example of the multiplication of two elements of NCn with opposite full diagonals.
Such a product is always zero.

If we multiply two elements with the same diagonal, we also have a trivial diagram. Indeed, remember



31

that if two strands cross more than once, the diagram is zero. Since this diagonal strand crosses all other

strands in the first element and does not remain vertical in the second because of the full diagonal of this

second diagram, it must cross at least one strand twice.

* = = 0

Figure 2.23: This is an example of the multiplication of two elements of NCn with the same full diagonal.
Such a product is always zero since the strand corresponding to the diagonal in the first element crosses
at least one strand twice.

Hence, the product of any basis element by any element other than the identity is zero and the

multiplication table of Z(A) is trivial as claimed.

2.6 The Center of the 0-Hecke Algebra

2.6.1 0-Hecke Diagrams on the Moebius band

The classification of Hn diagrams on the Moebius band band is identical to that of NCn diagrams. All of

the arguments of Section 2.4 go through forHn. InHn, we want to count distinct diagrams on the Moebius

band. To do so, we only count minimal diagrams, those with the least number of crossings amongst each

class of equivalent diagrams. Remember that in NCn, non-minimal diagrams were trivial, which is not

true in Hn. However, every time a diagram was eliminated for being zero in NCn, it is eliminated for

not being minimal in Hn. Zero diagrams in NCn correspond exactly to non-minimal diagrams in Hn.

Non-zero diagrams which are equivalent in NCn are also equivalent in Hn and non-minimal diagrams

which are equivalent in Hn are equivalent in NCn.

This last fact requires more thought, but can be shown using ”fake crossings”. After verifying that

fake crossings can be moved around using Reidemeister moves very much like regular crossings in Figure

2.24, we can argue that any series of moves from one diagram D in Hn to another diagram D′ having

no more crossings than D can be made to start by using the relation T 2
i = Ti, thus showing that this

first diagram was not irreducible. Let us suppose the a series of moves from Dto D′ starts by doing the

reverse of this relation thus doubling a crossing. We call the two resulting crossings a and b. Since D′

has no more crossings than D, after a series of Reidemeister 3 moves, we must reduce two crossings c
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Figure 2.24: This Figure shows that fake crossings can be moved using Reidemeister moves much like
regular crossings.

and d to one. If one of a or b becomes one of c or d. Let us say that a becomes c. Then we can create

a fake a instead of actually doubling the crossings, do the series of R3 moves and then ”fakely” reduce

what has become a fake c. If, on the other hand, a and b do not become either c or d, we can create a

fake a and do the series of R3 moves to get to where we would have reduced c and d. Since a is disjoint

from c and d, we can still carry out the reduction. We now create a fake c and reverse the R3 moves to

go back to the beginning, where we double the first crossing to create the real a and b. We then, once

more, go through the R3 moves to where we would have reduced c and d, but that was already done.

We have therefore done exactly the same changes as with the original series of moves, but starting with

a reduction.

Hence, the vector spaces A/[A,A]t for A = NCn and A = Hn are isomorphic and their bases are

represented by the same diagrams on the Moebius band.

Therefore, the dimensions of the centers of NCn and Hn are the same:

Proposition:

dim(Z) =
∑
λ`n

nλ!

mλ
,

where λ runs over all partitions of n, nλ is the number of even parts in λ and mλ = Πj(ij !).
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2.6.2 A Basis for the Center

Finding the basis for the center of Hn corresponding to our basis for A/[A,A]t is more complex than

in the case of the Nilcoxeter algebra. In that previous case, it was easy to see what linear combination

of diagrams would complement any diagram representing a given basis element of A/[A,A]t. In other

words, given a basis element b ∈ A/[A,A]t, we needed to find an element z ∈ Z(A) such that ε(bz) = 1

for any b ∈ A with π(b) = b ∈ A/[A,A]t. This z was simply the sum of the complements of all such

b ∈ A.

Because of the relation

T 2
i = Ti,

the coset of an element of A/[A,A]t tends to be much bigger for A = Hn than for A = NCn. To

generate all of the elements of this coset, one needs to first generate all diagrams which are equivalent on

the Moebius band, just as was done for NCn. Then, we use the above relation to double each crossing

in turn and again generate all equivalent diagrams. Repeat this process until all the new diagrams are

redundant. This algorithm generates many redundant diagrams which should be ignored.

Then, an element of Hn may have more than one complement. However, note that a diagram in Hn

can only have one complement with a given number of crossings. It then becomes clear that a simple sum

of complements like the one we had for NCn will not do; one needs a more complicated linear combination

of them. Figure 2.25 gives the answer for n = 3.

We have not, as of yet, been able to explicitly determine the product structure of the center of Hnin

the basis corresponding to diagrams on the Moebius band .
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Figure 2.25: This Figure shows the cosets corresponding to diagrams on the Moebius band of total
thickness three and the basis elements of Z(Hn) formed by taking the sum of their complements.
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Chapter 3

Kuperberg’s Webs on the Annulus

and the Moebius band

3.1 Zeroth Hochschild Homology

Let k be a ring, A an associative k-algebra, and M an A-bimodule. We will write A⊗n for the n-fold

tensor product of A over k. The chain complex that gives rise to Hochschild homology is given by

Cn(A,M) := M ⊗A⊗n

with boundary operator di defined by

d0(m⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ a2 · · · ⊗ an

di(m⊗ a1 ⊗ · · · ⊗ an) = m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

dn(m⊗ a1 ⊗ · · · ⊗ an) = anm⊗ a1 ⊗ · · · ⊗ an−1

Here ai is in A for all 1 ≤ i ≤ n and m ∈M . If we let

b =

n∑
i=0

(−1)idi,

then bb = 0, so (Cn(A,M), b) is a chain complex called the Hochschild complex, and its homology

is the Hochschild homology of A with coefficients in M . We denote the nth Hochschild homology of A
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with coefficients in M by HHn(A,M). Of particular concern to us here is the zeroth homology of this

complex. At the left end, the complex is

0← C0 = M ← C1 = M ⊗A← . . . ,

with b0 : C1 → C0 as the boundary map. Note that b0 : M
⊗
A→M is d0 − d1, and (d0 − d1)(m⊗ a) =

ma − am so that the image of b0 is the k-bimodule [M,A] of M generated by all terms ma − am,m ∈

M,a ∈ A. Therefore, HH0(A,M) ∼= M/[M,A].

Now, if we let M be the A-bimodule A, the zeroth Hochschild homology HH0(A,A) ∼= A/[A,A].

When we looked at symmetric Frobenius Algebras in Section 2.2.1, we saw that their center Z(A) was

isomorphic to (A/[A,A])∗ and therefore also isomorphic to A/[A,A] ∼= HH0(A,A) as vector spaces.

When we work on the annulus, we impose the relation ab = ba and we are therefore working in A/[A,A].

Since NCn and Hn are not symmetric Frobenius algebras, we defined an involution f and a twisted

commutator subspace [A,A]t generated by elements of the form ab− bf(a). This gave us an isomorphism

between their center Z(A) and (A/[A,A])∗. The involution f corresponds in these cases to taking the

mirror image of a diagram. Working on the Moebius band, we impose the relation ab = bf(a) and so are

working in A/[A,A]t.

In the cases where we do not have a non-degenerate trace map and thus we do not have a Frobenius

algebra, we cannot easily relate these spaces to the center of A. However, we can still talk about

HH0(A,A), which corresponds to the space of diagrams on the annulus. This is what we endeavor to

do here in the following sections. The space of diagrams on the Moebius band can be seen as the zeroth

Hochschild homology of the bimodule A acted upon by A with a twisted action corresponding to reflecting

an element before multiplying it. As far as we know, this homology does not correspond to another known

characteristic of the algebra, but we may perhaps learn something by looking at it nevertheless.

3.2 Kuperberg’s Webs

Spiders and Webs for Rank 2 Lie Algebras

In [14], Greg Kuperberg introduces spiders for rank 2 Lie algebras. The idea arises from the problem of

the characterization of the dual vector space of invariant tensors Inv(V1⊗V2⊗· · ·⊗Vn), where each Vi is

a finite-dimensional irreducible representation of a compact group G or simple Lie algebra g. Of course,

nowadays, we also want to consider quantum groups Uqg. The noncocommutativity of Uqg complicates
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matters, but, as Kuperberg points out, we still have the following natural operations on the invariant

spaces:

Tensor product:

Inv(V )⊗ Inv(W ) ↪→ Inv(V ⊗W )

Cyclic permutation:

Inv(V ⊗W )→ Inv(W ⊗ V )

Contraction:

Inv(V ⊗ V ∗ ⊗W )→ Inv(W ).

A spider is an abstraction of a representation theory that includes these three operations. It is a

collection of modules or vector spaces corresponding to invariant spaces along with three operations:

join, rotation and stitch, corresponding to tensor product, cyclic permutation and contraction. These

operations are described using planar graphs called webs.

In his paper [14], Kuperberg defines spiders for rank two Lie algebras in terms of generators and

relations and then proves that they are isomorphic to the representation theories of the rank two Lie

algebras and their quantum deformation. These spiders generalize the A1 case; the Temperley-Lieb

algebra, which was already known.

Kuperberg’s webs are generally considered in D2, but we will here consider them on other surfaces:

the annulus and the Moebius band primarily. Note that the join operation is then no longer defined and

so we do not have spiders anymore, but simply webs.

3.2.1 A1-Webs

Let F be a surface (oriented or not) and B ⊂ ∂F be a distinguished set of base points. We will sometimes

overload the notation and instead of B talk about m, by which we mean that B is a set of m distinct

points. An A1 web is an unoriented graph where all univalent vertices are points of B and all other

vertices are 4-valent. We call those 4-valent vertices crossings. Crossings have an overstrand and an

understrand.

Following the notation in [21], we denote the set of all A1-webs in (F,B) by WA1(F,B). If we now

let R be a ring with a distinguished invertible element a, we can define the A1-web space over R as the

R-module

A1(F,B,R) = RWA1(F,B)/R(T1, T2),
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Figure 3.1: This is an example of an A1-web in D2 with B consisting of six points. This web has six
univalent vertices and two 4-valent vertices or crossings.

where R(T1, T2) is the R-submodule generated by the elements T1 and T2 depicted in Figure 3.2.

Figure 3.2: The two elements T1 and T2 corresponding to the reduction rules in A1(F,B,R).

From the elements T1 and T2, we get the reductions rules S1 and S2 of Figure 3.3, which allow us to

reduce all crossings and all trivial loops, respectively.

Figure 3.3: These are the two reduction rules in A1(F,B,R)

It is worth mentioning that if B consists of 2n points, n of which we depict at the bottom of an

interval and n at the top, reduced elements of A1(I×I,B,R) are elements of the Temperley-Lieb algebra

TLn. Because of this close relation, we will sometimes use notation from TLn to describe elements of

A1(I × I,B,R).

Figure 3.4: The generator ui of the Temperley-Lieb algebra TLn.

Figure 3.4 illustrates the generator ui of TLn to which we will refer later. Such diagrams are read
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from bottom to top so that right multiplication is concatenation of diagrams from the top, as in the

examples of Figure 3.5. For more information on the Temperley-Lieb algebra see REF.

Figure 3.5: This is an example of diagramatical multiplication in the Temperly-Lieb algebra TLn.

A1-Webs on the Annulus

We look here at the space A1(A, ∅, R) of A1-webs embedded in the annlus without boundary points.

We will often simplify this notation to A1(A). We shall sometimes want to refer to a subspace of A1(A)

generated by crossingless elements of A1(D2, 2n,R) that do not have trivial loops. These are embedded

in the annulus by separating the 2n boundary points as n ”top” points and n ”bottom” points, so that

the web looks like an irreducible element of the Tempeley-Lieb algebra TLn, and then identifying the first

top point with the first bottom point etc. This subspace will be denoted by A1,n(A). As we are looking

for irreducible elements of A1(A), we can exclude all diagrams with crossings and with trivial loops in D2

since those can be reduced further by reduction rules S1 and S2 before being embedded. We will speak

of n as the maximal number of strands.

Figure 3.6: The reduction of an element of A1,5(A)

Taking an element of TLn and embedding it in the annulus in this way, we will be left with trivial

and non-trivial loops. After using our reduction rule S2 to remove all trivial loops, we shall have only

non-trivial loops. Furthermore, we assert that the non-trivial loops all have winding number 1. This is

clear since for a loop to go twice around the annulus, it would have to cross itself and the web would

therefore be reducible via rule S1.

We can be even more precise and state the following:

Proposition: The irreducible elements of A1,n(A) are the diagram with n non-trivial loops, the

diagram with n− 2 non-trivial loops, n− 4 non-trivial loops, etc.

It is easy to see that we do in fact have at least all of these diagrams: embedding the diagram
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corresponding to e ∈ TLn will give us the diagram with n loops, embedding the diagram corresponding

to ui ∈ TLn, i ≤ n− 1 the diagram with n− 2 loops, the one corresponding to uiui+1 ∈ TLn, i ≤ n− 2

the diagram with n− 4 loops and, in general, embedding the diagram corrresponding to uiui+1...ui+l ∈

TLn, i ≤ n− (l + 1) will give us the diagram in A with n− 2(l + 1) non-trivial loops.

Figure 3.7: These are examples of the elements of TLn that yield different number of non-trivial loops
when embedded in the annulus.

To see that we do not get diagrams with n − 1, n − 3, ..., n − (2l + 1) non-trivial loops, we first look

at the through strands before our diagram is embedded in A. The number of these through strands is

an upper-bound to the number of resulting non-trivial loops in the diagram once embedded in A and the

number of through strands is always n, n− 2, n− 4... since the caps and cups at the bottom and top of

the diagram take up an even number of ”spots” from which through strands can no longer emanate.

Moreover, the number of through strands of a diagram D in I × I is more than the number of non-

trivial loops of ι1(D), the image of D embedded in A, in only two cases. First, 2j of the through strands

can be ”closed-off” by a top cup and a bottom cap of D and become a trivial loop in ι1(D) as in Figure

3.8. This happens when the bottom cap and top cup are exactly 2j ”spots” away from each other, that

is when one comes from ui and the other from ui±2j , j > 0 without any other cups or caps between

them. This diminishes the number of through strands becoming non-trivial loops by 2j, an even number.
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Figure 3.8 shows two examples of through strands being closed-off by caps and cups.

Figure 3.8: This Figure shows how an even number of through strands of an element of TLn can be
”closed-off” when embedded in A.

Second, a top cup and a bottom cap can reduce 2j + 1 strands to one non-trivial loop by creating

a zigzag, as in Figure 3.9. This happens when the bottom cap comes from ui and the top cup from

ui±(2j+1), j > 0 without other caps and cups between them. This also diminishes the number of through

strands in D which become non-trivial loops in ι1(D) by 2j. There is thus no irreducible diagram of

A1(A) with n− (2k + 1), k ≥ 0 non-trivial loops.

Figure 3.9: These are examples of through strands of elements of TLn reduced to one non-trivial loop in
the annulus.

We now know that the irreducible elements of A1(A, ∅, R) are diagrams with non-trivial loops. We also

know that these loops all have winding number 1 (they can only go once around the annulus). Looking

more specifically at the subspace A1,n(A) of A1(A, ∅, R), we can say that the irreducible elements are

exactly the diagrams with n, n− 2, n− 4, ..., 2, 0 non-trivial loops. However, we are not yet able to claim

that these irreducible elements are linearly independent and thus form a basis of A1(A, ∅, R). For this,

we have to wait until Section 3.3.1.
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Figure 3.10: These are the irreducible diagrams in A1,n(A) for various values of n.

A1-Webs on the Moebius band

Figure 3.11: These diagrams show how the embedding into the Moebius band works for A1-webs.

Let M be the Moebius band. Here, we look at the space A1(M, ∅, R) of A1-webs without boundaries

on the Moebius band. As we did for webs on the annulus, we will sometimes concentrate on the subspace

A1,n ⊂ A1(M, ∅, R) of images under the embedding ι2 : D → M of diagrams without trivial loops or

crossings, with n bottom boundary points and n top boundary points. ι2 identifies the first top boundary

point with the nth bottom boundary point, the second top point with the n− 1st bottom point, etc. We

want to determine what the irreducible diagrams of A1(M) and of A1,n(M) are, if possible.

Similarly to diagrams on the annulus, the irreducible diagrams on the Moebius band will be non-

trivial loops since our reduction rules allow us to reduce all diagrams with crossings and with trivial

loops. Because our diagrams cannot contain any crossing, we can have only one non-trivial loop with

winding number one in the core of the Moebius band. Any other loop going around the Moebius band only

once would have to cross this first one, as can be seen in Figure 3.12, where the first diagram shows that

for two loops on the Moebius band to both have winding number 1, they must cross.

In A1,n(M), we have:
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Figure 3.12: Non-trivial loops going once and twice around the Moebius band, respectively.

Proposition: The irreducible diagrams are those with
⌈
n
2

⌉
,
⌈
n−2

2

⌉
, ...,

⌈
n−2j

2

⌉
non-trivial loops.

When n is even, all loops have winding number 2 and when n is odd, exactly one of the loops has winding

number 1 and the others have winding number 2.

The irreducible diagram with
⌈
n
2

⌉
non-trivial loops is the image ι2(D) of D = e ∈ TLn. The one with⌈

n−2
2

⌉
is the image of u1u2...un−1 ∈ TLn and in general, the one with

⌈
n−2j

2

⌉
is the image ι2(D) of

D = u1u3u5...u2j−1u2u4...u2ju3u5...u2j+1...un−(2j−1)un−(2j−3)...un−1.

The argument showing that we only see irreducible webs with
⌈
n−2j

2

⌉
non-trivial loops on the Moebius band is

the same as on the annulus. The number of through strands in D ∈ TLn before embedding it into the

Moebius band is n − 2k, where k is the number of bottom caps or top cups. The number
⌈
n−2k

2

⌉
is an

upper-bound for the number of non-trivial loops in ι2(D). As on the annulus, the number of through

strands that do not become non-trivial loops is even and thus the number of those loops is always n− 2j

for some j. Figure 3.13 shows examples of how to obtain irreducible diagrams with different numbers of

non-trivial loops in the Moebius band.

We have therefore determined that the irreducible elements of A1(M) correspond to diagrams with

non-trivial loops. Furthermore, we know that the irreducibles of A1,n(M) are exactly the diagrams with⌈
n−2j

2

⌉
, 0 ≤ j ≤

⌈
n−1

2

⌉
non-trivial loops. Figure 3.14 shows these irreducible diagrams for different values

of n. Note that the number of irreducible webs in A1,n(M) is the same as the number of irreducible webs

in A1,n(A). Once we show that these irreducibles are in fact linearly independent, we will have shown

that the dimension of A1,n(M) is the same as the dimension of A1,n(A).
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Figure 3.13: The embedding of different A1-webs into the Moebius band results in different numbers of
non-trivial loops in the Moebius band..

Figure 3.14: These are the irreducible diagrams in A1,n(M) for various values of n.

3.2.2 A2-Webs

As before, we let F be a surface and B a distinguished set of base points in the boundary of F that are

now marked by + or −. An A2-web in (F,B) is an oriented graph with univalent vertices points of B

with the corresponding edge having inward or outward orientation depending on whether the univalent

vertex p ∈ B is marked by + or − and with internal vertices either trivalent of 4-valent. All trivalent

vertices are either sources or sinks and all 4-valent vertices are positive or negative crossing as illustrated

in Figure 3.15. To remember which crossings are positive and which are negative, we can simply look at

the slope of the overstrand; if it is positive, so is the crossing.

Still following the notation in [21], we denote the set of A2-webs in (F,B) by WA2
(F,B) and the

A2-webspace by

A2(F,B,R) = RWA2(F,B)/R(T1, T2, T3, T4, T5, T6),
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Figure 3.15: In A2-webs, trivalent vertices can be either sources or sinks and 4-valent vertices are positive
or negative crossings

where the Ti’s are the elements shown in Figure 3.16 and R is a ring with a distinguished invertible

element denoted by q±
1
6 . The elements Ti gives us a corresponding reduction rule Si illustrated in Figure

3.17.

Figure 3.16: These elements generate the quotient ideal used to define A2(F,B,R).

Figure 3.17: The reduction rules for A2-webs are derived from the elements Ti above.

It is worth noting that the space A2(I × I, 2m,R) can be made an algebra. To do so, as for the

case of the Temperley-Lieb albebra, we place m of the boundary points at the bottom of the interval

and m at the top. Here, however, we also need to fix their orientation. Since multiplication will be

the concatenation (and resizing) of webs above each other, we need the orientation of the m bottom
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points to be the opposite of that of the top m points. We will call the sequence of orientations of the m

bottom points s and refer to this algebra as A2,s(I × I) or simply A2,s. Figure 3.18 gives examples of

multiplication in A2,s(I × I) for s = + + −+. Left multiplication corresponds to top concatenation, as

before.

Figure 3.18: An example of the multiplication of A2-webs by concatenation.

In A2,s, we will draw all edges so that they are either oriented upwards or downwards. We can then

talk about an element b ∈ A2,s factoring through a certain sequence s′ when one can draw a curve accross

the interval with the usual restrictions about singularities or monotonicity. For instance, the first diagram

in Figure 3.20 factors through the sequences s′ = −− and s′′ = +.

We can also consider the algebra consisting of the set of elements of all spaces A2,s with sequences s

of length no greater than n. This algebra is denoted A2,m≤n. Multiplication in A2,m≤n is zero unless the

two elements to be multiplied belong to the same A2,s.

We concentrate on irreducible webs and so we can, for now, ignore 4-valent vertices since they can

always be reduced using reduction rules S5 and S6.

A2-Webs on the Annulus

We look at elements of A2(A, ∅, R), the space of A2-webs without boundaries on the Annulus, and we

want to first identify the irreducible elements. Like before, we will often abbreviate this space to A2(A).

We will sometimes consider specifically the subset of elements of A2(A) that are the images of elements

of A2(I × I, ss,R) under the usual embedding into the annulus. We denote that subset by A2,s(A).

Our main claim:

Proposition: An element b of A2,s(A) on the annulus reduces to a scalar multiple of the identity of

the shortest sequence it contains, plus lower order terms, all themselves scalar multiples of the identity

of shorter sequences. Irreducible elements of A2(A) are therefore identity elements on certain sequences,

represented as non-tivial oriented loops on the annulus.

To prove this claim, we first show

Lemma: No connected component of a A2-web on the annulus can have a trivalent vertex without also
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having a digon or a 4-gon and hence being reducible.

We start by reducing all crossings and, therefore, we can assume that our web has no 4-valent vertices.

If e is the number of edges and v the number of vertices in our web, and knowing that we have no boundary

point, we have

2e = 3v.

Now let a2 be the number of digons in our component, a4 the number of 4-gons, a6 the number of 6-gons,

etc. We place our component on a sphere as in Figure 3.19 and therefore create two exterior regions.

One region will be an a-gon and the other a b-gon. Note that a, b > 0.

Figure 3.19: We place a A2-web on the sphere, creating two exterior regions: a a-gon and a b-gon.

Counting each edge twice we have

2e = a+ b+
∑
i=1

(2i ∗ a2i)

and given that we are on a sphere, which has Euler characteristic χ = 2, we have

χ = 2 = v − e+ f.

The number of faces

f = 1 + 1 + a2 + a4 + a6 + a8 + ... = 2 +
∑
i=1

a2i,

the first two summands being the a-gon and the b-gon. Thus,

0 = v − e+
∑
i=1

a2i = 2/3e− e+
∑
i=1

a2i

and

2e = 6
∑
i=1

a2i,
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so that a+ b+
∑
i=1 2ia2i = 6

∑
i=1 a2i. Now suppose that a2 = a4 = 0. This gives us

a+ b+ 6a6 + 8a8 + ... = 6a6 + 6a8 + ...,

which is a contradiction, for the left-hand sum is greater than the right-hand sum given that a, b > 0.

Figure 3.20: By rotating the annulus, the embedding of this non-identity element of A2,++(I × I) can be
seen as the embedding of an element of A2,+(I × I)

We therefore know that the connected component b mapped to A will reduce to a linear combination

of identity elements of sequences si all no longer than s. But on A, we can see b as being an element of

A2,s′′(I×I) where s′′ is any sequence it contains, in particular we can take s′′ to be the shortest sequence

it contains. Our claim that an element A2,s(A) on the annulus reduces to a scalar multiple of the identity

of the shortest sequence it contains, plus lower order terms all themselves scalar multiples of the identity

of shorter sequences, follows.

Remark:

It is possible for an element b of A2,s(I × I) to contain different sequences of the shortest length. In that

case, b can be reduced to the identity element of any of these sequences, plus lower order terms. However,

we will see in Section 3.3.2 that the identity elements of all these sequences are equivalent and we will

decide on which one we want as our irreducible by adding a reduction rule on the annulus.

We would like to say more about the number of irreducible elements of A2,s(A). To do so, we now

need to look more closely at the sequences through which elements of A2,s(A) can be factored. Sequences

can be reduced to shorter sequences by sinks (++ → −), sources (−− → +) and caps (+− → ∅ or

−+ → ∅). First, we observe that the sequence s can ultimately reduce to one of three sequences: the

empty sequence ∅, the sequence + or the sequence −. If we represent all sequences as a graph with an

edge between two sequences if and only if they can be obtained from each other by a web, we will have

three connected components corresponding to the three possible resolutions just mentioned.

We must therefore start by deciding to which component of our graph the sequence s belongs. We

start by assigning + 7→ j, − 7→ k and ∅ 7→ 1. Notice now that 1, j, k form Z3: j2 = k, k2 = j, jk = kj = 1.
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Determining to which component s belongs is now a simple computation. For instance, the sequence

+ +−+ + corresponds to j2kj2 = k3 = 1 and hence belongs to the component of the empty sequence ∅

and the sequence − + + + − corresponds to kj3k = k2 = j and hence belongs to the component of the

sequence +.

We now need to count the number of sequences of length less than the length of s that belong to

the same component as s. For instance, sequences of length five will belong to the ∅ component if they

correspond to jk4 or kj4. There are therefore 5C1 + 5C4 of them. They will belong to the + component

if they correspond to k5 or j3k2 and so there are 5C0 + 5C3 of them. Clearly there are as many sequences

that belong to the − component since they are isomorphic. If we could ascertain that all sequences

belonging to the same component as s were achievable from s via irreducible webs on I × I, these graphs

would possibly give us a way to compute the dimension of A2,s(A). Unfortunately, we could not show

that and so it will have to be saved for future work. Using results from section 3.3.2, we will however be

able to compute the dimension of A2,m≤n(M) =
⊕n

m=0 A2,m.

A2-Webs on the Moebius band

Here we look at the irreducible elements of A2(M): A2 webs without boundaries on the Moebius band.

Proposition: Irreducible elements of A2(M) are in bijection with sequences s′ of +’s and −’s along

with an additional choice of ∅,+,− or ±.

If we think of these webs as elements of the algebra A2,s(I × I) embedded into the Moebius band, we

must restrict the sequence s to a palindromic sequence; a sequence that is symmetric. For instance, s

cannot be + +−−, but it can be +−−+. All elements of A2(M) are images of elements of A2,s(I × I)

for some palindromic s.

Figure 3.21: Elements of A2,s(I × I) can be embedded in M when the sequence s is palindromic.

Clearly, the identity on any of these palindromic sequences embeds into an irreducible diagram on the

Moebius band. Moreover, since away from the center of the band we simply have an annulus, we know from

the argument in the previous section that we can have no vertices in an irreducible diagram. Therefore,

for connected components of our web that are away from the center, we can only have embeddings of the

identity: non-trivial loops.
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The center component of a web on the Moebius band can be more than a loop, as shown in Figure

3.22. However, it is easy to see that this is the only other option, anything else being reducible. We

can identify the non-trivial loops with their corresponding sequence indicating their orientation. We will

denote by ± the ”sequence” corresponding to the diagram of Figure 3.22.

Figure 3.22: On the Moebius band, the irreducible core component can be a non-identity connected
component. We denote this component by ±.

The irreducible elements on the Moebius band can therefore be identified with any sequence s′ indi-

cating the direction of the loops on the left side of the Moebius band and to be repeated backward on

the right side (we will denote the backward sequence s̄′) along with four choices for the center of the

diagram: +, −, ± and ∅.

For instance, the diagram on M associated with s′ = + +−+ and center − is the embedding in M of

the identity of A2,s(I× I) with s = s′− s̄′ = + +−+−+−+ +. This diagram on M has four non-trivial

loops with winding number two and one with winding number one in the center of the Moebius band.

See Figure 3.23 for more examples.

Figure 3.23: Examples of irreducible webs on the Moebius band with different core components.

3.2.3 B2-Webs

Once again, we let F be a surface with a specific finite set of boundary points B, but this time each point

is marked by 1 or 2. Note that we do not here require F to be oriented. A B2-web is a graph with edges
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labelled by 1 or 2; edges labelled by 1 will be depicted as usual and edges labelled by 2 will be depicted

as double or thick edges. The labels of edges containing a point of B must coincide with the label of the

corresponding point and all internal vertices are trivalent, with exactly one edge being a thick edge as

shown in Figure 3.24.

Figure 3.24: B2-webs have single edges, labelled 1, double or thick edges labelled 2 and trivalent vertices
with exactly one thick edge.

The set of all B2-webs in (F,B) is denoted by WB2(F,B) and the B2-webspace by

B2(F,B,R) = RWB2(F,B)/R(T1, T2, T3, T4, T5, T6),

where the elements Ti are the ones depicted in Figure 3.25.

Figure 3.25: These are the elements generating the quotient ideal for the space of B2-webs.

As noted in [21], while the first five Ti’s give us obvious corresponding reduction rules Si, T6 is

problematic because the corresponding rule would not be terminal since it would not strictly decrease

in degree. This problem is traditionally remedied by expanding the B2-webspace to allow for 4-valent

vertices, a new relation T ′6 = 0 and a new rule S6. T ′6 and S6 are depicted in Figure 3.26. From now

on, when we write WB2(F,B), we think of this expanded set of webs where 4-valent vertices are allowed.

Note that 4-valent vertices here do not have an overstrand and an understrand, as opposed to 4-valent

vertices in WA1
(F,B) and WA2

(F,B).

Before we look for irreducible diagrams on the annulus and on the Moebius band, let us remark that,

already in D2, if B does not contain points labelled by 2, any diagram containing an internal double edge

is reducible via rule S6. In this case, double edges can therefore only appear as non-trivial loops in an

irreducible diagram, since trivial loops can be reduced using S2.
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Figure 3.26: We transform the element T6 into T ′6 and introduce 4-valent vertices in order the make the
reduction rules be strictly degree decreasing and hence terminal.

B2-Webs on the Annulus and the Moebius band

Proposition: The irreducible B2-webs on the annulus and on the Moebius band without boundaries are

simply sequences of single and double non-trivial loops.

We have just established that the only double edges that can appear in irreducible diagrams must

be non-trivial loops, which also means that irreducible diagrams cannot contain trivalent vertices. If we

show that they cannot contain 4-valent vertices either, our claim will have been justified. However, we

will have to wait for new reduction rules to be introduced in Section 3.3.3 to be able to show this easily.

On the annulus, a diagram composed solely of non-trivial loops is determined by the sequence s of 1’s

and 2’s which mark the single and double loops. Such a diagram is the embedding in A of the identity

on s in the algebra B2,n(I × I), similarly to the A2,n(A) case. On the Moebius band, these diagrams

are determined by the sequence s of 1 and 2’s on the left of the center and by the center component

c ∈ {∅, 1, 2} where the labels 1 and 2 here mean that the center loop is a single or double loop, respectively.

The irreducible core component of A2,n(M) which was denoted by ± in Section 3.2.2 does not exist here

since it contains trivalent vertices with only single edges. The sequence to the right of the center is s̄′

since the complete sequence s′cs̄′ needs to be palindromic to exist on M . Figure 3.27 shows diagrams on

the annulus and the Moebius band with their corresponding sequences.

Figure 3.27: Examples of diagrams on the annulus and the Moebius band and their determining se-
quences.

On the annulus and on the Moebius band, diagrams determined by different sequences of 1 and 2’s

are not isotopic. We still need to show that they are irreducible and linearly independent to prove that

they are the basis elements of the corresponding spaces of diagrams.
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3.2.4 G2-Webs

As in the B2 case, we let F be a surface with a specific finite set of boundary points B, each point marked

by 1 or 2. A G2-web is a graph with the labels of edges adjacent to points of B coinciding with the labels

of those points and with all internal vertices trivalent, either with all single edges or with exactly one

double edge as shown in Figure 3.28.

Figure 3.28: G2-webs have single edges, labelled 1, double or thick edges labelled 2 and trivalent vertices
with no or exactly one thick edge.

WG2
(F,B) is the set of all G2-webs on F with boundary B. The G2 webspace is

G2(F,B,R) = RWG2(F,B)/R(T1, T2, T3, T4, T5, T6, T7, T8),

where the elements Ti are those shown in Figure 3.29. As usual, the reduction rule Si corresponds to

the element Ti in the obvious way. Here, we also need q2 − 1 + q−2 and q + 1 + q−1 to be invertible for

element T8 to exist.

G2-Webs on the Annulus and the Moebius band

Reduction rule S8 guarantees that no irreducible web can have an internal double edge and rule S2 that

it cannot have a trivial double loop. Since we are working with B = ∅, we know that double edges can

thus only appear as non-trivial loops in irreducible diagrams. This also means that irreducible diagrams

can only have internal trivalent vertices with all single edges.

Now, an argument using Euler characteristic similar to the one used in Section 3.2.2 shows that

irreducible diagrams on the annulus cannnot have any vertices.

Lemma: Irreducible G2-webs without boundaries on the annulus do not have any vertices.

To prove this, we show that no connected component of a G2-web can have a trivalent vertex consisting

of only single edges without also having a digon, a trigon, a 4-gon or a 5-gon consisting of solely single

edges, and hence be reducible. Let e be the number of edges and v the number of trivalent vertices in
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Figure 3.29: These are the elements generating the quotient ideal for the space of G2-webs.

our web. Then, knowing that we have no boundary point, we have

2e = 3v.

Next, let ai be the number of i-gons. We place our component on a sphere like we did for A2-webs and

therefore create two exterior regions. One region will be an a-gon and the other a b-gon. Note that

a, b > 0.

Counting each edge twice we have

2e = a+ b+
∑
i=2

iai

and given that we are on a sphere we have

χ = 2 = v − e+ f,
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where the number of faces f = 1 + 1 +
∑
i=2 ai, the first two faces being the a-gon and the b-gon. Thus,

2 = v − e+ 2 +
∑
i=2

ai = 2/3e− e+ 2 +
∑
i=2

ai

and

2e = 6
∑
i=2

ai

so that a+ b+
∑
i=2 iai = 6

∑
i=2 ai. Now suppose that a2 = a3 = a4 = a5 = 0. This gives us

a+ b+ 6a6 + 7a7 + 8a8 + · · · = 6a6 + 6a7 + 6a8 + . . . ,

which is a contradiction, for the left-hand sum is strictly greater than the right-hand sum given that

a, b > 0.

Hence, we have shown the following:

Proposition: Irreducible G2-webs without boundaries on the annulus are single and double non-trivial

loops, corresponding to sequences s of 1’s and 2’s.

On the Moebius band, the case is also very similar to the A2 case. We have:

Proposition: Irreducible G2-webs without boundaries on the Moebius band are single and double non-

trivial loops away from the core along with a choice of four components for the core: a single non-trivial

loop, a double non-trivial loop, an empty set or the equivalent of the component we previously called ±

but without orientation, which we will now label ”3/2”. They correspond to a sequence s = s′cs̄′ with

s′ a sequence of 1’s and 2’s on the left of the core and its reflection s̄′ on the right and a choice of

c ∈ {1, 2, ∅, 3/2}.

Figure 3.30 shows examples of irreducible webs with all these cores.

In conclusion, irreducible G2-webs on the annulus are classified by a sequence of 1’s and 2’s and the

irreducible webs on the Moebius band are classified by the sequence of 1 and 2’s left of the core and by

a choice of core component.

3.3 The Independence of Irreducible Graphs

Recall that, to find out more about the zeroth Hochschild homology of certain algebras of interest, we

look at graphs or diagrams on the annulus and on the Moebius band. The first step is to find out what

diagrams are irreducible on these manifolds, which is what we have been doing in the previous sections.
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Figure 3.30: Examples of irreducible webs on the annulus and on the Moebius band with the different
possible core components.

However, it is not in general obvious whether those diagrams are linearly independent. To prove that they

are, we use results from Sikora and Westbury in [21]. Their results are based on the Diamond Lemma

[19]. Let us first define certain terms used to state those results.

In general, we start with a directed graph (V,E). The vertices V of the graph will in cases of interest

to us be diagrams (or linear combinations of diagrams) and the directed edges E will be reduction rules

going from one diagram to another (or one linear combination of diagrams to another). Given a path

v1 → v2 → ... → vn, we say that vn is a descendant of v1 for vi ∈ V . We say that the reduction rules

E are globally confluent if for all vertices v1, v2 connected by a finite path, v1 and v2 have a common

descendant. We say that the rules E are locally confluent if for any v, w1, w2 such that v → w1 and

v → w2, the elements w1, w2 have a common descendant. It is clear that global confluence implies local

confluence, but the opposite implication is not true in general.

Reduction rules are said to be terminal if all descending paths are finite. The Diamond Lemma states

that if reduction rules are terminal, then local confluence implies global confluence. Moreover, they show

that if the rules are strictly degree reducing for some notion of degree, then the rules are terminal. In

the case of diagrams, the degree is often related to the complexity of the diagram, for example to the

number of crossings or of components in the diagram.
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Sikora and Westbury prove a linear version of the Diamond Lemma that allows us to have reduction

rules sending a diagram to a linear combination of diagrams. Given a ring R, let RV be the free R-module

over V . For any terminal rules {Si}i∈I for RV , local confluence implies global confluence. They then

show that if the reduction rules {Si}i∈I are globally confluent in RV , then the irreducible elements of

V are a basis for RV/R(Si, i ∈ I).

To show that our irreducible diagrams are in fact linearly independent, we therefore only need check

for local confluence (given that our reduction rules do in fact strictly decrease the complexity of our

diagrams and are therefore terminal). This means that, given a diagram which can be resolved using two

different rules, we need to show that it ultimately resolves into the same linear combination of diagrams

no matter which rule we decide to apply first. Diagrams which can be resolved using different rules are

called overlaps in [21]. Fortunately, they also show that we only need check confluence of a finite set of

overlaps, as long as the diagrams overlapping are simple graphs.

3.3.1 Linear Independence for Irreducible A1-Webs

We have found the irreducible A1-webs on the annulus and on the Moebius band in Section 3.2.1 but

were then unable to prove their linear independence. Fortunately, thanks to the results of [21], it is now

fairly easy to establish.

Lemma: The irreducible A1-webs without boundaries on the annulus and on the Moebius band are

linearly independent and are thus a basis of the corresponding space.

We will follow the notation in [21] and let the number of crossings of a A1-web Γ be denoted by v(Γ)

and the number of its connected components by c(Γ). We know that the reduction rules for A1-webs send

each diagram Γ to a linear combination of diagrams Γi so that (v(Γi), c(Γi)) < (v(Γ), c(Γ)) if Z≥0 × Z≥0

is given the lexicographical order. The pair (v(Γ), c(Γ)) is set as the degree of the diagram Γ and the

results from [21] quoted in Section 3.3 then tell us that since the reduction rules decrease the degree, the

rules are terminal.

We now need to check that overlaps can be resolved. This is trivial in this case since the two source

diagrams of our reduction rules (the crossing and the trivial loop) have no non-trivial overlaps. Figure 3.31

shows the trivial overlap. Therefore, our rules are locally confluent and thus also globally confluent. Note

that this is true on any surface, oriented or not, since all overlaps are trivial no matter the embedding.

Since we have already determined that the irreducibleA1-webs on the annulus and the Moebius band were

diagrams with a number of non-trivial loops, we now know that they are a basis for the A1-web space
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Figure 3.31: This trivial overlap is the only overlap for A1-webs.

over R. Below, we denote ⊕
m≤n

A1,m(F,R) = A1,m≤n(F,R).

We can now compute the dimensions of spaces of diagrams on the annulus and Moebius band:

Theorem:

dim(A1,n(A,R)) = dim(A1,n(M,R)) =

⌈
n+ 1

2

⌉
and

dim(A1,m≤n(A,R)) = dim(A1,m≤n(M,R)) = n+ 1.

3.3.2 Linear Independence for Irreducible A2-Webs

To find a set of independent irreducible A2-webs, we need to find terminal and confluent reduction rules.

As we did for A2-webs, we denote the number of connected components of an A2-web b by c(b), the number

of its trivalent vertices v3(b), and the number of crossings v4(b). We can then give Z≥0 × Z≥0 × Z≥0 the

lexicographical ordering. The reduction rules of Figure 3.17 replace the web b by a linear combination of

webs bi with (v4(bi), v3(bi), c(bi)) < (v4(b), v3(b), c(b)). This means that our reduction rules are terminal.

Unfortunately, they are not confluent on any surface containing a non-contractible annulus, that is on

any surface other than D2 and S2. Indeed, Figure 3.32 shows that there is an overlap on which the

two possible applications of S4 yield two different diagrams on the annulus: the identity on +− and the

identity on −+.

We therefore add an additional rule S7 pictured in Figure 3.33 which reduces the identity on −+ to

the one on +−. S1, ..., S7 are now terminal in the oriented case, but not in the unoriented one since there

S7 is its own inverse. This is because on the Moebius band, the two diagrams of Figure 3.34, the identity

on +−∅−+ and on −+ ∅+− are isotropic. Therefore we confine ourselves to the oriented case for now

and will come back to the Moebius band after. In the oriented case, all overlaps were checked in [21] and

we can conclude that rules S1, ..., S7 are locally confluent on all overlaps and therefore globally confluent.

Theorem: The irreducible A2-webs with respect to rules S1, . . . , S7 on an oriented surface (F,B)

form a basis of the free R-module A2(F,B,R).
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Figure 3.32: This overlap of A2-webs shows that reduction rules S1, . . . , S6 are not terminal on any surface
containing an annulus.

Figure 3.33: Adding reduction rule S7 to our set of reduction rules makes these rules terminal and
confluent on all oriented surfaces.

Figure 3.34: These two diagrams are isotropic on the Moebius band.

We did characterize all irreducible webs on the annulus in Section 3.2.2, but we need to revise our

conclusions because of the additional rule S7. With rules S1, ..., S6 we had an irreducible web corre-

sponding to each sequence s of +’s and −’s. However, S7 now reduces such sequences by moving all the

loops marked + to the left. We therefore have an irreducible element corresponding to each sequence

+...+−...− with only +’s on the left and −’s on the right. If s has a length of n, we have exactly n+ 1

such sequences and hence n + 1 corresponding basis elements. From this we can conclude that for s no

longer than n, we have
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Theorem:

dim(A2,m≤n(A)) =

n∑
i=0

(i+ 1) =
n(n+ 1)

2
+ n+ 1.

The new reduction rule S7 also changes the set of irreducible diagrams on the Moebius band. Instead of

these diagrams being determined by any sequence s′ along with a choice of core, s′ must now be restricted

in the same way as the sequences determining the irreducible diagrams on the Annulus: s′ = +...+−...−.

Now, in order to find the linearly independent diagrams on the Moebius band, we define a procedure

for taking diagrams embedded in the Moebius band to the Annulus. This procedure can be thought of as

looking at a diagram on the Moebius band, itself in a solid torus and projecting it onto the Annulus also

in the solid torus. Diagramatically, this corresponds to cutting the diagram on the Moebius band and

adding a half-twist to it.

It is not clear whether this map is well-defined since it could depend on where the Moebius band band

is cut to add the half-twist and, in fact, it does. One can show that factors of q−4/3 and −q−2/3 will

be introduced depending on where the cut occurs. However, in the special case where q = q0 such that

q
−4/3
0 = 1, q

−2/3
0 = −1, the result does not depend on where the cut is made and the map is a well-

defined map of vector spaces. Up to lower order terms, this procedure maps irreducible diagrams in the

Moebius band to irreducible diagrams in the Annulus surjectively. This is seen fairly easily diagramati-

cally. We can think of this map as being upper triangular. Let us look at the image of the map a little

bit more closely. Again, we are working up to lower order terms. Given an irreducible diagram D on

Moebius band characterized by a left hand sequence s and a core c ∈ {∅,−,+,±}, it is not difficult to de-

termine exactly which irreducible on the Annulus will be the highest order term D′ of its image. Because

of the extra reduction rule S7, s is determined by the number of + and the number of − it contains. Let

us denote the former by m1 and the latter by m2 and let us denote the sequence determining D′ by s′,

with m′1+ and m′2− . If c = ∅, D′ will be the identity on the sequence s′, with m′1 = 2m1 and m′2 = 2m2.

If c = +, m′1 = 2m1 + 1 and m′2 = 2m2, if c = −, m′1 = 2m1 and m′2 = 2m2 + 1 and, finally, if c = ±,

m′1 = 2m1 + 1 and m′2 = 2m2 + 1.

Since the number of irreducibles is the same on both surfaces and since we already know that the

irreducibles on the Annulus are a basis, this shows that, at least when q = q0, the irreducibles on the

Moebius band are also linearly independent.

Assume now that for some other value of q 6= q0 there exists a relation

P (D1, ...Dm);
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P is a polynomial in the irreducible diagrams on the Moebius band with coefficients in C[q±1/6. We then

also get a relation for q = q0, which is a contradiction, unless P = 0 when q = q0. However, we can then

divide P by (q− q0)i, for i the largest power of q− q0 by which P is divisible. This yields a new relation

P ′ which is non-zero when q = q0, which is a contradiction. We have therefore shown that the irreducible

diagrams on the Moebius band are linearly independent and are therefore a basis of A2,m≤n(M).

Remark: Over and under crossings, or 4-valent vertices, are not well-defined on the Moebius band.

Hence, we cannot try to map diagrams from the annulus to the Moebius band, since we then would need

to define those crossings. By limiting ourselves to irreducible diagrams, which do not have crossings, and

by mapping them from the Moebius band to the annulus, we avoid this problem.

Figure 3.35: Examples of the basis diagrams for A2,m≤n(S) for S = A and S = M and small values of n.

To make the reduction rules terminal on the Moebius band, one could also simply orient the core of the

Moebius band with an oriented non-trivial loop which is not part of our web, but an additional structure

of the Moebius band itself. This loop then orients the annulus which is in the Moebius band away from

core and allows us to use rule S7 on that annulus. See Figure 3.36 for a representation of that rule on

the Moebius band.

Theorem: The irreducible A2-webs with respect to rules S1, . . . , S
′
7 on the Moebius band form a basis
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of the free R-module A2(M) and

dim(A2,m≤n(M)) =

n∑
i=0

(i+ 1) =
n(n+ 1)

2
+ n+ 1.

Figure 3.36: By orienting the core of the Moebius band, we can define reduction rule S′7, which makes
the new set of rules terminal on the Moebius band.

3.3.3 Linear Independence for Irreducible B2-Webs

Remember that in the case of B2-webs, we have not yet characterized the irreducible diagrams, knowing

that the reduction rules were going to change. We did, however, see that any diagram on the annulus

or on the Moebius band could be expressed as a linear combination of diagrams which are sequences of

non-trivial single and double loops.

Now, rules S1, . . . , S6 each either decreases the number of vertices or decreases the number of compo-

nents without increasing the number of vertices. They are therefore terminal. After checking the basis of

overlaps, Sikora and Westbury conclude that rules S1, . . . , S6 are unfortunately not confluent. However,

they are able to find a new set of 18 reduction rules which are terminal and confluent for graphs in

WB2(F,B). Figure 3.37 depicts the ones which take place in D2 and the ones in the annulus and the

Moebius band that do not have boundary points, and will therefore be of interest to us. Their numbering

is taken from that of [21].

Once we show that 4-valent vertices can always be reduced, we will finally see that the diagrams which

are simply sequences of non-trivial single and double loops are the irreducible diagrams. Since these new

rules are confluent and terminal for WB2
(F,B), this will also show that those diagrams are a basis of

B2,m≤n(A).

We have three cases of 4-valent crossings to address: they are shown in Figure 3.38. The first case,

a diagram with two strands crossing only once, can be reduced by rules S10 on the annulus and S11 on

the Moebius band. The case with two strands locally crossing more than once can be reduced via S14

and the one with one strand via S7. Thus diagrams with 4-valent vertices are reducible and we are left
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Figure 3.37: These are the reduction rules for B2-webs without boundaries which are terminal and
confluent on D2, A and M .

Figure 3.38: These are the three cases of 4-valent vertices in WB2(F,B). We need to show that they all
can be reduced on the annulus and the Moebius band via the reduction rules of Figure 3.37.

with diagrams containing only non-trivial loops as our irreducibles. Since reduction rules S1, . . . , S18 are

confluent and terminal, these irreducible diagrams are linearly independent and hence a basis for the

space of diagrams on A or M .

Therefore,

Theorem: Diagrams that are single and double non-trivial loops and thus correspond to sequences
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of 1’s and 2’s on the annulus and on the Moebius band are a basis of their corresponding spaces and thus

dim(B2,m≤n(A)) =

n∑
i=0

2i

and

dim(B2,m≤n(M)) =

bn+1
2 c∑
i=0

2i.

Figure 3.39: Examples of the basis diagrams for B2,m≤n(A) and B2,m≤n(M) for small values of n.

Figure 3.39 shows the basis diagrams on the annulus and the Moebius band for small values of n.

3.3.4 Linear Independence for Irreducible G2-webs

Proposition: The irreducible G2-webs on the annulus and on the Moebius band are linearly independent

and therefore form a basis of the corresponding spaces.
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Sikora and Westbury do verify the confluence and terminality of the reduction rules of G2-webs in

the case of orientable surfaces. They determine that one more rule must be added on the annulus, but

since the webs involved in that rule all have boundaries, we do not need it here. This result tells us that

the irreducible G2 diagrams on the annulus that we found in Section 3.2.4 are linearly independent.

Figure 3.40: These are the elements generating the quotient ideal for the space of G2-webs.

Though Sikora and Westbury do not verify the confluence of the rules on non-orientable surfaces, it is

not hard to see that overlaps on the Moebius band and without boundaries resolve on the Moebius band just

as they do on the annulus. We only need consider overlaps that cannot be contained in D2 since those

were clearly verified by Sikora and Westbury in their analysis of the confluence on orientable surfaces,

which already eliminates all overlaps involving rules S1, S2 and S3. Moreover, irreducible overlaps involve

only two reduction rules per overlap. We can now see that in our case, since we have no boundaries, the

overlaps we need to check are all embeddings in the Moebius band of diagrams of the form D1D2, where

D1 and D2 are diagrams from the left hand side of one of the reduction rules S4, . . . , S8. Since these over-

lap in D2 have been checked, our only concern is that the reduction of D1D2 be equal to that of D2D̄1,
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where D̄1 is the reflection of D1 about the axis of the core of the Moebius band, since D1D2 = D2D̄1 on

the Moebius band. Remark that on the annulus, one would have to check that the reduction of D1D2 is

the same as that of D2D1. Once we notice that all of the diagrams on both the left and right hand sides

of rules S4, . . . , S8 are symmetric so that D = D̄ for these diagrams, we can conclude that, in fact, all

of the overlaps of concern to us have been checked already when confluence was checked on the annulus.

Figure 3.41 shows two examples of overlaps that would need to be checked on the Moebius band, but

have in fact already been verified because they are the same on the annulus.

Figure 3.41: Two examples of overlaps which should be checked on M , but have already been checked
on A.

The irreducible G2-webs are therefore linearly independent. We can now see that

Theorem:

dim(G2,m≤n(A)) =

n∑
i=0

2i

and

dim(G2,m≤n(M)) =

dn
2 e∑
i=0

2i +

bn
2 c∑
i=0

2i + 2i−1.

Figure 3.42 shows the basis diagrams on A and M for small values of n.
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Figure 3.42: Examples of the basis diagrams for G2,m≤n(S) for S = A and S = M and small values of n.
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Chapter 4

The Natural Transformations

Between Compositions of the

Induction and Restriction Functors

in the Cyclotomic Quotients of the

NilHecke Algebra

4.1 The Categorification Work of Lauda

In [17], Lauda categorifies the algebra Uq(sl2) by constructing a 2-category U̇ whose Grothendieck group

K0(U̇) is isomorphic to Lusztig’s U̇. Recall that this categorification of the algebra U̇ is a 2-category

rather than simply a category. This is natural in the following way. The algebra U̇ is obtained from the

integral version of Uq(sl2) by adjoining an idempotent 1n for n ∈ Z. These idempotents are orthogonal

and are indexed by the weight lattice of Uq(sl2). We can use them to decompose U̇ into a direct

sum
⊕

n,m∈Z 1mU̇1n. We can now describe U̇ as a category with objects the collection of n ∈ Z and

hom(n,m) = 1mU̇1n. The identity morphisms are the idempotents 1n and composition is given by

multiplication. Thus, a categorification of U̇ will naturally be a 2-category denoted by U̇ . The 2-

morphisms are graded and we will follow Lauda’s notation by denoting the set of grading preserving
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2-morphisms by U̇(x, y) for x, y 1-morphisms in U̇ . One can then use the grading shift operation on

1-morphisms to denote 2-morphisms of degree s by U̇(x, y{s}).

The 2-category U̇ is the Karoubian envelope of another 2-category U , itself obtained from restricting

a graded additive 2-category U∗ the its degree preserving 2-morphisms. We will therefore briefly restate

the definition of U∗ here and refer the reader to [16]for more details on its construction.

The objects of the 2-category U∗ are simply n for n ∈ Z. They are depicted as regions in the plane

labelled by the appropriate integer n.

The 1-morphisms from n to m of U∗ are formal direct sums of composites of

1mEα1Fβ1 ...EαkFβk1n{s},

where m = n + 2(
∑
αi −

∑
βi) and s ∈ Z. They are depicted as formal sums of sequences of signed

points.

Figure 4.1: These are the basic 2-morphisms of U∗, graphically depicted

Finally, the generating 2-morphisms of U∗ are the diagrams depicted in Figure 4.1, together with the

identity 2-morphisms and grading shifts isomorphisms x ' x{s}, subject to the following relations:

• 1n+2E1n and 1nF1n+2 are biadjoints with units and counits given by the pairs (ηn, εn+2) and

(ε̂n, η̂n−2). This relation is expressed by the diagram of Figure 4.2.

• All 2-morphisms are cyclic with respect to the biadjoint structure mentioned above. The diagram

of Figure 4.3 shows the relations that ensure this cyclic property.

• The cyclic conditions on 2-morphisms imply that 2-morphisms are preserved under boundary pre-

serving planar isotopies, as in Figure 4.4.
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Figure 4.2: This diagram expresses the biadjoint relation between 1n+2E1n and 1nF1n+2.

Figure 4.3: This diagram expresses the cyclical nature of 2-morphisms with respect to the biadjoint
structure given by Figure 4.2

= =
nn-4 nn-4 nn-4

Figure 4.4: 2-morphisms are preserved under boundary preserving planar isotopies of diagrams.

• All dotted bubbles of negative degree are zero, as expressed in Figure 4.5

n n

m m=0 if m<n-1 =0 if m<-n-1

Figure 4.5: Dotted bubbles of negative degrees are zero.
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• The nilHecke algebra NHa acts on U∗(Ea1n, Ea1n) and U∗(Fa1n,Fa1n) for all n ∈ Z, which

implies the graphical relations of Figure 4.6.

Figure 4.6: The action of the nilHecke algebra implies the depicted relations.

Moreover, we want the 1-morphisms E and F to lift the relations of E and F in Uq(sl2). The equalities

of Figure 4.7 and 4.8 will ensure that this in fact happens. Note that all summations are increasing sums

or taken to be zero.

Figure 4.7: These two equalities reducing crossing and cycles and bubbles, along with the ones of Figure
4.8 ensure that E and F lift the relations of E and F in Uq(sl2).

Figure 4.8: These equalities, which decompose the identity on EF and FE , along with the ones of Figure
4.7 ensure that E and F lift the relations of E and F in Uq(sl2).

In the previous figures, for some values of n, the dots on the bubbles have negative labels. Of course,

a composite of z or ẑ with itself a negative number of times does not make sense. Bubbles with negative

labels are called fake bubbles and are formal symbols defined by the equations in Figure 4.9. Note that

the degree of all the fake bubbles in Figures 4.8 and 4.9 remains positive hence fake bubbles do not violate

the positivity of the dotted bubble axiom illustrated in Figure 4.5.
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Figure 4.9: These two equations define fake bubbles; formal symbols looking like bubbles with negative
labels.

4.2 The Diagramatic Calculus for Quotients of the NilHecke

Algebra

We now want to look at so-called cyclotomic quotients of the NilHecke Algebra. Remember first the ring

R of Z-linear combinations of diagrams for a Kac-Moody algebra g associated to an arbitrary Cartan

Datum, which was shown by Khovanov and Lauda to categorify U−q (g) ([10], [11]). R decomposes

R =
⊕
ν∈N[I]

R(ν),

where R(ν) is the subring generated by diagrams with νi strands of color i for each i ∈ Supp(ν) = {i|νi 6=

0}. For a more complete but still concise explanation, see [6]. We are here only concerned with these

rings when the algebra g is simply sl2 , which means that all strands have the same color and ν = m, the

number of strands. We will therefore omit this color, usually denoted i, from our notation.

In order to algebraically describe diagrams, we write xj for the diagrams with all vertical lines and a

dot on the jth strand and δj for a diagram with all vertical lines except for a crossing between the jth

and j + 1st strands.

In type A, the rings R(m) are just the NilHecke algebras defined by the relations of Figure 4.10.

Figure 4.10: These are the relations of the NilHecke algebra.

We now define the cyclotomic quotients RN (m) of R(m) for g = sl2 as the quotient of R(m) by the
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2-sided ideal generated by the element xN1 . The relation defining this quotient is pictured in Figue 4.11.

The integer N is referred to as the level of the quotient.

Figure 4.11: This is the relation defining the cyclotomic quotient RN (m) of R(m) in type A.

This relation has interesting consequences, such as the relation

∑
l1+...+lm=N−(m−1)

xl11 x
l2
2 ...x

lm
m = 0

of Figure 4.12.

Figure 4.12: This relation is a consequence of the relation xN1 = 0 imposed in the quotient RN (m) of
R(m).

This last relation was used by Lauda in [6] to construct an upper bound for the nilpotency degree of

elements in these cyclotomic quotients for type A∞. It will also give us a spanning set of diagrams for

RN (m), but there will be more details on that in Section 4.4. Figure 4.13 shows some examples of this

important relation for different values of N . Since R(m) is simply the NilHecke algebra when g = sl2, we

refer to its quotient RN (m) as HN or HN,m with m the number of strands in the diagrams with which

we are specifically concerned at the moment.

4.3 The Diagramatics of Natural Transformations Between Com-

positions of the Induction and Restriction Functors in the

Cyclotomic Quotients of the NilHecke Algebra

The graphical calculus for U̇ , its induction and restriction functors and their natural transformations was

already introduced in Section 4.1 and will be used here to describe the natural transformations between

compositions of the functors E and F , the functors that lift the actions of E and F . Remember that we
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Figure 4.13: Some examples of the relation of Figure 4.12 for specific values of N .

use as indices on the cyclotomic quotient of the NilHecke algebra HN,m the level N of the quotient and

the number of strands m = (N + n)/2, where n is the weight of the corresponding representation of sl2.

When the level is clear from context or when it is not specified, we omit it in the index and simply write

Hm.

Now, let us review in detail the diagramatics that we will be using to represent these natural trans-

formations. The induction and restriction functors are represented by signed points. We identify the

induction functor E1m : Hm → Hm+1 with a positive point and F1m : Hm → Hm−1 with a negative

point on the unit interval. For instance, the sequence + +−+ corresponds to EEFE : Hm → Hm+2. For

another example, see Figure 4.14.

Figure 4.14: This sequence of signed points correspond to the composition FFE1m.

Next, to represent the natural transformation between compositions of these functors, we place two

unit intervals with signed points one above the other. The natural transformations are now represented

as the oriented paths from the bottom unit interval to the top unit interval, as in Figure 4.15.

Figure 4.15: These paths between the two sequences of signed points represents a natural transformation
from EEEFF1m to EFE1m.
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Using the U̇ calculus, we can reduce all possible paths to straight paths, clockwise and counter

clockwise caps and cups, dots and crossings. We therefore only need to characterize these transformations

and then use the pre-established relations in U̇ to find all others. The paths we need to characterize are

given in Figure 4.16.

Figure 4.16: Using the relations of the U̇ calculus, we reduce all possible paths to the above six irreducible
paths. These are the ones we need to characterize.

The approach here taken consists in representing compositions of the induction and restriction functors

as Hm bimodules and their natural transformations as bimodule homomorphisms. The induction and

restriction functors themselves will be the bimodules E1m = m+1(Hm+1)m and F1m = m−1(Hm)m. We

use a short-hand notation: m+1(Hm+1)m is the bimodule Hm+1 with an action by Hm+1 on the left and

an action of Hm on the right. The actions are straightforward; a left action of Hl≤m on Hm is simply

the top concatenation of diagrams in Hl with diagrams in Hm. The action happens on the l leftmost

strands of the diagrams in Hm. Algebraically, it is left multiplication. Similarly, the right action of Hl≤m

on Hm is the bottom concatenation of diagrams in Hl with diagrams in Hm. Algebraically, it simply is

right multiplication.

Composition is then a tensor product. For instance, EF1m : Hm → Hm is m(Hm)m−1

⊗
m−1(Hm)m =

m(Hm

⊗
m−1Hm)m and FE1m : Hm → Hm is m(Hm+1)m+1

⊗
m+1(Hm+1)m ∼= m(Hm+1)m. Figure 4.17

shows the correspondance between a path and a bimodule homomorphism.

Figure 4.17: This Figure shows a path and the corresponding bimodule homomorphism.
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4.4 A Basis for the Cyclotomic Quotients of the NilHecke Al-

gebra

In order to determine what these bimodule homomorphisms are, we need to have a basis for the cyclotomic

quotients of the NilHecke algebra HN,m. Using bead and runner diagrams introduced in [2], Brundan

and Kleshchev were able to find a formula for the graded dimension of these cyclotomic quotients. This

formula is in fact much more general as it applies to all of type A.

Figure 4.18: These are the basis diagrams for level N = 2 and m = 2 and for level N = 3 and m = 2, 3.

For the NilHecke algebra, it is fairly easy to see that the number of diagrams without crossings

counted by Brundan and Kleshchev is N !/(N −m)!. On the other hand, work by Lauda in [6] on the

nilpotency of elements in these quotients using antigravity showed that the elements xi11 x
i2
2 ...x

im
m × D,

with ij ≤ N − j − 1 and where D is a diagram without dots, form a spanning set for HN,m. These

number N ∗ (N − 1) ∗ ... ∗ (N −m+ 1) = N !/(N −m)! per diagram D, which corresponds to the result

of Brundan and Kleshchev and are therefore a basis. It is the basis we will use. Figure 4.18 shows an

example of this basis for level N = 2 and diagrams of two strands (m = 2) and level N = 3 and diagrams

with two and three strands respectively (m = 2 and m = 3). One can see that the size of the basis

increases fairly fast and that, more importantly, it is not easy to write down a basis for general level N

and number of strands m. This is especially hard for general m and it is in part why we were not yet able

to generalize completely the natural transformations which we wanted. In Section 4.5.2, the algorithm
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used to generate this basis will be explained in more details. Thus, while we can automatically generate

such basis elements for any N and m, it remains very difficult to work with such a general basis.

Remark:

As far as we know, no bijection between the Brundan-Kleshchev diagrams and a diagramatical basis has

been found for all of type A. We were able to find such a bijection for the NilHecke case but unable to

extend it further.

General diagrams are easily reduced to linear combinations of basis diagrams. One first needs to

move all dots to the top of the diagram (an example is shown in Figure 4.19) and then use the nilpotency

relation of Figure 4.12 to move the dots toward the left as much as possible, as in Figure 4.20. The

specific algorithm that was used to reduce a general monomial to a linear combination of basis diagrams

is explained in Section 4.5.3.

Figure 4.19: This Figure shows how dots can be moved to the top of diagrams.

Figure 4.20: This Figure shows how dots are moved towards the left, using the nilpotency relation.

4.5 Computer Program

4.5.1 The Data Structure

To be able to use a computer program to compute and test these maps, we must first establish an

appropriate data structure that will allow us to represent the different kinds of elements with which we

are dealing.

First are the dots and crossings. In algebraic notation, n dots on the ith string of a diagram is denoted

xni . A crossing between the ith and i+ 1st strands is denoted δi. Note that δni = 0 whenever n > 1.

In our data structure, both dots and crossings will be represented by an ordered triplet (type, strand,

power). For instance, xni ↔ (dot, i, n) and δmj ↔ (crossing, j,m).
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A simple diagram, or element of R(ν), is algebraically represented as D =

N∏
l=1

∏
k

xnl
il
δjk . In the data

structure, a diagram D is simply an ordered list of triplets.

Now, we must be able to build linear combinations of diagrams. Not only must we be able to add

diagrams and allow for coefficients in C, but we must be able to encode undetermined coefficients ci

as well to later express the constraints of our maps in terms of equations in the unknown ci’s. Every

term in a linear combination of diagrams is encoded as an ordered pair (coefficient, diagram). However,

every diagram in a linear combination can have as a coefficient a linear combination of ci. That linear

combination is itself encoded as a sorted list of ordered pairs (z, i), where z ∈ C. For instance, (3c2 −

4c5)D ↔ (((3, 2), (−4, 5)), D). The list of pairs representing the coefficient of the diagram is ordered based

on the second element, the one corresponding to i in ci.

A linear combination of diagrams is then simply a sorted list of terms (coefficient, diagram). This

list is sorted by diagrams, where diagrams are themselves sorted using the lexicographical order on

(n1, n2, ..., δ1, δ2), where ni is the number of dots on the ith strand. Note that since every diagram is

reduced upon entering the list, this is a well-ordering. The list also combines coefficients after sorting, so

that 3c2D + 4c2D = 7c2D.

We must also be able to have linear combinations of tensor products of diagrams. The above structure

is easily extended to allow for this: T = D1 ⊗ D2 ↔ (D1, d2) and(3c2 − 4c5)T ↔ (((3, 2), (−4, 5)), T )

and linear combinations are then represented by the same sorted list of tensor products with linear

combinations of unknown ci’s as their coefficients. The list is sorted as above using the left diagram D1

first, then the right one D2.

This data structure is summarized in Figure 4.21.

4.5.2 Generation of a Graded Basis for a Particular Cyclotomic Quotient

We will use this computer program to generate the constraints needed for the clockwise cup Hm →

Hm

⊗
m−1Hm to be a bimodule homomorphism. Since this map is generated by the image of e ∈ Hm,

and since we know that this image has degree 2(1− 2m+N), we first want to generate all basis elements

of Hm

⊗
m−1Hm of that degree.

As we will see more in details in section 4.6.4, we can choose a basis of monomials, each a tensor

product of a basis element of Hm with one other basis element of Hm chosen from a rather reduced set.

The right element of this product can only have dots on its last strand since all others can be moved to the

left element via the tensor product. Its crossings must also follow a specific sequence: δm−1δm−2 . . . δm−i
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Figure 4.21: This Figure illustrates the data structure used in this computer program.

since crossings δk, k < m− 1 which are not blocked by other crossings can also be moved to the left side.

We will therefore start by generating all of those elements xjmδm−1 . . . δm−i for 0 ≤ j ≤ (N − m),

where j = 0 means that the diagram has no dots and N −m is the maximum number of dots which can

exist on the mth strand of a basis element of HN,m, a quotient of level N, and for 0 ≤ i ≤ m− 1, where

i = 0 means that the diagram has no crossings. These elements are stored along with their degree.

We now want to generate the left elements of the monomials; all the basis elements of HN,m. We

start by generating all crossings configurations. These correspond to permutations of the m strands.

Clearly, many crossing configurations can represent a single permutation, but recall that in Hn diagrams

representing a certain permutation with a non-minimal number of crossings are zero. The minimal

crossing configuration for a given permutation is still not unique, for instance δ1δ2δ1 and δ2δ1δ2 represent

the same permutation. However, all these configurations are equal. The reduction algorithm explained

in the next section will choose a unique diagram as a basis element. For now, we simply generate any

minimal representation for each permutation and then use the reduction algorithm to get basis elements.
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What we need to do to find a minimal crossing representation of a permutation is to decompose this

permutation into a product of transpositions. We use the bubble sort algorithm to do that. More specif-

ically, we look at the permutation as an unordered list needing ordering. For instance, the permutation

(135) of 5 elements would correspond to the list [5, 2, 1, 4, 3]. As we use bubble sort to sort this list, we

keep track of every swap, or every transposition. As an example, if we were to sort the list [5, 2, 1, 4, 3]

and convert it to crossings we would get:

[5, 2, 1, 4, 3]→ [2, 5, 1, 4, 3]⇒ δ1

[2, 5, 1, 4, 3]→ [2, 1, 5, 4, 3]⇒ δ2

[2, 1, 5, 4, 3]→ [2, 1, 4, 5, 3]⇒ δ3

[2, 1, 4, 5, 3]→ [2, 1, 4, 3, 5]⇒ δ4

[2, 1, 4, 3, 5]→ [1, 2, 4, 3, 5]⇒ δ1

[1, 2, 4, 3, 5]→ [1, 2, 3, 4, 5]⇒ δ3.

And so our element would be D = δ1δ2δ3δ4δ1δ3.

It is well-known that the bubble sort algorithm generates the minimum number of swaps so that our

diagram will have the minimal number of crossings as well. We store all of those elements along with

their degree.

Now we must generate all configurations of dots appearing in basis elements. Remember that if we

are working in level N , we can use the nilpotency relation to move dots to the left when the jth strand

of a diagram has more than N − j dots. We simply need to generate diagrams with m strands with

xi1xi2 . . . xim with 0 ≤ ij ≤ N − j.

We then create all left elements by combining dot configurations with crossing configurations, com-

puting their degree and then matching these elements with the already generated right elements and

retaining the matches that have the desired degree of 2(1 − 2m + N). We then store them in a sorted

list and assign them each an undetermined coefficient ci. This linear combination is the image of e. Our

goal will be to derive the constraints on these ci that make our map a bimodule homomorphism.

4.5.3 Reduction of a General Monomial to a Linear Combination of Basis

Elements

We also need an algorithm that will reduce a monomial (a single diagram or a tensor of two diagrams) to

a linear combination of basis elements. We start with the case of a sinle diagram and will address tensor

products after. Let us first define what a basis diagram looks like.



81

First, we know that all the dots need to be on top of all the crossings, that is xi is left of δj for all

i, j. A basis element is therefore of the form

D = xk1i1 x
k2
i2
. . . xklil δj1δj2 . . . δjm .

Because of the nilpotency relation, dots can be pushed to the left until either the element is seen to be

zero or until it is a linear combination of elements each with all xki , k ≤ N − i. Our basis elements are

those whose dots satisfy this condition that xki , k ≤ N − i, ∀i.

In a basis diagram, if we have δjnδjn+1 , then either jn+1 = jn − 1 or jn+1 > jl, ∀ l < n. For instance,

the diagram corresponding to δ3δ2δ1δ3 is not a basis diagram, but δ2δ3δ2δ1 is one. To these descriptions

of basis elements, we add the zero diagram. A diagram is recognized as being zero if we either have a

triplet (dot, i, k) with k > N corresponding to xki with k > N or if we have (crossing, j,m) with m > 1,

corresponding to a double crossing. The program uses these parameters to determine whether a diagram

is already a basis element or whether it needs to be reduced to a linear combination of basis elements.

The algorithm contains several functions, which simplify or reduce elements in different ways. The

simplest of these is to recognize the zero diagram and remove it, which is done using the constraints

just discussed. Then we have a simplification function which converts adjacent (gen, i, j), (gen, i, k) into

(gen, i, j+k), where ”gen” can be either a dot or a crossing. This corresponds to computing xjix
k
i = xj+ki

or δji δ
k
i = δj+ki .

We also need to sort dots. This simply means that, since xixj commute, we order them so that i < j.

We then use the previous function to combine them when the indices i match.

Now, we want to move all dots up, or all xi in front of all δj . We start by finding a pair of misordered

generators δjxi. If i 6= j and i 6= j+1 then we just swap the crossing and the dot and replace δjxi → xiδj .

We then sort dots and simplify. We test the resulting diagram to see if it is zero and continue if it is not.

If j = i, we replace

δixi → xi+1δi + e

and if i = j + 1,

δi−1xi → xi−1δi−1 − e,

where e is the identity element, the diagram without crossing or dots. If the disordered pair was in a

diagram D = D′δjxiD
′′, it is replaced by a list of two diagrams (D1, D2) = (D′xi+1δiD

′′, D′D′′ each
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with the same coefficient as the original diagram D when i = j and with

(D1, D2) = (D′xi−1δi−1D
′′,−D′D′′),

with the coefficient of D2 being the negation of the coefficient of D. In both cases, we then sort dots,

simplify the diagrams and then eliminate all zero diagrams.

Next, we want to move dots to the left, that is we want to reduce the diagrams that have xki with

k > N − i. Say D = D′xkiD
′′ with k > N − i and i is the smallest index at which this occurs in this

diagram. The algorithm first computes all ways to distribute k dots on N − k+ 1 strands, the N − k+ 1

strands preceding strand i on which these k dots presently are. Our present diagram is in the configuration

[00...00k], which we do not want. We replace our diagram by a list of new diagrams (D′′′D′′), where D′′′

has the same crossing configuration as D′ but with the new configuration of dots. We assign as their

coefficient the negative of the original coefficient of D. For instance, let N = 3 and D = x1x3. 1 > 3− 3

and therefore this diagram needs to be reduced. Recall that for N = 3, we have the nilpotency relation

x1 +x2 +x3 = 0. We compute all ways of distributing 1 dot on 3 strands: [100], [010], [001]. The last one

is the one we have now, so we replace D = x1x3 by −x2
1 − x1x2.

To be in our chosen basis form, all braided crossings δi+1δiδi+1 must be converted to δiδi+1δi. We

do this iteratively until no braidings of the first type are left. This function afterwards simplifies the

resulting diagrams using the other functions and eliminates it if it is zero.

Finally, a crossing sorting function finds the first crossing δil with il less than or equal to the previous

highest ik and for which the previous entry is not δil+1. It then swaps δil with the previous δil−1
if either

il−1 − il > 1 or if both il−1 − il < −1 and il+1 < il or δil is the last crossing in our diagram. Here is a

first simple example:

D = δi1δi2δi3δi4 = δ3δ2δ1δ3.

The il that needs to be moved is i4 = 3 since it is equal to the previous greatest ik: i1 = 3 and

il−1 = i3 6= il − 1 = 2. Here, we have il−1 − i − l = 1 − 3 = −2 < −1 and δ3 is the last crossing in our

diagram so we swap it with the preceding δ1 to get

D = δ3δ2δ3δ1.

The braiding function would then take care of the braiding to obtain the basis element D = δ2δ3δ2δ1.
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Here is a longer example:

D = δi1δi2δi3δi4 = δ4δ6δ2δ1.

The first crossing for which the index is less than or equal to the previous maximal index without the

preceding crossing having an index one higher is δi3 = δ2. i3 ≤ max = i2 = 6 and i2− i3 = 6− 2 = 4 > 1

so we swap δi2 and δi3 to obtain

D = δi1δi2δi3δi4 = δ4δ2δ6δ1.

Then i2 ≤ max = i1 = 4 and i1 − i2 = 4− 2 = 2 > 1 so we swap δi1 and δi2 to obtain

D = δi1δi2δi3δi4 = δ2δ4δ6δ1.

Now i4 ≤ max = i3 = 6 and i3 − i4 = 6− 1 = 5 > 1 so we swap δi3 and δi4 to obtain

D = δi1δi2δi3δi4 = δ2δ4δ1δ6.

Finally, i3 ≤ max = i2 = 4 and i2 − i3 = 4 − 1 = 3 > 1 so we swap δi2 and δi3 to obtain a basis

element

D = δi1δi2δi3δi4 = δ2δ1δ4δ6.

As usual, the function then simplifies and removes zero diagrams.

The complete reduce function combines all the above subfunctions as follows: we keep a list of di-

agrams that need processing and of diagrams that have been reduced to a linear combination of basis

diagrams. We iteratively choose a diagram from the first list and attempt one of these operations on it:

-Remove zero diagrams

-Move dots up

-Move dots left

-Braid crossings

-Sort crossings.

If all operations are trivial on the chosen diagram (the returned diagram is equal to the input diagram

for all operations), the diagrams should be a basis. If the function testing diagrams agrees, the diagram

is added to the second list, but, as a safety measure, if all operations were trivial and yet the diagram not

in basis form, the function would return an error. No errors were returned while running the program!
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If one of the operations is non-trivial, we test the returned diagram to see if it is now in basis form

and add it to the list corresponding to the result of that test.

Extending this algorithm to tensor product monomials in Hm

⊗
m−1Hm is straight forward. We first

reduce the righthand side diagrams to (linear combinations of) basis diagrams. If this generates a linear

combination of monomials, we treat each one separately.

Recall that the right diagram can be put in the form D = xkmδm−1δm−2 . . . δm−i by sliding all other

dots to the bottom of the left diagrams, as well as all other crossings. For instance, in H5

⊗
4H5:

δ3 ⊗ x2x
2
3x5δ1δ4δ3δ2 =

δ3x2x
2
3δ1⊗ δ4δ3δ2.

After putting the right diagram in this form, we need to reduce the left hand diagram, which gives us

a new linear combination of monomials. Then, for each of these monomials, we reduce the left hand side

diagram, this itself giving us new linear combinations, but where this time all the left hand side diagrams

are basis elements and the right hand side diagrams are in the correct form.

4.5.4 Generation of the Constraints for a Graded Bimodule Homomorphism

This is the simplest part of the program. Remember that we look at the image of e ∈ Hm under the

clockwise cup map φ. This image φ(e) is a linear combination of the basis elements of Hm

⊗
m−1Hm

and generates the map. Since we want this map to be a bimodule homomorphism, we need φ(xie) =

φ(exi) = xiφ(e) = φ(e)xi and φ(δie) = φ(eδi) = δiφ(e) = φ(e)δi, for all i. We therefore write φ(e) as

a linear combination of basis elements of Hm

⊗
m−1Hm with undetermined coefficients ci and impose

these conditions on φ(e), which gives us constraints, or equations, in terms of the coefficients ci.

The program computes xiφ(e)− φ(e)xi for 1 ≤ i ≤ m and δiφ(e)− φ(e)δi for 1 ≤ i ≤ m− 1 and puts

the resulting linear equations in the ci’s on a per-term basis into a matrix, which we put into reduced row

echelon form using matlab. The resulting matrix was seen to have a one dimensional solution space in

all computed cases. By hand, we solved for all the other coefficients in terms of c1. For bigger example,

the solution could be found using Mathematica, for instance.
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4.6 Partial Results: m ≤ 3

4.6.1 Dots

The dots in U̇ correspond to natural transformations E1m → E1m and F1m → F1m for a dot put

on an upward and downward arrow respectively. In bimodule notation, the maps are m+1(Hm+1)m →

m+1(Hm+1)m and m(Hm+1)m+1 → m(Hm+1)m+1. We want this map to have degree two, since a dot has

degree two in U̇ . Two obvious options come to mind: a 7→ αaxm+1 or a 7→ α′xm+1a for a ∈ Hm+1. These

correspond graphically, up to the constant α, to adding a dot on top or at the bottom of the right-most

strand. We will see that the map E1m → E1m corresponding to a dot on an upward arrow is the first

homomorphism a 7→ αaxm+1 and that the map F1m → F1m corresponding to a dot on a downward

arrow is a 7→ α′xm+1a for a ∈ Hm+1. Moreover, the relations will tell us that both α and α′ equal 1.

Figure 4.22 explicitely shows the maps corresponding to adding a dot to an upward or downward strand,

both algebraically and graphically.

Figure 4.22: This Figure shows the bimodule homomorphisms corresponding to adding a dot to an upward
or downward strand both algebraically and graphically.

4.6.2 Two Easy Maps: Counter Clockwise Cup and Clockwise Cap

We will now look at two adjoint transformations: the counter clockwise cup and the clockwise cap.

The counter clockwise cup is a natural transformation 1m → FE1m, which corresponds to a bimodule

homomorphism Hm → m(Hm+1

⊗
m+1Hm+1)m ' m(Hm+1)m. The natural choice for this map is the
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inclusion map i : Hm ↪→ Hm+1: a 7→ i(a). Graphically, this map corresponds to adding an m+1st strand

to the right of a. Figure 4.23 shows the details of the map.

Figure 4.23: The counter clockwise cup map as a bimodule homomorphism is a simple inclusion. Graph-
ically, it adds a strand to the right of the figure.

The clockwise cap corresponds to a natural transformation EF1m → Id, which corresponds to a

bimodule homomorphism Hm

⊗
m−1Hm → Hm. Once again, there is a natural qualifying map : a⊗ b 7→

ab. Graphically, this map stacks a on top of b, as seen in Figure 4.24.

Figure 4.24: The clockwise cap map as a bimodule homomorphism is multiplication. Graphically, it
stacks the first element a on top of b, the second element.

We are assuming that these two natural maps are the right ones and will try to find the other cap

and cup starting with that assumption.

4.6.3 Crossings

There are two natural transformations corresponding to crossings, one EE1m → EE1m represented by a

crossing on two upward strands and one FF1m → FF1m corresponding to a crossing on two downward

strands. Crossings on strands going in different directions can be optained by composing one of these

two crossing with caps and cups as shown in the U̇ relations. The two maps are shown in Figures 4.25

and 4.26.
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Figure 4.25: The upward crossing map corresponds to right multiplication by δm+1. Graphically, it adds
a crossing of the right-most two strands to the bottom of the figure.

Figure 4.26: The downward crossing map corresponds to left multiplication by δm. Graphically, it adds
a crossing of the right-most two strands to the top of the figure.

4.6.4 Clockwise Cup

We are now looking for the natural transformation Id1m → EF1m corresponding to the clockwise cup. As

a bimodule homomorphism, this map is Hm → Hm

⊗
m−1Hm, as in Figure 4.27. Since Hm, as a bimodule

Figure 4.27: The clockwise cup as a bimodule homomorphism will be much more complicated than the
other maps we have encountered so far.

over itself, is generated by the identity e, we need only find the image of e to find the homomorphism

we need. First, note that the degree of the map corresponding to the clockwise cap is always zero. Now,

remember that if N is the level of the representation and n its weight as used in U̇ , and m is the number

of strands in the corresponding grahical calculus for HN,m we have n = 2m−N . From U̇ , we also know

that a clockwise bubble with n− 1 dots in a region of weight n is 1 and thus has degree zero. Therefore,

the degree of the cap, the degree of n− 1 dots and the degree of the cup must add to zero. This means

that the degree of the cup is −2(n − 1) = 2(1 − 2m + N). Unfortunately, there is no obvious bimodule

homomorphism of that degree. The computer program introduced in the previous subsection ?? tested the
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homomorphism relations on a basis of Hm

⊗
m−1Hm to determine the relations on the coefficients of these

basis elements in the image of e. In all tested cases, dim(Homdeg=2(1−2m+N)(Hm, Hm

⊗
m−1Hm)) = 1.

The program yielded results for m = 2, N = 2, 3, 4 and m = 3, N = 3, 4, 5. These results allowed us to

extrapolate a possible map for m = 2 and m = 3 and general level N ≥ m.

In Hm

⊗
m−1Hm, there is a right action of Hm−1 on the left Hm factor, which we represent graphically

as the action on the bottom of the left m − 1 strands, see Figure 4.28. Correspondingly, the left action

of Hm−1 on the right Hm factor is represented graphically as an action on the top of the first m − 1

strands of Hm. To create a basis of Hm

⊗
m−1Hm, we move all possible dots and crossings to the left

diagram. Therefore, all dots on the first n − 1 strands of the right diagram in a tensor monomial can

Figure 4.28: An example of how the tensor actions translate graphically.

be moved to the bottom of the left diagram. From there, they can be moved to the top of the diagram

using the usual relations on Hm. Hence, a basis monomial of Hm

⊗
m−1Hm will have no dots on the first

m − 1 strands of the right diagram. Similarly, only a crossing of the last two strands δm−1 of the right

diagram can block other crossings from being moved to the left diagram. It is easy to see that the only

possible sequence of crossings which cannot be moved to the left diagram is δm−1δm−2δm−3...δm−i. Our

basis of Hm

⊗
m−1Hm is therefore all monomials with a basis diagram of Hm on the left and a diagram

ximδm−1δm−2δm−3...δm−j on the right.

Let us fix some notation we will need in this section. Remember that xij corresponds to i dots on

the j-th strand, counting the left-most strand as the first one. Let ϕ
(N)
d,m =

∑∑
ij=d x

i1
1 x

i2
2 ...x

im
m be the

symmetric sum of crossingless diagrams with m strands of degree 2d. When the level N or the number of

strands m is obvious from context or irrelevant, we might omit it. In some cases, instead of distributing

the dots symmetrically on all m strands, we will want to distribute them on a subset S of those strands

and will then use the notation ϕ
(N)
d,S to denote the corresponding sum. Two examples are shown in Figure

4.29

We give the image of e for m = 2 and m = 3 as a table where each row is a linear combination of
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Figure 4.29: Examples of the ϕ symmetric sums notation. This notation is particularly useful in giving
the image of e under the clockwise cup map.

tensors of diagrams with the same right side diagram. This right side diagram ximδm−1δm−2δm−3...δm−j ,

is denoted simply as (i, j), where, by convention, j = 0 means that there are no crossings in the right

diagram.

m = 2, 0 ≤ i ≤ N − 2

(i, 0) : ϕN−(2+i)δ1

(i, 1) : x
N−(1+i)
1 δ1 − xN−(1+i)

2 δ1 − ϕN−(2+i)

m = 3, 0 ≤ i ≤ N − 3

(i, 0) : ϕN−(3+i),3(δ2δ1 − δ1δ2) + (−ϕN−(3+i),{1,3}(x1) + ϕN−(3+i),{2,3}(x2))(δ1δ2δ1)

(i, 1) : ϕN−(3+i),3(δ1 + δ2) + (−ϕN−(3+i),{1,2}(x1) + ϕN−(3+i),{2,3}(x3))(δ1δ2)

(i, 2) : ϕN−(3+i) + (ϕN−(3+i),{1,3}(x1)− ϕN−(3+i),{2,3}(x2))(δ1) + (ϕN−(3+i),{1,2}(x1)+

+ϕN−(3+i),{2,3}(x3))(δ2) + ϕN−(2+i),{2,3}(x1δ1δ2)+

+(−xN−(1+i)
1 + x

N−(1+i)
2 + x

N−(1+i)
3 )(δ1δ2)

These maps are the basis for the one dimensional space

Hom(Hm2(1− 2m+N), Hm

⊗
m−1

Hm)

of bimodule maps of degree 2(1− 2m+N). They are therefore the maps we want, up to a constant.
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4.6.5 Counter Clockwise Cap

The last natural transformation we need to find is FE1m → Id1m which corresponds to a bimodule

homomorphism m(Hm+1

⊗
m+1Hm+1)m ' m(Hm+1)m → Hm. As before, the action of Hm on Hm+1 on

the left is graphically represented by an action on the top of the m left-most strands, and the action of

Hm on the right is an action at the bottom of the m left-most strands. Therefore, a basis for the bimodule

m(Hm+1)m will contain all elements with dots only on the last strand, and at most N − 2 dots on that

last strand, and δm, the crossing of the last two strands, as the only crossing. We need to determine the

images of each of these elements under the cap map. We will call the image of xim+1, γi and the image

of xim+1δm, ηi, as shown in Figure 4.30.

Figure 4.30: To define the counter clockwise cap map, we need to find the image of all elements with dots
on the last strand only and of those with a crossing of the right-most two strands along with dots on the
last strand, above the crossing. We call these images γi and ηi respectively, with i being the number of
dots.

We again use the bubble in U̇ to determine the degree of this map. A counter clockwise bubble in a

region of weight n has degree zero when it has −1 − n dots. Since the degree of the counter clockwise

cup has already been determined to be zero, the degree of the cap has to be 2(1 + n) = 2(1 + 2m−N).

We will first look at the case m = 1. The degree of the cap map is then 2(3−N). since the element

of lowest degree in H1 has degree zero, γi = ηi+1 = 0 for i < N − 3. Using the NilHecke relation

x
N−(i+1)
2 δ1x1 − xN−i2 = x

N−(i+1)
2 , which implies that x1ηN−(i+1) − ηN−i = γN−(i+1) and the quotient

relation ϕN−1,2 = 0, which implies that −ηN−1 = x1ηN−2 we find that the images of the basis elements

under the counter clockwise cap must be, up to a scalar,

γN−2 = 2x; γN−3 = −e; ηN−2 = e,

where x is represented as a dot on the only strand of H1 and e is the strand itself.

Let us now consider the case m = 2, for which the map has degree 2(5 − N). A priori, the element

of lowest degree in H2 is δ, which has degree −2. However, this element does not commute with x1 and

x2 and therefore cannot be γN−6 or ηN−5. These two images are therefore zero. We therefore need only
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to determine γN−3, γN−4, γN−5 and ηN−3, ηN−4. To simplify the computations, we notice that none of

the images can have a crossing. Moreover, the γi’s must be central and hence have to be a multiple of

ϕi−N−5,2. We then use the same NilHecke relations as well as the quotient relation ϕN−2,3 = 0 to find

that these elements are:

γN−6 = ηN−5 = 0;

γN−3 = −5ϕ2,2; γN−4 = 2ϕ1,2; γN−5 = 3e;

ηN−3 = −2x1 + 3x2; ηN−4 = −3e.

4.7 Future Work

4.7.1 Generalization to all m

Our next goal should, of course, be to generalize the partial results here obtained to all weights and

quotient levels or, equivalently, to all values of m and N . We were unable to form a conjecture as to the

generalization of the two ”hard maps”, the clockwise cup and the counter clockwise cap, based on the

current results and those generated by our computer program. It is possible that generating more data

would help hint at the general result. However, we suspect that the basis of diagrams we are using is not

the one in which these maps are natural. We would therefore first endeavor to find a different basis in

which the maps we already have might be more easily generalized.

4.7.2 Generalization to type A and Beyond

Once our results have been generalized to all weights and quotient levels, we will want to generalize them

to all of type A first, and then, possibly, to all types. The major obstacle to this generalization is the lack

of a good diagramatical basis for the quotients of rings R(ν). We hope that the discovery of a good basis

for type A will easily lead to one for the other types. Looking at the results of Brundan and Kleshchev

in [2], one could possibly find a bijection between their bead and runner diagrams and a diagramatical

basis for quotients of type A. However, we suspect that such a bijection is not obvious and will probably

not lead to a basis of monomials.
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