
THINC: A Virtual and Remote Display

Architecture for Desktop Computing and Mobile

Devices

Ricardo A. Baratto

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2011

c©2011

Ricardo A. Baratto

This work may be used in accordance with Creative Commons,

Attribution-NonCommercial-NoDerivs License. For more information about that license,

see http://creativecommons.org/licenses/by-nc-nd/3.0/. For other uses, please contact the

author.

ABSTRACT

THINC: A Virtual and Remote Display
Architecture for Desktop Computing and

Mobile Devices

Ricardo A. Baratto

THINC is a new virtual and remote display architecture for desktop computing.

It has been designed to address the limitations and performance shortcomings of

existing remote display technology, and to provide a building block around which

novel desktop architectures can be built.

THINC is architected around the notion of a virtual display device driver, a

software-only component that behaves like a traditional device driver, but instead

of managing specific hardware, enables desktop input and output to be intercepted,

manipulated, and redirected at will. On top of this architecture, THINC introduces a

simple, low-level, device-independent representation of display changes, and a number

of novel optimizations and techniques to perform efficient interception and redirection

of display output.

This dissertation presents the design and implementation of THINC. It also intro-

duces a number of novel systems which build upon THINC’s architecture to provide

new and improved desktop computing services. The contributions of this dissertation

are as follows:

• A high performance remote display system for LAN and WAN environments.

This system differs from existing remote display technologies in that it focuses

on the architecture of the system as a mechanism to improve performance, and

not just on the remote display protocol and compression techniques.

• A novel mechanism to natively support multimedia content in a remote display

system in a way that is both transparent to applications and format indepen-

dent.

• pTHINC, a system to deliver improved remote display support for mobile de-

vices, both in terms of performance and usability, and provide a competitive,

and in some cases superior, alternative to native mobile applications.

• MobiDesk, a desktop utility computing infrastructure that enables service provi-

ders to host desktop sessions in fully virtualized environments. Hosted sessions

can be remotely accessed using THINC, they can be migrated across computers

to provide high-availability, and can be effectively and efficiently protected from

denial of service attacks.

• Moving beyond remote display, we show how THINC’s architecture can be used

to provide continuous, low overhead recording of a desktop. Alongside, we

introduce a novel way to leverage desktop accessibility services to allow users

to search their recording based on captured text content.

We have implemented prototypes for these systems, and evaluated their perfor-

mance in a number of scenarios, and compared it to representative alternatives when-

ever possible. Our results demonstrate that THINC can provide superior remote

display performance, and can be successfully used as a fundamental building block

for new and improved desktop applications and services.

Contents

Contents i

List of Figures vi

List of Tables x

List of Algorithms xi

Acknowledgments xii

1 Introduction 1

1.1 Contributions . 11

1.2 Dissertation Roadmap . 12

2 THINC Architecture 13

2.1 Remote Display Design . 13

2.2 Display Virtualization . 18

2.3 Remote Display Protocol . 25

2.4 Display Update Translation . 29

2.4.1 Offscreen Drawing . 33

2.5 Display Update Delivery . 35

i

2.6 Implementation . 39

2.6.1 Back End . 40

2.6.1.1 Creating Commands 40

2.6.1.2 Adding and Manipulating Commands 41

2.6.1.3 Abstracting Command Destinations 47

2.6.1.4 Delivering Commands 49

2.6.2 Front End . 51

2.6.3 Remote Display Implementation 54

2.7 Experimental Results . 56

2.7.1 Web Browsing Benchmark . 60

2.7.2 Results . 61

2.8 Summary . 66

3 Multimedia 68

3.1 Video Support . 70

3.2 Audio Support . 73

3.3 Media Synchronization . 77

3.4 Implementation Details . 81

3.5 Experimental Results . 82

3.5.1 Experimental Setup and Benchmarks 82

3.5.2 Results . 85

3.6 Summary . 95

4 Mobile Devices 96

4.1 pTHINC Usage Model . 99

ii

4.2 pTHINC System Architecture . 104

4.2.1 Display Management . 106

4.2.2 Video Playback . 107

4.3 Experimental Results . 109

4.3.1 Experimental Testbed . 110

4.3.2 Application Benchmarks . 112

4.3.3 Qualitative Results . 114

4.3.4 Quantitative Results . 117

4.4 Summary . 126

5 Desktop Virtualization 128

5.1 MobiDesk: Mobile Virtual Desktop

Computing . 130

5.1.1 Display Virtualization . 135

5.1.2 Operating System Virtualization 138

5.1.3 Network Virtualization . 142

5.2 A2M: Access-Assured Mobile Desktop Computing 146

5.2.1 System Operation . 150

5.3 Experimental Results . 151

5.3.1 MobiDesk Virtualization Overhead 153

5.3.2 MobiDesk Application Performance 159

5.3.3 A2M Performance Evaluation 164

5.3.3.1 Overall Performance 166

5.3.3.2 Interactive Applications 172

5.3.3.3 Wireless . 174

iii

5.4 Summary . 175

6 Display Recording and Text Capture 178

6.1 Display Recording . 179

6.2 Text Capture . 182

6.3 Playback . 185

6.4 Search . 186

6.5 DejaView . 188

6.6 Experimental Results . 190

6.7 Summary . 198

7 Related Work 199

7.1 Remote Display and Thin-Client Computing 199

7.2 Multimedia Support . 206

7.3 Support for Mobile Devices . 209

7.4 Display Recording and Text Capture 211

8 Conclusions and Future Work 213

8.1 Future Work . 215

Bibliography 220

A THINC Protocol specification 237

A.1 Packet Format . 237

A.1.1 Message Type and Flags . 238

A.1.2 Unused Field (mbz) . 238

A.2 Handshake Protocol . 239

iv

A.2.1 Version verification . 239

A.2.2 Security Handshake . 239

A.2.3 Parameter Negotiation . 241

A.2.3.1 Packet Format of Server Replies 242

A.2.4 Summary of Handshake Messages 244

A.3 Remote Display Protocol . 245

A.3.1 Server Messages . 246

A.3.2 Client Messages . 254

v

List of Figures

1.1 Remote Display Architecture . 2

1.2 Audio/Video playback performance of popular remote display systems 6

2.1 Standard display architecture . 16

2.2 Standard display pipeline . 19

2.3 THINC virtual display architecture 22

2.4 THINC architecture components . 23

2.5 Experimental Testbed . 57

2.6 Web Benchmark: Average Page Latency 62

2.7 Web Benchmark: Average Data Transferred per Web Page 62

2.8 Web Benchmark: THINC Average Page Latency Using Remote Sites 64

3.1 Audio Playback . 75

3.2 Audio Capture . 76

3.3 Experimental Testbed for Audio Capture/Playback Benchmark . . . 84

3.4 A/V Benchmark: A/V Quality . 86

3.5 A/V Benchmark: Total Data Transferred 87

3.6 A/V Benchmark: THINC A/V Quality Using Remote Sites 88

vi

3.7 Timestamp Deltas: MPEG-1 352x240 89

3.8 Timestamp Deltas: MPEG-1 480x260 90

3.9 Timestamp Deltas: QuickTime 480x360 90

3.10 Distribution of Timestamp Deltas: MPEG-1 352x240 91

3.11 Distribution of Timestamp Deltas : MPEG-1 480x260 91

3.12 Distribution of Timestamp Deltas: QuickTime 480x360 92

3.13 Mouth-to-ear latency overhead for VoIP applications 93

4.1 pTHINC shortcut keys . 102

4.2 PDA Experimental Testbed . 110

4.3 pTHINC Web Screenshot: BBC News 115

4.4 Native IE Screenshot: BBC News . 115

4.5 pTHINC Application Screenshot: Quicken 115

4.6 Native Application Screenshot: Pocket Quicken 115

4.7 PDA Browsing Benchmark: Average Page Latency 118

4.8 PDA Browsing Benchmark: Average Page Data Transferred 119

4.9 PDA Browser Screenshot: RDP 640x480 121

4.10 PDA Browser Screenshot: VNC 1024x768 121

4.11 PDA Browser Screenshot: ICA Resized 1024x768 122

4.12 PDA Browser Screenshot: pTHINC Resized 1024x768 122

4.13 PDA Video Benchmark: Fullscreen Video Quality 123

4.14 PDA Video Benchmark: Fullscreen Video Data 124

4.15 PDA Video Screenshot: RDP 640x480 126

4.16 PDA Video Screenshot: VNC 1024x768 126

4.17 PDA Video Screenshot: ICA Resized 1024x768 126

vii

4.18 PDA Video Screenshot: pTHINC Resized 1024x768 126

5.1 MobiDesk Architecture . 133

5.2 Problems of Migrating Connections 143

5.3 MobiDesk Network Virtualization . 144

5.4 A2M Architecture . 147

5.5 MobiDesk Evaluation Experimental Testbed 152

5.6 MobiDesk Operating System Virtualization Overhead 155

5.7 MobiDesk Network Virtualization Throughput Overhead 156

5.8 MobiDesk Network Virtualization Latency Overhead 157

5.9 MobiDesk TCP Connection Setup Overhead 158

5.10 MobiDesk Average Per Web Page latency 161

5.11 MobiDesk Video Quality . 162

5.12 A2M web latency vs. packet replication 167

5.13 A2M video quality vs. packet replication 168

5.14 A2M average per-page data transfer vs. packet replication 169

5.15 A2M total video data transmitted vs. packet replication 169

5.16 A2M web latency under DDoS attack 171

5.17 A2M video quality under DDoS attack 171

5.18 A2M interactive performance for the echo test 173

5.19 A2M interactive performance for minimize/maximize window test . . 173

5.20 A2M Interactive performance for the scroll test 173

5.21 A2M interactive performance for the move window test 173

5.22 A2M video quality under DDoS attack in the wireless scenario 174

viii

6.1 Recording runtime overhead . 192

6.2 Recording storage growth . 194

6.3 Browse and search latency . 195

6.4 Playback speedup . 196

7.1 Standard display architecture . 200

A.1 THINC packet format . 238

A.2 Security capabilities packet . 239

ix

List of Tables

2.1 THINC Protocol Display Commands 27

2.2 Remote Sites for WAN Experiments 59

3.1 THINC Video Commands . 72

3.2 THINC Audio Commands . 74

4.1 PDA Testbed Configuration Settings 111

5.1 MobiDesk Application Benchmarks 154

5.2 MobiDesk Migrated KDE Desktop Computing Session 163

6.1 Recording application benchmark scenarios 192

7.1 Remote Display Systems Comparison 205

A.1 List of client requests . 241

A.2 List of server replies . 242

A.3 List of handshake protocol messages 244

A.4 List of protocol messages . 245

x

List of Algorithms

2.1 QueueCommand . 42

2.2 OverwriteCommands . 43

2.3 TryMerge . 44

2.4 X server main loop . 51

xi

Acknowledgments

Having the opportunity to acknowledge everyone who made this work possible has

been the best part of writing my dissertation. Countless individuals have been along

for the ride providing mentoring, counseling, friendship, or even just a joke at the

right moment, and I will never be able to thank them enough for this.

My advisor, Jason Nieh, without whom none of this work would have been pos-

sible. It has been a long adventure, and even after all these years he still manages

to surprise me with his broad knowledge, thoroughness, sharpness, and pursuit of

excellence. I am both a better computer scientist and person because of him.

Countless people made my tenure at Columbia a memorable experience. My

friends and fellow PhD-ers Stelios Sidiroglou, Dan Phung, and Oren Laadan, thank

you for your technical insight, hard work, patience, and all those arguments, about

nothing, anything, and everything. Leo Kim was my teammate through most of the

research that became THINC, and made large technical contributions to this work.

He also taught me how not to manage people (by allowing me to be his “boss”),

how to balance work and life, and how to appreciate a glass of single malt. Thanks

to all the members of the NCL for the many days and nights of work, talk, and

no-sleep we spent to the hum of aria, takamine, and the cluster machines: Shaya

xii

Potter, Ravi Ghadia, Chris Vail, David Olshefski, Alex Sherman, Lei Zhang, Joeng

Kim, Angelos Stavrou, Nikhil Tiwari, and Jae Yang. I was fortunate to work in many

projects with Angelos Keromytis and Kenneth Ocheltree, and I thank them for their

invaluable insight and guidance. Gail Kaiser and Henning Schulzrinne agreed to be

part of my committee, and provided great research discussions and valuable feedback

all through this process. I would also like to acknowledge the administrative staff

at the Computer Science department, including Alice Cueba, Twinkle Edwards, Pat

Hervey, and Remiko Moss, who helped me navigate the intricate bureaucracy that

Columbia can be, always with a smile on their face.

Thanks to my parents, Maria Mercedes and Alvaro Germán, who taught me,

pushed me, and supported me through everything, and without whom I would not

be here. My sister Paola and my brother Germán for always being there. And the

rest of my family for your support and for being who you are.

Finally, thank you to all the friends that pushed me through the end of this

process: Liz, Alison, Nat, Julie, Carolyn, Dennis, Michelle and Pat. Without your

looks of disbelief upon hearing my story, the subsequent heckling and worrying, and

most of all your friendship, this dissertation may have been left collecting dust forever.

Special thanks to Ing. Dustin Byford for providing beer when it was most needed.

And thanks to Jet for keeping me honest.

This work was supported in part by a DOE Early Career Award, AMD, Google,

Sun Microsystems, an IBM SUR Award, NSF grants CNS-0717544, CNS-0914845,

CNS-0905246, CNS-0714277, CNS-0426623, CCR-0219943, and ANI-0240525, and

AFOSR MURI grant FA9550-07-1-0527.

xiii

A Nicolás y Daniel Julián,

estrellas del presente, dueños del futuro

xiv

Chapter 1 1

Chapter 1

Introduction

The advent of networking technology has enabled the transformation of our computing

world from one of complete isolation, where physical data movement provides the

only link between computers, to a world where computers and devices of all kinds

are interconnected to one another. Furthermore, continuing advances in network

capacity, performance, and ubiquity have enabled the proliferation of technologies

that extend our computing environment beyond the boundaries of a single computer,

a phenomenon many have denominated the dis-integration of the computer.

In this world, network connections replace what once were internal communi-

cation paths in the computer. For example, using network storage, our data can be

spread out across multiple computers, while permitting us to maintain a single names-

pace view, and, more importantly, ubiquitous access to it. Similarly, computational

clusters and grid computing are able to harness the power of discrete machines in dis-

parate geographical connections to work as a single entity with massive computational

power.

CHAPTER 1. INTRODUCTION 2

Figure 1.1 – Remote Display Architecture. Display output from the computer’s
desktop that would normally be delivered to locally attached devices, is redirected over
the network to a client to be displayed. In response to the user interacting with the
desktop, input events are generated and forwarded from the client back to the computer.

Another example of this dis-integration is remote display. Remote display is a

client/server technology that decouples a computer from the devices used to access

and interact with it, in particular its monitor, keyboard, and mouse, and uses the

network to provide a communication channel between these devices and the computer.

Figure 1.1 shows the architecture and mode of operation. Graphical output from the

computer’s desktop that would normally be sent to the local video hardware, is instead

intercepted and redirected over the network in the form of a remote display protocol

to a client to be displayed. Similarly, in response to the user interacting with the

desktop, input events are generated and forwarded from the client back to the server.

While simple in theory, this architecture can be used in powerful ways to provide

a number of benefits. For example:

• Ubiquitous access. Remote display enables ubiquitous access to complete desk-

top environments or individual applications, only requiring a network path to

connect the client to the target computer. Since the required client function-

CHAPTER 1. INTRODUCTION 3

ality is so basic, it can be provided almost everywhere, using anything from

a simple viewer application that can be embedded in web browsers [150], to

simple devices like cellphones or PDAs [46, 106], or specialized lightweight ter-

minals [141, 168].

• Remote collaboration. As the display output is redirected over the network,

it can also be replicated and forwarded to multiple clients simultaneously. In

this manner, groups of globally distributed users can collaborate by sharing

access to a single computer and the applications and instruments on it. It also

enables more efficient sharing and utilization of specialized equipment that can

be centrally located and time-shared over the network.

• Online help. Remote display creates a new paradigm for providing live com-

puter help and technical support. Sharing the user desktop provides the perfect

environment for either showing somebody else how to perform a computer task,

or helping them troubleshoot a problem [24, 36, 71, 130, 162].

• Virtual displays. Using remote display technology, it is possible to enable mul-

tiple displays from disparate computers to behave as belonging to one single

computer and be controlled by either one or multiple users [29, 156]. It also

enables remote displays to be used as extensions of the local display [158], for

example to control display walls or external equipment.

• Smart displays. Stand alone displays, such as public large screen monitors,

TVs, and projectors, can become live components of the network that can be

accessed and manipulated remotely and on-demand [96]. For example, screens

distributed across an office can be used to automatically display a user’s desktop

when they detect the owner’s presence nearby [11, 26].

CHAPTER 1. INTRODUCTION 4

• Thin-client computing. Remote display is the core enabling technology for thin

clients. Thin-client computing offers a solution to the rising management com-

plexity and security hazards of the current desktop computing model to return

to a more centralized computing strategy. A thin-client system functions by

moving all application processing and data to centralized servers and secure

server rooms, and using a remote display system to provide access to these

servers from thin client devices. In this model, the edges of the network, where

management is more costly, are composed of simple devices that require little

or no maintenance. These devices are low-power, produce very little heat and

noise, and in case of failure can be simply discarded and replaced with new ones.

In addition, they are stateless and do not store any sensitive data that can be

lost or stolen, and do not need to be backed up or restored. Furthermore, server

resources can be physically secured in protected data centers and centrally ad-

ministered, with all the attendant benefits of easier maintenance and cheaper

upgrades. Finally, computing resources can be consolidated and shared across

many users, resulting in more effective utilization of hardware.

• Desktop virtualization. By decoupling applications from the underlying display

hardware, remote display enables desktop environments to be completely encap-

sulated, and possibly moved across computers. For example, combining remote

display and operating system virtualization technologies, users can carry their

desktop on a portable storage device, allowing them to maintain a consistent

desktop environment even as they move across computers [112, 113].

• On-demand application access. Remote display can be used to provide re-

mote access to a centralized pool of application servers, enabling more cost-

effective application licensing, and better utilization of both applications and

CHAPTER 1. INTRODUCTION 5

resources[22, 86]. It also enables specific tailoring of computing resources, since

different applications can be assigned to specific servers according to the ap-

plication’s profile and needs (e.g. I/O intensive, compute intensive, requiring

specialized hardware).

Given these benefits it is not surprising the sheer number of remote display systems

available today [17, 23, 36, 46, 47, 71, 75, 82, 95, 106, 120, 141, 142, 144, 150, 163, 170].

In addition, the market has been and is expected to continue to grow substantially [31,

37, 143, 165], as seen in the increasing number of startup companies [16, 28, 79, 108,

116, 128, 131], and the ongoing standards work in the area [96].

However, remote display systems face a number of technical challenges before

achieving mass acceptance. The most salient of these is the need to provide a high

fidelity visual and interactive experience for end users across the vast spectrum of

graphical and multimedia applications commonly found on traditional desktop com-

puters. For example, as Figure 1.2 shows, many of the most popular remote display

systems are unable to provide desktop-like audio/video playback performance, even

in the presence of optimal network conditions.

Most of these systems have focused on supporting office productivity tools in LAN

environments, and reducing data transfer for low bandwidth links such as ISDN and

modem lines. This focus has resulted in the majority of the work done in this area to

be centered on the remote display protocol, either towards augmenting it to support

higher-level primitives which can better represent certain application requests [83, 84],

or in developing better compression algorithms [19, 20]. While these approaches have

resulted in improvements for the scenarios mentioned above, they have also resulted in

many systems being unable to effectively support more display-intensive applications

which have become an integral part of today’s desktop environments, or to operate

CHAPTER 1. INTRODUCTION 6

0%

20%

40%

60%

80%

100%

PC ICA RDP GoTo
MyPC

X NX VNC Sun
Ray

A
/V

 Q
u
a
li
ty

Platform

LAN Desktop
WAN Desktop

Figure 1.2 – Audio/Video playback performance of popular remote display
systems. None of the systems is able to provide 100 % audio/video playback quality,
even in the most favorable network conditions

effectively in the increasingly ubiquitous higher latency wide-area network (WAN)

environments. WAN performance is particularly important given the growing number

of application service providers attempting to provide desktop computing services over

the Internet [46, 131].

In this context, we introduce THINC (THin-client InterNet Computing), a virtual

and remote display architecture for desktop computing. THINC has been designed to

address the limitations and performance shortcomings of all previous remote display

systems, and to provide a building block around which new and improved desktop

architectures and services can be built.

In designing THINC we departed from the mainstream view of tying remote dis-

play performance to the design of the remote display protocol. Instead, we argue

that, while having a suitable remote display protocol is important, the architecture

of the system is just as important to the performance of the system. To guide the

CHAPTER 1. INTRODUCTION 7

process of designing and implementing the architecture of THINC we followed these

goals:

• Responsiveness: Our measure of success, and the focus of our efforts was low

user-perceived latency. THINC should provide an experience as close as possible

to existing desktop computers.

• Transparency: THINC should not require any modifications to existing operat-

ing systems, window systems, and applications.

• Client simplicity: THINC clients should be simple to implement, and be able

to run across a large number of hardware and software architectures.

• User mobility: THINC users must be able to seamlessly connect and disconnect

from many clients, without losing any session state or data.

THINC is architected around the notion of a virtual display device driver, a

software-only component that behaves like a traditional device driver. Instead of

managing a specific video hardware instance, the virtual device driver creates an

abstraction of the computer’s display hardware, and enables display output to be

seamlessly intercepted, manipulated, and redirected. Reusing the device driver inter-

face enables THINC to be completely transparent to existing applications, window

systems, and operating systems, while allowing it to leverage existing display systems

functionality and have access to a wealth of display-related semantic information.

THINC’s virtual device driver also completely encapsulates the state of the display,

enabling applications and the desktop environment to become independent from both

the underlying display hardware, and the characteristics of the client device being used

to interact with them.

CHAPTER 1. INTRODUCTION 8

On top of this virtual device architecture, THINC introduces a simple, low-level,

device-independent format to represent changes to the display. On a remote display

context, this representation becomes a simple protocol that closely mimics a common

set of operations natively supported by most commodity display hardware. In this

manner, clients become simple, stateless entities that do little more than receive up-

dates from the network and redirect them to their underlying hardware. Outside of

remote display, this representation can also be used in many other scenarios, for ex-

ample to provide a compact and easily reproducible representation of desktop display

changes for archival purposes.

The virtual device and protocol are brought together with a number of novel

optimizations and techniques to perform efficient translation from application requests

received by the virtual device driver to THINC’s protocol, and then to efficiently

deliver the resulting protocol commands to clients across the network. In Chapter 2

we show how this core architecture can provide superior remote display performance,

and can efficiently cope with high-latency network environments.

However, simply improving basic remote display performance is no longer enough

to fulfill the needs and expectations of today’s desktop users. As previously men-

tioned, a key feature missing from previous remote display solutions is support for

display intensive applications, and in particular, multimedia applications. These solu-

tions suffer from their inability to distinguish multimedia content, and their attempts

to apply ineffective and expensive compression algorithms on the rapidly changing

video data.

THINC addresses these shortcomings by leveraging its virtual device architecture

to provide a virtual “bridge” between the remote client hardware and desktop ap-

plications, allowing these to transparently use the hardware capabilities of the client

to perform multimedia operations across the network. As Chapter 3 describes, this

CHAPTER 1. INTRODUCTION 9

is accomplished by extending the virtual display device to provide video playback

acceleration. Alongside, THINC introduces a virtual sound device which can capture

and forward audio onto the client, and can receive audio data captured by the client

and forward it to applications. These two mechanisms are brought together using

a client-side synchronization mechanism which uses timing information generated by

the drivers to fully synchronize multimedia content. As our experimental results show,

this mechanism enables THINC to provide native, format-independent, and seamless

support for display intensive multimedia applications.

In designing THINC, one of our goals has been to provide seamless desktop access

across a multitude of devices. As wireless networks have become pervasive, small,

mobile personal devices such as PDAs and cellphones have become an integral part of

our computing environment. While native applications exist for these devices which

attempt to provide functionality found on their counterpart desktop applications, a

resource-constrained environment, coupled with differences in hardware and software

environments, oftentimes result in limited feature sets and subpar performance.

To address these problems, we present pTHINC, an alternative solution for en-

abling remote desktop access, and delivering application services on mobile handheld

devices by using thin-client computing. In this model, handheld devices become sim-

ple clients which communicate over a network with a server hosting desktop applica-

tions. This approach enables unmodified desktop applications to be used in mobile

devices, leveraging server resources to run all complex logic without taxing the con-

strained PDA resources, and provides stateless and secure access to these applications

and data associated with them.

In Chapter 4 we show how pTHINC leverages THINC’s virtualization to decou-

ple applications from the particulars of the client device, and seamlessly adapt the

display output to the best mode for the device being used. In particular for mobile

CHAPTER 1. INTRODUCTION 10

devices, pTHINC is able to resize updates on the fly, enabling the user to zoom in and

out of the desktop as needed. pTHINC couples this with a number of user interface

optimizations tailored specifically to the characteristics of mobile devices. The result-

ing solution is able to outperform and provide better usability than both previously

available solutions and native applications.

THINC can also be leveraged to build desktop computing systems beyond remote

display. Chapters 5 and 6 describe two examples of these.

In Chapter 5, we introduce MobiDesk [14], an architecture that leverages THINC

display virtualization and remote display architecture to create a desktop utility com-

puting infrastructure. MobiDesk transparently virtualizes a user’s computing session

and decouples it from any particular end-user device, allowing all application logic

to be moved to hosting providers. MobiDesk’s virtualization layer also decouples a

user’s computing session from the underlying display hardware, operating system,

and server instance, enabling high-availability service by transparently migrating ses-

sions from one server to another during server maintenance or upgrades. We also

present A2M [135], a mechanism to protect MobiDesk’s hosting infrastructure from

distributed denial of service attacks [30]. A2M combines a stateless and secure commu-

nication protocol, an indirection-based network (IBN) and THINC’s remote display

architecture to provide continuous access to hosted desktop sessions. A2M takes ad-

vantage of THINC’s low-latency remote display mechanisms and asymmetric traffic

characteristics by using multi-path routing to send a small number of replicas of each

packet transmitted from client to server.

Chapter 6 presents how THINC has been integrated into DejaView [67], a per-

sonal virtual computer recorder that provides a complete recording of a user’s desktop

computing. THINC’s virtualization is leveraged by DejaView to provide efficient and

transparent recording of all display output of a desktop session. Combined with

CHAPTER 1. INTRODUCTION 11

automatic, application-independent text capture and indexing, and user-generated

annotation capabilities, it provides a novel mechanism for users to gain visual ac-

cess to all information they have come in contact with on their desktop. Similar in

functionality to a PVR, users of this system can seamlessly playback, browse, and

search the recorded data. Furthermore, DejaView uses application and file system

virtualization and checkpointing, so that users can not only search and view their

recorded data, but also interact with it by reviving the state of their desktop at any

point in the past.

1.1 Contributions

The contributions of this dissertation include:

1. The architecture of THINC, especially

• Its virtual device driver which transparently intercepts display output in

an application and OS agnostic manner;

• Its efficient translation mechanism from high-level application display re-

quests to low-level protocol primitives;

• Its delivery architecture which prioritizes latency-sensitive updates, can

discard stale updates, and operates without blocking applications, or the

operating system;

2. A novel approach to efficient remoting of multimedia applications;

3. A system (pTHINC) to support remote display to mobile devices, using auto-

matic display resizing, rotation, and efficient network usage;

CHAPTER 1. INTRODUCTION 12

4. THINC’s use in MobiDesk, a personal desktop hosting infrastructure, and A2M,

a way to protect hosted desktops from distributed denial of service attacks;

5. THINC’s use in DejaView, a personal virtual computer recorder that provides

a complete recording of a desktop computing experience;

6. An extensive experimental evaluation of the performance of THINC;

7. A software implementation of THINC.

The current implementation of THINC is available for download from http://

www.ncl.cs.columbia.edu/research/thinc/download/

1.2 Dissertation Roadmap

The rest of this dissertation is organized as follows. Chapter 2 presents the core

remote display architecture of THINC. Chapter 3 discusses the native multimedia

support in THINC. Chapter 4 introduces pTHINC, a remote display system for mo-

bile devices. Chapter 5 presents MobiDesk, a system which can be used to centrally

host desktop sessions and A2M, a way to protect MobiDesk-type desktop hosting

infrastructures from DDoS attacks. Chapter 6 presents DejaView, a personal vir-

tual computer recorder. Chapter 7 discusses related work, and Chapter 8 presents

conclusions and future work.

http://www.ncl.cs.columbia.edu/research/thinc/download/
http://www.ncl.cs.columbia.edu/research/thinc/download/

Chapter 2 13

Chapter 2

THINC Architecture

This chapter introduces the remote display and virtualization architecture of THINC.

It begins by describing how remote display systems work, and the design choices which

need to be made to construct one. Building on this discussion it describes the design

of THINC, its architecture, and the different mechanisms THINC uses to provide

efficient remote display. It follows with a discussion of implementation details, and

finishes with an experimental evaluation of the performance of THINC compared to

existing remote display systems.

2.1 Remote Display Design

A remote display system decouples a desktop computer from the devices used to

interact with it. In particular, the monitor, keyboard, and mouse no longer need to

be directly attached to the physical ports in the computer in order to interact with it.

Instead, a network connection is used to provide a communication channel between

these devices and the computer. Graphical output from the computer’s desktop,

that would normally be sent to the local video hardware, is instead intercepted and

CHAPTER 2. THINC ARCHITECTURE 14

redirected over the network to a client to be displayed. Similarly, in response to the

user interacting with the desktop at the client, input events are generated and sent

back to the server. The client and server use a remote display protocol for this back

and forth communication.

As discussed in the introduction to this dissertation, this decoupling has a number

of benefits and applications. For example, providing ubiquitous access to desktop

computers, fostering remote collaboration, and enabling more cost-effective ways to

manage desktop computers. As a result, remote display systems have become widely

popular, which in turn has led to the development of many different systems. This

has also made remote display performance a topic of large interest.

While existing systems differ in many aspects, most of the work done to improve

their performance has focused on the remote protocol: exploring what primitives

should be used to represent display changes on the desktop, and designing new com-

pression algorithms better suited for remote display traffic.

In this context, THINC was developed to address the limitations and performance

shortcomings of existing remote display systems, and to provide a building block

around which new and improved desktop architectures and services can be built.

With THINC we departed from the mainstream view of focusing on the protocol,

and argue that, while having a suitable remote display protocol is important, the

architecture of the system is just as important to the performance of the system. To

guide the process of designing and implementing THINC we followed these goals:

• Responsiveness: Our measure of success, and the focus of our efforts was low

user-perceived latency. THINC should provide an experience as close as possible

to existing desktop computers.

• Transparency: THINC should not require any modifications to existing operat-

CHAPTER 2. THINC ARCHITECTURE 15

ing systems, window systems, and applications.

• Client simplicity: THINC clients should be simple to implement, and be able

to run across a large number of hardware and software architectures.

• User mobility: THINC users must be able to seamlessly connect and disconnect

from many clients, without losing any session state or data.

A significant part of the design process of THINC consisted of examining existing

systems, and evaluating the relationships between the architectural design choices

made by their authors and the final system. Thus, the first step in presenting the

design and architecture of THINC must be to discuss these. Before delving into this

discussion, it is beneficial to discuss the display architecture of a typical desktop

computer on which all remote display systems are based.

As Figure 2.1 shows, a computer’s display system works as a pipeline, with desktop

applications on one end, and the framebuffer and input devices at the other. The

purpose of this architecture is to allow applications to generate visual output to

users, and in turn to receive input events generated by the users as they interact with

applications.

To illustrate how this works, we will show the process triggered by a user clicking

on a hyperlink on a web page displayed by a web browser. The hyperlink points to

an image which gets loaded on the screen in response to the user clicking on it.

1. The user clicks on the link, and an interrupt is generated by the mouse, caught

by the operating system kernel and passed to the mouse device driver. Along

with this interrupt, the mouse generates a data packet describing the input

event. In our case, two packets will be generated. One describing that the

left mouse button was pressed, one describing that the left mouse button was

depressed.

CHAPTER 2. THINC ARCHITECTURE 16

Figure 2.1 – Standard display architecture

2. The driver reads and decodes the data packet, translates it to a device-independent

format the window system can understand, and passes it on.

3. The window system reads the input information from the device driver, and

from the information generates an input event for the application:

Left mouse button (de)pressed at coordinates X,Y

It will also inform the application on which of its windows the click occurred.

Since user-perceived latency is critical, this event is passed to the application in

such a way to guarantee the speediest delivery possible, normally through some

asynchronous notification mechanism.

CHAPTER 2. THINC ARCHITECTURE 17

4. The application is woken up, receives and processes the input event. In our

example, the web browser will receive both the mouse pressed and depressed

events, realize they occurred over a hyperlink, and follow the link.

5. The image is read from the network, decoded, and converted to a collection

of pixels by the web browser. These pixels are ordered in a format that is

understood (and perhaps negotiated at initialization time) by both application

and window system. Then, a request is sent to the window system to replace

the current contents of the application’s window with the rendered image:

Draw image of size WxH at coordinates Xi, Yi

Read the image data from buffer B

For performance reasons, in particular when dealing with large sizes, it is com-

mon for images to be transferred from the application to the window system

using some shared memory mechanism, and for this shared memory to be ex-

posed all the way down to the driver. We will assume this is the case here.

6. The window system receives the request, performs any necessary checks related

to window management, and converts the high level application request to a low-

level request to the video device driver. In our simplified example, this high-level

to low-level mapping is one-to-one, but many other application requests have

to be broken down into simpler device driver requests.

7. Finally, the device driver receives the request, reads the image data, and passes

it to the video card. The video card takes care of adding the image data to

the current contents of the framebuffer and sending the updated framebuffer

contents to the computer’s display. At this point the user sees the image on the

screen.

CHAPTER 2. THINC ARCHITECTURE 18

With this architecture in mind, we can begin discussing the design of THINC by

exploring the decisions made for other systems, their advantages and disadvantages,

and the choices we made for THINC. The following discussion will examine these

choices with a focus on driving the discussion of the architecture of THINC. Chapter

7 has a more in depth discussion of the specific design choices and architecture of the

most popular remote display systems in use today.

In general, three major choices need to be made when designing a remote display

system:

1. where in the graphics pipeline display commands from applications are inter-

cepted,

2. what display primitives are used for sending updates over the network, and

3. how these commands are translated and sent from server to client.

The following sections discuss each of these in detail.

2.2 Display Virtualization

The first choice to be made when designing a remote display system is where in

the graphics pipeline display updates are intercepted. Given the display architecture

described above, there are three possible layers at which a remote display system may

intercept graphical output and redirect it to the client: (1) the graphics library layer,

(2) the framebuffer layer, and (3) the display driver layer. Figure 2.2 shows these

interception points.

The graphics library layer sits between the applications and the window system

proper. Interception at this layer is performed by providing replacement graphics

CHAPTER 2. THINC ARCHITECTURE 19

Figure 2.2 – Standard display pipeline. The possible interception layers are shown:
1. Graphics Library. 2. Hardware Framebuffer. 3. Device Driver. THINC uses the
device driver layer for its virtualization architecture.

libraries, or in systems with client/server display architectures, a proxy server can

provide the desired interception and redirection. In this model, everything below and

including the window system is executed on the client.

Intercepting at this level has the advantage of giving the remote display system

complete knowledge and control, since not only drawing requests, but also window

and general management requests, are intercepted. Unfortunately it also has two

drawbacks. First, executing the window system on the client results in the client

holding a large amount of state (some of it possibly critical to the functioning of the

desktop), which directly affects the mobility and ubiquitous access benefits of using

a remote display system, and goes counter to one of our design goals. Second, since

application logic and its user interface are typically tightly coupled, running the user

CHAPTER 2. THINC ARCHITECTURE 20

interface on the client and the logic on the server may result in a need for continuous

synchronization over the network. In high-latency wide area network environments

this kind of synchronization leads to substantial performance degradation.

The framebuffer layer sits at the bottom of the pipeline, and contains the finished

rendered contents of the screen as they will be transmitted to the computer’s monitor.

When intercepting at this layer all display updates are reduced to raw pixel values.

The resulting framebuffer data is read back, encoded, and compressed, a process

called screen scraping.

Screen scraping is a simple process, and decouples the processing of application

display commands from the generation of display updates sent to the client. Servers

must do the full translation from application display commands to actual pixel data,

but clients can be made extremely simple and stateless, since all they are required

to do is transfer pixel data from the network to the screen. Unfortunately, display

updates consisting of raw pixels alone are typically too bandwidth-intensive. For

example, using them to encode display updates for a video player displaying at 30

frames per second (fps) full-screen video clip on a typical 1024x768 24-bit resolution

screen would require over 0.5 Gbps of network bandwidth.

While compressing the raw pixel data will alleviate the bandwidth consumption,

generating display updates in this manner is fundamentally inefficient since the orig-

inal display semantics are lost and cannot be used in the process. For example, an

application request that fills the screen with one color, would result in the following

process:

1. The framebuffer is filled with the requested color,

2. The complete screen is marked as having changed,

3. The remote display system reads back the full framebuffer contents and tries to

CHAPTER 2. THINC ARCHITECTURE 21

compress it, and

4. The compression algorithm realizes the screen is filled with one color and sends

this simple update to the client.

If the server had some a-priori notion of what was drawn it could have done a

much more efficient translation from the color fill to what it sent to the client.

Finally, the device driver layer sits below the window server proper and above the

framebuffer. This is a well-defined, low-level, device-dependent layer that presents

the video hardware and its capabilities to the display system above. In a typical

desktop system, this layer is used to implement hardware-specific display drivers that

enable the use of a particular video card.

Intercepting at this layer provides a best of both worlds approach when compared

with the first two layers. There’s enough state and information for the remote display

to optimize the translation from graphics updates to remote display commands. Very

little state is kept within the clients, allowing users to be very mobile. Clients also

have the potential to be very simple in the case where the protocol mimics the device

driver interface. Its main drawbacks come from the fact that its neither intercepting

with full knowledge, as the graphics library layer does, nor does it have the straight-

forward simplicity of only having to deal with raw pixel values as intercepting at the

framebuffer does. It also has some implementation challenges as some of the abstrac-

tions of the device driver layer may have strong assumptions about the underlying

hardware, and in some cases may desire or require direct access to it. This latter

issue is more prevalent when dealing with 3D applications.

As Figure 2.3 shows, THINC’s architecture is based on intercepting at this layer.

Instead of providing a driver for a particular piece of display hardware, THINC vir-

tualizes the display by introducing a simple display driver that intercepts drawing

CHAPTER 2. THINC ARCHITECTURE 22

Figure 2.3 – THINC virtual display architecture

commands, packetizes them, and sends them over the network to a client device to

display. We call this a virtual display driver because once THINC runs, the window

system and the applications continue to believe they have access to a physical video

card, with its associated framebuffer and video memory, and use it the same way as

they would a traditional graphics card. The virtual display driver is also able to ab-

stract any differences that various client hardware may have, and provide a consistent

view as users move from one client to another. Similarly, THINC uses virtual input

device drivers in order to handle input events coming from input devices in the client,

such as its mouse and keyboard. The input drivers take care of transparently passing

events back to the system and applications. In addition, they provide consistency as

users connect from different clients, with potentially different input devices.

THINC’s virtual device approach provides several important benefits directly re-

CHAPTER 2. THINC ARCHITECTURE 23

DRAW
COMMANDS

Translation
Layer

Delivery
Layer

Network

DISPLAY
PROTOCOL

THINC
COMMANDS

Figure 2.4 – THINC architecture components

lated to our design goals. First, because the device layer sits below the window

server proper, THINC avoids re-implementing display system functionality already

available, resulting in a simpler system that can leverage existing investments in win-

dow server technology. Second, using a standard interface enables THINC to work

seamlessly with existing unmodified applications, window systems, and operating sys-

tems. Third, THINC can support new video hardware features with at most the same

amount of work necessary to support them in traditional hardware-specific display

drivers, allowing it to keep pace with continuous developments in desktop graphics.

Fourth, since the video device driver layer still provides semantic information re-

garding application display commands, THINC can utilize those semantics to encode

application commands and transmit them from the server to the client in a manner

that is both computationally and bandwidth efficient.

The virtual device driver encapsulates THINC’s three architectural components:

(1) the device driver interface which exposes the drawing functionality to the window

system using the standard display driver interface, (2) the translation layer which is

in charge of taking display driver commands and converting them to THINC protocol

primitives, and (3) the delivery layer which takes the generated protocol primitives

and delivers them to the client.

Figure 2.4 shows these components, and how they interact with each other. The

process to generate display updates as applications draw to the screen is as follows:

CHAPTER 2. THINC ARCHITECTURE 24

• A handler for each supported draw operation is exported from THINC’s virtual

device driver to the window system. As application draw requests are received,

the window system calls the appropriate handler to service the request.

• Each handler knows the corresponding set of THINC commands which should

be generated in response to its respective draw operation. When the handler

is called, it examines the request (its arguments and any context or state as-

sociated with the request) and decides which command should be generated.

The handler now passes a request to the translation layer to generate a new

command of the appropriate type.

• The translation layer takes all necessary information, and creates a new com-

mand. In the simplest scenario, this command is then immediately passed to

the delivery layer to be sent to the client. However, as will be discussed later

on, in many cases the command may not affect the visible parts of the screen,

and instead may be recorded for future usage.

• Once the delivery layer receives the command, it may decide to send it im-

mediately, or, in the more common case, buffer it to be sent at a later time.

Buffering allows THINC to employ a number of mechanisms that improve the

performance of the system and its interactive response.

• Eventually, the delivery layer decides to send the command to the client, at

which point it will modify the command to fit the current characteristics of the

client, and then generate the network representation of the command, and send

it over the network.

Choosing the interception point in the graphics pipeline provides the basic un-

derpinning for the architecture of THINC. Our choice of intercepting at the device

CHAPTER 2. THINC ARCHITECTURE 25

driver layer provides the right set of characteristics and benefits for our design goals.

It also helps drive the choices made for the rest of the system. The following sections

will focus on the remaining design choices: what primitives to use to send updates

over the network, and how application commands are translated to these primitives

and delivered to the client.

2.3 Remote Display Protocol

The second choice to be made when designing a remote display system is what prim-

itives are used for sending updates over the network to the client. These display

primitives are collectively called the remote display protocol. As discussed before,

this is the area where most display systems have focused their attention as they seek

to improve the performance of their systems. In many cases, the choice of display

primitives is tightly coupled with the choice of where to intercept in the graphics

pipeline. For example, systems intercepting at the graphics layer tend to use high

level primitives that closely resemble the requests they are intercepting. Similarly,

systems intercepting at the framebuffer layer tend to choose to have a single primitive

which carries compressed pixel values that they extract from the framebuffer.

The choice of display primitives is an important one because it has a direct cor-

relation to bandwidth consumption and the complexity of the clients. High level

primitives are very efficient at encoding complex drawing operations. For example,

sending an order to the client to draw a line on the screen is many times more com-

pact than sending all the pixels affected once the line is drawn on the screen. At the

same time, these high level primitives require the client to have large complex logic to

be able to execute the orders. Continuing with the line drawing example, the client

will need to be able to draw different types of lines, and perform anti-aliasing when

CHAPTER 2. THINC ARCHITECTURE 26

drawing diagonal lines. High level primitives can also have large state associated with

them. This state needs to be kept at the client so it can execute the drawing operation

correctly, but it also needs to be replicated on the server so clients can disconnect

and reconnect.

As expected, systems at the other end of the spectrum which employ only one

primitive have very simple and stateless clients: all they have to do is read packets

from the network, decode the pixel values, and put them on the screen. Some of the

compression algorithms used by these systems can be decoded directly in hardware

(dedicated or in more recent times using the computational facilities of modern video

cards), which leads to very specialized, compact, and straightforward clients.

The main drawback to this approach comes from having to use the same strategy

for any possible change in the screen. This one size fits all approach needs to deal

with disparate situations like how to encode a simple update which fills the screen

with one color, more complex discrete graphics like high resolution text displayed by

document processing applications, and fast changing, or continuous color graphics

displayed by video playback and photo processing applications. Designers for these

systems are normally faced with the choice of optimizing their algorithms for the

most common case at the expense of other scenarios, or providing an algorithm that

can deliver average performance for all cases. Traditionally the choice has been to

provide a good experience for office-centric document processing applications, the

most common scenario where remote display systems were used. However, with an

increasing user base with much broader application needs, and the advent of richer

user interfaces, these systems have been forced to develop more general algorithms

with higher computational needs or dedicated offloading hardware[85, 108, 153].

THINC follows the pattern of having its protocol be tied to the decision of where

graphics updates are intercepted. It uses a small set of low-level display commands

CHAPTER 2. THINC ARCHITECTURE 27

Command Description

RAW Display raw pixel data at a given location
COPY Copy frame buffer area to specified coordi-

nates
SFILL Fill an area with a given pixel color value
PFILL Tile an area with a given pixel pattern
BITMAP Fill a region using a bitmap image

Table 2.1 – THINC Protocol Display Commands. See Appendix A for a complete
description

that mirror a subset of the video display driver interface. The five commands used

in THINC’s display protocol are listed in Table 2.1. These commands were chosen

because they are ubiquitously supported, simple to implement, and easily portable

to a range of environments. They mimic operations commonly found in display

hardware found on client devices, and represent a subset of operations accelerated by

most graphics subsystems. Graphics acceleration interfaces for all major operating

systems use a set of operations which can be synthesized using THINC’s commands.

In this manner, clients need only translate protocol commands into hardware calls,

and servers avoid the need to do full translation to actual pixel data, greatly reducing

display processing latency.

THINC display commands are as follows.

• RAW is used to transmit unencoded pixel data to be displayed verbatim on a

region of the screen. This command is invoked as a last resort if the server is

unable to employ any other command, and it is the only command that may

be compressed to mitigate its impact on the network.

• COPY instructs the client to copy a region of the screen from its local frame-

buffer to another location. This command improves the user experience by

accelerating scrolling and opaque window movement without having to resend

CHAPTER 2. THINC ARCHITECTURE 28

screen data from the server.

• SFILL, PFILL, and BITMAP are commands that paint a series of fixed-size

regions on the screen. They are useful for accelerating the display of solid win-

dow backgrounds, desktop patterns, backgrounds of web pages, text drawing,

and certain operations in graphics manipulation programs. SFILL fills a sizable

region on the screen with a single color. PFILL replicates a tile over a screen

region. BITMAP performs a fill using a bitmap of ones and zeros as a stipple

to apply a foreground and, optionally, a background color.

For high fidelity display, all THINC commands are designed to support full 24-bit

color as well as an alpha channel, a feature not supported by remote display systems

that execute the graphical user interface of applications on the server. The alpha

channel enables THINC to support graphics compositing operations [111] and work

with more advanced window system features that depend on these operations, such

as anti-aliased text. Although graphics compositing operations have been used in the

3D graphics world for some time, only recently have they been used in the context of

2D desktop graphics. As a result, there is currently a dearth of support for hardware

acceleration of these operations, particularly with low-end 2D only cards commonly

used in more modest machines. In particular, low-end 2D-only cards, which provide

the perfect platform for remote display systems, often lack this type of support.

THINC provides support for graphics composition by leveraging available client

hardware acceleration support only when present. In its absence, THINC’s virtual

device driver approach allows it to transparently fall back to the software implemen-

tation provided by the window system precisely for video cards lacking hardware

support. By doing so, THINC guarantees the simplicity of the client while utilizing

the faster server CPU to perform the software rendering.

CHAPTER 2. THINC ARCHITECTURE 29

The choice of primitives used by the THINC protocol attempts to strike a balance,

where typical screen operations can be represented directly and delivered efficiently,

while still allowing clients to be simple and stateless. For more complex drawing

operations it can fall back to generic, raw pixel values, where it can take advantage

of advances in compression algorithms, or, as we will discuss in Chapter 3, leveraging

hardware acceleration interfaces to use more scenario-specific primitives, for example

for video playback.

2.4 Display Update Translation

The final design choice for developing a remote display system is the process by which

intercepted graphics commands from applications are translated to protocol primitives

and delivered to the client. Given our focus on the architecture of the system as the

core mechanism for providing good performance, this part of THINC is the most

important one, and the one where we spent most of our effort. We believe that by

providing an efficient and smart translation, leveraging semantic information available

at our interception point, and appropriately choosing when to send commands, and

which commands to send, THINC can provide superior performance and meet our

design goals.

For this reason, we have split this discussion in two parts. This section describes

the translation process, how it leverages semantic information provided at the time we

intercept updates, and the data structures and optimizations we developed to make

the process efficient. In the following section we will discuss the delivery process,

its interface with the translation component, and how the system decides when and

which updates to send.

The key aspect behind THINC’s translation mechanism is how it utilizes the

CHAPTER 2. THINC ARCHITECTURE 30

virtual display approach to transparently intercept application display commands

and translate them efficiently into THINC commands. There are three important

principles in how the translation is performed:

• First, as the window server processes application requests, THINC intercepts

display commands and translates the result into its own commands. By trans-

lating at the time the application display commands are processed, THINC can

use the semantic information available about the command (and which is lost

once processing is finished), to identify which command or commands should

be used. In particular, THINC can know precisely what display primitives are

used at the display device layer instead of attempting to infer those primitives

after the fact. THINC translation in many cases becomes a simple one-to-one

mapping to the respective THINC command. For example, a fill operation to

color a region of the screen a given color is easily mapped to a SFILL command.

• Second, THINC decouples the processing of application display commands and

their network transmission. This allows THINC to aggregate small display up-

dates into larger ones before they are sent to the client, and is helpful in many

situations. For example, sending a display update for rendering a single charac-

ter can result in high overhead when there are many small display updates being

generated. Similarly, some application display commands can result in many

small display primitives being generated at the display device layer. Rasteriz-

ing a large image is often done by rendering individual scan lines. The cost of

individually processing and sending scan lines can degrade system performance

when an application does extensive image manipulation.

• Third, THINC preserves command semantics throughout the processing of ap-

plication display requests and manipulation of the resulting commands. Since

CHAPTER 2. THINC ARCHITECTURE 31

THINC commands are not immediately dispatched as they are generated by the

server, it is important to ensure that they are correctly queued and their seman-

tic information preserved throughout the command’s lifetime. For example, it

is not uncommon for regions of display data to be copied and manipulated. If

copying from one display region to another is done by simply copying the raw

pixel values, the original command semantics will be lost in the copied region.

If THINC commands were reduced to raw pixels at any time, semantic infor-

mation regarding those commands would be lost making it difficult to revert

back to the original commands to efficiently transmit them over the network.

THINC’s translation layer builds on these three principles by utilizing two ba-

sic objects: the protocol command object, and the command queue object. Protocol

command objects, or just command objects, are implemented in an object-oriented

fashion. They are based on a generic interface that allows the THINC server to op-

erate on the commands, without having to know each command’s specific details.

On top of this generic interface, each protocol command provides its own concrete

implementation.

As previously mentioned, translated commands are not instantly dispatched to

the client. Instead, depending on where drawing occurs and current conditions in

the system, commands normally need to be stored and groups of commands may

need to be manipulated as a single entity. To handle command processing, THINC

introduces the notion of a command queue. A command queue is a queue where com-

mands drawing to a particular region are ordered according to their arrival time. The

command queue keeps track of commands affecting its draw region, and guarantees

that only those commands relevant to the current contents of the region are in the

queue. As application drawing occurs, the contents of the region may be overwritten.

CHAPTER 2. THINC ARCHITECTURE 32

In the same manner, as commands are generated in response to these new draw oper-

ations, they may overwrite existing commands either partially or fully. As commands

are overwritten they may become irrelevant, and thus are evicted from the queue.

Command queues provide a powerful mechanism for THINC to manage groups of

commands as a single entity. For example, queues can be merged and the resulting

queue will maintain the queue properties automatically.

To guarantee correct drawing as commands are overwritten, the queue distin-

guishes among three types of commands based on how they overwrite and are over-

written by other commands.

• Partial commands are opaque commands which can be partially or completely

overwritten by other commands. For example, a RAW command representing

an image to be displayed inside a window could have parts of it obscured by

another window, or completely overwritten before it is sent over the network. In

the case where the partial command is partially overwritten it is more efficient

to clip it than to send the original unmodified command.

• Complete commands are opaque commands that can only be completely over-

written. The distinction between complete and partial commands is made for

performance reasons. Sometimes it is more expensive to break up a command

and send the partially overwritten result, than to transmit the original com-

mand. Both SFILL and PFILL are examples of complete commands. To help

illustrate this point, let us consider the case of the SFILL command. This

command has the following structure:

| fill color | list of rectangles to fill |

Now lets examine the case of a typical web page with a solid white background,

CHAPTER 2. THINC ARCHITECTURE 33

and some text and images. The way this page will be rendered will roughly

follow this process:

1. Fill the browser window with white color.

2. Add images on top of the white background.

3. Render text on top of the white background.

If the SFILL command resulting from step 1 was allowed to be overwritten by

the subsequent commands generated by steps 2 and 3, the list of rectangles to

fill would grow from a single rectangle, to possibly tens or hundreds, depending

on the complexity of the additional web page elements. Breaking up the SFILL

command in this manner would result in additional computational complexity

at the server to properly manipulate the command, increased bandwidth use

dominated by the extra number of rectangles (and very possibly negating the

advantages of using the SFILL command in the first place), and a performance

impact on the client which would need to fill each single rectangle in turn.

• Finally, Transparent commands are commands that depend on commands pre-

viously generated and do not overwrite commands already in the queue.

The command queue guarantees that the overlap properties of each command

type are preserved at all times.

2.4.1 Offscreen Drawing

Today’s graphic applications use a drawing model where the user interface is prepared

using offscreen video memory; that is, the interface is computed offscreen and copied

onscreen only when it is ready to present to the user. This idea is similar to the double-

CHAPTER 2. THINC ARCHITECTURE 34

and triple-buffering methods used in video and 3D-intensive applications. Although

this practice provides the user with a more pleasant experience on a regular local

desktop client, it can pose a serious performance problem for remote display systems.

Remote display systems typically ignore all offscreen commands since they do not

directly result in any visible change to the framebuffer. Only when offscreen data are

copied onscreen does the remote display server send a corresponding display update

to the client. However, all semantic information regarding the offscreen data has been

lost at this point and the server must resort to using raw pixel drawing commands

for the onscreen display update. This can be very bandwidth-intensive if there are

many offscreen operations that result in large onscreen updates. Even if the updates

can be successfully compressed, this process can be computationally expensive and

would impose additional load on the server.

To deliver effective performance for applications that use offscreen drawing oper-

ations, THINC provides a translation optimization that tracks drawing commands as

they occur in offscreen memory. The server then sends only those commands that

affect the display when offscreen data are copied onscreen. THINC implements this

by keeping a command queue for each offscreen region where drawing occurs. When

a draw command is received by THINC with an offscreen destination, a THINC pro-

tocol command object is generated and added to the command queue associated with

the destination offscreen region. The command queue guarantees that only relevant

commands are stored for each offscreen region, while allowing new commands to be

merged with existing commands of the same kind that draw next to each other.

THINC’s offscreen awareness mechanism also accounts for applications that create

a hierarchy of offscreen regions to help them manage the drawing of their graphical

interfaces. Smaller offscreen regions are used to draw simple elements, which are

then combined with larger offscreen regions to form more complex elements. This is

CHAPTER 2. THINC ARCHITECTURE 35

accomplished by copying the contents of one offscreen region to another. To preserve

display content semantics across these copy operations, THINC mimics the process

by copying the group of commands that draw on the source region to the destination

region’s queue and modifying them to reflect their new location. Note that the com-

mands cannot simply be moved from one queue to the other since an offscreen region

may be used multiple times as source for a copy.

When offscreen data are copied onscreen, THINC executes the queue of display

commands associated with the respective offscreen region. Because the display prim-

itives in the queue are already encoded as THINC commands, THINC’s execution

stage normally entails little more than extracting the relevant data from the com-

mand’s structure and passing it to the functions in charge of formatting and out-

putting THINC protocol commands to be sent to the client. The simplicity of this

stage is crucial to the performance of the offscreen mechanism since it should be-

have equivalently to a local desktop client that transfers pixel data from offscreen to

onscreen memory.

In monitoring offscreen operations, THINC incurs some tracking and translation

overhead compared to systems that completely ignore offscreen operations. However,

the dominant cost of offscreen operations is the actual drawing that occurs, which

is the same regardless of whether the operations are tracked or ignored. As a re-

sult, THINC’s offscreen awareness imposes negligible overhead and yields substantial

improvements in overall system performance, as demonstrated in Section 2.7.

2.5 Display Update Delivery

THINC schedules commands to be sent from server to client with interactive respon-

siveness and latency tolerance as a top priority. THINC maintains a per-client com-

CHAPTER 2. THINC ARCHITECTURE 36

mand buffer based on the command queue structure described in Section 2.4 to keep

track of commands that need to be sent to the client. While the client buffer main-

tains command ordering based on arrival time, THINC does not necessarily follow this

ordering when delivering commands over the network. Instead, alongside the client

buffer THINC provides a multi-queue Shortest-Remaining-Size-First (SRSF) preemp-

tive scheduler, analogous to Shortest-Remaining-Processing-Time (SRPT). SRPT is

known to be optimal for minimizing mean response time, a primary goal in improv-

ing the interactivity of a system [12]. The size of a command refers to its size in

bytes, not its size in terms of the number of pixels it updates. THINC uses remaining

size instead of the command’s original size to shorten the delay between delivery of

segments of a display update and to minimize artifacts due to partially sent com-

mands. Commands are sorted in multiple queues in increasing order with respect to

the amount of data needed to deliver them to the client. Each queue represents a size

range, and commands within the queue are ordered by arrival time. The current im-

plementation uses ten queues with powers of two representing queue size boundaries.

When a command is added to the client’s command buffer, the scheduler chooses the

appropriate queue to store it. The commands are then flushed in increasing queue

order.

Reordering of commands is possible with guaranteed correct final output as long

as any dependencies between a command and commands issued before it are handled

correctly. To demonstrate how THINC’s scheduler guarantees correct drawing, we

distinguish between opaque and transparent commands, and between the two classes

of opaque commands, partial and complete.

• Opaque commands completely overwrite their destination region. Therefore,

dependency problems can arise after reordering only if an earlier-queued com-

CHAPTER 2. THINC ARCHITECTURE 37

mand can draw over the output of a later-queued command. However, this

situation cannot occur for partial commands because the command queue guar-

antees that no overlap exists among these types of commands. Furthermore,

since complete commands are typical of various types of fills such as solid fills,

their size is constantly small and they are guaranteed to end up in the first

scheduler queue. Since each queue is ordered by arrival time, it is not possible

for these commands to overwrite later similar commands.

• On the other hand, transparent commands need to be handled more carefully

because they explicitly depend on the output of commands drawn before them.

To guarantee efficient scheduling, THINC schedules a transparent command C

using a two step process.

1. Dependencies are found by computing the overlap between the output

region of C and the output region of existing buffered commands. C will

depend on all those commands with which it overlaps.

2. From the set of dependencies, the largest command L is chosen, and the

new command is added to the back of the queue where L currently resides.

In this way, as queues are flushed in increasing order, THINC’s approach guar-

antees that all commands upon which C depends will have been completely

drawn before C itself is sent to the client. Although more sophisticated ap-

proaches could be used to allow the reordering of transparent commands, we

found that their additional complexity outweighed any potential benefits to the

performance of the system.

In addition to the queues for normal commands, the scheduler has a real-time

queue for commands with high interactivity needs. Commands in the real-time queue

CHAPTER 2. THINC ARCHITECTURE 38

take priority and preempt commands in the normal queues. Real-time commands are

small to medium-sized and are issued in direct response to user interaction with the

applications. For example, when the user clicks on a button or enters keyboard input,

she expects immediate feedback from the system in the form of a pressed button

image. Because a video driver does not have a notion of a button or other high-

level primitives, THINC defines a small-sized region around the location of the last

received input event. By marking updates which overlap these regions as real-time

and delivering them sooner as opposed to later, THINC improves the user-perceived

responsiveness of the system.

THINC sends commands to the client using a server-push architecture, where dis-

play updates are pushed to the client as soon as they are generated. In contrast to the

client-pull model used by popular systems such as VNC [150] and GoToMyPC [46],

server-push maximizes display response time by obviating the need for a round trip

delay on every update. This is particularly important for display-intensive applica-

tions such as video playback since updates are generated faster than the rate at which

the client can send update requests back to the server. Furthermore, a server-push

model minimizes the impact of network latency on the responsiveness of the system

because it requires no client-server synchronization, whereas a client-driven system

has an update delay of at least half the round-trip time in the network.

Although a push mechanism can outperform client-pull systems, a server blindly

pushing data to clients can quickly overwhelm slow or congested networks and slowly

responding clients. In this situation, the server may have to block or buffer updates.

If updates are not buffered carefully and the state of the display continues to change,

outdated content is sent to the client before relevant updates can be delivered.

Blocking can have potentially worse effects. Display systems are commonly built

around a monolithic server core which manages display and input events, and where

CHAPTER 2. THINC ARCHITECTURE 39

display drivers are integrated. If the video device driver blocks, the core display server

also blocks. As a result, the system becomes unresponsive since neither application

requests nor user input events can be serviced. In display systems where applications

send requests to the window system using IPC mechanisms, blocking may eventually

cause applications to also block after the IPC buffers are filled.

The THINC server guarantees correct buffering and low overhead display up-

date management by using its command queue-based client buffer. The client buffer

ensures that outdated commands are automatically evicted. THINC periodically at-

tempts to flush the buffer using its SRSF scheduler in a two stage process. First, each

command in the buffer’s queue is committed to the network layer by using the com-

mand’s flush handler. Since the server can detect if it will block when attempting to

write to a socket, it can postpone the command until the next flush period. Second,

to protect the server from blocking on large updates, a command’s flush handler is

required to guarantee non-blocking operation during the commit by breaking large

commands into smaller updates. When the handler detects that it cannot continue

without blocking, it reformats the command to reflect the portion that was committed

and informs the server to stop flushing the buffer. Commands are not broken up in

advance to minimize overhead and allow the system to adapt to changing conditions.

2.6 Implementation

THINC’s remote display architecture has been implemented for both the X Window

System [122] in Linux, and for Microsoft Windows. Most of the implementation effort

on THINC has focused on performance and portability. This section discusses the

most important details of this effort. We focus on the implementation details for

the X/Linux version of THINC. For a detailed description of the Microsoft Windows

CHAPTER 2. THINC ARCHITECTURE 40

implementation effort, the reader is referred to [174].

The THINC server consists of about 25,000 lines of C code. To maximize its porta-

bility, the system is divided in two parts. The front end, which interfaces directly with

the native window system by implementing its device driver API, and the back end,

which implements the core THINC display architecture, and is completely window

and operating system independent. The back end is described first, as it provides

the core functionality around which the front end is built. At the end of the section,

some implementation details specific to providing remote display are discussed.

2.6.1 Back End

The back end encapsulates the core THINC functionality, and provides three interface

points for the front end. First, an API for converting display updates into THINC

protocol commands. Second, an interface for buffering commands, either in off-screen

regions or as on-screen protocol updates. And third, the back end provides the

necessary infrastructure for delivering buffered commands to any number of connected

clients. In rough terms, the first and second interfaces correspond to the translation

layer, as described in Section 2.4, and the third interface corresponds to the delivery

layer, as described in Section 2.5.

2.6.1.1 Creating Commands

Converting display updates for the front end is accomplished by creating objects that

represent the respective THINC protocol command. The purpose of these objects

is to encapsulate all information necessary to send the display update to the client,

while allowing the server to manipulate it before delivery.

An object oriented approach is used, with a generic Command superclass, and

CHAPTER 2. THINC ARCHITECTURE 41

derived subclasses for each type of protocol message (RAW, COPY, SFILL, PFILL,

and BITMAP). The generic command object stores the type of the command, a set of

flags, the bounding box where the command draws, and a reference count. Subclasses

extend this class to store information specific to the type of command. For example,

the PFILL subclass stores the dimensions, the size, and the pixel data of the tile used

to perform the fill.

The base command class also defines a generic interface that must be imple-

mented by all subclasses. It consists of the following functions: Create, Destroy,

Copy, Modify, GetInfo, Execute, and Flush. As their names imply, the first three

functions create, destroy, and copy a command object, respectively. Modify is used

to transform the command in some specific way. Available modifications are clip,

move/translate, and merge the command with another command of the same type.

GetInfo is used to obtain specific information about the command, most commonly

information which needs to be computed dynamically. For example, its size (used for

scheduling purposes) and the specific region where it draws (not just its bounding

box). The final two functions represent the final stages in the lifetime of a command.

Execute is used to move a command from an off-screen area to on-screen, therefore

buffering it for delivery. Flush is used to deliver a command object to the client.

Both of these processes are described in more detail below.

2.6.1.2 Adding and Manipulating Commands

Once a command object has been created, it needs to be injected into the system.

This is accomplished by adding it into a client’s buffer or in the queue for an off-screen

area. In both cases the process is the same, as both use the same command queue

structure described in Section 2.4. This process is shown in Algorithms 2.1, 2.2, and

2.3.

CHAPTER 2. THINC ARCHITECTURE 42

Algorithm 2.1: QueueCommand(cmd, queue)

if cmd not transparent then1

OverwriteCommands(cmd, queue) ; /* See Algorithm 2.2 */2

end3

merged ← TryMerge(cmd, queue) ; /* See Algorithm 2.3 */4

if merged is TRUE then5

Destroy(cmd)6

else7

add cmd to tail of queue8

end9

Algorithm 2.1 shows QueueCommand, the main function used to add a command

object to a queue. QueueCommand’s processing is divided in three stages. First, it

guarantees that only relevant commands are in the queue taking into account the new

command. Second, it tries to minimize the length of the queue by merging commands

whenever possible. Third, if merging is not possible, it adds the command to the end

of queue, to guarantee correctness once the commands in the queue are delivered to

the client.

As shown in line 1, QueueCommand only needs to check for irrelevant commands

if the new command is opaque1. If the command is transparent, the queue’s existing

contents are still relevant and QueueCommand goes on to the next step. If the command

is opaque, the auxiliary function OverwriteCommands is called.

Algorithm 2.2 details OverwriteCommands. In the current implementation, com-

mand queues are implemented as doubly linked-lists, and OverwriteCommands walks

the list, checking each command in turn to see if it is overwritten by the new addition,

either partially (10) or completely (7). Notice how in the partial overwrite case the

command’s Modify function is called, allowing the overwritten command to handle

clipping itself. For example, in the case of complete opaque commands, the command

1See Section 2.4 for details on opaque and transparent commands

CHAPTER 2. THINC ARCHITECTURE 43

Algorithm 2.2: OverwriteCommands(cmd, queue)

reg ← GetInfo(cmd, REGION)1

foreach oldcmd in queue do2

oldbox ← BoundingBox(oldcmd)3

if oldbox is Outside(reg) then4

continue5

else if oldbox is Inside(reg) then6

delete oldcmd from queue7

Destroy(oldcmd)8

else9

Modify(oldcmd, CLIP, reg)10

end11

end12

will just ignore the CLIP request and return immediately. In the case of complete

overwrite, the existing command is removed from the queue and destroyed.

After OverwriteCommands returns, the new command needs to be added to the

queue. In some situations, it is possible to reduce overhead and improve performance

by merging multiple commands into one. Combining multiple commands reduces the

length of the queue, in turn reducing the time complexity of adding new commands

to the queue in the future. Also, merging will result in bandwidth savings. The most

common scenario where merging can be exploited is when displaying large compressed

images, for example, in web browsers. These images are typically line-encoded, re-

sulting in them being delivered to the display system one line at a time (i.e. each line

is displayed right after it is decompressed). Without merging, a single large image

would have to be wastefully delivered to the client as a multitude of RAW updates.

Algorithm 2.3 shows TryMerge which provides the basic merging functionality for

THINC. By default, it will only try to merge with the last command in the queue.

This is a sensible tradeoff between maximizing merging opportunities, and minimizing

the performance hit of looking for these opportunities. The most important detail

CHAPTER 2. THINC ARCHITECTURE 44

Algorithm 2.3: TryMerge(cmd, queue)

if IsEmpty(queue) then1

return FALSE2

end3

last ← LastElement(queue)4

if type(last) not equal type(cmd) then5

return FALSE6

end7

return Modify(last, MERGE, cmd)8

// Tries to merge command two into command one
RawTryMerge (one, two)9

begin10

oneb ←BoundingBox(one)11

twob ←BoundingBox(two)12

if (twob.x1 = oneb.x1) and (twob.x2 = oneb.x2) then13

if twob.y2 = oneb.y1 then14

// one is below two, merge them

oneb.y1 := twob.y115

return TRUE16

else if oneb.y2 = twob.y1 then17

// one is on top of two, merge them

oneb.y2 := twob.y218

return TRUE19

else20

// Cannot merge

return FALSE21

end22

else if (twob.y1 = oneb.y1) and (twob.y2 = oneb.y2) then23

if oneb.x2 = twob.x1 then24

// one is left of two, merge them

oneb.x2 := twob.x225

return TRUE26

else if twob.x2 = oneb.x1 then27

// one is right of two, merge them

oneb.x1 := twob.x128

return TRUE29

else30

// Cannot merge

return FALSE31

end32

else33

// Cannot merge

return FALSE34

end35

end36

CHAPTER 2. THINC ARCHITECTURE 45

to note about TryMerge is that the majority of the merging logic is delegated to the

type-specific methods. This is by design. The possibility of merging and performing

the actual operation is highly dependent on the structure and characteristics of the

command.

After checking that the commands can indeed be merged (i.e. they have the same

type), TryMerge delegates to the type-specific function the actual merge operation.

A simplified RAW merge function is shown in Algorithm 2.3 starting at line 9. It

handles the basic case of merging two commands with a simple, one rectangle draw

region, by extending the existing command’s draw region to encompass the region of

the new command.

As was just discussed, the command queue is currently implemented as a doubly

linked list, which provides constant time insertions and removals, and a simple imple-

mentation. However, the time complexity of adding new commands is dominated by

the cost of OverwriteCommands, which, given a linked list, is O(n): each command

in the queue needs to be checked for possible overwrite by the new command. In

large off-screen areas or when a large part of the screen is changed this may lead to

degraded performance. To avoid this penalty, we can envision using a more advanced

data structure, for example a Quadtree [35], that can scale better to bigger screens,

and more gracefully handle large bursts of commands.

After commands are added to a queue, they are either moved on-screen, or deliv-

ered over the network. The first process is called Executing the queue, the second is

called Flushing it. Queue execution is normally performed in response to a request to

copy some of the contents of an off-screen area to the visible part of the screen. For

example:

CopyArea (srcx:50, srcy:100, width:650, height:400, dstx:150, dsty:200)

CHAPTER 2. THINC ARCHITECTURE 46

In this case, the contents of the off-screen rectangle with coordinates (50,100)

→ (700,500) are to be copied to the screen region with coordinates (150, 200) →

(800, 600). The process is exported by the back end as the CopyQueue function,

and works as follows:

1. Given the source and destination regions, compute the horizontal and vertical

delta. Commands will need to be translated by these amounts before being

added to the destination queue.

2. Use the destination region to overwrite commands in the destination queue, in

the same manner as described for OverwriteCommands before. It is important

to note that overwrite will always happen. Although there may be transparent

commands in the source queue, an opaque command is guaranteed to exist

which draws in the same region as each of the transparent commands.

3. Use the source region to find the list of commands that should be copied to the

destination queue.

4. For each command in this list, call its Execute function, passing translation

parameters, and the destination region. The command is supposed to create a

translated and clipped copy, then add the copy to the destination queue. The

copy is needed because executing a queue (and in higher level terms, copying

an off-screen area) does not entail removing the commands from the off-screen

queue. The same offscreen region (and thus its commands) may well be used

multiple times to draw to the screen.

CHAPTER 2. THINC ARCHITECTURE 47

2.6.1.3 Abstracting Command Destinations

Once commands are ready to be delivered by the system, they need to be serialized

and written out to their destination. Before describing this process, we first describe

how THINC abstracts the details of where commands are being redirected, allowing

it to redirect its output anywhere.

The back end does not make any assumptions about the destination of the com-

mands, and treats all destinations in the same manner. This is accomplished us-

ing a technique similar to that used for manipulating commands: all details of the

destination are abstracted by a generic Client interface that all destinations must

implement, and through which THINC controls and uses each destination. In the

description that follows, we refer to the implementation of a particular destination as

a client.

In addition to masking the intricacies of a particular client, this approach also

allows many different types of client to be used simultaneously. For example, one

client may be used for remote display over the network, while at the same time

another client is recording all output to disk. THINC allows multiple connected

clients by keeping an instance of the Client class for each of them in an internal

linked list, to which clients can be added and removed dynamically.

The Client interface consists of the following methods:

• Buffer. This function is called to schedule a command for delivery. In most

cases, clients are assumed to have an output buffer implemented using a com-

mand queue. They may also have a scheduler that prioritizes updates in the

buffer. This function allows clients to implement this functionality. In the nor-

mal scenario, a client will receive the command to be delivered, add it to its

buffer using QueueCommand, and schedule it using the SRSF scheduler described

CHAPTER 2. THINC ARCHITECTURE 48

in Section 2.5. Both functions are exported to the clients by the back end, since

they are independent of the client’s details.

• Flush. This function performs the actual serialization and writing to desti-

nation of commands. As opposed to buffer which operates on one command

at a time, this operation is meant to operate on all of the commands buffered

in the client. The client walks its buffer, and for each command it calls the

command’s Flush method. If delivery is successful, the command should be

removed from the client’s buffer. The only case where flush may not operate

on a set of commands is the case where the client performs no buffering. In this

case, buffer and flush may be merged into a single operation, by delivering

the command inside buffer, and converting flush to a NoOp.

The order in which commands are delivered depends on the details of the client.

However, for performance reasons this ordering is expected to be determined

during the buffer operation. For example, a client which uses the SRSF sched-

uler will have the scheduler determine the queue in which the command should

be buffered at insertion time, and, at delivery time, all it needs to do is flush

each scheduler queue in turn.

When flush is called, the client is expected to attempt to deliver all pending

commands. If it is unable to do so, for example, in the case of a remote display

client if the network is congested, the client’s flush function should inform the

back end of this fact. The back end will in turn set up a timer, which once

expired, will retry the operation. This functionality is a crucial component of

our X Window System implementation. The X server, inside which THINC

resides, is a single threaded application. If a client were to block trying to

deliver all buffered commands, the X server itself would also block waiting for

CHAPTER 2. THINC ARCHITECTURE 49

this operation to continue. As a result, the whole desktop would freeze since no

application requests or input events could be processed.

• Read and Write. These two methods provide a lower level interface to the

client’s destination. They allow clients to leverage generic functionality from

the back end (for example, the output stack described in the next section), while

still abstracting the details of how data is delivered to the destination. They

also allow THINC to directly send or read data from the client, for example

during the initial handshake.

• Close. As its name implies, this method simply shutdowns the client, and frees

all resources associated with it.

2.6.1.4 Delivering Commands

The actual serialization of a command is performed by its corresponding Flush func-

tion. To make this process extensible, maintainable, and allow it to be changed

dynamically, THINC uses a stackable pipeline model based on the architecture of

the Click modular router [64]. In this model, functionally independent modules are

stacked and connected such that the output of one is passed as input to the next one.

This model has a number of benefits. Modules can be added and removed dy-

namically from the stack. In this way, changes in the client that require a different

serialization process can be dealt with simply by adding or removing modules from

the stack. In addition, since each module is functionally separate from the rest of the

process, new modules can be easily prototyped and tested, which greatly helped us

in the development of THINC.

Each type of command has a set of modules that make up its output stack,

depending on the needs of its serialization process. The simplest types (e.g. SFILL)

CHAPTER 2. THINC ARCHITECTURE 50

will have a couple of modules that collect statistics, and a module where the command

data its actually sent to the client (using the client’s write function). On the other

hand, a type like RAW has modules to deal with a number of situations, for example,

extracting the command’s data from the framebuffer, caching this data to minimize

the amount of data sent to the client, compressing the update, and finally sending it

to the client.

The output stack structure is implemented as a linked list of modules. Each

module consists of a name, the module’s function, and a priority. Modules in the

list are ordered by increasing priority order. For simplicity reasons, priorities must

be assigned manually when the modules are first declared and added to the stack,

and they cannot change while the module is inside the stack. In addition, a handle

object is used to transfer data from one module to another. The handle is specific to

each type’s implementation, and it is treated as an opaque object by the output stack

code. To output a command, the stack is executed by traversing the list and calling

each module’s function in turn, passing it the corresponding handle. At any point a

function may signal the stack to stop execution, either temporarily or permanently. In

the first case, the last module called is saved, and the next time execution is requested,

the process will resume from that saved module. This is particularly useful for cases

where a response is required before executing the next module, for example, during

the handshake process executed when new clients connect to THINC. In the second

case, no state is saved. Subsequent executions will result in the first module on the

list to be called.

Once all the modules in the stack have been called, the command is assumed to

have been delivered to the client and the Flush operation is finished.

CHAPTER 2. THINC ARCHITECTURE 51

2.6.2 Front End

As previously mentioned, the front end is in charge of interfacing with a particular

window system by implementing its device driver API, and leveraging the back end

functionality to provide a virtualized display.

The X Window System provides display output using a single-threaded server

process, the “X server”, to which applications connect and pass requests, and which

in turn passes these requests down to the underlying video hardware through device

drivers. Application requests are processed by the Device Independent Layer (DIX)

of the X server. In turn, device drivers are part of the Device Dependent Layer

(DDX). The DDX consists of glue code that interfaces with the DIX, plus a dynamic

module loader that inserts driver code into the X server according to the underlying

hardware. Our front end implementation leverages this particular architecture by

implementing a device driver that supports an “imaginary” THINC video card, that

can be loaded into the X server using a couple of configuration directives. This way,

the front end can take advantage of the X server infrastructure and functionality,

while encapsulating all of THINC’s functionality.

Algorithm 2.4: Simplified X server main loop, showing THINC interception
points

while True do1

...2

BlockHandler()3

select(); /* sleep until activity is detected */4

WakeupHandler()5

...6

handle display requests7

...8

end9

The front end provides the functionality required for THINC’s operation by us-

CHAPTER 2. THINC ARCHITECTURE 52

ing the DDX driver interface to hook into the X server’s main loop. As shown in

Algorithm 2.4 THINC intercepts in three different places:

• The WakeupHandler() hook (on line 5) is called when the server wakes up

from select() [127], in response to a received event (e.g. from input devices,

applications, etc.). The front end uses the X server’s select call to also monitor

for events of interest to THINC, by adding any active file descriptors to the

list monitored by select. Events of interest to THINC will be automatically

reported to the front end. Three types of events are currently implemented:

1. New client connections. When a new client attempts to connect to the

THINC server, an event is received by the X server on THINC’s main

socket. In this case, the new connection is accepted, and the handshake

process is initialized (described in more detail in 2.6.3).

2. Messages from existing clients. These events consist mostly of input events,

and control messages. The front end uses virtual mouse and keyboard

drivers to inject these events into the X server. In this manner, they are

interpreted by the X server as events coming from actual input hardware.

3. Client closed connection. When a client disconnects, an event is received

on the client’s corresponding file descriptor. As previously described, the

client’s close method is called to free any internal resources associated

with it. Since the client is stateless, no actual shutdown process is required

before the client is allowed to disconnect.

• The BlockHandler hook (on line 3) is called when the X server is ready to

call select() again, and go to sleep until a new event is received. At this

moment, the front end calls into the back end to flush all buffered commands.

CHAPTER 2. THINC ARCHITECTURE 53

As previously mentioned, if trying to send updates would result on the server

blocking, a timer is set up and the BlockHandler returns, allowing the server

to go to sleep. Once the timer goes off, THINC tries to flush updates again.

This process continues until all updates are flushed, or new ones are generated

which overwrite existing ones.

• The final interception point occurs while handling draw requests from applica-

tions. These requests are received by the X server, then decoded and trans-

formed into device driver requests. The front end intercepts these requests by

setting up a number of function pointers, one for each available request. A

draw function in the front end will receive the request, along with any extra

parameters and decide which THINC command type to generate in response.

Using the back end, the new command object will be created, then depend-

ing on whether the request is to an on-screen or off-screen area, the command

will be buffered into clients, or added to the off-screen area’s command queue,

respectively. Once the command is passed to the back end, the front end de-

vice driver function is finished and returns control to the X server. As we just

discussed, once the X server has finished serving all application requests, the

BlockHandler will be called, and all new commands flushed to clients.

The front end is also in charge of initializing and maintain the virtual framebuffer

for the X server. This framebuffer is created once the device driver is loaded, and the

X server passes the characteristics of the display to the front end: width, height, and

color depth. The front end takes these parameters, computes the appropriate size,

and allocates enough system memory to fit the framebuffer. Finally, a pointer to the

framebuffer is passed to the X server and to the back end.

The framebuffer is passed to the X server because the front end depends on it to

CHAPTER 2. THINC ARCHITECTURE 54

perform most of the rendering of application requests. The X server has a software

implementation of all possible draw requests, allowing device drivers to only accelerate

those operations supported by the underlying hardware. Unsupported operations

simply use the generic implementation, which sometimes may take advantage of lower

level operations which can be accelerated by the hardware. Since THINC has no

underlying hardware, it must do all rendering in software. However, this can be

easily accomplished with the virtual display driver approach, which allows the front

end to simply leverage the X server’s implementation to perform all drawing.

2.6.3 Remote Display Implementation

Finally, we explore some of the implementation details specific to the implementation

of a remote display system based on our virtual display architecture. Our discussion

is focused on the implementation details of managing remote clients.

One of the most important aspects of managing remote display clients is pro-

viding a secure service for accessing the desktop. The security model for THINC is

divided in two components. First, an encrypted channel is set up before any other

communication occurs, using TLS and the RC4 encryption algorithm (both provided

by the OpenSSL [99] library). Second, all remote clients have to be authenticated

before they are allowed to access the desktop. Currently, THINC only supports user-

name/password authentication. For a username to be authenticated successfully, two

conditions must be met: (1) the username needs to be a valid account on the server,

and (2) the username must be the owner of the desktop session. THINC performs all

authentication by leveraging standard Unix authentication mechanisms through the

PAM authentication library [104].

Once a client has set up an encrypted channel, and it has been authenticated

CHAPTER 2. THINC ARCHITECTURE 55

by the server, a handshake process is initiated in which the client and the server

negotiate and exchange all of the parameters needed to successfully initiate a remote

display session. The handshake process has been designed to be easily extensible,

allowing for new parameters to be added transparently, while maintaining backwards

compatibility.

The handshake is based on a model where the client continuously asks questions

to the server to find out the parameters, and the server replies with the appropriate

values. It is influenced in large part on the standard SSH protocol [173]. The protocol

only specifies the set of valid questions and answers. It does not specify (nor impose)

the order in which questions have to be asked. This is by design, since it allows the

protocol to be easily changed. An example question/answer pair follows:

Client Display parameters?

Server Width Height Bits per pixel

The process is completely client-driven to allow the server to continue operating

without blocking in the handshake process. The server implements the handshake

process using an output stack (as described in 2.6.1.4), with a main module that

handles all client requests. Other modules handle the security stages of the handshake,

and the final stage of the process. The main module uses the stack’s ability to

temporarily stop execution to guarantee that it keeps getting called for each client

question. The handshake finishes once the client sends a special Done message. At

this moment, the handshake output stack is destroyed, and the client starts receiving

desktop display updates.

If the client asks a question which the server does not know how to answer (i.e. it

does not support that particular feature), the server simply replies with an Unknown

message. The server may also reply with a Reject message if the client asks an invalid

CHAPTER 2. THINC ARCHITECTURE 56

question, or the server decides the client cannot be allowed to connect. Some parame-

ters may require multiple client questions to be resolved, for example, for cases where

the client first needs to find out if the server supports a feature, before asking for

specific values. While the handshake protocol only specifies single question-answer

pairs, and does not have a specific mechanism to group multiple questions, these

groups are expected to be logically enforced by the server and client implementa-

tions. Appendix A contains the THINC protocol specification, including a list of all

question/answer pairs currently defined.

2.7 Experimental Results

To demonstrate the effectiveness of THINC’s remote display architecture, a direct

comparison was conducted with a number of state-of-the-art and widely used re-

mote display platforms, including Citrix MetaFrameXP [23], Microsoft Remote Desk-

top [25, 82], GoToMyPC [46], X [123], NX [95], Sun Ray [124, 141], and VNC [118,

150]. We follow common practice and refer to Citrix MetaFrameXP and Microsoft Re-

mote Desktop by their respective remote display protocols, ICA (Independent Com-

puting Architecture) and RDP (Remote Desktop Protocol).

For these experiments, we measured the performance of the systems on web appli-

cations in LAN and WAN environments. We also used a PC running the benchmark

locally as a baseline representing today’s prevalent desktop computer model.

We compared the performance of various remote display systems using an iso-

lated network testbed, and we measured wide-area THINC performance using Plan-

etLab [21] nodes and other remote sites located around the world. As shown in Fig-

ure 2.5, our testbed consisted of six computers connected on a switched FastEthernet

network: two clients, a packet monitor, a network emulator for emulating various

CHAPTER 2. THINC ARCHITECTURE 57

Figure 2.5 – Experimental Testbed

network environments, a remote display server, and a web server used for testing web

applications. Except for the clients, all computers were IBM Netfinity 4500R servers,

with dual 933 MHz Pentium III processors and 512 MB of RAM. The client comput-

ers were a 450 MHz Pentium II computer with 128 MB of RAM, and a Sun Ray I

with a 100 MHz µSPARC processor and 8 MB of RAM. During each test, only one

client/server pair was active at a time. The web server used was Apache 1.3.27, the

network emulator was NISTNet 2.0.12, and the packet monitor was Ethereal 0.10.9.

To provide a fair comparison, we standardized on common hardware and operat-

ing systems whenever possible. All of the remote display systems used the PC as the

client, except Sun Ray, for we which we used a Sun Ray I hardware thin client. All

of the systems used the Netfinity server as the remote display server. For the three

systems designed for Windows (ICA, RDP, and GoToMyPC), we ran Windows 2003

Server on the server and Windows XP Professional on the client. For the systems

designed for X-based environments, we ran the Debian Unstable Linux distribution

with the Linux 2.6.10 kernel on both server and client, except for Sun Ray, where

we encountered a problem with audio playback that required us to revert to a 2.4.27

kernel. We used the latest remote display system versions available on each platform,

namely Citrix MetaFrame XP Server for Windows Feature Release 3, Microsoft Re-

CHAPTER 2. THINC ARCHITECTURE 58

mote Desktop built into Windows XP and Windows 2003 using RDP 5.2, GoToMyPC

4.1, VNC 4.0, NX 1.4, Sun Ray 3.0, and XFree86 4.3.0 on Debian.

To minimize application environment differences, we used common remote display

configuration options whenever possible. Client display was set to 24-bit color except

for GoToMyPC which is limited to 8-bit color. To mimic realistic usage of the systems

over public and insecure networks, we enabled RC4 encryption with 128-bit keys on

all platforms which supported it. For those which did not, namely X and VNC, we

used ssh to provide a secure tunnel through which all traffic was forwarded. The ssh

tunnel was configured to use RC4. Following common practice, we configured X’s ssh

tunnel to also compress all traffic [41]. Any remaining remote display configuration

settings were set to their defaults for a particular network environment. ICA, RDP,

and NX were set to LAN settings when used in the LAN and WAN settings when used

in the WAN. Some remote display systems used a persistent disk cache in addition

to a per-session cache. To minimize variability, we left the persistent cache turned on

but cleared it before every test was run.

We considered two different client display resolution and network configurations:

LAN Desktop and WAN Desktop. LAN Desktop represents a client with a 1024 x

768 display resolution and a 100 Mbps LAN network. WAN Desktop represents a

client with a 1024 x 768 display resolution and a 100 Mbps WAN network with a 66

ms RTT, which emulates Internet2 connectivity to a US cross-country remote server

[69]. We conducted our WAN experiments using the kind of high-bandwidth network

environment that is becoming increasingly available in public settings [1].

GoToMyPC is only offered as an Internet service that connects the client and

server using an intermediate hosted server through which all traffic is routed. As a

result, we were unable to fully control the network configuration used. Our measure-

ments show a 70 ms RTT between the intermediate GoToMyPC server used and our

CHAPTER 2. THINC ARCHITECTURE 59

Name PlanetLab Location Distance

NY yes New York, NY, USA 5 miles

PA yes Philadelphia, PA, USA 78 miles

MA yes Cambridge, MA, USA 188 miles

MN yes St. Paul, MN, USA 1015 miles

NM no Albuquerque, NM, USA 1816 miles

CA no Stanford, CA, USA 2571 miles

CAN yes Waterloo, Canada 388 miles

IE no Maynooth, Ireland 3185 miles

PR no San Juan, Puerto Rico 1603 miles

FI no Helsinki, Finland 4123 miles

KR yes Seoul, Korea 6885 miles

Table 2.2 – Remote Sites for WAN Experiments

testbed, resulting in similar network latencies as our emulated WAN environment.

We measured GoToMyPC performance without network emulation and referred to it

as WAN Desktop.

We also measured remote display performance in WAN environments by running

the server in our local testbed, but running the client on PlanetLab [21] nodes and

other remote sites located around the world. Table 2.2 lists the sites used. Since

the PlanetLab machines run User-Mode Linux, we were unable to run X-based re-

mote display servers on these machines, and the use of Linux precluded any testing

of Windows-based remote display systems. We were also prohibited from making

significant modifications to the Linux installations at the non-PlanetLab sites. To

measure THINC performance, we developed an instrumented headless version of the

THINC client that could process all display data but did not output the result to

any display hardware. We deployed this client on the remote sites and ran the same

experiments as the WAN configuration.

Since most of the remote display systems tested used TCP as the underlying

transport protocol, we were careful to consider the impact of TCP window sizing

CHAPTER 2. THINC ARCHITECTURE 60

on performance in WAN environments. Since TCP windows should be adjusted to

at least the bandwidth delay product size to maximize bandwidth utilization, we

used a 1 MB TCP window size in our testbed WAN environment and with remote

sites whenever possible to take full advantage of the network bandwidth capacity

available. However, PlanetLab nodes were limited to a window size of 256 KB due to

their preconfigured system limits.

2.7.1 Web Browsing Benchmark

Web browsing performance was measured by running a benchmark based on the

Web Page Load test i-Bench benchmark suite [54]. The benchmark consists of a

sequence of 54 web pages containing a mix of text and graphics. Once a page has

been downloaded, a link is available on the page that can be clicked to download

the next page in the sequence. This mouse clicking operation was done using a

mechanical device we built to press the mouse button in a precisely timed fashion.

The mechanical device enabled us to better simulate a user browsing experience and

ensure that the test could be easily repeated on different remote display systems

without introducing human timing errors. For remote site experiments with THINC,

the headless client read a script of timed mouse coordinates and clicks to run the

web benchmark. We used the Mozilla 1.6 browser set to full-screen resolution for all

experiments to minimize application differences across platforms.

Since many of the remote display systems are closed and proprietary, we measured

their performance in a noninvasive manner by capturing network traffic with a packet

monitor and using a variant of slow-motion benchmarking [93, 70]. Our primary

measure of web browsing performance is page download latency. Using slow-motion

benchmarking, we captured network traffic and measured page latency as the time

CHAPTER 2. THINC ARCHITECTURE 61

from when the first packet of mouse input is sent to the server until the last packet of

web page data is sent to the client. We ensured that a long enough delay was present

between successive page downloads so that separate pages could be disambiguated

in the network packet capture. However, this measure does not fully account for

client processing time. To account for client processing time, we also instrumented

the client window system to measure the time between the initial mouse input and

the processing of the last graphical update for each page. We could only do this

for X, VNC, NX, and THINC as we did not have access to client window system

code for the other systems. Thus, our results provide a conservative comparison with

Windows-based thin clients and Sun Ray for which we cannot fully account for client

processing time.

2.7.2 Results

Figures 2.6 to 2.8 show web browsing performance results. Figure 2.6 shows the

average latency per web page for each platform. For platforms in which we instru-

mented the window system to measure client processing time, the solid color bars

show latency measured using network traffic, while the cross-hatched bars show a

more complete measure by including client processing time. For example, Figure 2.6

shows that client processing time is a dominant factor for local PC web browsing per-

formance since the web browser needs to process the HTML on the client. As shown

in Figure 2.6, most of the systems did well in both LAN and WAN environments,

having latencies below the one second threshold for users to have an uninterrupted

browsing experience [94].

Figure 2.6 shows that THINC provides the fastest web page download latencies

of all systems. THINC is up to 1.7 times faster in the LAN and up to 4.8 times

CHAPTER 2. THINC ARCHITECTURE 62

0.0

0.5

1.0

1.5

2.0

2.5

3.0

PC ICA RDP GoTo
MyPC

X NX VNC Sun
Ray

THINC

L
a
te

n
c
y
 (

s
)

Platform

0.0

0.5

1.0

1.5

2.0

2.5

3.0

PC ICA RDP GoTo
MyPC

X NX VNC Sun
Ray

THINC

L
a
te

n
c
y
 (

s
)

Platform

LAN Desktop
WAN Desktop

Figure 2.6 – Web Benchmark: Average Page Latency. Solid color bars show
latency measured using network traffic, while the cross-hatched bars show a more com-
plete measure by including client processing time.

0

50

100

150

200

250

PC ICA RDP GoTo
MyPC

X NX VNC Sun
Ray

THINC

D
a
ta

 S
iz

e
 (

K
B
)

Platform

LAN Desktop
WAN Desktop

Figure 2.7 – Web Benchmark: Average Data Transferred per Web Page

CHAPTER 2. THINC ARCHITECTURE 63

faster in the WAN versus other systems. THINC outperforms the local PC by more

than 60% because it leverages the faster server to process web pages more quickly

than the web browser running on the slower client. Figures 2.6 shows that THINC

does not suffer much performance degradation going from LAN to WAN, where it

still outperforms all other platforms. In contrast, a higher-level approach such as

X experiences the largest slowdown, performing about two and a half times worse

due to the tight coupling required between applications on the server and the user

interface on the client. While still slower than THINC, NX is much faster than

X, indicating that some of these problems can be mitigated through careful X proxy

design. Figure 2.6 shows that even though we excluded client processing time for ICA,

RDP, GoToMyPC, and Sun Ray, THINC including client processing time is faster

than all of them. GoToMyPC takes almost three seconds on average to download web

pages. Figure 2.7 shows that GoToMyPC’s slow performance is not due to its data

requirements as it sends the least amount of data. The measurements suggest that

GoToMyPC employs complex compression algorithms to reduce its data requirements

at the expense of high server utilization and longer latencies. GoToMyPC’s use of an

intermediate server most likely also affects its performance, but enables it to provide

ubiquitous service even in the presence of NATs and firewalls.

Figure 2.8 shows results using remote PlanetLab nodes and other sites as THINC

clients, demonstrating that THINC maintains its fast performance under real network

conditions even when client and server are located thousands of miles apart. THINC

provides sub-second web page download times for all sites except for when the client

is running in Korea, which is almost seven thousand miles away from the server in

New York. Figure 2.8 shows that THINC’s web page download latencies increased

by less than 2.5 times in going from running the client in the local LAN testbed to

running the client in Finland while the corresponding network RTTs increased by

CHAPTER 2. THINC ARCHITECTURE 64

0.00

0.01

0.10

1.00

KRFIIEPRCANCANMMNMAPANY

La
te

nc
y

(s
)

Remote Site

Per-Page Latency
Network RTT

0.
43

0.
00

24

0.
41

0.
00

64

0.
43

0.
00

73

0.
59

0.
00

48

0.
60

0.
05

79

0.
64

0.
08

83

0.
50

0.
02

31

0.
66

0.
08

56

0.
72

0.
07

17

0.
98

0.
11

52

1.
67

0.
22

27

Figure 2.8 – Web Benchmark: THINC Average Page Latency Using Remote
Sites. The bars correlate order of magnitude increases in network latency (RTT) to
modest per-page latency increases in THINC’s performance

more than two orders of magnitude. These measurements show for the first time a

thin client that can provide excellent web browsing performance even when clients

are located on another continent.

Figure 2.7 shows the average data transferred for each web page and demonstrates

that THINC achieves fast performance with only modest data transfer requirements.

The local PC is the most bandwidth efficient platform for web browsing, but THINC

is better than all other thin clients for LAN Desktop except NX. Surprisingly, Go-

ToMyPC had the smallest data transfer requirements of the thin clients for WAN

Desktop despite its low-level pixel-based display approach. While this is an unfair

comparison since GoToMyPC only supports 8-bit color, it demonstrates that com-

pression algorithms can be effective at reducing raw pixel data at great computational

expense. A number of systems show significant reductions in data size when going

from the LAN to the WAN environment. NX has specific user settings for this type of

CHAPTER 2. THINC ARCHITECTURE 65

environment which causes it to use more aggressive data compression techniques. Sun

Ray and VNC use adaptive compression schemes which change its encoding settings

according to the characteristics of the link. This adaptive mechanism also accounts

for the significant decrease in Sun Ray’s data requirements, as more complex and

cpu-intensive compression schemes are used.

Comparing Sun Ray and THINC provides a measure of the effectiveness of THINC’s

translation architecture, as both systems use a similar low-level protocol. Although

we could not instrument the Sun Ray hardware client to measure client processing

time, we can use the network measurements as a basis of comparison between the

systems. Both systems perform well, but THINC outperforms Sun Ray by 22% and

16% in the LAN and WAN environments, respectively. Sun Ray incurs higher over-

head because it lacks THINC’s translation mechanisms, especially offscreen drawing

which is used heavily by Mozilla. As a result, it lacks semantic information originally

present in the application display commands and must attempt to translate back

into its protocol from raw pixel data. Similarly, comparing VNC and THINC pro-

vides a measure of the efficiency of THINC’s encoding approach versus VNC’s pixel

data compression approach. THINC is faster than VNC for the LAN Desktop while

sending almost half the data. This suggests that THINC’s small set of command

primitives and translation layer provides significant performance efficiency compared

to relying on a single compression strategy for all types of display data. These results

show the importance of an effective translation layer, not just a good command set.

Comparing these systems as well as NX on a page-by-page basis provides fur-

ther insight based on how different web page content contributes to performance

differences. Except for THINC, Sun Ray, VNC, and NX were the fastest systems.

Compared with these systems, THINC was faster on all web pages except those that

primarily consisted of a single large image. For those pages, THINC resorted primarily

CHAPTER 2. THINC ARCHITECTURE 66

to its RAW encoding strategy combined with simple, off-the-shelf compression, given

the lack of additional semantic information. In the LAN, Sun Ray’s lack of compres-

sion and VNC’s simple compression strategy both sent more data but provided faster

processing of those pages compared to THINC. In the WAN, the more advanced com-

pression used in NX and Sun Ray reduced the data size significantly, allowing them to

transfer the pages much faster. This breakdown indicates that THINC’s performance

on pages with mixed web content (text, logos, tables, etc.) was even better than

what is shown in Figure 2.6 when compared with these other systems. These results

suggest two important observations. First, not only is THINC’s low-level translation

approach faster than a pixel-level approach as embodied by VNC, but it is also faster

than a high-level encoding approach as embodied by NX, even on non-image content.

Second, although optimized compression techniques were not a central focus in the

current THINC prototype, the results suggest that better compression algorithms

such as used in NX and adapting compression based on network performance as used

by VNC and Sun Ray can provide useful performance benefits when displaying large

image content.

2.8 Summary

This chapter introduced THINC, a new virtual display architecture for high-performance

remote desktop computing. THINC is built around a virtual device drive approach

that enables it to leverage continuing advances in window server technology and work

seamlessly with unmodified applications, window systems, and operating systems.

On top of this architecture, THINC introduces novel translation and delivery opti-

mizations that take advantage of semantic information to efficiently convert high-level

application requests to a simple low-level protocol command set, and deliver these

CHAPTER 2. THINC ARCHITECTURE 67

protocol commands to simple and stateless remote clients.

We have measured THINC’s web browsing performance in a number of network

environments and compared it to existing widely used commercial remote display

systems. Our experimental results show that THINC can deliver good interactive

performance even when using clients located around the world. THINC provides

superior web performance over other systems, with up to 4.5 times faster response time

in WAN environments. Our results demonstrate how THINC’s unique mapping of

application level drawing commands to protocol primitives and its command delivery

mechanisms significantly improve the overall performance of a remote display system.

Going beyond basic remote display and thin-client computing, this dissertation will

show how THINC provides a fundamental building block for a broad range of remote

display and desktop computing applications.

Chapter 3 68

Chapter 3

Multimedia

From video conferencing and presentations to movie and music entertainment, mul-

timedia applications play an everyday role in desktop computing. However, many

remote display platforms have either limited, format-specific, or no support at all for

multimedia applications. Multimedia delivery imposes rather high requirements on

the underlying remote display architecture, in particular the delivery of video up-

dates. If the video is completely decoded by applications on the server, there is little

the remote display server can do to provide a scalable solution. Real-time re-encoding

of the video data is computationally expensive as screen sizes get larger, even with

modern high end server CPUs. At the same time, delivering 24 or 30 frames per

second of uncompressed color data can rapidly overwhelm the capacity of a typical

network. On the other hand, if the video is transmitted without decoding, the client

has to contain software to decode all possible formats that users will want access

to. This additional software significantly increases the complexity of the client, to

the point of becoming a management burden. Further hampering the feasibility of

this approach are the lack of well-defined application interfaces for multimedia de-

coding. Most video players use ad-hoc, unique decoding methods and architectures,

CHAPTER 3. MULTIMEDIA 69

and providing support in this environment would most certainly require prohibitive

per-application modifications.

THINC addresses these shortcomings by leveraging and extending its virtual de-

vice approach to fulfill the needs of multimedia applications. In essence, THINC

provides a virtual “bridge” between the remote client hardware and the local appli-

cations, allowing applications to transparently use the hardware capabilities of the

client to perform multimedia operations across the network. This is accomplished by

extending the virtual display device to provide video playback acceleration. Along-

side, THINC introduces a virtual sound device which can capture and forward audio

onto the client, and can receive audio data captured by the client and forward it to

applications.

This approach has a number of benefits:

• First, it allows THINC to support multimedia content in a manner that is

completely application transparent, since they utilize the virtual devices as they

would real hardware.

• Second, it provides increased playback performance. THINC extends exist-

ing hardware acceleration interfaces to provide a virtual “bridge” between the

remote client hardware and the local applications, allowing them to take ad-

vantage of the remote hardware as if it were local.

• Finally, it is format agnostic, since the hardware interfaces leveraged by THINC

are, by design, low-level, and meant to support as many codecs as possible.

The audio and video drivers work in concert to create a session environment spe-

cific to each remote user. Nevertheless, they operate in a loosely-coupled fashion. In

particular, multimedia content is demultiplexed by applications before it is delivered

CHAPTER 3. MULTIMEDIA 70

to the virtual devices, and each device may use a separate communication channel

with the client. As a result, it is possible for the different streams to become out of

sync while en route to the client.

In this manner, we recognize that the largest source of variability in the system is

the network between the server and the client; consequently, server-side synchroniza-

tion is of little use. As a result, the final component of the multimedia architecture is

meant to address this major shortcoming. THINC uses a simple yet effective mecha-

nism that adds timing information to each stream. This information allows the client

to keep the streams synchronized after they are delivered.

The resulting combination of native video, audio, and synchronization mecha-

nisms allow THINC to provide transparent and high-performance remote multimedia

support. The following sections discuss each of these components in detail.

3.1 Video Support

While full video decoding in desktop computers is still confined to the realm of soft-

ware applications, hardware manufacturers have been slowly adding acceleration ca-

pabilities for specific stages of the decoding process. For example, the ability to do

hardware color space conversion and scaling (the last stage of the decoding process)

is present in almost all of today’s commodity video cards. To allow applications to

take advantage of these advancements, interfaces have been created in display sys-

tems that allow video device drivers to expose their hardware capabilities back to the

applications. With its virtual device approach, THINC provides a virtual “bridge”

between the remote client hardware and the local applications, and allows applica-

tions to transparently use the hardware capabilities of the client to perform video

playback across the network.

CHAPTER 3. MULTIMEDIA 71

THINC supports the transmission of video data using widely supported YUV pixel

formats. A wide range of YUV pixel formats exist that provide efficient encoding

of video content. For example, the preferred pixel format in the MPEG decoding

process is YV12, which allows normal true color pixels to be represented with only 12

bits. YUV formats are able to efficiently compress RGB data without loss of quality

by taking advantage of the human eye’s ability to better distinguish differences in

brightness than in color. When using YUV, the client can simply transfer the data to

its hardware, which automatically does color space conversion and scaling. Hardware

scaling decouples the network transfer requirements of the video from the size at

which it is viewed. In other words, playing back a video at full screen resolution

does not incur any additional overhead over playing it at its original size, because the

client hardware transparently transforms the stream to the desired view size.

THINC’s video architecture is built around the notion of video stream objects.

Each stream object represents a video being displayed. All streams share a common

set of characteristics that allow THINC to manipulate them such as timing informa-

tion, their position on the screen, and the geometry of the video.

Table 3.1 provides an overview of the commands used to manipulate video streams.

More explicit details may be found in Appendix A. When an application attempts to

display a video, the THINC server sends an INIT message to the client that sets up the

video stream. The INIT message assigns a unique ID to the stream that other video

commands will use to identify and modify the stream. The video initialization process

is done asynchronously, guaranteeing that video playback starts as soon as possible

on the client. If the client is unable to successfully initialize video playback, it will

asynchronously inform the server of the failure, and ignore any outstanding updates

already sent by the server. Video playback is accomplished using the NEXT command.

NEXT encapsulates the data needed to display the next frame in the video stream,

CHAPTER 3. MULTIMEDIA 72

Command Description

INIT Initializes a video stream
END Tears down a video stream
NEXT Display the next video frame
MOVE Change the location of the video display
SRCSIZE Change the source size of the video stream
DSTSIZE Change the destination size of the video

stream

Table 3.1 – THINC Video Commands. See Appendix A for a complete description

and is sent in response to requests from the application. Because applications have

complete control over video playback, THINC does not need to separately implement

playback control commands like pause, rewind or fast forward.

The MOVE, SRCSIZE, and DSTSIZE commands are used to change the characteris-

tics of the stream after playback has started. MOVE changes the location on the screen

where the video is displayed, typically in response to movement of the video player’s

window. DSTSIZE changes the display geometry of the stream, such that videos can

be displayed at resolutions different from the actual encoded stream, e.g. displaying

a normal-sized video at full screen. SRCSIZE informs the client that the dimensions of

the encoded stream have changed. The server uses this command to modify the video

data on the fly to reduce the resource usage of the video. This is particularly useful

in situations where the client’s viewport size is smaller than the server’s framebuffer

size. In this situation, the server will automatically resample the video data in pro-

portion to the client’s display resolution, thus reducing bandwidth requirements. As

our experimental results demonstrate, this technique allows THINC to provide video

playback to mobile devices, such as PDAs, over wireless networks.

CHAPTER 3. MULTIMEDIA 73

3.2 Audio Support

THINC enables transparent audio capture and playback support using a simple vir-

tual audio device driver that resides on the server operating system. The audio driver

layer was chosen as it represents a common interception point across all applications,

regardless of the specifics on how they perform audio manipulation. The seamless in-

tegration of audio support in THINC differentiates it from other approaches, such as

using networked audio servers, in that no application modifications or special wrapper

scripts need to be invoked to enable capture or playback.

As the operating system device driver layer can be quite system specific and not

amenable to complex operations, we paired the virtual device driver with a user level

audio daemon. The user level daemon acts as the communication intermediary be-

tween the driver and the remote client, and offloads most of the functionality required

for audio operations from the driver. This separation of roles provides a number of

benefits. First, it allows for system-independent functionality to be encapsulated at

the user level, maximizing the portability of our approach. For example, the dae-

mon can provide a secure communication channel, recoding of the audio data on the

fly, and many other operations in a manner independent of the particular details of

how audio data is intercepted from applications. Similarly, by moving most complex

functionality to the user level, we simplify the device driver implementation, which is

desirable for any component working within the operating system kernel.

One important consideration regarding the division of responsibilities among THINC’s

audio components is the performance of the communication between the driver and

the daemon. Specifically, using an approach where the daemon blindly copies audio

data from kernel space to user space, processes it, then sends it back to kernel space

again to be transferred over the network would result in added overhead and introduce

CHAPTER 3. MULTIMEDIA 74

Command Description

OPEN Initializes a new audio stream
CLOSE Closes audio device
DATA Encapsulates the data for the next audio

frame
VOLUME Controls playback volume

Table 3.2 – THINC Audio Commands. Open, Close and Volume are sent exclu-
sively from the server to the client. Data is sent from the server for playback, and by
the client to transfer captured audio data

unnecessary latency. Since the timing of audio playback is important for synchroniza-

tion purposes, to provide optimal performance while maintaining the driver-daemon

separation, we implemented two shared memory regions between the driver and the

daemon in which audio data is stored, one for playback, and one for capture. The

driver gives access to this region to the daemon by using standard operating system

interfaces (such as mmap()), allowing it to manipulate the audio data without having

to create a local copy.

As audio-related information is written to the driver from a multimedia applica-

tion, the driver creates commands that represent the operations that the application

is attempting to execute. The user level daemon receives the commands from the

driver, and forwards them to the client. The commands used are shown in Table

3.2. They are designed to be simple and universally supported by any client audio

hardware.

As show in Figure 3.1, when an application begins audio playback, the driver

extracts the characteristics of the audio data and informs the daemon about the new

audio stream. The daemon in turn encapsulates the audio stream information in an

OPEN command, and sends it to the client. As in the handling of video, this initial-

ization step is done asynchronously, requiring no round-trip delays before playback

can start. As each frame of audio data is sent to the driver for playback, a DATA

CHAPTER 3. MULTIMEDIA 75

Figure 3.1 – Audio Playback. The top part shows the normal scenario, where the
application opens the audio device, plays some data, and then closes it. Notice how the
application does not have to wait for the client to open the device before it can start
playback. The bottom shows the case where the client cannot open its audio device. It
asynchronously informs the driver of the failure, which in turns passes the error to the
application. Any in-flight audio data is simply discarded by the client.

command is generated containing the amount of audio data to playback. If the client

is unable to do audio playback, it asynchronously sends back an ERROR message to

the daemon, which passes it on to the driver and the application. In this case, any

DATA commands already sent are simply discarded by the client upon receipt.

Similarly, as shown in Figure 3.2, when an application requests audio capture, the

driver extracts the characteristics of the audio data, and informs the daemon about

the new audio stream. The daemon in turn encapsulates the audio stream information

in an OPEN command, and sends it to the client. In contrast to the playback case,

audio capture is not driven by the application. In other words, THINC will not wait

for the application to request audio data before the client starts capturing audio.

Instead, the client is expected to start transferring audio data upon receipt of the

OPEN command. The captured data is transferred using the DATA command. Once

CHAPTER 3. MULTIMEDIA 76

Figure 3.2 – Audio Capture. As soon as the client receives the OPEN command, it
starts capturing data and transferring it back to the server. In this manner, the time
the application has to wait for audio data to become available is minimized.

the daemon receives the data, it copies it to the shared capture buffer, and informs

the driver of the new data. Later on, when the application attempts to read audio

data, the driver can simply return the data from the buffer. This approach helps to

minimize the latency the application perceives from capturing audio data.

However, care must be taken to not capture too much data prematurely, as this

would result in the application reading data that was captured too long ago. To

minimize this problem, THINC uses a small circular buffer inside the driver where

captured data is kept: as new samples are received from the client, old ones are

simply overwritten. In this manner, THINC can guarantee a small upper bound on

the latency perceived by the application. Ideally, the size of this buffer should be

a function of application behavior and network characteristics, in particular latency.

For example, in high latency networks, a larger buffer will be needed to avoid the

application receiving an underflow error because audio data cannot be delivered fast

enough. A low latency network would require exactly the opposite kind of behavior.

Being able to dynamically tune this buffer to the requirements of the underlying

network conditions and application behavior is a subject of future work.

CHAPTER 3. MULTIMEDIA 77

To maintain portability across a wide range of client audio hardware, THINC uses

a lowest common denominator approach, tailored to support everything from high-

end audio cards with hardware mixing and multiple channels, to simple, low-powered

USB add-on cards supporting only one channel at a time. THINC exposes a single

volume control, which can be manipulated using the VOLUME command. In addition,

it supports only one audio stream in each direction, leveraging traditional application

interfaces [5, 80] and similar mechanisms [114] to provide mixing, demultiplexing, and

more specialized audio manipulation.

3.3 Media Synchronization

Proper synchronized playback of multimedia streams is an essential component to

the desktop user experience. Since synchronization is often taken for granted, users

may become upset or annoyed if their media application does not provide proper

synchronization. Studies of human perception of inter-stream synchronization show

that the tolerance for unsynchronized playback can be exceeded if the playout of

audio and video streams differ by as little as ±80 milliseconds [138]. For many remote

display systems, the obstacles to providing synchronized playback are larger because

of bandwidth constraints and the inability to differentiate between regular display

data and actual video data. Because THINC is designed to distinguish between these

data types and provide real-time multimedia playback, it can apply a synchronization

scheme with minimal additional architectural complexity. Moreover, throughout this

process, THINC synchronizes audio and video in a way that is completely transparent

to applications.

Because there are several meanings of the term “synchronization” [138], we briefly

present some definitions to clarify our terminology. The term multimedia refers to

CHAPTER 3. MULTIMEDIA 78

the use of multiple data types, or media, such as continuous media (audio and video),

or discrete media (text and graphics). Each of these data types can be individually

described as a media unit, or MU. Continuous media data, or streams, are typically

integrated, stored, and presented in a way such that a certain relationship must be

defined between them in order to preserve their temporal characteristics. Multimedia

synchronization can be defined as the process of maintaining this temporal order

and relationship between integrated media units. Synchronization can occur within a

single media stream (intra-stream), between multiple media streams (inter-stream),

or between continuous and discrete media (inter-object) [167]. For this dissertation,

we focus on audio and video support in THINC. Thus, we use the term multimedia

to refer to audio and video MUs, and synchronization to mean lip synchronization,

or the synchronization of audio and video MUs.

THINC’s synchronization mechanism is based on the notion that time must be

treated as a first-class characteristic of all content delivered over the network. That

is, THINC prioritizes playback based on the timing information provided by all media

streams, and synchronization relies solely on this timing information which is provided

by the low-level driver components. At a high-level, THINC provides multimedia

synchronization capabilities during multimedia playback by timestamping audio and

video frames as soon as they are received by the corresponding device drivers, and

then comparing the timestamps at the client side. This end-to-end approach to

synchronization is key to how THINC ensures proper temporal ordering and playout

of MUs.

THINC maintains the temporal relationships between MUs based on user inter-

action with applications during a THINC session. As each media event is generated

by an application, the MU associated with the event is given a timestamp before

being redirected to the client. In other words, if a video playback application exe-

CHAPTER 3. MULTIMEDIA 79

cuted on the server-side does not have an adequate synchronization mechanism, then

THINC does not make any attempt to modify the output of the application. Instead,

THINC preserves the timing of media events generated by applications as they occur.

THINC is able to accomplish this with its virtual device driver design, where it is

able to transparently timestamp MUs at the precise moment an application wishes

to present them to the user. The timing relationships are maintained on the client

side at playout time through a corrective synchronization algorithm.

Thus, timestamping is the most sensitive aspect of the synchronization process.

THINC ensures that little latency is introduced since it intercepts data directly after

the moment the application sends data to the virtual audio and display device drivers.

For multimedia playback, each chunk of video and audio data is associated with

a timestamp using microsecond granularity. Once the MUs are received from the

applications and timestamped, they are sent immediately to the client. Note that

the periodicity of timestamps for each MU is determined by the synchronization

mechanisms used by the media playback application. In this manner, THINC is able

to represent both the playout time of each MU within each stream and the inter-

stream relationship of the MUs using this timestamping mechanism.

Given this timestamping information, the client applies a simple algorithm to

ensure synchronized playout. We define the algorithm as follows. Let Sa and Sv

represent the current audio and video MU timestamps being processed, respectively,

and let ∆av represent the inter-stream difference between Sa and Sv, computed as

Sa − Sv. Then:

• If ∆av > 0, then Sa > Sv, and Sa was generated earlier than Sv. If ∆av exceeds

some threshold εav, then the client blocks the processing of audio MUs and reads

additional video MUs from the network until ∆av < εav.

CHAPTER 3. MULTIMEDIA 80

• Likewise, if −∆av > 0, then Sv > Sa, and Sv was generated earlier than Sa. If

−∆av exceeds εav, then the client blocks the processing of video MUs and reads

additional audio MUs from the network until −∆av < εav.

Observe that εav determines how aggressively inter-stream synchronization is ap-

plied. If this threshold is too loose, meaning that εav is too large, then the possibility

of skew or drift is introduced. If this threshold is too strict, the synchronization

algorithm may overcorrect even though the timestamps of the MUs are properly rep-

resenting the inter-stream intervals. THINC uses an inter-stream threshold of 80

milliseconds, which we previously mentioned to be a known human tolerance thresh-

old for inter-stream synchronization.

In THINC’s end-to-end synchronization approach, one final design issue to con-

sider is the mechanism used to transfer audio and video data and associated times-

tamps over the network. In the case of real-time multimedia playback, the use of

RTP [126] over UDP is the most widely accepted solution. In this case, delayed, out

of order, or lost frames are discarded automatically in order to maintain the appli-

cation timing constraints. However, in the case of stored media playback such as

DVD playback, it may be more desirable for the user to receive all data, even with

occasional skips and delays. In this case, TCP may be the method of choice for data

transport. To minimize the effects of network variations on TCP and the overall play-

back, it is customary to implement a jitter buffer on the client. The buffer “cushions”

any intermittent network changes and guarantees smooth playback.

As the needs of desktop users may vary widely, for example, they could just as

well be participating in a video conference, or playing back a DVD, THINC provides

support for both UDP and TCP transports, as well as a jitter buffer, leaving it to the

user to choose an appropriate method according to what she or he requires.

CHAPTER 3. MULTIMEDIA 81

3.4 Implementation Details

The video playback implementation is part of the remote display implementation

described in Section 2.6. In this section we will focus on the implementation of the

virtual audio driver.

The audio driver is implemented as a loadable kernel module using the Advanced

Linux Sound Architecture (ALSA) [6] driver framework on the Linux platform. ALSA

was selected over OSS [102] since OSS is considered a deprecated driver framework

and ALSA is its designated replacement. In addition, ALSA provides backward-

compatibility with OSS, which allows proper ALSA audio drivers to work with ap-

plications written specifically for OSS.

ALSA Applications use a well-defined user-level audio library which communicates

with the driver. For commands such as OPEN, CLOSE, and VOLUME which occur with less

frequency or require quick response, the driver keeps a separate queue from which the

daemon reads using read() system calls. The driver awakens the daemon each time

the audio driver receives information from an application, and the daemon redirects

playback data to the client based on commands generated from this information.

These command structures are processed by the daemon in two ways. During normal

playback, the driver must awaken the daemon to send audio data to the client via

DATA commands. Since this represents the most-often recurring command type, the

driver partitions the DMA buffer to contain raw audio data as well as DATA commands.

During audio capture, the daemon gets awaken when it detects activity on its network

connection with the client. At this moment it reads the data from the network, copies

it to the shared buffer, and using the write() system call, informs the driver of how

much data it just received from the client.

To communicate with the client, the daemon uses either a pure TCP connection,

CHAPTER 3. MULTIMEDIA 82

or a mixed TCP/UDP strategy. In the first case, all control commands and audio

data are transferred using the reliable connection provided by TCP. In the second

case, only control commands are transferred using TCP. All data is sent through the

unreliable channel. Users are able to select which approach to use according to their

needs. For example, for real-time communication, they will most certainly choose

UDP.

3.5 Experimental Results

We focused on three different aspects of multimedia performance. First, we measured

audio/video playback on THINC and compared it to existing thin-client systems.

Second, we measured THINC’s ability to maintain synchronized audio and video

content. Finally, we measured the performance of THINC’s audio capture mechanism,

and its impact on VoIP applications.

3.5.1 Experimental Setup and Benchmarks

To measure audio/video playback performance we used the same experimental setup

as used for the 2D remote display measurements, as described in Section 2.7. We

played a 34.75 s MPEG-1 audio/video clip, with the video being of original size

352x240 pixels and displayed at full-screen resolution. We measured combined au-

dio/video playback performance except for GoToMyPC and VNC for which we only

report video playback results since they do not support audio. Although X has no

native audio support, various programs have been developed to provide remote audio

alongside it. For our experiments, we used aRts 1.3.2, a sound server commonly used

for this task. The audio/video (A/V) player used was MPlayer 1.0pre6 for the Unix-

based platforms, and Windows Media Player 9 for the Windows-based platforms.

CHAPTER 3. MULTIMEDIA 83

Since many of the thin-client systems are closed and proprietary, we measured

their playback performance in a noninvasive manner by capturing network traffic

with a packet monitor and using a variant of slow-motion benchmarking tailored for

multimedia applications [70, 93]. The benchmark provides a measure of playback

quality that accounts for both playback delays and frame drops. For example, 100%

quality means that all video frames and audio samples were played at real-time speed.

On the other hand, 50% quality could mean that half the data was dropped, or that

the clip took twice as long to play even though all of the data was played. We used

a combined measure of audio and video playback quality since many of the closed

platforms tested transmit both audio and video over the same connection, making

it difficult to disambiguate packet captures to determine which data corresponds to

each media stream.

To measure synchronization quality, we ran THINC using the same A/V playback

setup and collected timestamp logs on the client, comparing the timestamps issued

by the server for the audio and video streams over the time that the client received

them. We used two versions of the client, one with synchronization enabled and

the other with synchronization disabled. To test THINC’s format independence as

well as its quality of synchronization over time, we used two additional video clips,

one 30.2 s QuickTime clip at 480x360 resolution and the other a 148 s MPEG-1

clip at 480x260 resolution, both playing at full-screen and played back using WAN

settings. Due to the lack of access to source code from closed proprietary systems and

the general difficulty in measuring synchronization quality, we were unable to take

similar measurements of the other thin-client systems tested.

Finally, we evaluated audio capture and playback performance by measuring the

overhead of using THINC on the mouth-to-ear latency [57] of three Voice-over-IP

systems: Skype [132], version 1.4.0.99, WengoPhone [159], version 2.1.1, and Lin-

CHAPTER 3. MULTIMEDIA 84

Figure 3.3 – Experimental Testbed for Audio Capture/Playback Benchmark

phone [74], version 1.7.1. As shown in Figure 3.3, our testbed consisted of four

computers connected on a private network: one THINC client, one THINC server,

one native VoIP client, and a mouth-to-ear delay monitor. The THINC client was a

Dell Latitude D420 laptop with a 1.2 GHz Intel Core Duo CPU and 1.5 GB of RAM.

The VoIP client was an IBM T30 laptop with a 1.8 GHz Pentium 4 CPU and 1 GB of

RAM. The THINC server was a Dell Dimension 5150C desktop with a 3.20 GHz Intel

Pentium D CPU and 4 GB of RAM. The mouth-to-ear monitor was a Dell Latitude

C400 laptop with a 1.2 GHz Pentium III-M CPU and 512 MB of RAM. All of the

computers ran the Debian GNU/Linux distribution, version 3.0. The native VoIP

client ran the VoIP systems natively, using the computer’s sound card for capture

and playback. We ran a second VoIP program instance inside a virtualized desktop

on the THINC server which used our virtual audio driver and the THINC client au-

dio hardware for capture and playback. We used UDP to transport all audio data

between the THINC server and client.

The benchmark consisted of playing a one minute long sound clip into a connected

phone call, then measuring the delay in latency from the time when the sound clip

was generated until the time it was heard on the other end. The sound clip consisted

of single “beeps” separated by 5 seconds of silence. To measure latency effectively, we

captured the audio feeding directly into the microphone input of one of the comput-

CHAPTER 3. MULTIMEDIA 85

ers, and combined it with the audio output of the second computer using an audio

mixer. The output of the mixer was then fed into the monitor computer, and the

delay measured using the Audacity audio editor for Linux, version 1.3.3. To deliver

acceptable VoIP quality, this delay should fall below 400 ms, which user experience

studies have shown to be the maximum acceptable mouth-to-ear latency [147].

Capture and playback performance were measured separately by changing the

configuration of the testbed. Figure 3.3 shows the configuration used for the capture

case. For playback, we switched the position of the VoIP client and the THINC

client in the testbed. For each case, we also measured a baseline latency of the

native performance of each VoIP system. In this case, we removed the THINC client

computer from the testbed, and let the THINC server use its real audio hardware.

Finally, we measured performance in both wired and wireless scenarios. For the

wired scenario, all computers were connected using a private switched FastEthernet

network. For the wireless scenario, we used a 802.11b wireless connection between

the THINC client and server, while the rest of the computers were connected using

the wired network. For the baseline case, the wireless connection was located between

the VoIP client and the THINC server.

3.5.2 Results

Figures 3.4 to 3.6 show A/V playback performance results. Results for VNC and

GoToMyPC are for video playback without audio since those platforms do not provide

audio support. We also ran the same benchmark on all platforms with video only

and no audio. The results were similar to the A/V playback results. For platforms

that supported audio, we also ran the same benchmark with audio only and no video.

Most of the platforms with audio support provided perfect audio playback quality in

CHAPTER 3. MULTIMEDIA 86

0%

20%

40%

60%

80%

100%

PC ICA RDP GoTo
MyPC

X NX VNC Sun
Ray

THINC

A
/V

 Q
u
a
li
ty

Platform

LAN Desktop
WAN Desktop

Figure 3.4 – A/V Benchmark: A/V Quality. GoToMyPC and VNC are video
only

the absence of video.

Figure 3.4 shows that THINC is the only thin client that provides 100% A/V

quality in all network environments and is the only system that provides 100% A/V

quality in all configurations. THINC’s A/V quality is up to 8 times better than

the other systems for LAN Desktop and up to 140 times better for WAN Desktop.

Other than THINC, only the local PC provides 100% A/V quality in any of the

configurations tested. From a qualitative standpoint, THINC A/V playback was

consistently smooth and synchronized and indistinguishable from A/V playback on

the local PC. On the other hand, A/V playback was noticeably choppy and jittery

for all other thin clients. In particular, playback on RDP and ICA was marked by

lower audio fidelity due to compression and frequent drops.

Figure 3.4 shows quantitatively that all other thin clients deliver very poor A/V

quality. NX has the worst quality for LAN at only 12%, and GoToMyPC has the

worst quality for WAN at less than 2%. These systems suffer from their inability to

CHAPTER 3. MULTIMEDIA 87

0

1

10

100

1000

PC ICA RDP GoTo
MyPC

X NX VNC Sun
Ray

THINC

A
/V

 D
a
ta

 S
iz

e
 (

M
B
)

Platform

LAN Desktop
WAN Desktop

Figure 3.5 – A/V Benchmark: Total Data Transferred. GoToMyPC and VNC
are video only

distinguish video from normal display updates, and their attempts to apply ineffective

and expensive compression algorithms on the video data. These algorithms are unable

to keep up with the stream of updates generated, resulting in dropped frames or

extremely long playback times. VNC has poor video performance for these same

reasons, and drops quality by half for the WAN Desktop because of its client-pull

model. The VNC client needs to request display updates for the server to send them.

This is problematic in higher latency WAN environments in which video frames are

generated faster than the rate at which the client can send requests to the server.

In contrast, THINC’s server push model and its native audio/video support provide

substantial performance benefits over the other systems.

The effects of ICA’s support for native video playback are not reflected in Figures

3.4 to 3.6. Its playback mechanism only supports a limited number of formats, and

the widely-used MPEG1 format used for the A/V benchmark is not one of them. We

conducted additional experiments with the video clip transcoded to DivX, a supported

CHAPTER 3. MULTIMEDIA 88

0%

20%

40%

60%

80%

100%

KRFIIEPRCANCANMMNMAPANY

Q
ua

lit
y

Remote Site

A/V Quality
Network Bandwidth Relative to LAN

Figure 3.6 – A/V Benchmark: THINC A/V Quality Using Remote Sites

format, and surprisingly found the results to be only slightly better. ICA relies on

the Windows Media Player installed on the client to do the video playback, and in

turn the player had hardware requirements for this video format beyond what the

client could support. The client was unable to keep up with the desired playback

rate, resulting in poor video quality.

Figure 3.5 shows the total data transferred during A/V playback for each system.

The local PC is the most bandwidth efficient platform for A/V playback, sending less

than 6 MB of data, which corresponds to about 1.2 Mbps of bandwidth. THINC’s

100% A/V quality requires 117 MB of data for the LAN Desktop and WAN Desktop,

which corresponds to bandwidth usage of roughly 24 Mbps. Several other thin clients

send less data than THINC, but they do so because they are dropping video data,

resulting in degraded A/V quality. For example, GoToMyPC sends the least amount

of data but also has the worst A/V quality.

Figure 3.6 shows results using remote PlanetLab nodes and other sites as THINC

CHAPTER 3. MULTIMEDIA 89

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30

D
el

ta
 (

m
s)

Time (s)

With sync
No sync

Figure 3.7 – Timestamp Deltas: MPEG-1 352x240

clients, demonstrating that THINC maintains its superior A/V playback performance

under real network conditions even when client and server are located thousands of

miles apart. THINC provides perfect A/V quality for all remote sites except for Korea.

Figure 3.6 also shows the relative bandwidth available from each remote site to the

local THINC server compared to the bandwidth available in our local LAN testbed.

These measurements were obtained using Iperf. The bandwidth measurements show

that THINC does not perform well for Korea due to insufficient bandwidth. The lack

of bandwidth in this case was not due to network link itself, but due to the TCP

window size configuration of the Korea PlanetLab site, which we were not allowed to

change. For other distant non-PlanetLab remote sites such as Puerto Rico, Ireland,

and Finland in which a sufficiently-sized TCP window was allowed, Figure 3.6 shows

that THINC provides 100% A/V quality.

Figures 3.7 to 3.12 show the effects of THINC’s synchronization mechanism versus

THINC with no synchronization over the time span of each test A/V clip. We show

CHAPTER 3. MULTIMEDIA 90

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100 120 140

D
el

ta
 (

m
s)

Time (s)

With sync
No sync

Figure 3.8 – Timestamp Deltas: MPEG-1 480x260

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

D
el

ta
 (

m
s)

Time (s)

With sync
No sync

Figure 3.9 – Timestamp Deltas: QuickTime 480x360

CHAPTER 3. MULTIMEDIA 91

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-1000 -500 0 500 1000

P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l
D

e
lt
a

s

Delta (ms)

With sync
No sync

Figure 3.10 – Distribution of Timestamp Deltas: MPEG-1 352x240

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

-1000 -500 0 500 1000

P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l
D

e
lt
a

s

Delta (ms)

With sync
No sync

Figure 3.11 – Distribution of Timestamp Deltas : MPEG-1 480x260

CHAPTER 3. MULTIMEDIA 92

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

-1000 -500 0 500 1000

P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l
D

e
lt
a

s

Delta (ms)

With sync
No sync

Figure 3.12 – Distribution of Timestamp Deltas: QuickTime 480x360

only the WAN Desktop scenario, as the large network latency provides the most

stressful environment for our tests. For Figures 3.7 to 3.9, the lines represent the time

difference, or delta, between the audio and video server timestamps at the moment

the client received the MU. Since there are thousands of timestamps for each clip, for

readability purposes we plotted only the average delta for each one second interval

and took its absolute value. THINC’s client-side synchronization scheme is able to

correct the playout of audio and video quickly and is able to maintain synchronization

throughout an extended period. Figures 3.7 and 3.8 show that the non-synchronizing

version of the client eventually provides synchronization in smaller sized videos, as the

destabilizing effects of network latency are eventually overcome. However, Figure 3.9

shows that as the video frame size increases, synchronization never occurs in the non-

synchronized client. This demonstrates that THINC’s synchronization mechanisms

can handle adverse network environments, and are particularly effective with A/V

clips with large frame sizes.

CHAPTER 3. MULTIMEDIA 93

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

WengoPhone Skype Linphone

L
a
te

n
c
y
 o

v
e
rh

e
a
d

System

Capture Wired
Capture Wi-Fi

Playback Wired
Playback Wi-Fi

263 268 274

238 249 241 216
230

185

191
308 297

Figure 3.13 – Mouth-to-ear latency overhead for VoIP applications. The
playback column shows the overhead when VoIP audio data is played back over THINC.
The capture column shows the overhead when VoIP audio data is captured through
THINC. Labels on the bars show THINC’s total measured latency in milliseconds

Figures 3.10 to 3.12 show the distribution of deltas throughout the playback of

each clip. The deltas are grouped using 80 ms bins, which represents the threshold

at which synchronization is applied in THINC, as previously discussed. Without

applying synchronization, THINC can display synchronized audio and video at most

55% of the time, and, as Figure 3.12 shows, at worst does not provide synchronization

at all. With synchronization, we can see in Figures 3.10 through 3.12 that THINC

can provide synchronization 97% of the time throughout the A/V clip playout. The

distribution of deltas with non-synchronized THINC is also much wider, obscuring

the delta bins with synchronized THINC, and almost never converging around the 0

ms range in Figure 3.12.

Finally, Figure 3.13 shows the results of our audio capture and playback bench-

mark evaluation. Performance is shown normalized to the latency of the native VoIP

systems. Labels on top of the bars show THINC’s latency in milliseconds. The re-

CHAPTER 3. MULTIMEDIA 94

sults show that THINC can provide good performance for both capture and playback

in wireless and wired networks, with low overhead on the mouth-to-ear latency of

the system for all cases. The maximum overhead was 13% for the Linphone capture

case on the wired network. For all other cases, the overhead was below 10%. The

results also show that for all measured scenarios, the mouth-to-ear latency was well

below the 400 ms acceptable limit, with the maximum latency being 308 ms for the

Linphone playback case on the wired network. In some cases, Linphone being the

most pronounced one, capture latencies are lower than playback latencies due to the

difference in computational power between the THINC server and the VoIP client.

In the playback case, the lower power VoIP client has to do most of the work by

compressing the audio data before sending it to the computer running THINC server.

THINC was able to support all three VoIP applications despite the fact that

they use different data formats. Skype sends data with 16 bits per sample, 1 audio

channel, and 48000 frame rate, for a total bandwidth of 94KB/s. Linphone and

WengoPhone use 16 bits per channel, 1 channel, and 16000 frame rate, for a total

bandwidth of 32KB/s. This difference in formats is easily supported by THINC since

it has no format dependencies of any kind. It simply tunnels the data between the

audio hardware of the client and the applications on the server. As long as the client

hardware supports the desired format, applications will work flawlessly.

In summary, our results show that THINC can effectively deal with different media

characteristics and provide synchronization, full quality playback, and low overhead

capture/playback independent of the media format.

CHAPTER 3. MULTIMEDIA 95

3.6 Summary

Efficient multimedia support has always been a major shortcoming of remote display

systems. In this chapter we have described THINC’s approach to address these de-

ficiencies. In particular, THINC is able to provide native, application transparent,

and format independent support for video playback, bidirectional audio, and synchro-

nized audio/video playback. THINC leverages its virtual device architecture to create

a virtual “bridge” between the remote client hardware and the local applications. In

this manner, applications are able to transparently use the hardware capabilities of

the client to perform multimedia operations across the network.

This is accomplished by extending THINC’s virtual display device to provide

video playback acceleration. Alongside, THINC introduces a virtual sound device

which can capture and forward audio onto the client, and can receive audio data

captured by the client and forward it to applications. Finally, THINC provides intra-

stream synchronization in a manner which is both media format independent and

transparent to applications. By treating time as a first-class component, THINC is

able to maintain timing characteristics for all media streams as they are delivered

over the network.

We have measured THINC’s multimedia performance in a number of network

environments and compared it to widely used remote display systems. Our experi-

mental results show that THINC is able to deliver full-screen multimedia playback

at full frame rate in both LAN and WAN environments, outperforming most popular

systems under reasonable network conditions. In addition, THINC is able to apply a

simple mechanism that provides effective synchronization performance in WAN set-

tings, independent of media characteristics and format. Finally, our results show that

THINC can provide low-latency bidirectional audio support for VoIP applications.

Chapter 4 96

Chapter 4

Mobile Devices

The increasing ubiquity of wireless networks and decreasing cost of hardware is fueling

a proliferation of mobile wireless handheld devices, including wireless Personal Digital

Assistants (PDA) and integrated PDA/cell phone devices. These devices are enabling

new forms of mobile computing and communication. Service providers are leveraging

these devices to deliver general application functionality similar to what is found in

traditional desktop computing environments, including web browsing, email, video,

music, financial planning, and personal information management.

These devices are typically used by running applications locally on them. Al-

though native applications exist for PDAs, many of them deliver subpar performance

and have a much smaller feature set and more limited functionality than their desk-

top counterparts [70]. For example, PDA web browsers are often not able to display

web content from web sites that leverage more advanced web technologies to deliver

a richer web experience. This fundamental problem arises for two reasons. First,

since PDAs have a completely different hardware and software environment from tra-

ditional desktop computers, applications need to be rewritten and customized for

PDAs if at all possible, duplicating development costs. Because the desktop appli-

CHAPTER 4. MOBILE DEVICES 97

cation market is larger and more mature, most development efforts generally end

up being spent on desktop applications, resulting in greater functionality and perfor-

mance than their PDA counterparts. Second, PDAs have a more resource constrained

environment than traditional desktop computers to provide a smaller form factor and

longer battery life. Desktop applications are large, complex applications that are un-

able to run on a PDA. Instead, developers are forced to significantly strip down these

applications to provide a usable PDA application, thereby crippling PDA application

functionality.

To address these problems, we propose an alternative solution for delivering ap-

plication services on mobile handheld devices by using thin-client computing. In this

model, handheld devices communicate over the network with a server using a remote

display protocol. This model provides several important benefits. First, standard

desktop applications can be used in PDAs without rewriting or adapting them to

execute on a PDA, reducing development costs and leveraging existing software in-

vestments. Second, complex applications can be executed on powerful servers instead

of running stripped down versions on more resource constrained PDAs, providing

greater functionality and better performance [70]. Third, applications can take ad-

vantage of servers with faster networks and better connectivity, further boosting ap-

plication performance. Fourth, PDAs can be even simpler devices since they do not

need to perform complex application logic, potentially reducing energy consumption

and extending battery life. Finally, PDA thin clients can be essentially stateless ap-

pliances that do not need to be backed up or restored, require almost no maintenance

or upgrades, and do not store any sensitive data that can be lost or stolen. This

model provides a viable avenue for medical organizations to comply with HIPAA

regulations [50] while embracing mobile handhelds in their day to day operations.

Despite these potential advantages, thin clients have been unable to provide the

CHAPTER 4. MOBILE DEVICES 98

full range of these benefits in delivering applications to mobile handheld devices.

Existing thin clients were not designed for PDAs and do not account for important

usability issues in the context of small form factor devices, resulting in difficulty in

navigating displayed content. Furthermore, existing thin clients are ineffective at

providing seamless mobility across the heterogeneous mix of device display sizes and

resolutions. While existing thin clients can already provide faster performance than

native PDA web browsers in delivering HTML web content[70], they do not effec-

tively support more display-intensive applications such as multimedia video, which is

increasingly an integral part of the desktop experience.

To harness the full potential of thin-client computing in providing mobile wireless

applications on PDAs, we have developed pTHINC (PDA THin-client InterNet Com-

puting) [62, 63]. pTHINC extends THINC’s remote display architecture to provide

a thin-client architecture for mobile handheld devices. Using THINC’s display virtu-

alization, pTHINC resizes the display on the server to efficiently deliver high-fidelity

screen updates to a broad range of clients, screen sizes, and screen orientations, includ-

ing both portrait and landscape viewing modes. This enables pTHINC to provide the

same persistent desktop session across different client devices. For example, pTHINC

can provide the same web browsing session appropriately scaled for display on a desk-

top computer and a PDA so that the same cookies, bookmarks, and other meta-data

are continuously available on both machines simultaneously. pTHINC also leverages

THINC’s multimedia support to support display-intensive applications. Given lim-

ited display resolution on PDAs, pTHINC maximizes the use of screen real estate for

remote display by moving control functionality from the screen to readily available

PDA control buttons, improving system usability.

This section presents the design and implementation of pTHINC for the Windows

Mobile PDA platform. Quantitative results evaluating pTHINC performance against

CHAPTER 4. MOBILE DEVICES 99

local PDA web browsers and other PDA thin-client approaches are also presented.

These experimental results demonstrate that pTHINC provides superior performance

and is the only PDA thin client that effectively supports crucial display intensive

applications such as video playback.

4.1 pTHINC Usage Model

pTHINC is a thin-client system that consists of a simple client viewer application that

runs on the PDA and a server that runs on a commodity PC. The server leverages

more powerful PCs to store all data and run application logic. The client takes user

input from the PDA stylus and the on-screen virtual keyboard and sends them to the

server to pass to the applications. Screen updates are then sent back from the server

to the client for display to the user.

When the pTHINC PDA client is started, the user is presented with a simple

graphical interface where information such as server address and port, user authen-

tication information, and session settings can be provided. pTHINC first attempts

to connect to the server and perform the necessary handshaking. Once this process

has been completed, pTHINC presents the user with the most recent display contents

of her session. If the session does not exist, a new session is created. Existing ses-

sions can be seamlessly continued without changes to the desktop settings or server

configuration.

Unlike other thin-client systems, pTHINC provides a user with a persistent session

model in which a user can launch a session running any desktop application at the

server, then disconnect from that session and reconnect to it again anytime. When a

user reconnects to the session, all of the applications continue running where the user

left off, allowing the user to continue working as though he or she never disconnected.

CHAPTER 4. MOBILE DEVICES 100

The ability to disconnect and reconnect to a session at anytime is an important benefit

for mobile wireless PDA users which may have intermittent network connectivity.

pTHINC’s persistent session model enables a user to reconnect from devices other

than the one on which the session was originally initiated. This provides users with

seamless mobility across different devices. For example, if the user’s PDA gets lost or

stolen, she can easily switch to another PDA to access the session without any loss in

functionality or data. Furthermore, pTHINC allows users to connect with non-PDA

devices as well, for example, using a desktop computer. In this manner, users have

access to the same desktop session from any computer or mobile device.

pTHINC’s persistent session model addresses a key problem encountered by mobile

users, namely, the lack of a common environment across computers. For example,

web browsers often store important information such as bookmarks, cookies, and

history, which enable them to function in a much more useful manner. However,

when a user moves between multiple computers, this data, which is specific to a web

browser installation, cannot move with the user, unless it is explicitly transferred.

Transferring this data is a non-trivial process, as demonstrated by the number of

programs and services available to address this problem [45, 103, 175]. Furthermore,

web browsers often need helper applications to process different media content, and

those applications may not be consistently available across all computers. pTHINC

addresses this problem by enabling a user to remotely use the exact same desktop

environment and applications from any computer. As a result, pTHINC can provide

a common, consistent environment for mobile users across different devices without

requiring them to attempt to repeatedly synchronize these environments.

To enable a user to access the same session on different devices, pTHINC must

provide mechanisms to support different display sizes and resolutions. Toward this

end, pTHINC provides a zoom feature that enables a user to zoom in and out of

CHAPTER 4. MOBILE DEVICES 101

a display and allows the display to be resized to fit the screen of the device being

used. For example, if the server is running at 1024×768 but the client is a PDA with

a display resolution of 640×480, pTHINC will resize the desktop display to fit the

full display in the smaller screen of the PDA. pTHINC provides the PDA user with

the option to increase the size of the display by zooming in to different parts of the

display. Users are often familiar with the general layout of commonly visited websites,

and are able to leverage this resizing feature to better navigate through web pages.

For example, a user can zoom out of the display to view the entire page content and

navigate hyperlinks, then zoom in to a region of interest for a better view.

To enable a user to access the same session on different devices, pTHINC must

also provide mechanisms to support different display orientations. In a desktop en-

vironment, users are typically accustomed to having displays presented in landscape

mode where the screen width is larger than its height. However, in a PDA environ-

ment, the choice is not always obvious. Some users may prefer having the display

in portrait mode, as it is easier to hold the device in their hands, while others may

prefer landscape mode in order to minimize the amount of side-scrolling necessary

to view the desktop. To accommodate PDA user preferences, pTHINC provides an

orientation feature that enables it to seamless rotate the display between landscape

and portrait mode. The landscape mode is particularly useful for pTHINC users who

frequently access their sessions on both desktop and PDA devices, providing those

users with the same familiar landscape setting across different devices.

Because screen space is a relatively scarce resource on PDAs, pTHINC runs in full

screen mode to maximize the screen area available to display the session. To be able

to use all of the screen on the PDA and still allow the user to control and interact

with it, pTHINC reuses the typical shortcut buttons found on PDAs to perform all

the control functions available to the user. The buttons used by pTHINC do not

CHAPTER 4. MOBILE DEVICES 102

Figure 4.1 – pTHINC shortcut keys

require any OS environment changes; they are simply intercepted by the pTHINC

client application when they are pressed. Figure 4.1 shows how pTHINC utilizes the

shortcut buttons to provide easy navigation and improve the overall user experience.

These buttons are not device specific, and the layout shown is common to widely-used

PocketPC devices. pTHINC provides six shortcuts to support its usage model:

• Rotate Screen: The record button on the left edge is used to rotate the screen

between portrait and landscape mode. Each time the button is pressed, the

screen alternate between each mode.

• Zoom Out: The leftmost button on the bottom front is used to zoom out the

display of the session. This way the user can get a bird’s eye view of the desktop,

and find the parts of the screen which are of interest.

• Zoom In: The second leftmost button on the bottom front is used to zoom in

the display of the desktop to more clearly view content of interest.

CHAPTER 4. MOBILE DEVICES 103

• Directional Scroll: The middle button on the bottom front is used to scroll

around the display using a single control button in a way that is already familiar

to PDA users. This feature is particularly useful when the user has zoomed in

to a region of the display such that only part of the display is visible on the

screen.

• Show/Hide Keyboard: The second rightmost button on the bottom front is used

to bring up a virtual keyboard drawn on the screen for devices which have no

physical keyboard. The virtual keyboard uses standard PDA OS mechanisms,

providing portability across different PDA environments.

• Close Session: The rightmost button on the bottom front is used to disconnect

from the pTHINC session.

pTHINC uses the PDA touch screen, stylus, and standard user interface mecha-

nisms to provide a user interface point-and-click metaphor similar to that provided

by the mouse in a traditional desktop computing environment. pTHINC does not

use a cursor since PDA environments do not provide one. Instead, a user can use

the stylus to tap on different sections of the touch screen to indicate input focus. A

single tap on the touch screen generates a corresponding single click mouse event. A

double tap on the touch screen generates a corresponding double click mouse event.

pTHINC provides two-button mouse emulation by using the stylus to press down

on the screen for one second to generate a right mouse click. All of these actions

are identical to the way users already interact with PDA applications in the Pock-

etPC environment. For example, while web browsing, users can click on hyperlinks

and focus on input boxes by simply tapping on the corresponding screen area. Un-

like local PDA applications, pTHINC leverages more powerful desktop user interface

metaphors to enable users to manipulate multiple open application windows instead

CHAPTER 4. MOBILE DEVICES 104

of being limited to a single application window at any given moment. This provides

increased flexibility beyond what is currently available on PDA devices. Similar to a

desktop environment, browser windows and other application windows can be moved

around by pressing down and dragging the stylus.

4.2 pTHINC System Architecture

pTHINC builds on THINC’s virtual display architecture to provide a thin-client sys-

tem for PDAs. While other thin-client approaches intercept display commands at

other layers of the display subsystem, pTHINC’s display virtualization approach pro-

vides some key benefits in efficiently supporting PDA clients. For example, intercept-

ing display commands at a higher layer between applications and the window system

as is done by X [123] requires replicating and running a great deal of functionality on

the PDA that is traditionally provided by the desktop window system. Given both

the size and complexity of traditional window systems, attempting to replicate this

functionality in the restricted PDA environment would have proved to be a daunting,

and perhaps unfeasible task. Furthermore, applications and the window system of-

ten require tight synchronization in their operation and imposing a wireless network

between them by running the applications on the server and the window system on

the client would significantly degrade performance. On the other hand, intercepting

at a lower layer by extracting pixels out of the framebuffer as they are rendered pro-

vides a simple solution that requires very little functionality on the PDA client, but

can also result in degraded performance. The reason is that by the time the remote

display server attempts to send screen updates, it has lost all semantic information

that may have helped it encode efficiently, and it must resort to using a generic and

expensive encoding mechanism on the server, as well as a potentially expensive de-

CHAPTER 4. MOBILE DEVICES 105

coding mechanism on the limited PDA client. In contrast to both the high and low

level interception approaches, pTHINC’s approach of intercepting at the device driver

provides an effective balance between client and server simplicity, and the ability to

efficiently encode and decode screen updates.

By using a low-level virtual display approach, pTHINC can efficiently encode ap-

plication display commands using only a small set of low-level commands, as were

described in Section 2.3. In a PDA environment, this set of commands provides a cru-

cial component in maintaining the simplicity of the client in the resource-constrained

PDA environment. Using THINC’s non-blocking, server push update model, pTHINC

obviates the need for clients to explicitly request display updates, thus minimizing

the impact that the typical varying network latency of wireless links may have on the

responsiveness of the system. Keeping in mind that resource constrained PDAs and

wireless networks may not be able to keep up with a fast server generating a large

number of updates, pTHINC is able to coalesce, clip, and discard updates automati-

cally if network loss or congestion occurs, or the client cannot keep up with the rate of

updates. This type of behavior proves crucial in a web browsing environment, where

for example, a page may be redrawn multiple times as it is rendered on the fly by the

browser. In this case, the PDA will only receive and render the final result, which

clearly is all the user is interested in seeing.

THINC’s Shortest-Remaining-Size-First (SRSF) preemptive update scheduler also

plays a crucial role in pTHINC’s architecture. In a web browsing environment, short

jobs are associated with text and basic page layout components such as the page’s

background, which are critical web content for the user. On the other hand, large jobs

are often lower priority “beautifying” elements, or, even worse, web page banners and

advertisements, which are of questionable value to the user as he or she is browsing

the page. Using SRSF, pTHINC is able to maximize the utilization of the relatively

CHAPTER 4. MOBILE DEVICES 106

scarce bandwidth available on the wireless connection between the PDA and the

server.

4.2.1 Display Management

To enable users to just as easily access their web browser and helper applications from

a desktop computer at home as from a PDA while on the road, pTHINC provides

a resize mechanism to zoom in and out of the display of a web session. pTHINC

resizing is completely supported by the server, not the client. The server resamples

updates to fit within the PDAs viewport before they are transmitted over the network.

pTHINC uses Fant’s resampling algorithm to resize pixel updates. This provides

smooth, visually pleasing updates with properly antialiasing and has only modest

computational requirements.

pTHINC’s resizing approach has a number of advantages. First, it allows the PDA

to leverage the vastly superior computational power of the server to use high quality

resampling algorithms and produce higher quality updates for the PDA to display.

Second, resizing the screen does not translate into additional resource requirements

for the PDA, since it does not need to perform any additional work. Finally, better

utilization of the wireless network is attained since rescaling the updates reduces their

bandwidth requirements.

To enable users to orient their displays on a PDA to provide a viewing experience

that best accommodates user preferences and the layout of web pages or applica-

tions, pTHINC provides a display rotation mechanism to switch between landscape

and portrait viewing modes. pTHINC display rotation is completely supported by

the client, not the server. pTHINC does not explicitly recalculate the geometry of

display updates to perform rotation, which would be computationally expensive. In-

CHAPTER 4. MOBILE DEVICES 107

stead, pTHINC simply changes the way data is copied into the framebuffer to switch

between display modes. When in portrait mode, data is copied along the rows of

the framebuffer from left to right. When in landscape mode, data is copied along

the columns of the framebuffer from top to bottom. These very fast and simple

techniques replace one set of copy operations with another and impose no perfor-

mance overhead. pTHINC provides its own rotation mechanism to support a wide

range of devices without imposing additional feature requirements on the PDA. Al-

though some newer PDA devices provide native support for different orientations,

this mechanism is not dynamic and requires the user to rotate the PDA’s entire user

interface before starting the pTHINC client. Windows Mobile provides native API

mechanisms for PDA applications to rotate their UI on the fly, but these mechanisms

deliver poor performance and display quality as the rotation is performed naively and

is not completely accurate.

4.2.2 Video Playback

Video has gradually become an integral part of the World Wide Web, and its presence

will only continue to increase. Web sites today not only use animated graphics and

flash to deliver web content in an attractive manner, but also utilize streaming video

to enrich the web interface. Users are able to view pre-recorded and live newscasts

on CNN, watch sports highlights on ESPN, and even search through large collection

of videos on Google Video. To allow applications to provide efficient video playback,

interfaces have been created in display systems that allow video device drivers to

expose their hardware capabilities back to the applications. pTHINC takes advantage

of these interfaces and its virtual device driver approach to provide a virtual bridge

between the remote client and its hardware and the applications, and transparently

CHAPTER 4. MOBILE DEVICES 108

support video playback.

On top of this architecture, pTHINC uses the YUV colorspace to encode the

video content, which provides a number of benefits. First, it has become increasingly

common for PDA video hardware to natively support YUV and be able to perform

the colorspace conversion and scaling automatically. As a result, pTHINC is able to

provide fullscreen video playback without any performance hits. Second, the use of

YUV allows for a more efficient representation of RGB data without loss of quality,

by taking advantage of the human eye’s ability to better distinguish differences in

brightness than in color. In particular, pTHINC uses the YV12 format, which allows

full color RGB data to be encoded using just 12 bits per pixel. Third, YUV data is

produced as one of the last steps of the decoding process of most video codecs, allowing

pTHINC to provide video playback in a manner that is format independent. Finally,

even if the PDA’s video hardware is unable to accelerate playback, the colorspace

conversion process is simple enough that it does not impose unreasonable requirements

on the PDA.

A more concrete example of how pTHINC leverages the PDA video hardware to

support video playback can be seen in our prototype implementation on the popular

Dell Axim X51v PDA, which is equipped with the Intel 2700G multimedia accelerator.

In this case, pTHINC creates an offscreen buffer in video memory and writes and

reads from this memory region data on the YV12 format. When a new video frame

arrives, video data is copied from the buffer to an overlay surface in video memory,

which is independent of the normal surface used for traditional drawing. As the

YV12 data is put onto the overlay, the Intel accelerator automatically performs both

colorspace conversion and scaling. By using the overlay surface, pTHINC has no

need to redraw the screen once video playback is over since the overlapped surface

is unaffected. In addition, specific overlay regions can be manipulated by leveraging

CHAPTER 4. MOBILE DEVICES 109

the video hardware, for example to perform hardware linear interpolation to smooth

out the frame and display it fullscreen, and to do automatic rotation when the client

runs in landscape mode.

Readers may wonder how wireless bandwidth limitation can support fullscreen

video. One of the main performance bottlenecks on pTHINC is wireless network

capability. While the 802.11b specification allows up to 11 Mbps network bandwidth,

previous studies have indicated that 6 Mbps network bandwidth is more typical of

what is achievable in practice [161]. We assume that it is impractical to perform

video playback which is played on a larger display size than the PDA can support.

Therefore, the server sends a resized video data to the client when the clip is too large.

Thus always resizing down to the screen size which the PDA can support results in

staying under the bandwidth limitation.

4.3 Experimental Results

We have implemented a pTHINC client and server prototype that supports widely-

used Windows Mobile-based Pocket PC devices as clients and both Windows and

Linux machines as servers. To demonstrate its effectiveness to support mobile wireless

devices we present experimental qualitative and quantitative results on different PDA

devices for three popular applications, browsing web pages, financial management,

and playing video content.

We compared pTHINC against native web applications running locally on the

PDA to demonstrate the improvement that pTHINC can provide over the traditional

approach. We also compared pTHINC against three of the most widely used thin

clients that can run on PDAs, Citrix Meta-FrameXP (ICA), Microsoft Remote Desk-

top (RDP) and VNC (Virtual Network Computing).

CHAPTER 4. MOBILE DEVICES 110

Figure 4.2 – PDA Experimental Testbed

4.3.1 Experimental Testbed

We conducted our experiments using two different wireless Pocket PC PDAs in an

isolated Wi-Fi network testbed, as shown in Figure 4.2. The testbed consisted of two

PDA client devices, a packet monitor, a thin-client server, and a web server. Except

for the PDAs, all of the other machines were the same as those used for our 2D remote

display experimental results, described in Section 2.7. The PDA clients connected

to the testbed through a 802.11b Lucent Orinoco AP-2000 wireless access point. All

experiments using the wireless network were conducted within ten feet of the access

point, so we considered the amount of packet loss to be negligible in our experiments.

Two Pocket PC PDAs were used to provide results across both older, less powerful

models and newer higher performance models. The older model was a Dell Axim X5

with a 400 MHz Intel XScale PXA255 CPU and 64 MB RAM running Windows

Mobile 2003 and a Dell TrueMobile 1180 2.4Ghz CompactFlash card for wireless

networking. The newer model was a Dell Axim X51v with a 624 MHz Intel XScale

XPA270 CPU and 64 MB RAM running Windows Mobile 5.0 and integrated 802.11b

wireless networking. The X51v has an Intel 2700G multimedia accelerator with 16MB

CHAPTER 4. MOBILE DEVICES 111

Client 1024×768 640×480 Depth Resize Clip
RDP no yes 8-bit no yes
VNC yes yes 16-bit no no
ICA yes yes 16-bit yes no

pTHINC yes yes 24-bit yes no

Table 4.1 – PDA Testbed Configuration Settings

video memory. Both PDAs are capable of 16-bit color but have different screen

sizes and display resolutions. The X5 has a 3.5 inch diagonal screen with 240×320

resolution. The X51v has a 3.7 inch diagonal screen with 480×640.

The four thin clients that we used support different levels of display quality as

summarized in Table 4.1. The RDP client only supports a fixed 640×480 display

resolution on the server with 8-bit color depth, while other platforms provide higher

levels of display quality. To provide a fair comparison across all platforms, we con-

ducted our experiments with thin-client sessions configured for two possible resolu-

tions, 1024×768 and 640×480. Both ICA and VNC were configured to use the native

PDA resolution of 16-bit color depth. The current pTHINC prototype uses 24-bit

color directly and the client downsamples updates to the 16-bit color depth available

on the PDA. RDP was configured using only 8-bit color depth since it does not sup-

port any better color depth. Since both pTHINC and ICA provide the ability to view

the display resized to fit the screen, we measured both clients with and without the

display resized to fit the PDA screen. Each thin client was tested using landscape

rather than portrait mode when available. All systems run on the X51v could run in

landscape mode because the hardware provides a landscape mode feature. However,

the X5 does not provide this functionality. Only pTHINC directly supports landscape

mode, so it was the only system that could run in landscape mode on both the X5

and X51v.

To provide a fair comparison, we also standardized on common hardware and

CHAPTER 4. MOBILE DEVICES 112

operating systems whenever possible. All of the systems used the Netfinity server as

the thin-client server. For the two systems designed for Windows servers, ICA and

RDP, we ran Windows 2003 Server on the server. For the other systems which support

X-based servers, VNC and pTHINC, we ran the Debian Linux Unstable distribution

with the Linux 2.6.10 kernel on the server. We used the latest thin-client server

versions available on each platform at the time of our experiments, namely Citrix

MetaFrame XP Server for Windows Feature Release 3, Microsoft Remote Desktop

built into Windows XP and Windows 2003 using RDP 5.2, and VNC 4.0.

4.3.2 Application Benchmarks

For our qualitative results, we compared two common PDA application scenarios,

web browsing and financial management. We present web browsing using pTHINC

with a Linux server and financial management using pTHINC with a Windows server

to demonstrate the flexibility that pTHINC provides in delivering both Linux and

Windows applications. For these tests, we use the Dell Axim X51v PDA exclusively.

For our quantitative results, we used two web application benchmarks for our

experiments based on two common application scenarios, browsing web pages and

playing video content from the web. Since many thin-client systems including two

of the ones tested are closed and proprietary, we measured their performance in a

noninvasive manner by capturing network traffic with a packet monitor and using a

variant of slow-motion benchmarking [93] previously developed to measure thin-client

performance in PDA environments [70]. This measurement methodology accounts for

both the display decoupling that can occur between client and server in thin-client

systems as well as client processing time, which may be significant in the case of

PDAs.

CHAPTER 4. MOBILE DEVICES 113

To measure web browsing performance, we used a web browsing benchmark based

on the Web Text Page Load Test from the Ziff-Davis i-Bench benchmark suite [54].

The benchmark consists of JavaScript controlled load of 55 pages from the web server.

The pages contain both text and graphics with pages varying in size. The graphics

are embedded images in GIF and JPEG formats. The original i-Bench benchmark

was modified for slow-motion benchmarking by introducing delays of several seconds

between the pages using JavaScript. Then two tests were run, one where delays where

added between each page, and one where pages where loaded continuously without

waiting for them to be displayed on the client. In the first test, delays were sufficiently

adjusted in each case to ensure that each page could be received and displayed on

the client completely without temporal overlap in transferring the data belonging to

two consecutive pages. We used the packet monitor to record the packet traffic for

each run of the benchmark, then used the timestamps of the first and last packet in

the trace to obtain our latency measures [70]. The packet monitor also recorded the

amount of data transmitted between the client and the server. The ratio between the

data traffic in the two tests yields a scale factor. This scale factor shows the loss of

data between the server and the client due to inability of the client to process the

data quickly enough. The product of the scale factor with the latency measurement

produces the true latency accounting for client processing time.

To run the web browsing benchmark, we used Mozilla Firefox 1.0.4 running on

the thin-client server for the thin clients, and Windows Internet Explorer (IE) Mobile

for 2003 and Mobile for 5.0 for the native browsers on the X5 and X51v PDAs,

respectively. In all cases, the web browser used was sized to fill the entire display

region available.

To measure video playback performance, we used a video benchmark that con-

sisted of playing a 34.75s MPEG-1 video clip containing a mix of news and entertain-

CHAPTER 4. MOBILE DEVICES 114

ment programming at full-screen resolution. The video clip is 5.11 MB and consists

of 834 352x240 pixel frames with an ideal frame rate of 24 frames/sec. We measured

video performance using slow-motion benchmarking by monitoring resulting packet

traffic at two playback rates, 1 frames/second (fps) and 24 fps, and comparing the

results to determine playback delays and frame drops that occur at 24 fps to measure

overall video quality [93]. For example, 100% quality means that all video frames

were played at real-time speed. On the other hand, 50% quality could mean that half

the video data was dropped, or that the clip took twice as long to play even though

all of the video data was displayed.

To run the video benchmark, we used Windows Media Player 9 for Windows-based

thin-client servers, MPlayer 1.0 pre 6 for X-based thin-client servers, and Windows

Media Player 9 Mobile and 10 Mobile for the native video players running locally on

the X5 and X51v PDAs, respectively. In all cases, the video player used was sized to

fill the entire display region available.

4.3.3 Qualitative Results

Figures 4.3 and 4.4 show screenshots of web browsing using pTHINC and a full-

function Mozilla Firefox web browser versus running Pocket IE natively on the PDA,

respectively. Because of the limited resolution of the screenshots, they effectively

show the layout differences between different platforms but do not reproduce the

actual display quality of the PDA, which is much better than what is shown in these

figures.

Both screenshots show the same web page from BBC News [15], but display them

very differently. pTHINC provides the user with a wide range of display options,

enabling the user to see the entire web page as well as zoom in on different parts

CHAPTER 4. MOBILE DEVICES 115

Figure 4.3 – pTHINC Web Screenshot:
BBC News

Figure 4.4 – Native IE Screenshot: BBC
News

Figure 4.5 – pTHINC Application
Screenshot: Quicken

Figure 4.6 – Native Application Screen-
shot: Pocket Quicken

of the web page. The result is a quality display experience similar to the familiar

experience of web browsing on a desktop computer. pTHINC enables the user to

use a full-function desktop web browser on the PDA, providing robust support for

viewing the same wide range of web sites that are accessible on a desktop computer.

In contrast, running the native PDA application provides the user with a limited

viewing experience of only being able to see a small portion of the web page at a time

and needing to scroll around the web page frequently to view the content. Because

the BBC News web page is not designed for viewing on PDAs, the native PDA web

CHAPTER 4. MOBILE DEVICES 116

browser ends up only being able to display the top left corner of the web page when

it is initially downloaded. This top left corner primarily consists of the BBC News

logo, displaying very little useful content to the user. In addition, the Pocket IE

user interface consumes a substantial amount of screen area, particularly the top and

bottom menu bars, further reducing the available screen area for displaying useful

web content. A bigger problem is that Pocket IE does not correctly parse parts of

the BBC News web page depending on the particular web content being displayed.

In scrolling around the BBC News web page shown, parts of the page are missing or

misaligned. These problems are due to the resource restrictions of the PDA, resulting

in the Pocket IE web browser having more limited functionality as a stripped down

version of the equivalent Microsoft IE web browser that runs on a desktop computer.

A wide range of web sites such as the BBC News web site cannot be displayed properly

on the PDA using Pocket IE because of its incomplete support for commonly used

web technologies such as JavaScript.

Figures 4.5 and 4.6 show screenshots of running Quicken [115] financial manage-

ment software using pTHINC and the full-function desktop version versus running

Pocket Quicken natively on the PDA, respectively. pTHINC provides the user with

a quality display experience similar to the familiar experience of using Quicken on a

desktop computer, enabling the user to use the full-function desktop Quicken soft-

ware on the PDA. As a result, users can access their Quicken data via pTHINC across

handheld devices and desktop computers without any need to maintain and attempt

to synchronize multiple copies of their data across different devices.

In contrast, running the native PDA Pocket Quicken application provides the user

with access to a very limited application compared to the original desktop version.

Pocket Quicken is not capable of displaying in-depth financial analysis reports due to

display resolution limitations and sub-par processing capabilities. Pocket Quicken is

CHAPTER 4. MOBILE DEVICES 117

limited to maintaining short lists of expenses and viewing balances. Because of its

limited functionality, Pocket Quicken also requires the desktop version to be installed

on another desktop machine and needs to synchronize its data with the desktop

version, requiring the user to purchase two versions of the software to provide financial

management functionality on the PDA.

4.3.4 Quantitative Results

Figures 4.7 and 4.8 show the results of running the web browsing benchmark. For

each platform, we show results for up to four different configurations, two on the

X5 and two on the X51v, depending on whether each configuration was supported.

However, not all platforms could support all configurations. The local browser only

runs at the display resolution of the PDA, 480×680 or less for the X51v and the

X5. RDP only runs at 640×480. Neither platform could support 1024×768 display

resolution. ICA only ran on the X5 and could not run on the X51v because it did

not work on Windows Mobile 5.

Figure 4.7 shows the average latency per web page for each platform. pTHINC

provides the lowest average web browsing latency on both PDAs. On the X5, pTHINC

performs up to 70 times better than other thin-client systems and 8 times better than

the local browser. On the X51v, pTHINC performs up to 80 times better than other

thin-client systems and 7 times better than the native browser. In fact, all of the

thin clients except VNC outperform the local PDA browser, demonstrating the per-

formance benefits of the thin-client approach. Usability studies have shown that web

pages should take less than one second to download for the user to experience an un-

interrupted web browsing experience [94]. The measurements show that only the thin

clients deliver subsecond web page latencies. In contrast, the local browser requires

CHAPTER 4. MOBILE DEVICES 118

0

1

10

100

pTHINC
Resized

pTHINCICA
Resized

ICAVNCRDPLOCAL

La
te

nc
y

(s
)

Platform

Axim X5 (640x480 or less)
Axim X51v (640x480)
Axim X5 (1024x768)

Axim X51v (1024x768)

Figure 4.7 – PDA Browsing Benchmark: Average Page Latency

more than 3 seconds on average per web page. The local browser performs worse since

it needs to run a more limited web browser to process the HTML, JavaScript, and do

all the rendering using the limited capabilities of the PDA. The thin clients can take

advantage of faster server hardware and a highly tuned web browser to process the

web content much faster.

Figure 4.7 shows that RDP is the next fastest platform after pTHINC. However,

RDP is only able to run at a fixed resolution of 640×480 and 8-bit color depth.

Furthermore, RDP also clips the display to the size of the PDA screen so that it does

not need to send updates that are not visible on the PDA screen. This provides a

performance benefit assuming the remaining web content is not viewed, but degrades

performance when a user scrolls around the display to view other web content. RDP

achieves its performance with significantly lower display quality compared to the

other thin clients and with additional display clipping not used by other systems. As

a result, RDP performance alone does not provide a complete comparison with the

CHAPTER 4. MOBILE DEVICES 119

0

1

10

100

1000

pTHINC
Resized

pTHINCICA
Resized

ICAVNCRDPLOCAL

D
at

a
S

iz
e

(K
B

)

Platform

Axim X5 (640x480 or less)
Axim X51v (640x480)
Axim X5 (1024x768)

Axim X51v (1024x768)

Figure 4.8 – PDA Browsing Benchmark: Average Page Data Transferred

other platforms. In contrast, pTHINC provides the fastest performance while at the

same time providing equal or better display quality than the other systems.

Since VNC and ICA provide similar display quality to pTHINC, these systems

provide a more fair comparison of different thin-client approaches. ICA performs

worse in part because it uses higher-level display primitives that require additional

client processing costs. VNC performs worse in part because it loses display data

due to its client-pull delivery mechanism and because of the client processing costs

in decompressing raw pixel primitives. In both cases, their performance was limited

in part because their PDA clients were unable to keep up with the rate at which web

pages were being displayed.

Figure 4.7 also shows measurements for those thin clients that support resizing the

display to fit the PDA screen, namely ICA and pTHINC. Resizing requires additional

processing, which results in slower average web page latencies. The measurements

show that the additional delay incurred by ICA when resizing versus not resizing is

CHAPTER 4. MOBILE DEVICES 120

much more substantial than for pTHINC. ICA performs resizing on the slower PDA

client. In contrast, pTHINC leverage the more powerful server to do resizing, reducing

the performance difference between resizing and not resizing. Unlike ICA, pTHINC

is able to provide subsecond web page download latencies in both cases.

Figure 4.8 shows the data transferred in KB per page when running the slow-

motion version of the tests. All of the platforms have modest data transfer require-

ments of roughly 100 KB per page or less. This is well within the bandwidth capacity

of Wi-Fi networks. The measurements show that the local browser does not transfer

the least amount of data. This is surprising as HTML is often considered to be a

very compact representation of content. Instead, RDP is the most bandwidth effi-

cient platform, largely as a result of using only 8-bit color depth and screen clipping

so that it does not transfer the entire web page to the client. pTHINC overall has

the largest data requirements, slightly more than VNC. This is largely a result of the

current pTHINC prototype’s lack of native support for 16-bit color data in the wire

protocol. However, this result also highlights pTHINC’s performance as it is faster

than all other systems even while transferring more data. Furthermore, as newer PDA

models support full 24-bit color, these results indicate that pTHINC will continue to

provide good web browsing performance.

Since display usability and quality are as important as performance, Figures 4.9 to

4.12 compare screenshots of the different thin clients when displaying a web page, in

this case from the popular BBC news website. Except for ICA, all of the screenshots

were taken on the X51v in landscape mode using the maximum display resolution

settings for each platform given in Table 4.1. The ICA screenshot was taken on

the X5 since ICA does not run on the X51v. While the screenshots lack the visual

fidelity of the actual device display, several observations can be made. Figure 4.9

shows that RDP does not support fullscreen mode and wastes lots of screen space for

CHAPTER 4. MOBILE DEVICES 121

Figure 4.9 – PDA Browser Screenshot: RDP 640x480

Figure 4.10 – PDA Browser Screenshot: VNC 1024x768

CHAPTER 4. MOBILE DEVICES 122

Figure 4.11 – PDA Browser Screenshot: ICA Resized 1024x768

Figure 4.12 – PDA Browser Screenshot: pTHINC Resized 1024x768

CHAPTER 4. MOBILE DEVICES 123

0%

20%

40%

60%

80%

100%

pTHINCICAVNCRDPLOCAL

V
id

eo
 Q

ua
lit

y

Platform

Axim X5
Axim X51v

Figure 4.13 – PDA Video Benchmark: Fullscreen Video Quality

controls and UI elements, requiring the user to scroll around in order to access the

full contents of the web browsing session. Figure 4.10 shows that VNC makes better

use of the screen space and provides better display quality, but still forces the user

to scroll around to view the web page due to its lack of resizing support. Figure 4.11

shows ICA’s ability to display the full web page given its resizing support, but that

its lack of landscape capability and poorer resize algorithm significantly compromise

display quality. In contrast, Figure 4.12 shows pTHINC using resizing to provide a

high quality fullscreen display of the full width of the web page. pTHINC maximizes

the entire viewing region by moving all controls to the PDA buttons. In addition,

pTHINC leverages the server computational power to use a high quality resizing

algorithm to resize the display to fit the PDA screen without significant overhead.

Figures 4.13 and 4.14 show the results of running the video playback benchmark.

For each platform except ICA, we show results for an X5 and X51v configuration.

ICA could not run on the X51v as noted earlier. The measurements were done using

CHAPTER 4. MOBILE DEVICES 124

0

1

10

100

LOCAL RDP VNC

V
id

eo
 D

at
a

S
iz

e
(M

B
)

Platform

Axim X5
Axim X51v

5.46 5.46

2.71

9.55

1.43

2.29

3.27

10.57

26.20

Figure 4.14 – PDA Video Benchmark: Fullscreen Video Data

settings that reflected the environment a user would have to access a web session from

both a desktop computer and a PDA. As such, a 1024×768 server display resolution

was used whenever possible and the video was shown at fullscreen. RDP was limited

to 640×480 display resolution as noted earlier. Since viewing the entire video display

is the only really usable option, we resized the display to fit the PDA screen for those

platforms that supported this feature, namely ICA and pTHINC.

Figure 4.13 shows the video quality for each platform. pTHINC is the only thin

client able to provide perfect video playback quality, similar to the native PDA video

player. All of the other thin clients deliver very poor video quality. With the exception

of RDP on the X51v which provided unacceptable 35% video quality, none of the other

systems were even able to achieve 10% video quality. VNC and ICA have the worst

quality at 8% on the X5 device.

pTHINC’s native video support enables superior video performance, while other

thin clients suffer from their inability to distinguish video from normal display up-

CHAPTER 4. MOBILE DEVICES 125

dates. They attempt to apply ineffective and expensive compression algorithms on

the video data and are unable to keep up with the stream of updates generated,

resulting in dropped frames or long playback times. VNC suffers further from its

client-pull update model because video frames are generated faster than the rate at

which the client can process and send requests to the server to obtain the next display

update. Figure 4.14 shows the total data transferred during video playback for each

system. The native player is the most bandwidth efficient platform, sending less than

6 MB of data, which corresponds to about 1.2 Mbps of bandwidth. pTHINC’s 100%

video quality requires about 25 MB of data which corresponds to a bandwidth usage

of less than 6 Mbps. While the other thin clients send less data than pTHINC, they

do so because they are dropping video data, resulting in degraded video quality.

Figures 4.15 to 4.18 compare screenshots of the different thin clients when dis-

playing the video clip. Except for ICA, all of the screenshots were taken on the X51v

in landscape mode using the maximum display resolution settings for each platform

given in Table 4.1. The ICA screenshot was taken on the X5 since ICA does not run

on the X51v. Figures 4.15 and 4.16 show that RDP and VNC are unable to display

the entire video frame on the PDA screen. RDP wastes screen space for UI elements

and VNC only shows the top corner of the video frame on the screen. Figure 4.17

shows that ICA provides resizing to display the entire video frame, but did not pro-

portionally resize the video data, resulting in strange display artifacts. In contrast,

Figure 4.18 shows pTHINC using resizing to provide a high quality fullscreen display

of the entire video frame. pTHINC provides visually more appealing video display

than RDP, VNC, or ICA.

CHAPTER 4. MOBILE DEVICES 126

Figure 4.15 – PDA Video Screenshot:
RDP 640x480

Figure 4.16 – PDA Video Screenshot:
VNC 1024x768

Figure 4.17 – PDA Video Screenshot:
ICA Resized 1024x768

Figure 4.18 – PDA Video Screenshot:
pTHINC Resized 1024x768

4.4 Summary

This chapter introduced pTHINC, a thin-client architecture for wireless PDAs. pTHINC

provides key architectural and usability mechanisms such as server-side screen resiz-

ing, client-side screen rotation using simple copy techniques, YUV video playback

support, maximizing screen space for display updates, and leveraging existing PDA

control buttons for most user interface operations. pTHINC transparently supports

CHAPTER 4. MOBILE DEVICES 127

traditional desktop applications on PDA devices and desktop machines, providing

mobile users with ubiquitous access to a consistent, personalized, and full-featured

computing environment across heterogeneous devices.

We have implemented pTHINC and measured its performance on web applica-

tions compared to existing commercial thin-client systems and native web applica-

tions. Our results on multiple mobile wireless devices demonstrate that pTHINC

delivers web browsing performance up to 80 times better than existing thin-client

systems, and 8 times better than a native PDA browser. In addition, pTHINC is

the only PDA thin client that transparently provides full-screen, full frame rate video

playback, making web sites with multimedia content accessible to mobile web users.

Our experiences with the system demonstrate that pTHINC can provide a superior

approach for delivering application services to mobile handheld devices.

Chapter 5 128

Chapter 5

Desktop Virtualization

As computers have become more powerful and portable, and broadband networks

have become a commodity, ubiquitous computer access has moved beyond being a

luxury to a common necessity. However, as the number of computers available to

users increases, so does the disparity of desktop environments users must deal with

and places where their personal data gets stored.

The complexity of managing these disparate computing environments quickly be-

comes a burden. At a personal level, users must deal with keeping track of their data,

keeping computers in sync, and dealing with the subtle but important differences of

each environment. At an organization level, the management problem quickly be-

comes exacerbated. Each computer needs to be constantly patched and upgraded to

protect it, and their data, from the myriad of viruses and other attacks commonplace

in today’s networks. Furthermore, as mobile users transport their portable comput-

ers from one place to another, it is not uncommon for these machines to be damaged

or stolen, resulting in the loss of any important data stored on them. Even in the

best case, when such data can be recovered from backup, the time consuming process

of reconstituting the state of the lost machine on another device, results in a huge

CHAPTER 5. DESKTOP VIRTUALIZATION 129

disruption in critical computing service for the user.

THINC’s architecture provides a model that enables consistent desktop environ-

ments to support the mobility and ubiquitous access needs of users today. THINC’s

display virtualization allows all display and desktop state to be decoupled and en-

capsulated from the underlying hardware and operating system. Since the desktop

session has no dependencies to its host computer, it can be easily moved from one ma-

chine to another by leveraging operating system virtualization and checkpoint/restart

mechanisms.

The manner in which the virtualized desktop is accessed provides for different

operational modes. In one case, the desktop environment and user data can be en-

capsulated in a portable storage device and carried by the user as she moves across

computers [112, 113]. This model allows the user to directly exploit the characteristics

of the computer without being tied in any way to it. To access the desktop session,

the user simply connects the storage device to a computer, resumes the checkpointed

session, and uses a THINC client to connect to the stored server. All data modi-

fications will be automatically saved to the portable device. Once the user decides

to change computers, she simply checkpoints the current state of the session to the

storage device, and moves on.

A different model can be provided by combining THINC’s display virtualization

and remote display architecture to create a desktop utility computing infrastructure.

The rest of this chapter discusses this model in more detail. It also presents an explo-

ration into the security implications and vulnerabilities of this kind of infrastructure,

and a novel architecture that mitigates the most important of these vulnerabilities,

distributed denial of service attacks.

CHAPTER 5. DESKTOP VIRTUALIZATION 130

5.1 MobiDesk: Mobile Virtual Desktop

Computing

THINC has been integrated into MobiDesk [14], a mobile virtual desktop computing

hosting infrastructure. MobiDesk uses the network to decouple a user’s desktop from

any particular end-user device by moving all application logic to hosting providers.

In this manner, end-user devices are simply used to transmit user input and display

application output, allowing them to be simple stateless clients. MobiDesk also de-

couples a user’s desktop computing session from the underlying operating system and

server instance, allowing a user’s entire computing environment to be migrated trans-

parently from one server to another. This enables a server to be brought down for

maintenance and upgraded in a timely manner with minimal impact on the availabil-

ity of a user’s computing services. Once the original machine has been updated, the

user’s computing session can be migrated back and continue to execute even though

the underlying operating system may have changed. MobiDesk ensures that any net-

work connections associated with the user’s computing session are maintained, even

as the session is migrated from one machine to another. MobiDesk provides these

benefits without modifying, recompiling, or relinking applications or operating system

kernels. MobiDesk requires no changes to clients other than being able to execute a

simple user-space application to process and display input and output.

MobiDesk provides a mobile virtual desktop computing environment by intro-

ducing a thin virtualization layer between a user’s computing environment and the

underlying system. MobiDesk focuses on virtualizing three key system resources: dis-

play, operating system, and network. MobiDesk virtualizes display resources by lever-

aging THINC’s virtual display driver to decouple all display state from the hosting

server, and efficiently intercept, encode and redirect display updates from the server

CHAPTER 5. DESKTOP VIRTUALIZATION 131

to an end-user device. MobiDesk virtualizes operating system resources by leveraging

ZAP [68, 101] to provide a virtual private namespace for each desktop computing

session. The namespace offers a host independent virtualized view of an operating

system, enabling the session to be transparently migrated from one server to another.

MobiDesk virtualizes network resources by leveraging MOVE [140] to provide virtual

address identifiers for connections, and a transport-independent proxy mechanism.

Together, they preserve all network connections associated with a user’s computing

session, even if it is migrated from one server to another inside the MobiDesk server

infrastructure.

The MobiDesk hosted desktop computing approach provides a number of impor-

tant benefits over current computing approaches:

• High-availability and reliable application services: Because MobiDesk is de-

signed to work with unmodified legacy applications and commodity operating

systems, it offers the potential to bring about more reliable computing with-

out giving up the large investments already made in the existing software base.

Furthermore, decoupling from the underlying hardware and operating system

allows applications to be moved anywhere, and in particular, migrated off faulty

hosts, and before maintenance and upgrades. In contrast to today’s long peri-

ods of service downtime due to maintenance and upgrades, MobiDesk enables

hardware and operating systems to be upgraded in a timely manner with min-

imal impact on application service availability — by migrating applications to

another machine that has already been updated. With MobiDesk, system ad-

ministrators no longer need to schedule downtime in advance and in cooperation

with all the users, thereby closing the vulnerability window of unrepaired sys-

tems.

CHAPTER 5. DESKTOP VIRTUALIZATION 132

• Persistence and continuity of business logic: MobiDesk moves away from the

current model of simply backing up file data to secure remote locations, and

instead protects entire computing environments by running hosting providers

in secure remote locations. This enables academic, business, and government

institutions to function much more effectively in times of crisis. Restoring an

organization’s local computing infrastructure from backup consequent to a crisis

is an extremely slow, time consuming process that is increasingly ineffective

given the scale of IT infrastructure being deployed today. MobiDesk offers a

different, improved model of continuous uptime, especially during a crisis, when

infrastructure availability is most crucial.

• Secure, low-cost global access and transparent user mobility: MobiDesk client

access devices just need to be able to connect to the Internet. They do not need

to provide complex computing functionality, making it unnecessary to continu-

ously upgrade to more powerful desktop machines. Simpler, lower-cost, possibly

longer battery life client access devices can be made more readily available for

such a service. These devices may come in many shapes and sizes, from desk-

top machines with megapixel displays to handheld devices with pocket sized

screens. Furthermore, because all persistent user state is maintained on the

servers, users are able to securely access, and freely move among any client

access devices and pick up right where they left off.

• On-demand access to application and computational resources: By multiplexing

a large pool of shared resources among many users, an individual can gain access

to substantially more applications and resources than can be afforded on one’s

local desktop computer. In terms of applications, MobiDesk can provide a wider

CHAPTER 5. DESKTOP VIRTUALIZATION 133

Figure 5.1 – MobiDesk Architecture

range of affordable application services on multiple operating system platforms

by amortizing costs over a large number of users. Since not all applications

will be in use by all users at one time, statistical multiplexing can serve a larger

number of users with fewer software licenses. In terms of resources, a user can be

given resource allocations which can be scaled up or down as necessary. Instead

of having to throw away their existing local desktop machines every time they

need more compute power, users can just ask their service provider to scale up

their allocation.

MobiDesk is architected as a proxy-based server cluster system, comparable to

systems deployed today by application service providers. The overall architecture of

the system is depicted in Figure 5.1. MobiDesk is composed of a proxy, a group of

back-end session servers connected in a LAN, a storage server infrastructure, and a

CHAPTER 5. DESKTOP VIRTUALIZATION 134

number of external, heterogeneous clients through which users access the system.

The proxy acts as a front-end that admits service requests from clients across

the Internet, and dispatches the requests to the appropriate back-end application

servers. The proxy, operating at layer 7, exposes a single entry point to the clients,

and employs suitable admission and service dispatching policies. The back-end com-

pute servers host completely virtualized environments within which the computing

sessions of MobiDesk’s users run. The network storage server infrastructure is used

for all persistent file storage. The clients are merely inputing and outputting devices

connected to the servers across the Internet.

Users interact with their MobiDesk sessions through a remote display session

viewer, a simple device or application that relays the user’s input and the session’s

output between the client and the server through a secure channel. Each user in

the system is assigned a username and password. Upon the first login, the proxy

performs appropriate authentication, and connects the user to a MobiDesk session

server. The session server creates a virtual private environment that is populated with

a complete set of operating system resources and desktop applications. In contrast

to the traditional centralized computing model where users are aware of each others’

presence and activities, MobiDesk’s sessions are isolated from one another and the

underlying server environment. To the user, the session appears no different than

a private computer, even though the user’s session may coexist with many other

sessions on a shared server. When the client disconnects, the session continues to run

on the MobiDesk server, unless the user explicitly logs out. On future connections,

the session will be in the same state it was when the user last disconnected.

By providing a virtual private environment for each user, MobiDesk is able to

dynamically relocate sessions to meet load balancing, system maintenance and/or

quality of service requirements. Sessions can be checkpointed and migrated trans-

CHAPTER 5. DESKTOP VIRTUALIZATION 135

parently at any point in time. To keep track of the sessions as migration occurs,

MobiDesk implements a session cookie mechanism. As new sessions are created, the

proxy generates a unique cookie that is passed to the hosting servers and associated

with the new session. Whenever a session is migrated, the destination server uses

the cookie to inform the proxy of the new location. Finally, the next time the user

logs in, the proxy will use the cookie to identify the server where the user’s session is

being hosted.

As mentioned before, MobiDesk provides a mobile virtual desktop computing

environment by virtualizing 3 key components: the display, the operating system,

and the network. The following sections discuss each of these components in detail.

5.1.1 Display Virtualization

To make MobiDesk a viable replacement to the traditional desktop computing model,

it needs to be able to deliver the look and feel of all unmodified desktop applications

end-users expect. MobiDesk must work within the framework of existing display sys-

tems, intercepting display commands from unmodified applications and redirecting

these commands to remote clients. To provide good WAN performance, the virtu-

alization must intercept display commands at an appropriate abstraction layer to

provide sufficient information to optimize the processing of display commands in a

latency sensitive manner. Furthermore, to support transparent user mobility and

eliminate client administration complexity, MobiDesk should support the use of thin,

stateless clients, by ensuring that all persistent display state is stored in the server

infrastructure.

To achieve these goals MobiDesk leverages THINC’s display virtualization and

remote display mechanisms, by providing a separate virtual video device for each

CHAPTER 5. DESKTOP VIRTUALIZATION 136

computing session. Rather than sending display commands to local display hardware,

the virtual video driver packages up display commands associated with a user’s com-

puting session and sends them over the network to a remote client, using THINC’s

low-level, minimum-overhead protocol. The protocol mimics the operations most

commonly found in display hardware, allowing clients to do little more than forward

protocol commands to their local video hardware, thus reducing the latency of display

processing. To provide security, all protocol traffic is encrypted using the standard

RC4 [125] stream cipher algorithm.

THINC’s virtual and remote display architecture provides a number of crucial

benefits to MobiDesk:

• First, THINC enables MobiDesk to take full advantage of existing infrastruc-

ture and hardware interfaces, while maximizing client resources and requiring

minimal computation on the client. Furthermore, new video hardware features

can be supported with at most the same amount of work necessary for sup-

porting them in traditional desktop display drivers. While there is some loss of

semantic display information at the low-level video device driver interface, our

experiments with desktop applications such as web browsers, indicate that the

vast majority of application display commands issued can be mapped directly

to standard video hardware primitives.

• Second, THINC enables MobiDesk to maximize client resources to natively and

efficiently support important desktop applications, in particular video playback

and bidirectional audio. As an example, video support is provided by leverag-

ing alternative YUV video formats natively supported by almost all off-the-shelf

video cards available today. In this manner, video data can simply be trans-

ferred from the server to the client video hardware, which automatically does

CHAPTER 5. DESKTOP VIRTUALIZATION 137

inexpensive, high speed, color space conversion and scaling. THINC also al-

lows MobiDesk to adapt to the many client devices available to connect to the

desktop hosting infrastructure. For example, THINC can automatically resize

updates to fit within the screen of a small portable device.

• Third, THINC provides two important server-side mechanisms for improving

performance when deploying MobiDesk in high latency WAN environments.

The first mechanism is the use of a server push model for sending display up-

dates to the client. As soon as display updates are generated on the server,

they are delivered to the client. Clients are not required to explicitly request

display updates, which add additional network latency to command process-

ing. The second mechanism is the use of display update scheduling to improve

the responsiveness of the system, using a Shortest-Remaining-Size-First (SRSF)

preemptive scheduler. In display applications, short jobs are normally associ-

ated with text and general GUI layout components, which are critical to the

usability of the system. On the other hand, large jobs are normally lower priority

“beautifying” GUI elements, such as image decorations, desktop backgrounds

and web page banners.

• Finally, enables MobiDesk to support thin, stateless display clients by storing

all session state at the respective session server. Although MobiDesk takes

advantage of client resources when available, all client state is considered tem-

porary and destroyed upon disconnect. When a remote client connects to the

MobiDesk infrastructure, the server running the user’s computing session trans-

fers the current session state to the client. For the duration of the connection,

the client forwards input events to the server, which in turn forwards display

updates back to the client. The client at no point has an intermediate session

CHAPTER 5. DESKTOP VIRTUALIZATION 138

state differing from the server. Furthermore, if allowed by the user, multiple

clients can be connected to the same session at the same time, all of them ac-

cessing the same centralized view distributed from the server. When a client

eventually disconnects, it leaves no state behind in the local computer.

5.1.2 Operating System Virtualization

Using ZAP [68, 101], MobiDesk encapsulates user sessions within a host-independent

virtualized view of the operating system. Unlike traditional operating systems, each

session is a self contained unit that can be isolated from the system, checkpointed to

secondary storage, migrated to another machine, and transparently restarted. This

virtualization operates at a finer granularity than virtual machine approaches, such

as VMware [151, 154], which can be used to migrate entire operating system environ-

ments. Unlike MobiDesk, virtual machines decouple processes from the underlying

hardware, but tie them to an instance of the operating system. As a result, virtual

machines cannot migrate processes separate from the operating system, and cannot

continue running those processes if the operating system ever goes down, such as

during security upgrades. In contrast, MobiDesk decouples process execution from

the underlying operating system allowing it to migrate processes to another com-

puter even in the presence of server hardware and operating system maintenance and

upgrades.

MobiDesk provides each computing session with its own virtual private namespace,

that provides the only means for processes to access the underlying operating system.

To guarantee correct operation of unmodified legacy applications, this virtualiza-

tion is done completely transparent. This is accomplished by providing a traditional

environment with unchanged application interfaces and access to operating system

CHAPTER 5. DESKTOP VIRTUALIZATION 139

services and resources.

MobiDesk’s namespace is private in that only processes within the session can see

the namespace, and the namespace in turn masks out resources that are not con-

tained in the session. Processes inside the session appear to one another as normal

processes, and they are able to communicate using traditional inter-process commu-

nication (IPC) mechanisms. On the other hand, no process interaction is possible

across the session’s boundaries, because outside processes are not part of the private

namespace. Processes inside a session and those outside of it are only able to com-

municate over remote procedure call mechanisms, traditionally used to communicate

across computers.

MobiDesk’s namespace is virtual in that all operating system resources, including

processes, user information, files, and devices, are accessed through virtual identi-

fiers. These virtual identifiers are distinct from the host-dependent, physical resource

identifiers used by the operating system. The session’s namespace uses the virtual

identifiers to provide a host-independent view of the system, which remains consis-

tent throughout a process’s and session’s lifetime. Since the session’s namespace is

separate from the underlying namespace, it can preserve naming consistency for its

processes, even if the physical namespace changes, as may be the case when sessions

are migrated across computers.

Operating system virtualization is accomplished through mechanisms that trans-

late between the session’s virtual resource identifiers and the operating system re-

source identifiers. For every resource accessed by a process in a session, the virtual-

ization layer associates a virtual name to an appropriate operating system physical

name. When an operating system resource is created for a process in a session, the

physical name returned by the system is caught, and a corresponding private virtual

name created and returned to the process. Similarly, any time a process passes a

CHAPTER 5. DESKTOP VIRTUALIZATION 140

virtual name to the operating system, the virtualization layer catches and replaces it

with the corresponding physical name. The key virtualization mechanisms used are

system call interposition and file system isolation.

Session virtualization uses system call interposition to virtualize operating system

resources, including process identifiers, keys and identifiers for IPC mechanisms, and

network addresses. System call interposition wraps existing system calls to check and

replace arguments that take virtual names with the corresponding physical names,

before calling the original system call. Similarly, wrappers are used to capture physical

name identifiers that the original system calls return, and return corresponding virtual

names to the calling process running inside the session.

MobiDesk employs the chroot utility and stackable file systems to provide each

session with its own file system namespace. A session’s filesystem is composed from

remote mounts via a network file system such as NFS, which guarantees that the

same files can be made consistently available as a session is migrated from one com-

puter to another. The chroot system call is then used to set the centrally mounted

filesystem area as the root directory for the session, thereby achieving file system

virtualization and isolation with negligible performance overhead. Finally, a simple

stackable filesystem is used to address the fact that there are multiples ways to break

out of a chrooted environment. The stacked filesystem creates a barrier which takes

care of enforcing the chroot environment, and ensures that the session’s file system

is only accessible to processes within the given session. The barrier is implemented

as a directory that prevents processes within the session from traversing it. Since

the processes are not allowed to traverse the directory, they are unable to access files

outside of the session’s file system namespace.

MobiDesk provides the ability to maintain session availability in the presence of

server downtime due to operating system and hardware upgrades. This is accom-

CHAPTER 5. DESKTOP VIRTUALIZATION 141

plished by leveraging ZAP’s checkpoint-restart mechanism which enables sessions to

be migrated between computers with different hardware and operating system kernels.

MobiDesk is limited to migrating between machines with a common CPU architec-

ture, and where kernel differences are limited to maintenance and security patches.

Migration is limited to these instances because major version changes are allowed to

break application compatibility, which may cause running processes to break.

To support migration, MobiDesk employs an intermediate format to represent the

state that needs to be saved. On checkpoint, the process image is saved and digitally

signed to enable the restart process to verify its integrity. Although the internal state

that the kernel maintains on behalf of processes can be different across kernels, the

high-level properties of the process are much less likely to change. MobiDesk captures

the state of a process in terms of this higher-level semantic information rather than the

kernel specific data. MobiDesk’s intermediate representation format is chosen such

that it offers the degree of portability needed for migrating between different kernel

minor versions. If the representation of state is too high-level, the checkpoint-restart

mechanism could become complicated and impose additional overhead.

MobiDesk leverages high-level native kernel services in order to transform the

intermediate representation of the checkpointed image into the complete internal state

required by the target kernel. This use of high-level functions helps with general

portability when using MobiDesk for migration. Security patches and minor version

kernel revisions commonly involve modifying the internal details of the kernel while

high-level primitives remain unchanged. As such high-level functions are usually made

available to kernel modules through exported kernel symbol interface, the MobiDesk

system is able to perform cross-kernel migration without requiring modifications to

the kernel.

CHAPTER 5. DESKTOP VIRTUALIZATION 142

5.1.3 Network Virtualization

Networking support for MobiDesk sessions must address two issues:

• Multiple sessions on the same server may run the same service, e.g. two sessions

may both run the apache server, however, only one of them can listen on port

80.

• Ongoing network connections must be preserved when a session is migrated

from one server to another.

When all hosting servers are in the same subnet, the two issues can be addressed

relatively easily using existing technologies with minor enhancements from MobiDesk.

Each session is assigned a unique IP address from a pool maintained by a DHCP

server when it is first created. For example, the servers may occupy IP address

range 192.168.1.2 - 192.168.1.50, and the rest of 192.168.1.5 - 192.168.1.254 may be

assigned to MobiDesk sessions. The IP address assigned to a session is created as an

alias of the hosting server’s primary IP address. Multiple aliases, each corresponding

to a different session, can be created on a server. MobiDesk privatizes the aliases

such that a session only sees its own alias, and cannot interfere with traffic of other

sessions on the same server.

Since each session has its own IP address, two sessions on the same server can

both listen to port 80, bound to their individual private IP address. When a session

is migrated from one server to another, the private IP address of the session remains

unchanged; it is simply (re)created as an alias of the new hosting servers primary IP

address. ARP resolves the MAC address change at the link layer and the migration

is transparent to the network layer and above. Ongoing network connections of the

session therefore stay intact.

CHAPTER 5. DESKTOP VIRTUALIZATION 143

Figure 5.2 – Problems of Migrating Connections

While it is possible to have the entire private network behind the proxy to be

in a single subnet, it is often desirable to have separate subnets for scalability and

management reasons. In this case, when a session is migrated across subnets, its

private IP address can no longer persist, since on the destination subnet the address

is no longer valid. As a result, two types of problems can occur, as we illustrate in

Figure 5.2. Note that we omit port numbers for simplicity.

We see that when session1 with IP10 migrates from server IP1 to IP2, its transport

connection [IP10, IP0] must persist. However, its IP address IP10 cannot persist

because IP2 is on a different subnet. In addition, after session1 with IP10 migrates

to server IP2, another session2 may reuse IP10 on server IP1 (or another server) and

create another connection [IP10, IP0]; a conflict is created since the proxy will see two

identical connections [IP0, IP10]. A potential solution is to use MobileIP. However,

MobileIP requires assigning each session a permanent home address that cannot be

CHAPTER 5. DESKTOP VIRTUALIZATION 144

Figure 5.3 – MobiDesk Network Virtualization

reused by other sessions (to avoid conflicts as described later in this section). This

is difficult since MobiDesk sessions are dynamically created, volatile entities. One

can potentially adopt a solution that takes the initial physical address assigned to

a session as its home address. However, this still requires additional management

infrastructure to (1) assign dynamic address on a per session basis rather than per

host basis, and (2) guarantee that the dynamically assigned home address is never

reused by any other sessions, even after it has migrated away from its initial subnet.

Using MOVE [140], MobiDesk is able to effectively address these problems without

incurring additional management complexity.

To address the inconsistency problem on the MobiDesk server, MOVE associates

each session with two IP addresses: a virtual address exposed to the transport layer

and above and a physical address seen only at the network layer and below. The vir-

CHAPTER 5. DESKTOP VIRTUALIZATION 145

tual address stays constant for the lifetime of the session while the physical address

changes whenever the session migrates, to reflect the network settings of the sur-

rounding environment. As sessions migrate across computers, MobiDesk translates

the virtual address to the current physical address (and vice versa) for all network

traffic. For example, in Figure 5.3, after migration, session1’s virtual address IP10 is

unchanged while its physical address is assigned by the DHCP server to be IP20 and

created as an alias on server IP2. The proxy translates [IP0, IP10] into [IP0, IP20]

while the server IP2 translates [IP20, IP0] into [IP10, IP0]. Since the virtual address

never changes, the migration is transparent to the transport and above layers, and

the applications.

One potential solution to the conflict problem on the MobiDesk proxy is to require

that a physical address, once assigned to a session, is never reused until the session

finishes, even after the session has migrated to another subnet. However, this results

in undesirable dependency of a session on a trail of addresses if it is migrated many

times and new connections are opened between each migration. MobiDesk’s solution

is to privatize virtual addresses, i.e., to associate virtual addresses with separate

private virtual network interfaces which provide a per-connection address namespace.

Instead of having all connections share the same physical interface, each connection

is assigned its own private virtual network interface card (VNIC). A VNIC is simply

a software emulation of a NIC at the link layer that appears exactly the same as a

NIC to the network and above layers. As a result, two connections using the same

virtual IP address due to address reuse can peacefully coexist on the same server,

since they are bound to their own private VNIC.

To support per-connection address space, MobiDesk augments the traditional con-

nection tuple with connection labels to identify the VNIC to which a connection is

bound. A connection has two labels, independently and uniquely chosen by the Mo-

CHAPTER 5. DESKTOP VIRTUALIZATION 146

biDesk proxy and the server at the time the connection is setup. The two sides also

exchange their labels at connection setup time. Before a session is migrated, the

labels are not used since the tuple alone is enough to identify the connections of the

session. After a session is migrated, both sides will attach the peer’s label learned at

connection setup time for all connections between them. The labels allow the con-

nections to be uniquely identified even when a session’s previous physical address is

reused.

5.2 A2M: Access-Assured Mobile Desktop Com-

puting

Although the benefits of MobiDesk are manifold, they are predicated on users being

able to access the supporting server infrastructure of the respective service providers.

A key issue that must be addressed to ensure that users obtain reliable access to

hosted computing services is protection of the server infrastructure against denial

of service attacks, particularly of the distributed kind (DDoS). DDoS attacks are an

increasing occurrence in today’s Internet, aiming to deny use of a service to legitimate

users [30]. The same increased network connectivity that improves access to a service

provider for legitimate mobile users also increases an attacker’s ability to launch a

DDoS against a service provider, often as part of an extortion scheme [52]. Apart

from the pure annoyance factor, such an attack can prove particularly damaging for

time- or life-critical services.

Of particular importance to service providers are link congestion attacks, whereby

attackers identify “pinch points” in the communication substrate and render them

inoperable by flooding them with large volumes of traffic. The usual attack point is

CHAPTER 5. DESKTOP VIRTUALIZATION 147

Figure 5.4 – A2M Architecture. The two directions of the client-server connection
take different paths: the client-to-server direction goes over the indirection-based net-
work, while the server-to-client direction goes directly to the client (not through the
infrastructure). Legitimate uplink traffic is spread among the IBN nodes and com-
petes with denial of service traffic for capacity in the links close to the server; allowing
legitimate traffic through the indirection system allows us to differentiate the two. In-
direction nodes can simultaneously serve as system entry points and secret forwarders,
and are dedicated to this task (i.e., they are not end-user-controlled nodes).

the location of the hosting servers, or the routers in their immediate network vicinity.

Sending enough attack traffic will cause the links close to the servers to be congested

and eventually drop all useful traffic. Clearly, the potential of such an attack to

disrupt user access to applications and data poses an important challenge that needs

to be addressed before ASPs can achieve mass acceptance.

In this context, we introduce A2M, Access-Assured Mobile desktop computing, a

hosted computing infrastructure that combines an indirection-based overlay network

with a remote display architecture, to provide guaranteed and efficient access to

hosted desktop computing environments, even in the presence of denial of service

attacks.

As shown in Figure 5.4, A2M’s architecture is divided in two major components:

the hosting infrastructure and the access infrastructure. The hosting infrastructure

CHAPTER 5. DESKTOP VIRTUALIZATION 148

provides an environment for desktop sessions where a user’s session is decoupled

from any particular end-user access device, by moving all application state to hosting

servers. Applications run within these servers, and their display output is redirected

over the network to the access device. Redirection is performed by a per-session

virtual display driver that translates from application display-draw commands to

THINC display protocol commands. The protocol commands are then forwarded

to the client device for display. A2M extends MobiDesk by providing mechanisms

that enable continuous access to hosted desktop sessions, even in the presence of

distributed denial of service attacks on the hosting servers.

A2M’s access infrastructure provides the connection between users on the network

and the applications running on the hosting servers. Users make use of a simple

client application that merely forwards input events to the applications running on

the server, and processes display updates generated in response to these events. This

application model results in a highly asymmetric network traffic pattern. On one side,

input events (headed uplink, or upstream toward the server) are very small pieces of

information that are generated at a relatively slow, human-dependent rate. On the

other hand, display updates (headed down-link, or downstream toward the client) are

orders of magnitude larger and are generated as fast bursts of activity. For example,

during web browsing, a single user input event (a mouse click on a link) results in a

full-screen update having to be displayed (the destination web page).

The traffic asymmetry is made more pronounced when we consider the different

roles and importance of input events and display updates. In an interactive system

user experience is dictated by the response time, which in turn is determined by how

quickly input events are processed and display updates are made visible to the user.

If response time is too high, the user will become exasperated and frustrated with

the system. Since a single input event triggers the generation of display updates,

CHAPTER 5. DESKTOP VIRTUALIZATION 149

guaranteed delivery of each event becomes crucial for the performance of the system.

On the other hand, humans are known to be more tolerant to partial updates than

to longer response times, because partial updates provide feedback to their actions.

Delivery of updates should then be made such that updates can begin to be displayed

as soon as possible, even if the complete update takes longer to appear.

The resource centralization around the hosting infrastructure results in a threat

model where denial of service attacks on the system will only affect the up-link di-

rection, i.e., the traffic to the hosting servers, by saturating the network links and

queuing buffers close to the servers or by directly attacking the hosting infrastructure

servers. Therefore, it is crucial for A2M to protect this communications channel from

interference, blocking unwanted traffic close to the attacker before it can reach the

service providing machines. On the other hand, the down-link direction will for the

most part be relatively free of noise, and without any need to be protected.

Taking advantage of both the traffic asymmetry and the threat model, A2M par-

titions bi-directional connections between the client and the server into an indirected

client-to-server multi-path and a direct server-to-client path. The IBN takes care of

routing input events and other client-to-server traffic and protects the hosting infras-

tructure. Protection is performed by acting as a distributed firewall that conceptually

distinguishes between authorized client-generated traffic, and unauthorized and pos-

sibly malicious traffic. Traffic permitted to traverse through the IBN is directed to

a filtering router close to the hosting servers, whereas all other traffic is dropped or

rate-limited providing a distributed “shield” against both network congestion and host

directed attacks. The direct server-client path in turn ensures that large and bursty

display updates are delivered to the client as quickly as possible, even if parts of them

are lost or delayed and need to be retransmitted. A2M’s approach represents a sharp

departure from traditional interactive client-server architectures, where a vulnerable

CHAPTER 5. DESKTOP VIRTUALIZATION 150

bi-directional direct connection provides the only means of communication between

the client and the server.

5.2.1 System Operation

To provide seamless and ubiquitous connectivity, A2M encapsulates all functional-

ity within a self-contained client application that manages communication with the

indirection infrastructure, forwards user events to hosted applications, and displays

application output on the local device. To access a desktop session, users must first

obtain access to the IBN, which in turn allows them to authenticate with the hosting

infrastructure, and then gain access to their session. Users need to be recognized as

legitimate in order for the IBN to distinguish their traffic from other unauthorized,

possibly malicious traffic. In contrast to traditional service providing infrastructures

such as web-content distributors, A2M requires users to be authenticated and does

not allow anonymous users, because only authorized users should be able to connect

to the hosting infrastructure. A2M ties the authentication requirements of the IBN

and the hosting infrastructure into a single, seamless process.

When a user attempts to connect to A2M, the client application first acquires a

“ticket” from one of the indirection nodes. This ticket gives it temporary access to

the IBN, and allows the client to contact A2M’s authentication service to identify

itself as a legitimate user. After being successfully authenticated and authorized, the

client receives a longer-term session ticket from the IBN, and a connection to the A2M

server hosting the user’s session. The session ticket identifies the client as a legitimate

user of the system, and allows it to freely interact with the hosting infrastructure. To

avoid stale sessions to be used in an attack, the session ticket needs to be renewed

periodically. In the case where a session does not already exist, a new session is created

CHAPTER 5. DESKTOP VIRTUALIZATION 151

and populated, before the client is allowed to connect to it. The authentication and

connection setup process is done transparently by the client application, and it does

not require special support from the underlying devices. This simplicity allows A2M

users to access their sessions from almost any number of Internet-enabled devices.

Once the connection to the hosting server is established, the client will be rec-

ognized as a legitimate user, and user input events will be allowed to traverse the

indirection nodes and be routed to the hosted applications. This process continues

until the user disconnects from the session, at which point the client’s ticket is revoked

and the connections are closed. Since a disconnected client is no longer allowed to

use the system, previously legitimate devices cannot be reused as attack tools on the

infrastructure.

5.3 Experimental Results

We have developed prototypes of MobiDesk and A2M, and measured their effective-

ness at hosting and protecting desktop sessions. This section presents the results of

our evaluation. We first evaluate MobiDesk performance, focusing on the overhead

of the virtualization environment, and its ability to provide efficient remote access to

hosted desktop sessions. Second, we evaluate A2M performance, focusing on quality

of service and its ability to protect the desktop hosting infrastructure from denial of

service attacks.

We have implemented a prototype MobiDesk system for serving Linux desktop

computing environments. On the server-side, our prototype consists of a virtual

display driver module for the X Window System and a loadable kernel module for

operating system and network virtualization. The display driver runs as part of

the display system of the hosting server, and the kernel module is loaded at the

CHAPTER 5. DESKTOP VIRTUALIZATION 152

Figure 5.5 – MobiDesk Evaluation Experimental Testbed

hosting server and the proxy. The server-side of our prototype works with unmodified

Linux applications and any off-the-shelf Linux 2.4 kernel. On the client-side, our

prototype provides a small client application that can be downloaded and run on

any unmodified client to provide MobiDesk functionality. We have implemented both

Xlib and Java versions of the MobiDesk client application, which can run on both

Unix/Linux and Windows clients. We present experimental results using our Linux

MobiDesk prototype to quantify its overhead and demonstrate its performance on

various desktop computing applications.

Figure 5.5 shows the isolated network testbed we used for our experiments. The

testbed consists of eight IBM Netfinity 4500R machines and a Micron desktop PC.

The Netfinity machines each had a 933Mhz Intel Pentium-III CPU and 512MB RAM,

and all of them were connected via gigabit Ethernet. The Micron desktop PC had

a 450Mhz Intel Pentium-II CPU and 128MB RAM, and was used as the MobiDesk

client. Four of the machines served as a MobiDesk server infrastructure consisting of

one NFS file server, one proxy server running a delegate 8.9.2 [27] general-purpose ap-

plication level proxy, and two computing session servers. One machine was connected

CHAPTER 5. DESKTOP VIRTUALIZATION 153

on the client-side of the MobiDesk proxy and was used as a NISTNet 2.0.12 WAN

emulator which could adjust the network characteristics seen by the client. Four

machines were connected to the client-side of the WAN emulator, one Micron PC

used as a MobiDesk client, a second used as an external web server, a third used as a

packet monitor running Ethereal Network Analyzer 0.9.13 for measurement purposes,

and the last used as a client for network virtualization overhead measurements. All

of the machines ran Debian Linux, with the two computing session servers running

Debian Stable with a Linux 2.4.5 kernel and Debian Unstable with a Linux 2.4.18

kernel, respectively. The MobiDesk client machine was installed with a dual boot

configuration and also ran Microsoft Windows XP Professional.

5.3.1 MobiDesk Virtualization Overhead

To measure the cost of MobiDesk’s operating system virtualization, we used a range

of micro benchmarks and real application workloads and measured their performance

on our prototype and a vanilla Linux system. Table 5.1 shows the seven microbench-

marks and the four application benchmarks we used to quantify MobiDesk’s operating

system virtualization overhead, as well as the results for a vanilla Linux system. To

obtain accurate measurements, we rebooted the system between measurements. Ad-

ditionally, the system call microbenchmarks directly used the TSC register to record

timestamps at the significant measurement events. The average timestamp event

cost was 32 ns. The files for the benchmarks were stored on the NFS server. All

of these benchmarks were performed in a chrooted environment on the NFS client

machine running Debian Unstable with a Linux 2.4.18 kernel. Figure 5.6 shows the

results of running the benchmarks under both configurations, with the vanilla Linux

configuration normalized to one. Since all benchmarks measure the time to run the

CHAPTER 5. DESKTOP VIRTUALIZATION 154

Name Description Linux
getpid average getpid runtime 350 ns
ioctl average runtime for the FIONREAD ioctl 427ns
shmget-
shmctl

IPC Shared memory segment holding an
integer is created and removed

3361 ns

semget-semctl IPC Semaphore variable is created and re-
moved

1370 ns

fork-exit process forks and waits for child which calls
exit immediately

44.7 us

fork-sh process forks and waits for child to run
/bin/sh to run a program that prints
“hello world” then exits

3.89 ms

Apache Runs Apache under load and measures av-
erage request time

1.2 ms

Make Linux Kernel compile with up to 10 process
active at one time

224.5s

MySQL Time per interaction for “TPC-W like”
benchmark

8.33s

Table 5.1 – MobiDesk Application Benchmarks

benchmark, a small number is better for all results.

The results in Figure 5.6 show that the operating system virtualization overhead

is small. MobiDesk incurs less than 10% overhead for most of the microbenchmarks

and less than 4% overhead for the application workloads. The overhead for the simple

system call getpid benchmark is only 7% compared to vanilla Linux, reflecting the

fact that virtualization for these kinds of system calls only requires an extra procedure

call and a hash table lookup. The most expensive benchmarks for MobiDesk is

semget+semctl which took 51% longer than vanilla Linux. The cost reflects the

fact that our unoptimized MobiDesk prototype needs to allocate memory and do a

number of namespace translations. The ioctl benchmark also has high overhead,

because of the 12 separate assignments it does to protect the call against malicious

root processes. This is large compared to the simple FIONREAD ioctl that just

performs a simple dereference. However, since the ioctl is simple, we see that it only

CHAPTER 5. DESKTOP VIRTUALIZATION 155

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

M
yS

Q
L

M
ak

e

A
pa

ch
e

sh
m

ge
t

se
m

ge
t

io
ct

l

ge
tp

id

fo
rk

sh

fo
rk

ex
it

fo
rk

ex
ec

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Vanilla

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

M
yS

Q
L

M
ak

e

A
pa

ch
e

sh
m

ge
t

se
m

ge
t

io
ct

l

ge
tp

id

fo
rk

sh

fo
rk

ex
it

fo
rk

ex
ec

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

MobiDesk

Figure 5.6 – MobiDesk Operating System Virtualization Overhead

adds 200 ns of overhead over any ioctl. For real applications, the most overhead

was only 4% for the Apache workload, where we used the http load benchmark [51]

to place a parallel fetch load on the server with 30 clients fetching at the same time.

Similarly, we tested MySQL as part of a web commerce scenario outlined by TPC-W

with a bookstore servlet running on top of Tomcat with a MySQL back-end [145].

The MobiDesk overhead for this scenario was less than 2% versus vanilla Linux.

To measure the cost of MobiDesk’s network virtualization, we used netperf 2.2pl4 [90]

to measure MobiDesk network I/O overhead versus vanilla Linux in terms of through-

put, latency, CPU utilization, and connection setup. We ran the netperf client on the

Netfinity client and the netperf server on the MobiDesk session server. We used the

Netfinity client for these experiments instead of the MobiDesk client so that all ma-

chines used for the network virtualization measurements were connected via gigabit

Ethernet. To ensure that we were accurately measuring the performance overheads

of our systems as opposed to raw network link performance, we used gigabit Ethernet

CHAPTER 5. DESKTOP VIRTUALIZATION 156

 100

 150

 200

 250

 300

 350

 400

 450

 500

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message Size (bytes)

Vanilla

 100

 150

 200

 250

 300

 350

 400

 450

 500

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message Size (bytes)

MobiDesk1

 100

 150

 200

 250

 300

 350

 400

 450

 500

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message Size (bytes)

MobiDesk2

Figure 5.7 – MobiDesk Network Virtualization Throughput Overhead

for our experiments so that the network link capacity could not be saturated easily.

All connections from the netperf client to the netperf server were made through the

delegate proxy. We compared the performance of three different system configura-

tions: Vanilla, MobiDesk1, and MobiDesk2. The Vanilla system is a stock Linux

system without MobiDesk loaded into the kernel. The MobiDesk1 and MobiDesk2

are systems with MobiDesk loaded. On MobiDesk1, no connections are migrated and

hence only connection virtualization is performed; on MobiDesk2, all connections are

migrated and hence both connection virtualization and virtual-physical mapping are

performed.

Figures 5.7 to 5.9 show the results for running the netperf throughput experiment,

latency experiment, and connection setup experiment. CPU utilization measurements

are omitted due to space constraints, but show similar overhead results. The through-

put experiment simply measures the throughput achieved when sending messages of

varying sizes as fast as possible from the client to the server. Figure 5.7 shows the

CHAPTER 5. DESKTOP VIRTUALIZATION 157

 400

 500

 600

 700

 800

 900

 1000

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 T

rip
 T

im
e

(u
s)

Message Size (bytes)

MobiDesk2

 400

 500

 600

 700

 800

 900

 1000

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 T

rip
 T

im
e

(u
s)

Message Size (bytes)

MobiDesk1

 400

 500

 600

 700

 800

 900

 1000

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 T

rip
 T

im
e

(u
s)

Message Size (bytes)

Vanila

Figure 5.8 – MobiDesk Network Virtualization Latency Overhead

throughput overhead for the three systems we tested. We can see that MobiDesk1

performs very close to Vanilla, with an overhead of about 1.4Mbps. MobiDesk2

shows the throughput overhead due to the virtual-physical mapping, which is around

10Mbps.

The latency experiment measures the inverse of the transaction rate, where a

transaction is the exchange of a request message of size 128 bytes and a reply message

of varying sizes between the client and the server over a single connection. Figure 5.8

shows the latency overhead for the three systems we tested. The results bear the same

characteristic as that for the throughput overhead. Performance difference between

Vanilla and MobiDesk1 is about 9.4 microseconds, while latency due to the virtual-

physical mapping in MobiDesk2 can be observed to be around 40 microseconds. Note

that there is a strange drop of latency above a reply message size of 128 bytes. We

determined that this unusual behavior is due to a problem with the Linux device driver

for the Intel Pro/1000 network card that was used. While the behavior is unusual, it

CHAPTER 5. DESKTOP VIRTUALIZATION 158

 350

 400

 450

 500

 550

 600

 650

 700

 32 64 128 256 512 1024 2048 4096

C
on

ne
ct

io
n

S
et

up
 (

tr
an

sa
ct

io
ns

/s
)

Message Size (bytes)

Vanilla

 350

 400

 450

 500

 550

 600

 650

 700

 32 64 128 256 512 1024 2048 4096

C
on

ne
ct

io
n

S
et

up
 (

tr
an

sa
ct

io
ns

/s
)

Message Size (bytes)

MobiDesk1

Figure 5.9 – MobiDesk TCP Connection Setup Overhead

does not affect the key result shown, which is the small relative performance difference

between using vanilla Linux and MobiDesk.

The TCP connection setup experiment is the same as the latency experiment

except that a new connection is used for every request/response transaction. This

experiment simulates the interaction between a client and server in which many short-

lived connections are opened and closed. Figure 5.9 shows the TCP connection setup

overhead for Vanilla and MobiDesk1. Note that since connection setup occurs before

migration, there is no virtual-physical mapping overhead associated with connection

setup, therefore this measurement is not applicable to MobiDesk2. From the figure we

can see that the overhead is fewer than 10 transactions per second. Due to the same

Linux driver problem in the latency test, we also see a strange increase of connection

rate above reply message size of 128 bytes.

CHAPTER 5. DESKTOP VIRTUALIZATION 159

5.3.2 MobiDesk Application Performance

To evaluate MobiDesk performance on real desktop applications, we conducted ex-

periments to measure the display performance of MobiDesk for web and multimedia

applications and the migration performance of MobiDesk in moving a user’s desktop

computing session from one server to another. To measure display performance, we

compared MobiDesk against running applications on a local PC. We also compared

MobiDesk running with XFree86 4.3.0 against other popular commercial thin-client

systems, including Citrix MetaFrame XP for Windows [23], VNC 3.3.7 for Linux [150],

and Sun’s SunRay 2.0 [141]. All of the thin-client systems, except SunRay, used the

Micron PC as the client and a Netfinity server as the server. Since SunRay requires

Sun hardware to run, we added a SunRay I hardware thin-client and a Solaris 9

v210 server to our experimental testbed since it does not run with the common hard-

ware/software configuration used by the other systems.

We evaluated display performance using two popular desktop application scenar-

ios, web browsing and video playback. Web browsing performance was measured using

a Mozilla 1.4 browser to run a benchmark based on the Web Text Page Load test from

the Ziff-Davis iBench benchmark suite [54]. The benchmark consists of a sequence of

54 web pages containing a mix of text and graphics. The browser window was set to

1024x768 for all platforms measured. Video playback performance was measured us-

ing a video player to play a 34.75 s video clip of original size 352x240 pixels displayed

at 1024x768 full screen resolution. In the Unix platforms we used MPlayer 1.0pre3

as the video player, while for the Windows platforms we used the standard Windows

Media Player. We used the packet monitor in our testbed to measure benchmark

performance on the thin-client systems using slowmotion benchmarking [93], which

allows us to quantify system performance in a non-invasive manner by capturing net-

CHAPTER 5. DESKTOP VIRTUALIZATION 160

work traffic. The primary measure of web browsing performance was the average

page download latency. The primary measure of video playback performance was

video quality [93], which accounts for both playback delays and frame drops that de-

grade playback quality. For example, 100 percent video quality means that all video

frames were displayed at real-time speed. On the other hand, 50 percent video qual-

ity could mean that half the video frames were dropped when displayed at real-time

speed or that the clip took twice as long to play even though all of the video frames

were displayed.

For both benchmarks, we measured all systems in three representative network

scenarios: LAN, with an available network bandwidth of 100 Mbps and no introduced

network latency (100Mb-0ms), and two WAN scenarios, one with 100 Mbps available

network bandwidth and 66 ms round-trip network latency (100Mb-66ms), represen-

tative of cross-country and transatlantic latencies [44], and another with 100 Mbps

available network bandwidth and 120 ms round-trip network latency (100Mb-120ms),

representative of typical transpacific latencies [44]. For the WAN tests we increased

the default TCP window size for both server and client. SunRay was unaffected by

this since it uses UDP.

Figure 5.10 shows the web browsing performance results in terms of the perceived

latency. Figure 5.11 shows the video playback performance results in terms of video

quality. As expected, both of these results are in line with the ones presented in

Section 2.7, since MobiDesk leverages THINC’s display virtualization and remote

display architecture, even though the deployment scenario is different. This similarity

also demonstrates that operating system and network virtualization overhead do not

negatively impact application performance.

Figure 5.10 shows that MobiDesk has the smallest web page download latencies,

thus providing the best overall performance. The worst web browsing platform is

CHAPTER 5. DESKTOP VIRTUALIZATION 161

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

PCMobiDeskSunRayVNCCITRIX

La
te

nc
y

(s
)

Platform

100Mb-0ms
100Mb-66ms

100Mb-120ms

Figure 5.10 – MobiDesk Average Per Web Page latency

Citrix MetaFrame, which adopts a more high-level display approach that results in

poor WAN performance because of the tight coupling required between the application

running on the server and the Citrix viewer running on the client. VNC has the

second worst WAN web browsing performance in part because it relies on a client pull

model for sending display updates as opposed to MobiDesk’s server-push model, which

avoids roundtrip latencies providing better interactive response time. In addition, as a

response to the limited WAN network conditions, VNC adaptively uses more efficient

compression algorithms, thus reducing its data transfer, but increasing its latency,

and worsening its overall web browsing performance.

Our web browsing experiments under WAN conditions show that increased net-

work latency can result in increased web page latencies when using TCP-based thin-

client systems. This is due to the fact that TCP implementations reduce the conges-

tion window by half for every roundtrip time that a connection has been idle [49].

As our benchmark mimics traditional web browsing usage by adding delays between

CHAPTER 5. DESKTOP VIRTUALIZATION 162

0%

20%

40%

60%

80%

100%

PCMobiDeskSunRayVNCCITRIX

V
id

eo
 Q

ua
lit

y

Platform

100Mb-0ms
100Mb-66ms

100Mb-120ms

Figure 5.11 – MobiDesk Video Quality

the display of each web page, the thin-client connection ends up going idle and goes

through slow-start each time a new page starts downloading. As network latency

increases, the TCP connection takes longer to recover from its idle state, thus in-

creasing the time it takes for web pages to load. Like other TCP-based thin-client

systems, MobiDesk has higher web page latencies for the web benchmark in the pres-

ence of transpacific network latencies. However, Figure 5.10 shows that MobiDesk

continues to provide superior sub-second performance over existing systems, even for

high latency network connections.

Figure 5.11 shows that MobiDesk provides perfect video quality in the same man-

ner as the traditional desktop PC, and that all of the other platforms deliver very

poor video quality. They suffer from an inability to distinguish video data from nor-

mal display updates and apply ineffective compression algorithms on the video data,

which are unable to keep up with the stream of updates being generated. In con-

trast, the results show that MobiDesk’s ability to leverage local client video hardware

CHAPTER 5. DESKTOP VIRTUALIZATION 163

Application Description
MobiDesk Remote display server
KDE Entire KDE 2.2.2 environment, including

window manager, panel and utilities
SSH openssh 3.4p1 client inside a KDE konsole

terminal connected to a remote host
Shell The Bash 2.05a shell running in a konsole

terminal
KGhostView A PDF viewer with a 450k 16 page PDF

file loaded
Konqueror A modern standards compliant web

browser that is part of KDE
KOffice The KDE word processor and spreadsheet

programs

Table 5.2 – MobiDesk Migrated KDE Desktop Computing Session

in delivering video using alternative YUV formats provides substantial performance

benefits over other thin-client systems. VNC provides the worst overall performance

primarily because of its use of a client pull model instead of MobiDesk’s server push

model. In order to display each video frame, the VNC client needs to send an update

request to the server. Clearly, video frames are generated faster than the rate at

which the client can send requests to the server.

To measure real application performance in terms of the cost of migration, we

migrated a complete KDE [60] desktop computing environment from one MobiDesk

server to another. The applications running in the KDE computing session when

it was migrated are described in Table 5.2. The KDE session had over 30 different

processes running, providing the desktop applications as well as substantial window

system infrastructure, in particular, a framework for inter-application sharing. The

session also included a rich desktop interface managed by a window manager, and

a number of applications running in a panel, such as a clock. To demonstrate the

ability to migrate a complete computing session across Linux kernels with different

CHAPTER 5. DESKTOP VIRTUALIZATION 164

minor versions, we checkpointed the KDE session on the 2.4.5 kernel client machine

and restarted it on the 2.4.18 kernel machine. For this experiment, the workloads

were checkpointed to and restarted from local disk. The resulting checkpoint and

restart times were less than a second, .85 s and .94 s, respectively. The checkpointed

image was only 35 MB for a full desktop computing session, which can be easily

compressed using bzip2 down to 8.8 MB. Our results show that MobiDesk can be

used to provide fast migration of computing sessions among MobiDesk servers with

modest checkpoint state.

5.3.3 A2M Performance Evaluation

To evaluate A2M, we focused on two metrics: the quality of service in terms of latency,

as this is perceived by the end user, and the system’s resilience when under attack

i.e., node failures. We deployed indirection nodes of our prototype across PlanetLab

nodes, while having the access client and hosting server reside in our local network.

Our architecture spreads all packets across all indirection nodes. PlanetLab provides

a realistic network environment for our experiments that stresses the performance

of our system because the packets follow different, highly variant paths to reach the

protected server. In our experiments, we protected the uplink traffic from the client to

the server routing it through the IBN, while the return path followed normal Internet

routing (outside the IBN).

Our testbed consisted of a client PC simulating a typical remote-display access

device, a laptop used as wireless access device, a server where the benchmark applica-

tions executed, and 80 indirection hosts deployed across various PlanetLab locations

in the US and Canada. The client computer had a 450Mhz Intel Pentium-II CPU

and 128MB RAM running Debian with Linux 2.4.27. Our client PC was chosen to

CHAPTER 5. DESKTOP VIRTUALIZATION 165

reflect the type of low-power, thin-client devices which we expect to become A2M’s

access devices. The laptop PC had a 1.5Ghz Intel Pentium M and 1GB RAM running

Debian with Linux 2.6.10. The server was an Intel dual-Xeon 2.80GHz with 1GB of

RAM running RedHat 9 with Linux 2.4.20.

We measured the performance of A2M in web, video, and basic interactive tasks

as representative applications of typical desktop usage. Our web measurements used

the Mozilla 1.6 browser to run a benchmark based on the Web Page Load test from

the Ziff-Davis i-Bench benchmark suite. The benchmark consists of a sequence of 54

web pages containing a mix of text and graphics. The browser window was set to full-

screen resolution for all platforms measured. Video playback performance was mea-

sured using Mplayer 1.0pre3 to play a 34.75 second video clip of original size 352x240

pixels displayed at full-screen resolution. For our interactive tests we recorded a num-

ber of sessions where simple interactive tasks were performed. Recording the sessions

allowed us to reliably play back the exact same tasks under different network condi-

tions. The measure of performance for these tests was the latency experienced by a

user performing the specific task. The primary measure of web browsing performance

was the average page-download latency in response to a mouse-click on a web page

link. To minimize any additional overhead from the retrieval of web pages, we used a

conservative setup where the web server was directly connected to the hosting server

through a LAN connection. The primary measure of video playback performance

was video quality [93], which accounts for both playback delays and frame drops that

degrade playback quality, as described in our experimental evaluation of THINC’s

support for multimedia applications in Chapter 3.

CHAPTER 5. DESKTOP VIRTUALIZATION 166

5.3.3.1 Overall Performance

We first examined the effects that the basic indirection network and various levels

of packet replication had on the overall performance of the system. The levels of

replication tested were no replication, 50% (meaning one extra copy of each packet

with probability 0.5), 100% replication (one extra copy of each packet) and 200%

replication (two extra copies of each packet). We also measured the impact of the IBN

size by running our experiments on 8 and 80 nodes participating in the IBN. We ran a

baseline test where we used a direct LAN connection between the client and the server.

Since the indirection nodes were deployed over a wide area with varying network

latency, this test provided us with a very conservative measurement of the indirection

overhead. In a realistic A2M deployment, the client and server will typically reside at

different, topologically distant locations. In that case, it is entirely possible for the

indirection path to provide better connectivity characteristics than a direct connection

due to the multi-path effect, which allows the packets originating from the client to

follow a route with lower latency towards the end server [4, 8, 48, 139]. Although not

shown in our results for ease of viewing, we also compared the performance of A2M

to that of MobiDesk and found it to be the same on the direct connection case.

Figure 5.12 illustrates the end-to-end average web latency results as perceived

by the client. We can see that even for the worst-case scenario, an 80-node IBN

without packet replication, the overhead from the indirection results in a latency

increase of only 2 (i.e., twice the latency of the baseline direct connection). When

50% packet replication is used (i.e., replicating a packet with probability 0.5), the

overhead drops significantly to 40% for the 80-node IBN. The drop in the overhead

is due to the variant path latency of nodes participating in the IBN. TCP does not

behave optimally when packets appear to have high variance when arriving at the

CHAPTER 5. DESKTOP VIRTUALIZATION 167

0.00

0.10

0.20

0.30

0.40

0.50

200%100%50%0%Direct

La
te

nc
y

(s
)

Replication

0.00

0.10

0.20

0.30

0.40

0.50

200%100%50%0%Direct

La
te

nc
y

(s
)

Replication

80 hosts
8 hosts

Figure 5.12 – A2M Web latency vs. packet replication when measured close
to the client and for 8 and 80 nodes participating in the IBN. The direct bar
shows the latency when we fetch the page directly from the server locally using a LAN
and without protection. The latency overhead drops to 40% at 50% packet replication
(i.e., duplicating a packet with probability 0.5).

end server out of order. Adding packet replication decreases this variance, as the

same packet follows different paths, each with different latency and the end server

uses the one that arrives first. Boosting the replication beyond 50% follows the law

of diminishing returns, as each additional increase in replication gives us less latency

improvements. Care must be taken however, as too much packet replication can cause

performance degradation, since bandwidth is “wasted” on duplicate packets. This is

better exemplified by the results on the 8-node network using 200% replication. The

80-node network does not exhibit the same adverse affect because its average path

latency is higher, allowing the secret gateway enough time to process the encapsulated

packets received by the IBN. Moreover, for the 8-node network, we amplified this

effect by lowering the average latency, using PlanetLab nodes that were “close” to

the protected server.

To measure our system with an application that could generate more upstream

CHAPTER 5. DESKTOP VIRTUALIZATION 168

0%

20%

40%

60%

80%

100%

200%100%50%0%Direct

V
id

eo
 Q

ua
lit

y

Replication

0%

20%

40%

60%

80%

100%

200%100%50%0%Direct

V
id

eo
 Q

ua
lit

y

Replication

80 hosts
8 hosts

Figure 5.13 – Video quality vs. packet replication. Video quality remains 100%
under all test scenarios even for a 80-node IBN with no packet replication, despite the
use of indirection.

traffic and required the system to maintain its quality of service above a threshold for

latency, we used video playback. Figure 5.13 shows the results for video quality as

measured at the client side. We can clearly see that A2M performs optimally under all

test scenarios, providing the same perfect video quality as the direct LAN connection

scenario, even for the worst-case scenario of the 80-node IBN deployed over a WAN

with no packet replication.

The average per-page data transfer during the web benchmark in both directions

for various packet replication settings is shown in Figure 5.14. The results demon-

strate that since the upstream channel carries only input events (in this particular

case, mouse clicks) and data ACKs, packet replication has very low overhead (∼2.3KB

to ∼8.5KB) even for large pages. Similarly, Figure 5.15 shows the amount of data

transferred during video playback. Although the upstream data size is significantly

larger when compared to the web benchmark (from around 900KB to 2.2MB for 200%

replication), it is still only a fraction of the traffic generated in the downstream chan-

CHAPTER 5. DESKTOP VIRTUALIZATION 169

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

200%100%50%0%Direct

D
at

a
S

iz
e

(K
B

)

Replication

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

200%100%50%0%Direct

D
at

a
S

iz
e

(K
B

)

Replication

80 hosts
8 hosts

Figure 5.14 – Average per-page data transfer vs. packet replication for an
8-node and an 80-node IBN. Notice that the data replication does not show up in
the graph, since the upstream link is only used to send input events, which are a small
fraction of the total data transmitted.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

200%100%50%0%Direct

T
ot

al
 D

at
a

S
iz

e
(M

B
)

Replication

0.00

20.00

40.00

60.00

80.00

100.00

120.00

200%100%50%0%Direct

T
ot

al
 D

at
a

S
iz

e
(M

B
)

Replication

80 hosts
8 hosts

Figure 5.15 – Total video data transmitted vs. packet replication for 8 and
80-node testbeds. The upstream is only used for TCP ACKs, which are a tiny portion
of the actual downstream video data.

CHAPTER 5. DESKTOP VIRTUALIZATION 170

nel, and confirms the large asymmetry of remote display traffic, and the low overhead

of A2M’s access infrastructure.

To examine the behavior of the overall system when under attack, we measured

its resilience to a simulated denial of service attack that targeted the IBN itself. Our

threat model assumes that the attacker can render a fraction of the nodes partici-

pating in the IBN unresponsive, thus inducing packet loss in the TCP connection of

a user connected to the hosting server. All resilience tests were run on the 80-node

IBN network. When attacked, a node stops forwarding packets from the client to the

end host, acting as a mute node. Since there is no immediate feedback, clients do

not know which A2M nodes are operating and which are suppressed by the attacker.

Figure 5.16 illustrates the effects on the average web page latency as we increase the

percentage of node failure, and demonstrates both the resilience of A2M and the ad-

vantages of packet replication. Without packet replication, latency quickly degrades

to twice that of the direct connection when we have 15% of node failures, and reaches

three times for 20% node failure. On the other hand, employing packet replication

allows A2M to maintain an almost constant latency that is very close to the direct

connection, even under 50% A2M node failure, in the case of 200% replication. These

results are reinforced when we consider the video playback measurements. Figure

5.17 demonstrates that excellent video quality can be maintained even after a sub-

stantial percentage of nodes become unresponsive. As we increase packet replication,

the threshold can be drastically increased, to the point that A2M is able to provide

perfect video playback for up to 30% node failure, and very good (80%) video quality

with 50% node failure.

CHAPTER 5. DESKTOP VIRTUALIZATION 171

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

 0 10 20 30 40 50

L
a
te

n
c
y
 (

s
)

% Node Failures

 0%
 50%

 100%
 200%

Figure 5.16 – Web latency under DDoS attack. Latency increases in response to
increased nodes failure. Allowing packet replication, higher resilience is achieved, while
maintaining almost constant latency even in the presence of large node failures.

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50

V
id

e
o

 Q
u

a
li
ty

% Node Failures

 0%
 50%

 100%
 200%

Figure 5.17 – Video quality under DDoS attack. Video quality drops only after
a substantial percentage of nodes become unresponsive. At 200% replication, latency
does not increase even with 50% node failures.

CHAPTER 5. DESKTOP VIRTUALIZATION 172

5.3.3.2 Interactive Applications

Although video streaming and web browsing are both representative and demanding

applications, we felt that we needed to include another set of experiments that require

a high level of synchronization between the upstream and the downstream channel.

We performed four different tests, each representing typical interactive operations

on a desktop environment. The tests were performed by first recording a session of

a user performing the appropriate operation, and then playing back the session in a

number of different experimental scenarios. Our measure of performance was the user-

perceived latency in response to the interactive operations. The four tests performed

were: echo, minimize/maximize window, scroll, and move window. The echo test

measured the time it takes for a line of text to appear on the screen after the user

has pressed and depressed a key. The minimize/maximize window tests measures the

time it takes to maximize a window after the user has pressed the maximize button,

and then (after the window has been maximized) to minimize it after the user has

pressed the minimize button. The scroll test measures the time it takes to scroll down

a full-screen web page in response to a single Page Down key-press, and then the time

it takes to scroll back to the top by leaving the Arrow Up key pressed. Finally, the

move window test measures the time it takes to move a window across the screen.

The window’s size is about one fifth of the screen’s size, and it is moved by dragging

the window while the left-mouse button is pressed. The window operation is opaque,

i.e., the contents of the window are continuously redrawn as the user performs the

move operation.

The end-to-end latency the end users experience for these operations is shown in

Figures 5.18 to 5.21. These measurements show that without using packet replication,

and for attacks up to 20% of the indirection nodes, the client’s end-to-end latency

CHAPTER 5. DESKTOP VIRTUALIZATION 173

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

200%0%

T
im

e
(s

)

Replication

Direct
 0% DDoS
 5% DDoS

 20% DDoS
 50% DDoS

Figure 5.18 – Interactive performance for
the echo test. Even without replication and
with attacks affecting up to 20% of the IBN nodes,
the client’s end-to-end latency increases only by a
factor of 2.5 when compared to the direct, non-
protected case. With packet replication, latency
rises only after 50% of the nodes become unre-
sponsive.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Minimize
200% Replication

Minimize
0% Replication

Maximize
200% Replication

Maximize
0% Replication

T
im

e
(s

)

Direct
 0% DDoS
 5% DDoS

 20% DDoS
 50% DDoS

Figure 5.19 – Interactive performance for
minimize/maximize window test. Without
replication and for attacks affecting up to 20% of
the IBN nodes, the client’s end-to-end latency in-
creases only by a factor of 2. (Over 20%, the tests
could not complete.) With replication, attacks on
up to 50% of the IBN nodes had no impact on
latency.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Scroll Up
200% Replication

Scroll Up
0% Replication

Scroll Down
200% Replication

Scroll Down
0% Replication

T
im

e
(s

)

Direct
 0% DDoS
 5% DDoS

 20% DDoS
 50% DDoS

Figure 5.20 – Interactive performance for
the scroll test. With packet replication, latency
is close to a direct connection even when under se-
vere attack. Without packet replication, latency
increases by less than a factor of 3, vs. the direct
case.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

200%0%

T
im

e
(s

)

Replication

Direct
 0% DDoS
 5% DDoS

 20% DDoS
 50% DDoS

Figure 5.21 – Interactive performance for
the move window test. Latency increases sig-
nificantly only after 20% of IBN nodes are at-
tacked, with no replication. With 200% packet
replication, latency does not increase even for at-
tack intensities of 50%.

CHAPTER 5. DESKTOP VIRTUALIZATION 174

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50

V
id

e
o

 Q
u

a
li
ty

% Node Failures

 0%
 50%

 100%
 200%

Figure 5.22 – Video quality under DDoS attack in the wireless scenario.
Video quality suffers only after a large portion of the indirection nodes are attacked,
allowing correct system operation even when 40% of the nodes have been attacked, for
200% packet replication.

increases only by a factor of 2.5 when compared to the direct, non-protected case. On

the other hand, if we permit packet replication, we notice an increase in latency only

after 50% of the indirection nodes become unresponsive. In some cases, for attack

intensities that exceeded 20% of the indirection nodes and without replication the

network conditions were too adverse for the test to complete.

5.3.3.3 Wireless

Our next step was to replicate some of the experiments we had for the wired network

using a mobile client with a wireless connection. With the wireless tests we want

to explore the performance of both traditional laptop computers, and more common

mobile access devices, such as PDAs. To this end, we restricted ourselves to using

an 802.11b network (as opposed to a fast 802.11a or 802.11g). Furthermore, to re-

alistically show the performance on an expected A2M deployment, we conducted all

the tests over our university’s public wireless network. Since wireless connections

CHAPTER 5. DESKTOP VIRTUALIZATION 175

introduce an additional source of error to our system, we chose to show experiments

using video playback, because this type of application stresses the bandwidth and

latency requirements of the overall system. In order to simulate a PDA connection,

we reduced the client’s window size to a resolution of 320x240 pixels. Similar to our

wired tests, we obtained a baseline case where we played back the video using only

the wireless connection. Once again, A2M’s baseline case performance is the same

as MobiDesk’s. We then added the Planetlab-based indirection network to carry the

upstream packets from the wireless client back to the server, while continuing to use

the direct path for the downstream traffic. Figure 5.22 shows video quality as a

function of node failure in the indirection network and for different percentages of

packet replication, while using a wireless network. We see the same trend as in our

wired-network attack scenario: video quality suffers only after a large portion of the

IBN nodes are attacked, reaching 40% node failure for 200% replication.

All the previous results demonstrate that A2M can significantly increase the at-

tack resilience of the desktop hosting infrastructure with minimum overhead, pro-

viding web browsing latency comparable to traditional (and vulnerable) direct LAN

connections, and perfect video quality even in the presence of severe attacks on the

access infrastructure.

5.4 Summary

This chapter has shown how THINC can be used as a key component of desktop

virtualization. We have focused our attention on how THINC can be used to deploy

centralized desktop hosting infrastructures, which can provide efficient and seam-

less remote desktop computing services. Furthermore, we have shown how THINC’s

unique characteristics enable these type of services to be protected from distributed

CHAPTER 5. DESKTOP VIRTUALIZATION 176

denial of service attacks, without severely affecting the performance of hosted desktop

sessions.

First, we introduced MobiDesk [14], an architecture for centralized hosting of

desktop computing sessions. MobiDesk hosts computing sessions within virtualized

private environments by abstracting three key resources: display, using THINC, op-

erating system, using ZAP [101], and network, using MOVE [140]. Display virtual-

ization allows MobiDesk to provide fast remote access to sessions across LAN and

WAN environments. Operating system virtualization allows MobiDesk to migrate

sessions among hosting servers to provide high-availability computing in the pres-

ence of server maintenance and upgrades. Network virtualization allows MobiDesk to

transparently maintain persistent connections to unmodified outside hosts, even as a

session migrates from one server to another.

We have implemented and evaluated the performance of a MobiDesk prototype

in Linux. Our implementation demonstrates that MobiDesk can support unmodified

applications in hosted computing sessions without any changes to operating system

kernels, network infrastructure, or network protocols. Our experimental results with

real applications and hosted desktop computing sessions show that MobiDesk has

low virtualization overhead, can migrate computing sessions with subsecond check-

point/restart times, and provides superior display performance over other remote

display systems. MobiDesk is unique in its ability to offer a complete desktop experi-

ence remotely with full-motion video support. Given its performance and centralized

hosting model, MobiDesk provides the foundation for a utility computing infrastruc-

ture that can dramatically reduce the management complexity and costs of desktop

computing.

Second, we introduced A2M, an attack-resilient and latency efficient mechanism for

protecting MobiDesk-type infrastructures from distributed denial of service attacks

CHAPTER 5. DESKTOP VIRTUALIZATION 177

(DDoS). A2M exploits multi-path routing, packet replication, and the high asymmetry

inherent to interactive display traffic, to assure access to remote desktop sessions,

even in the presence of high-volume DoS attacks. In a departure from traditional

client-server systems, A2M provides an asymmetric client-server connection consisting

of an indirected client-to-server multi-path, and a direct server-to-client connection.

A2M’s indirection-based overlay acts both as a first-level distributed firewall and as

a routing mechanism for performance-critical user input-events going from the client

device to the hosting servers. In turn, the direct server-to-client connection provides

quick delivery of display updates, to guarantee quick response time and good user

experience.

We have implemented an A2M prototype in Linux and evaluated its performance

on PlanetLab. Our experimental results show that, as opposed to existing DDoS

protection mechanisms, A2M has minimum latency overhead and can provide good

interactive performance for web, video, and general interactive applications. Further-

more, our experimental results show that A2M significantly increases the attack re-

silience of MobiDesk-type hosting infrastructures, being able to provide perfect video

playback and low-latency web browsing and GUI interactions even in the presence of

large attacks on the infrastructure. A2M maintains 100% video quality in a number

of remote video display scenarios, despite the use of overlay routing. Furthermore,

end-to-end latency increases by less than 5% even when 40% of nodes have been ren-

dered unusable by an attacker. Given its performance and resilience to DoS attacks,

A2M represents a step forward towards realizing the vision of computer utilities that

provide ubiquitous, secure, and assured-access desktop computing.

Chapter 6 178

Chapter 6

Display Recording and Text

Capture

Continuing improvements in processing, storage, and network technologies have re-

sulted in an exponential increase in the amount of data users come in contact with

everyday. Keeping track of this massive amount of data, and being able to access it

when it is not explicitly saved (either as a file, bookmark, or note) is proving to be a

major challenge. It is not uncommon for users to realize the importance of something

they saw earlier as part of their computer use, and not be able to find it or gain access

to it.

Recognizing the importance of providing solutions for this growing problem, we

have extended THINC’s remote display architecture to provide seamless recording of

all display output, and capture of all text displayed on the screen. Display recording

provides a continuous log of all visual information users have had access to through

their computers, while captured text provides an indexing mechanism to the log.

The combined recording can be played back, and arbitrarily browsed. Furthermore,

text searches can be performed as a novel mechanism to gain access to the recorded

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 179

content.

This section describes THINC’s display recording and text capture architecture,

as well as the mechanisms available to access the recorded information. We also

discuss THINC’s integration into DejaView, a personal virtual recorder for desktop

computers. Finally, we present experimental results evaluating the performance of

the system, and demonstrating its effectiveness.

6.1 Display Recording

THINC’s virtual display architecture enables visual output to be redirected anywhere,

making recording and playback simple. In particular, THINC allows visual output

to be shared so that multiple clients can view the same display and collaborate using

screen sharing. THINC takes advantage of this mechanism to record and display

simultaneously. As visual output is generated, the virtual display driver multiplexes

the output into commands for display by the viewer, and commands for logging to

persistent storage. The set of display protocol commands used for both scenarios is

the same, enabling both efficient storage and quick playback. Since display records

are just display commands, the display record can be easily replayed either locally or

over the network using a simple application similar to the normal client.

The virtual display architecture allows THINC to easily adjust the recording qual-

ity in terms of both the resolution and frequency of display updates without affecting

the output to the user. THINC uses the screen scaling functionality described in

Chapter 4 to allow the display to be resized to accommodate a wide range of res-

olutions. For example, the display can be resized to fit the screen of a PDA even

though the original resolution is that of a full desktop screen. The recorded com-

mands are resized independently, so a user can have the recorder save display output

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 180

at full screen resolution even if it is currently viewing at a reduced resolution to ac-

commodate a smaller access device. The user can then go back and view the display

record at full resolution to see detailed information that may not have been visible

when viewed on the smaller device. Similarly, a user can reduce the resolution of the

display commands being recorded to reduce its storage requirements. It can also limit

the frequency at which updates are recorded, for example to only 30 times a second,

by taking advantage of THINC’s ability to queue and merge display commands so

that only the result of the last update is logged.

THINC records display output as an append-only log of commands, where recorded

commands specify a particular operation to be performed on the current contents of

the screen. THINC also periodically saves full screenshots of the display for the fol-

lowing two reasons. First, it needs a screenshot to provide the initial state of the

display which subsequent recorded commands modify. Second, if a user wants to

display a particular point in the time line, THINC can start with the closest prior

screenshot and only replay a limited number of commands. THINC records display

output in a manner similar to an MPEG movie where screenshots represent self-

contained independent frames from which playback can start, and commands in the

log represent dependent frames which encode a change relative to the current state

of the display. Since screenshots consume significant more space, and they are only

required as a starting point for playback, THINC only takes screenshots at long in-

tervals (e.g. every 10 minutes) and only if enough of the screen has changed since the

last one.

By using display protocol commands for recording, THINC ensures that only those

parts of the screen that change are recorded, thus ensuring that the amount of display

state recorded only scales with the amount of display activity. If the screen does not

change, no display commands are generated and nothing is recorded. The virtual

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 181

display driver knows not only which parts change, but also how they are changed. For

example, if the desktop background is filled with a solid color, THINC can efficiently

represent this in the record as a simple solid fill command. In contrast, regularly

taking snapshots of the full screen would waste significant processing and storage

resources as even the smallest of changes, such as the clock moving to the next

second, would trigger a new screenshot. It could be argued that the screenshots

could be compressed on the fly using a standard video codec, which could convert a

series of full screenshots into a series of smaller differential changes. However, this

additional computation significantly increases the overhead of the system and may

not provide a desirable tradeoff between storage and display quality for the synthetic

content of desktop screens. In contrast, THINC’s approach knows a priori what has

changed, what needs to be saved, and the best representation to use when saving it.

THINC uses three types of files to store the recorded display output: timeline,

screenshot, and command. All three types of files are written to in an append-only

manner, ensuring that the records are always ordered by time. This organization

speeds up both recording and playback. While recording, THINC does not incur any

seeking overhead. During playback, binary search can be used on the index file to

quickly locate the records of interest.

A timeline file contain all the meta information required for playback. This file is

a collection of tuples of the form [time, screenshot, command] where each tuple

represents a point in the timeline where a screenshot was taken, and can be used

to start playback. The command component represents the next command that was

recorded after the screenshot was taken. Both screenshot and command are tuples

of the form [filename, file position], and represent pointers to where the actual

data for the screenshot and command is stored: the filename of the appropriate file,

and the offset within that file where the information is stored.

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 182

Screenshot files hold the actual screenshot data. They are organized as a con-

tiguous set of records, where each record is a tuple of the form [type, time, size,

dimensions, data]. type specifies whether the record is a screenshot or a refer-

ence to another screenshot file. time specifies the time at which the screenshot was

recorded. size specifies the data size of the screenshot. dimensions specifies the

dimensions of the screenshot, to allow for changes of the geometry of the display to

be appropriately recorded. data is the actual screenshot data.

Command files contain the stream of display commands. In the same manner as

screenshot files, each command is stored as a serialized record of the form [type,

time, size, data]. type specifies the type of THINC display command. time

specifies the time at which the command was recorded. size specifies the data size

of the command. data is the actual command data.

THINC allows for multiple screenshot and command files to be used if needed or

desired, for example for systems with maximum file sizes which could be exceeded

by long-running desktop recording sessions. At the end of each file, a special record

is appended that points to the next file on the stream. The record has the same

format as other records. It uses the type field to mark itself as an end-of-file/next-file

marker, and the data component to store the next filename. As playback occurs, this

record is read just like any other record, but causes the playback program to start

reading from the next file and continue its operation.

6.2 Text Capture

In addition to visual output, THINC records contextual information by capturing all

text that is displayed on the screen, and using it as an index to the display record.

Because there are a wide array of application-specific mechanisms used for rendering

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 183

text, capturing textual information from display commands is often not possible. We

considered using optical character recognition (OCR) on display records, but found

currently available OCR technology to be quite slow and inaccurate for typical desk-

top screen contents. Instead, THINC leverages ubiquitous accessibility mechanisms

provided by most modern desktop environments and widely used by screen readers

to provide desktop access for visually-impaired users [40]. These mechanisms are

typically incorporated into standard GUI toolkits, making it easy for applications to

provide basic accessibility functionality. THINC uses this infrastructure to obtain

both the text displayed on the screen and useful context including the name and type

of the application that generated the text, window focus and mouse input, selected

menu items and HTML links, and keyboard and mouse input. By using a mech-

anism natively supported by applications, THINC has maximum access to textual

information without any application or desktop environment modifications.

THINC uses a daemon to collect the text on the desktop and index it in a da-

tabase augmented with a text search engine. At the most basic level, the daemon

behaves very similarly to a screen reader, as both programs have similar functional

requirements. At startup time, the daemon registers with the desktop environment

and asks it to deliver events when new text is displayed or existing text on the screen

changes. As events are received, the daemon wakes up, collects the new text and

state from the application, and inserts this information into the database. However,

THINC’s daemon needs to be mindful of any overhead it creates on the interactive

performance of the desktop. In particular, two aspects of the accessibility mechanism

need to be handled with care. First, events are delivered synchronously, meaning that

applications block until event delivery is finished. Second, the accessible components

of applications are stored as trees. These trees can grow as UI complexity increases,

and are extremely expensive to traverse, as only one component in the tree can be

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 184

accessed at any point in time, and accessing each component requires continuous

context switching between the daemon and the application.

THINC’s daemon is designed to minimize both event processing time and the

number of queries to applications, by keeping a number of data structures that exactly

mirror the accessible state of the desktop. At startup, the daemon traverses all the

applications, and builds its own mirror tree. This tree is used to keep an exact replica

of the state of the desktop, which can be traversed at a tiny fraction of the cost of

traversing the real accessible tree; the latter can take a couple seconds and destroy

interactive responsiveness. To minimize event processing time, a hash table maps

accessible components to nodes in the mirror tree. This way, as event are received

the daemon can quickly look up the corresponding node and figure out which parts

of the tree need to be updated.

Keeping an exact replica of the state of the desktop is a crucial mechanism to offer

useful searching capabilities to the recorded content. As events are generated, the

tree is updated, and its full contents indexed into the database. This way, THINC is

able to maintain the temporal relationships of all displayed text. To understand how

important this is, consider, for example, a user that is looking for the time when she

started reading a paper, but all she recalls is that a particular web page was open at

the same time. If text was only indexed when it first appeared on the screen, this

temporal relationship between the web page and the paper would never have been

recorded, and the user would be unable to access the content of interest. THINC’s

indexing strategy also allows it to infer text persistence information that can be used

as a valuable ranking tool. For example, a user could be less interested in those parts

of the record when certain text was always visible, and more interested in the records

where the text appeared only briefly.

A limitation of our approach is that not every application may provide an accessi-

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 185

bility interface. For example, while THINC can capture text information from PDF

documents that are opened using the current version of Adobe Acrobat Reader, other

PDF viewers used in Linux do not yet provide an accessibility interface. However,

our experience has been that most applications do not suffer from this problem, and

there is an enormous impetus to get accessibility interfaces into all desktop applica-

tions to provide universal access. The needs of visually impaired users will continue

to be a driving force in ensuring that applications increasingly provide accessibility

interfaces, enabling THINC to extract textual information from them.

6.3 Playback

Visual playback and search are performed by the THINC client. Various time-shifting

operations are supported, such as skipping to a particular time in the display record,

and fast forward or rewind from one point to another. To skip to any time T in the

display record, THINC goes to its timeline file and finds the tuple with the maximum

time less than or equal to T. It then reads the tuple’s screenshot information and

accesses the screenshot at the specified file position, which is used as the starting

point for playback. THINC then reads the tuple’s command information and accesses

the command at the specified file position. Staring with that command, a two step

process is performed that guarantees that only those commands relevant at time

T are processed, thus minimizing the time spent in the playback operation. First,

THINC builds a list of commands that are relevant to the contents of the screen,

discarding those that are overwritten by newer ones. This process goes on, until it

reaches a command with time greater than T. The list is ordered chronologically to

guarantee correct display output. Second, each command on the list is retrieved from

the corresponding files, and displayed.

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 186

To play the display record from the current time until time T, THINC simply plays

the commands in the command file until it reaches a command with time greater than

T. THINC keeps track of the time of each command and sleeps between commands

as needed to provide playback at the same rate at which the session was originally

recorded. THINC can also playback faster or slower by scaling the time interval

between display commands. For example, it can provide playback at twice the normal

rate by only allowing half as much time as specified to elapse between commands.

At the fastest playback rate possible, THINC simply ignores the command times and

processes them as quickly as it can. Except for the accounting of time, the THINC

playback application functions in a similar manner to the THINC viewer in processing

and displaying the output of commands.

To fast forward from the current display to time T, THINC reads the screenshot

file and plays each screenshot in turn until it reaches a screenshot with time greater

than T. It then finds the tuple in the timeline file with the maximum time less than

or equal to T, which corresponds with the last played screenshot, and uses the tuple

to find the corresponding next display command in the command file. Starting with

that command, THINC plays all subsequent commands until it reaches a command

with time greater than T. Rewind is done in a similar manner except going backwards

in time through the screenshots.

6.4 Search

In addition to standard PVR-like functionality, THINC provides a mechanism that

allows users to quickly and effectively search and access recorded display output.

THINC search uses the index built from captured text and contextual information

to find and return relevant results. At the most basic level, THINC allows users to

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 187

perform simple boolean keyword searches, which will locate the times in the display

record in which the query is satisfied. More advanced queries can be performed by

specifying extra contextual information. A useful query users have at their disposal

is the ability to tie keywords to applications they have used or the whole desktop.

For example, a user may look for a particular set of words limited to just those times

when they were displayed inside a Firefox window, and further narrow the search by

adding the constraint that a different set of words be visible somewhere else on the

desktop or on another application. Users can also limit their searches to particular

ranges of time or to particular actions. For example, a user may search for results

only on a given day and only for text in applications that had window focus. Due

to space constraints, a full discussion of how contextual information can be used for

search is beyond the scope of this paper.

A final search mechanism is provided by the user through annotations. At the

most basic level, annotations can be created by the user by typing text in some visible

part of the screen, since the indexing daemon will automatically add it to the record

stream. While this approach is extremely simple, the user may have to provide some

unique text that will allow the annotation to stand out from the rest of the recorded

text. To help users in this case, THINC provides an additional mechanism which

takes further advantage of the accessibility infrastructure. To explicitly create an

annotation, the user can write the text, then using the mouse, select it and press a

combination key which will message the indexing daemon to associate the selected

text with an attribute of annotation. The indexing daemon is able to provide this

functionality transparently, since both text selection and key strokes events can be

delivered by the accessibility infrastructure.

Search results are presented to the user in the form of a series of text snippets

and screenshots, ordered according to several user-defined criteria. These include

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 188

chronological ordering, persistence information (i.e.. how long the text was on the

screen), number of times the words appear, and so on. The search is conducted by

first passing a query into the database that results in a series of timestamps where

the query is satisfied. These timestamps are then used as indices into the display

stream to generate screenshots of the user’s desktop. The operation is very similar

to the visual playback described before, with the difference that the log playback is

done completely offscreen, which helps speed up the operation. THINC also caches

screenshots for search results, using a LRU scheme, where the cache size is tunable.

This provides significant speedup in cases where the user has to continuously go back

to specific points in time in the record.

Each screenshot generated is a portal through which users can either quickly glance

at the information they were looking for, or, by simply pressing a button, revive their

desktop session as it was at that particular point in time. In addition, when the

query is satisfied over a contiguous period of time, the result is displayed in the form

of a first-last screenshot, which, borrowing a term from Lifestreams [39], represents

a substream in the display record. Substreams behave like a typical recording, where

all the PVR functionality is available, but restricted only to that portion of time.

6.5 DejaView

THINC’s display record and indexing functionality has been integrated into Deja-

View [66, 67], a personal virtual computer recorder that provides a complete WYSI-

WYS (What You Search Is What You’ve Seen) record of a desktop computing ex-

perience. DejaView enables users to playback, browse, search, and revive their past

computing experiences, making it easier to retrieve information they have seen before.

DejaView leverages continued exponential improvements in storage capacity [105] to

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 189

provide a record of what a user has seen; information is recorded as it was displayed

with the same personal context and display layout. All viewed information is recorded,

be it an email, web page, document, program debugger output, or instant messaging

session. The information is automatically indexed based on displayed text captured

in the same context as the recorded information.

DejaView enables a user to playback and browse records for information using

functions similar to personal video recorders (PVR) such as pause, rewind, fast for-

ward, and play. DejaView enables a user to search records for specific information

to generate a set of matching screenshots, which act as portals for the user to gain

full access to recorded information. DejaView enables a user to select a given point

in time in the record from which to revive a live computing session that corresponds

to the desktop state at that time. The user can time travel back and forth through

what she has seen, and manipulate the information in the record using the original

applications and computing environment.

To supports its personal virtual computer recorder usage model, DejaView needs

to record both the display and execution of a user’s desktop computing environment

such that the desktop recording can be played and manipulated at a later time. Deja-

View must provide this functionality in a manner that is transparent, has minimal

impact on interactive performance, can preserve visual display fidelity, and is space

efficient. DejaView achieves this by using a virtualization architecture that consists

of two main components, a virtual display provided by THINC, and a virtual ex-

ecution environment based on ZAP [68, 101]. These components leverage existing

system interfaces to provide transparent operation without modifying, recompiling,

or relinking applications, window systems, or operating system kernels.

DejaView’s virtual execution environment decouples the user’s desktop comput-

ing environment from the underlying OS, enabling an entire live desktop session to

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 190

be continuously checkpointed, and later revived from any checkpoint. Building on

Zap, DejaView leverages the standard interface between applications and the OS

to transparently encapsulate a user’s desktop computing session in a private virtual

namespace. This namespace is essential to support DejaView’s ability to revive check-

pointed sessions. By providing a virtual namespace, revived sessions can appear to

access the same OS resources as before, even if they are mapped to different underly-

ing resources upon revival. By providing a private namespace, revived sessions from

different points in time can run concurrently and appear to use the same operating

system resources inside their respective namespaces, and yet not have any conflicts

among each other. This lightweight virtualization mechanism imposes low overhead

as it operates above the operating system instance to encapsulate only the user’s

desktop computing session, not an entire machine instance. By using a virtual dis-

play and running its virtual display server inside its virtual execution environment,

DejaView ensures that all display state is encapsulated in the virtual execution envi-

ronment so that it is correctly saved at each checkpoint. Furthermore, revived sessions

can then operate concurrently without any conflict for display resources since each

has its own display state. DejaView combines logging [65]and unioning file system

mechanisms [166] to capture the file system state at each checkpoint. This ensures

that applications revived from a checkpoint are given a consistent file system view

corresponding to the time at which the checkpoint was taken.

6.6 Experimental Results

We have implemented THINC’s display recording and text capturing architecture

as an extension to THINC’s Linux/X based implementation. This section presents

experimental results that quantify its performance when running a variety of common

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 191

desktop applications. We present results for both application benchmarks and real

user desktop usage. The focus of our experiments is on quantifying the storage

requirements and performance overhead in terms of the cost of continuously recording

display and indexing text. For both the application benchmark and the real desktop

usage experiments, we do full fidelity display recording.

We used the desktop application scenarios listed in Table 6.1. We considered sev-

eral individual application scenarios running in a full desktop environment, including

scenarios that created lots of display data (web, video, untar, make, cat) as well as

those that did not and were more compute intensive (gzip, octave). These scenar-

ios measure THINC performance only during periods of busy application activity,

providing a conservative measure of performance since real interactive desktop usage

typically consists of many periods in which the computer is not fully utilized. For ex-

ample, our web scenario downloads a series of web pages in rapid succession, instead

of having delays between web page downloads for user think time. To provide a more

representative measure of performance, we measured real user desktop usage (labeled

as desktop in the graphs) by aggregating data from multiple graduate students using

our prototype for all their computer work over many hours.

For all our experiments the THINC client and server ran together on a Dell Di-

mension 5150C with a 3.20 GHz Intel Pentium D CPU, 4 GB RAM, a 500 GB SATA

hard drive and connected through a 1000 Mbps ethernet card to a public switched

Fast Ethernet network. The machine ran the Debian Linux distribution with ker-

nel version 2.6.11.10 using X.org 7.1 as the window system, and GNOME 2.14 as the

desktop environment. The display resolution was 1024x768 for the application bench-

marks and 1280x1024 for real desktop usage measurements. For our web application

scenario, we also used an IBM Netfinity 4500R server with dual 933 MHz Pentium

III CPUs and 512 MB RAM as the web server, running Linux kernel version 2.6.10

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 192

Name Description

web Firefox 2.0.0.1 running iBench web browsing
benchmark to download 54 web pages

video MPlayer 1.0rc1-4.1.2 playing Life of David Gale
MPEG2 movie trailer at full-screen resolution

untar Verbose untar of 2.6.16.3 Linux kernel source tree

gzip Compress a 1.8 GB Apache access log file

make Build the 2.6.16.3 Linux kernel

octave Octave 2.1.73 (MATLAB 4 clone) running
Octave 2 numerical benchmark

cat cat a 17 MB system log file

desktop 16 hr of desktop usage by multiple users, including
Firefox 2.0.0.1, GAIM 1.5, OpenOffice 2.0.1, Adobe
Acrobat Reader 7.0, etc.

Table 6.1 – Recording application benchmark scenarios

0.0

0.5

1.0

1.5

2.0

2.5

web video untar gzip make octave cat

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Application

Display Recording
Text Recording
Full Recording

Figure 6.1 – Recording runtime overhead

and Apache 1.3.34.

Figure 6.1 shows the performance overhead for each application scenario. We ran

each scenario without recording, with each of display recording and indexing compo-

nents enabled at a time, and with full recording. Performance is shown normalized

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 193

to the execution time without any recording. The results show that there is some

overhead for full recording, but there are no visible interruptions in the interactive

desktop experience and real-time interaction is not affected in practice. Full recording

overhead is small in almost all scenarios, including those that are quite display inten-

sive such as cat and full-screen video playback. In all cases other than web browsing,

the overhead was less than 5%. For video, the most time-critical application scenario,

the overhead is less than 1% and does not cause any of the video frames to be dropped

during display. For web browsing, full recording overhead was about 110% because

the average download latency per web page was a little more than half a second

with indexing while it was .28 seconds without recording. We discuss the reasons

for this overhead below. However, real users do not download web pages in rapid

succession as the benchmark does, and the page download latencies with recording

are well below the one second threshold for users to have an uninterrupted browsing

experience [94], and is fast enough in practice for interactive web browsing. We did

not measure the performance overhead of the desktop usage scenario given the lack

of precise repeatability.

Figure 6.1 shows how the recording components individually affect performance.

The largest display recording overhead is 9% for the rapid fire web page download,

which changes almost all of the screen continuously and causes the web browser

and THINC server and viewer to compete for CPU and I/O resources. The display

overhead for all other cases is less than 2%. As expected, gzip and octave have

essentially zero display recording overhead since they produce little visual output.

Interestingly, video has one of the smallest display recording overheads of essentially

zero. Even though it changes the entire display for each video frame, it requires only

one command for each video frame, resulting in 24 commands per second, a relatively

modest rate of processing.

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 194

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

web video untar gzip make octave cat desktop

G
ro

w
th

 R
a
te

 (
M

B
/s

)

Application

Index
Display

Figure 6.2 – Recording storage growth

Figure 6.1 also shows the index recording overhead, which is small in all scenarios

except for the web benchmark. The overhead is less than 4% for all cases except for

the web benchmark. For the web benchmark, the indexing overhead is 99%, which

accounts for almost all of the overhead of full recording. Unlike other applications, the

Firefox web browser creates its accessibility information on demand instead of as part

of normal operation. This dynamic generation of accessibility information coupled

with weakness in the current Firefox accessibility implementation results in much

higher overhead when capturing text. We expect that this overhead will decrease

over time as its accessibility features improve [87].

Figure 6.2 shows the storage space growth rate THINC experiences for each of

the application scenarios. The results are decomposed into the amount of increased

storage THINC imposes for display state and text capture. We do this by measuring

the size of the files created to store their respective information. Figure 6.2 shows that

for all of the application scenarios except video, untar and cat, storage growth rate

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 195

 0

 50

 100

 150

 200

 250

web video untar make octave cat desktop

T
im

e
(m

s)

Application

Browse
Search

Figure 6.3 – Browse and search latency

is quite low. Video requires more extensive display storage since each event changes

the entire display, even though it does not create a high rate of events. Untar and

cat have a large indexing growth rate since they both output large amounts of text

on the screen.

More importantly, typical usage does not have as high of a growth rate, resulting

in much lower storage requirements in practice. As shown in Figure 6.2, the storage

space growth rate for real user desktop usage is much more modest at only 0.3 MB/s.

In comparison, HDTV PVRs require roughly 9 GB of storage per hour of recording,

or 2.5 MB/s. While THINC’s storage requirements can be greater than HDTV PVRs

during periods of intense application activity, the desktop scenario results indicate

that in practice they will be much smaller. Also, disk storage densities continue to

double each year and as multi-terabyte drives become commonplace in PCs [105], the

storage requirements of THINC will become increasingly practical for many users.

We also conducted experiments that show THINC’s effectiveness at providing ac-

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 196

 0

 50

 100

 150

 200

 250

 300

web video untar make octave cat desktop

S
pe

ed
up

Application

Figure 6.4 – Playback speedup

cess to recorded content, by measuring its search, browse, and playback performance.

We measured THINC search performance by first indexing all displayed text for our

application tests and desktop usage, each in its own respective database, then issuing

various queries. For each application benchmark, we report the average query time

for five single-word queries of text selected randomly from the respective database.

For real desktop usage, we report the average query time for ten multi-word queries,

with a subset limited to specific applications and time ranges, to mimic the expected

behavior of a THINC user. Figure 6.3 shows that on average, THINC is able to

return search results in no more than 10 ms for the application benchmarks and in

roughly 20 ms for real desktop usage. These results demonstrate that the query times

are fast enough to support interactive search. Another important measure of search

performance is the relevance of the query results, which we expect to measure based

on a user study; this is beyond the scope of this dissertation.

We measured browsing performance by using the display content recorded dur-

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 197

ing our application benchmarks and access it at regular intervals. Since the full

fidelity recorded stream contains many points where the user was not actively using

the system, and the display was not being actively updated, replaying the minimal

commands needed to access those points would minimize the average time needed to

regenerate the contents of the screen. Since these are points in time a user is unlikely

to want to regenerate, and to avoid skewing the results in THINC’s favor, we elimi-

nate search points if less than 100 display commands were issued from the previous

point. Figure 6.3 shows that on average, THINC can access, generate, and display

the contents of the stream at interactive rates, ranging from 40 ms browsing times

for video to 130 ms for web. For real desktop usage, browsing times were roughly 200

ms. These results demonstrate that THINC provides fast access to any point in the

recorded display stream, allowing users to efficiently browse their content.

To demonstrate how a user quickly a user can visually search the record, we

measure playback performance of all the application scenarios and measure how long

it would take to play the entire visual record. Figure 6.4 demonstrates that THINC

is able to playback an entire record at many times the rate at which it was originally

generated. For instance. Figure 6.4 shows that THINC is able to playback regular

user desktops at over 200 times the speed it was recorded. While some benchmarks,

in particular web browsing, do not show as much of a speedup, we attribute this to

the fact that they are constantly changing data at the rate of display updates. Even

in the worst case, THINC is able to display the visual record at over 10 times the

speed at which it was recorded. These results demonstrate that THINC can browse

through display records at interactive rates.

CHAPTER 6. DISPLAY RECORDING AND TEXT CAPTURE 198

6.7 Summary

This chapter has introduced a novel mechanism for continuously recording visual

desktop output, and indexing it based on text displayed, enabling all desktop output

to be played back, arbitrarily browsed, and searched through text and contextual

queries.

By leveraging THINC’s virtual and remote display architecture, this mechanism

can work seamlessly with unmodified applications and operating systems, operate

with very low-overhead, produce very efficient representations of the recorded content,

and enable recorded output to be efficiently accessed. Alongside, we have developed

a novel way to harvest on-screen text that leverages accessibility interfaces to gain

access to both text and desktop contextual information.

We have implemented a prototype of this system, and evaluated its performance,

in terms of runtime overhead, space usage, and how efficiently it can provide access

to recorded content. Our results with common desktop application workloads and

real desktop usage demonstrate that THINC can provide a high-performance, space-

efficient platform for desktop recording and indexing, and that recorded content can

be played back, randomly accessed, and searched fast enough for interactive use.

Finally, we have integrated our display recording and indexing functionality into

DejaView [66, 67], a personal virtual computer recorder that provides a complete

record of a desktop computing experience. DejaView enables users to not only play-

back, browse, and search visually recorded output, but to also revive their past com-

puting experiences, making it possible to retrieve both information they have seen

before, and the state of their desktops in the past. In this manner we have shown

that THINC not only provides an efficient remote display architecture, but it can also

be used as a building block for new desktop applications.

Chapter 7 199

Chapter 7

Related Work

This dissertation introduced a virtualization architecture for remote desktop access.

Its contributions touch upon many fields, and a number of systems have been pro-

posed in the literature and as commercial products which have some commonality to

THINC, either in function or methodology. In this chapter we discuss in detail these

systems and THINC’s relationship to them.

7.1 Remote Display and Thin-Client Computing

Because of the importance of developing effective remote display systems, many al-

ternative designs have been proposed. These approaches can be loosely classified

based on a number of design choices, which we discussed in depth in Chapter 2 while

describing the architecture of THINC. In this section, we will follow a similar path,

but focused on the choices made by existing systems.

As Figure 7.1 shows, a typical display architecture works as a pipeline, with desk-

top applications on one end, and the framebuffer and input devices at the other. The

purpose of this architecture is to allow applications to generate visual output to users,

CHAPTER 7. RELATED WORK 200

Figure 7.1 – Standard display architecture

and in turn to receive input events generated by these same users as they interact

with the applications. Section 2.1 discusses at length how the architecture works by

showing the process triggered when the user clicks on a link on a web page, and a

new page is rendered on the screen.

Given this pipeline architecture, existing systems that provide remote display for

desktops can be loosely classified based on several design choices:1

1. where the graphical user interface of applications is executed,

2. how display commands from applications are intercepted so that display updates

1Given that some of these systems are commercial and closed source, the choices which we are able
to describe here are only those which we can infer by treating the systems as black boxes. Deeper
architectural choices like how translation and delivery of commands is done, which we previously
described as being core to the design of THINC, cannot be evaluated this way.

CHAPTER 7. RELATED WORK 201

can be sent from server to client, and

3. what display primitives are used for sending display updates over the network.

Older remote display systems such as Plan 9 [110] and X [123] provide remote

display functionality by pushing all user interface processing to the client computer.

Application-level display commands are not processed on the server computer, but

simply forwarded to the client. This division of work is more apparent in X, where,

somewhat confusingly, the client computer is referred to as the “X server”, and appli-

cations running on the server computer are called “X clients”. X applications perform

graphics operations by calling library functions in charge of forwarding application-

level display commands over the network to the X server. X commands present a

high-level model of the overall characteristics of the display system, including descrip-

tions of the operation and management of windows, graphics state, input mechanisms,

and display capabilities of the system. By running the user interface on the client,

user interface interactions that do not involve application logic can be processed lo-

cally without incurring network latencies. The use of high-level application display

commands for sending display updates over the network is also widely thought to be

bandwidth efficient.

However, there are several important drawbacks to this approach. First, since

application user interfaces and application logic are usually tightly coupled, running

the user interface on the client and application logic on the server often results in a

need for continuous synchronization between client and server. In high-latency WAN

environments, this kind of synchronization causes substantial interactive performance

degradation [69]. Second, the use of high-level application display commands, such

as those used by X, in practice turns out to be not very bandwidth efficient [69, 124].

Finally, storing and managing all display state at the client makes it difficult to

CHAPTER 7. RELATED WORK 202

support seamless user mobility across different locations. In most cases, the display

state must be duplicated on the server before users are able to move across different

clients without losing the state of their desktop.

Proxy extensions such as low-bandwidth X (LBX) [169] and NoMachine’s NX [95]

have been developed to try to address some of these problems and improve X perfor-

mance. LBX has been shown to have poor performance [61] compared to other remote

display systems [73]. NX is a more recent development that provides X protocol com-

pression and reduces the need for network round trips to improve X performance in

WAN environments. Neither of these systems address the maintenance costs associ-

ated with application user interface processing on the client. Furthermore, the key

compression techniques in NX can also be used for remote display systems which do

not have the drawbacks inherent in executing the user interface of applications on the

client.

More recent remote display systems such as Citrix MetaFrame [23], Microsoft

Remote Desktop [25, 82, 83], Sun Ray [124], and VNC [118] run the graphical user

interface of applications at the server, avoiding the need to maintain and run complex

window server software at the client. The client functions simply as an input-output

device. It maintains a local copy of the framebuffer state used to refresh its display

and forwards all user input directly to the server for processing. When applications

generate display commands, the server processes those commands and sends screen

updates over the network to the client to update the client’s local framebuffer. The

server maintains the true application and display state, while the client only contains

transient soft state.

This approach provides several important benefits. First, synchronization over-

head across the network between the user interface and applications can be eliminated

since both components run on the server. Second, no window server software needs

CHAPTER 7. RELATED WORK 203

to run on the client, allowing for less complex client implementation. Third, client

processing requirements can scale with display size instead of graphical user inter-

face complexity, enabling clients to be designed as fixed-function devices for a given

display resolution. Fourth, since all persistent state resides on the server, mobile

users can easily obtain the same persistent and consistent computing environment by

connecting to the server from any client.

Achieving these benefits with good system performance remains a key challenge.

One approach is to translate application display commands into a rich set of low-

level graphics commands that encode display updates sent over the network. These

commands are similar to many of the commands used in X. Citrix MetaFrame, Sun’s

Secure Global Desktop [142] (previously known as Tarantella [121]), and Microsoft

Remote Desktop are three competing commercial product examples of this approach.

However, performance studies [69, 172] of these systems indicate that using a richer

set of display primitives does not necessarily provide substantial gains in bandwidth

efficiency, particularly in the presence of multimedia content. Furthermore, the added

overhead of supporting a complex set of display primitives results in slower respon-

siveness and degraded performance in WAN environments.

A second approach is to use simpler 2D drawing primitives for sending display

updates over the network. Sun Ray takes this approach, and is now in its third ma-

jor product version from Sun Microsystems. While the command set used is simple

and easy to implement, Sun Ray is not able to efficiently and transparently translate

application display commands into its command set. It instead often relies on reduc-

ing application commands to pixel data and sampling the resulting data to determine

which drawing primitives to use. Determining the most efficient drawing primitives to

use can be difficult and processing overhead can adversely affect overall performance.

Some applications which generate display commands that Sun Ray cannot efficiently

CHAPTER 7. RELATED WORK 204

translate need to be explicitly modified to deliver adequate performance. For exam-

ple, Sun Ray lacks transparent support for video playback. Another drawback in

Sun Ray’s approach is that it intercepts application commands using a customized X

server, which is not easy to do effectively given the complexity of window server im-

plementations. Furthermore, a customized server quickly becomes outdated given the

difficulty of keeping up with continuing advances in more widely supported window

server implementations, such as XFree86 and X.org. Note that Sun Ray was originally

designed assuming the use of a private, low-latency LAN environment [124], though

more recent product versions attempt to relax this requirement.

A third approach is to reduce everything to raw pixel values for representing dis-

play updates, then read the resulting framebuffer pixel data and encode or compress

it, a process sometimes called screen scraping. VNC [150] and GoToMyPC [46] are

two actively developed and widely-used systems based on this approach. Other simi-

lar systems include Laplink [71] and PC Anywhere [106], which have been previously

shown to perform poorly [92]. Screen scraping is relatively simple and decouples

the processing of application display commands from the generation of display up-

dates sent to the client. Servers must do the full translation from application display

commands to actual pixel data, but clients can be very simple and stateless. How-

ever, display commands consisting of raw pixels alone are typically too bandwidth-

intensive. For example, using raw pixels to encode display updates for a video player

displaying at 30 frames per second (fps) full-screen video clip on a typical 1024x768

24-bit resolution screen would require over 0.5 Gbps of network bandwidth. As a

result, the raw pixel data must be compressed. Many compression techniques have

been developed for this purpose, including FABD [43], PWC [9], and TCC [19, 18].

However, generating display updates in this manner is fundamentally inefficient since

the original application display semantics are lost and cannot be used in the process.

CHAPTER 7. RELATED WORK 205

Platform Display User Display Interception

Protocol Interfacea Encoding Point

X Window System X Client High-level graphics Window Systemb

NoMachine NX Compressed X Client High-level graphics Window Systemc

Citrix ICA Server Low-level graphics Window System d

Metaframe

Microsoft RDP Server Low-level graphics Window System d

Terminal Services

Sun Secure AIP Server Low-level graphics Window System e

Global Desktop

SunRay SunRay Server Simple 2D primitives Window System e

GoToMyPC GoToMyPC Server Simple 2D primitives Framebuffer

VNC VNC Server Simple 2D primitives Framebuffer

THINC THINC Server Simple 2D primitives Device Driver

a Specifies where the application’s user interface is executed
b Provides all window system functionality
c Uses a proxy which functions as a fake window system
d Intercepts from within the window system
e Intercepts using a customized window system

Table 7.1 – Remote Display Systems Comparison

CHAPTER 7. RELATED WORK 206

Table 7.1 summarizes the major characteristics of the most popular remote display

systems in use today.

7.2 Multimedia Support

Traditional remote display and thin-client systems have been tailored towards sup-

porting remote access over low-bandwidth connections or accessing office applications

in LAN environments. Support for multimedia playback and synchronization in exist-

ing thin-client systems is generally lacking as has been shown in previous performance

studies [69, 172].

Widely-used remote display systems such as VNC [150] and GoToMyPC [46] take

the common approach of doing nothing for audio/video playback. They cannot play

audio. They play video by simply screen scraping display data from the framebuffer

along with any other display content. This results in terrible video quality as the

mechanism cannot keep up with video playback rates. Video data typically is over-

written in the framebuffer before it can even be displayed to the client.

Sun Ray [141], a commercial thin-client system in its third major product version

from Sun Microsystems, provides native audio playback and provides protocol mech-

anisms that can be used by application developers to improve video playback. These

mechanisms cannot be used with unmodified off-the-shelf applications as they require

applications to be rewritten or relinked with special libraries. Sun Ray was originally

designed assuming the use of a private, low-latency LAN environment [124], though

more recent product versions attempt to relax this requirement.

Recent support was added in Microsoft’s Remote Desktop (RDP) [25, 82] and

Citrix MetaFrame (ICA) [23] for remote audio/video playback. Both RDP and ICA

take advantage of the media playback architecture present in Windows to deliver

CHAPTER 7. RELATED WORK 207

media remotely. In particular, they capture the encoded media stream from the

application, transmit it over the network, and leave the decoding and playback to

the client. Client complexity increases as decoding of media streams relies heavily

on local software components, which need to be bundled with and maintained on

the client. This creates an additional upgrade and support point in the network,

increasing management cost and complexity. Furthermore, these mechanisms do not

work with many standard media formats and require that applications be written

using the necessary Windows extensions. Not all multimedia applications support the

interfaces used by RDP and ICA to stream content. This lack of standard interfaces

for media decoding and playback in both the Windows and Unix world is one of

the major problems that thin-client systems must overcome in providing multimedia

support.

Many modern thin clients evolved from X [123], which is a display-only system

that does not natively support audio. Unlike other approaches, X requires a full

window server running on the client, increasing client management complexity. X

provides extensions, namely Xvideo and XvMC, that support video playback at full

frame rate, though only Xvideo works remotely. X-based thin-client systems such as

low-bandwidth X (LBX) [169] and NoMachine’s NX [95] have no support for these

extensions or other video playback mechanisms. A separate audio server can be in-

stalled and run on the client to provide remote audio playback for X-based systems.

Examples of these servers are ESD (Enlightenment Sound Daemon) [33], aRtsd (Ana-

log Realtime Synthesizer Daemon) [7], NAS (Network Audio System) [91], PulseAu-

dio [114], which is an effort intended to replace ESD, and MAS (Media Application

Server) [78], developed by the X consortium to bring media support to the X world.

Both ESD and aRtsd are widely used on Linux desktops, the former is bundled with

the GNOME desktop suite and the latter is used by the K Desktop Environment.

CHAPTER 7. RELATED WORK 208

These require audio applications to be written to use them, and any single server

may not support all the audio applications users would like to run.

The Infopad project [146] was one of the earlier systems that provided remote

access to multimedia. Infopad proposed the use of hardware-only terminal devices

optimized for operation on wireless networks. Perhaps hindered by the restricted

environment to which it was tailored (and the limitations of early wireless networks),

Infopad was only able to provide reduced quality video, without support for full frame

rate, full-screen playback.

Much work has been done on the topic of multimedia synchronization and syn-

chronization methods [55], though most techniques do not apply in every environment

or setting where synchronization must be used. For example, the synchronization re-

quirements of a single media type originating from a single source and streamed over a

high-bandwidth, low-latency network to a single sink may require much different syn-

chronization scheme than a multimedia stream with media originating from n sources

and arriving at m sinks over a lossy and congested network. Multimedia synchroniza-

tion mechanisms can also apply to local playback or on network environments where

applications must be designed significantly differently to support either type of set-

ting. Measuring the quality of synchronization has proven difficult as no widely-used

performance measures are available. The sheer number of synchronization techniques

underscores the difficulty and importance of coming up with reliable and accurate

means of measuring and evaluating multimedia synchronization [55, 124]. Because

of the subjective nature of determining what is “good” synchronization versus “bad”,

research has also been conducted in the human perception of jitter and tolerance of

unsynchronized media [138].

Of all mechanisms for providing synchronized multimedia playback over a network,

the Real-time Transport Protocol (RTP) is perhaps the most widely-used protocol

CHAPTER 7. RELATED WORK 209

today [126]. Though RTP provides a thorough and elaborate protocol of supplying

timestamps, rate control, and other information needed to apply synchronization in

a variety of settings, RTP itself does not specify a means with which to apply any

particular synchronization technique [109].

As a thin-client system, THINC’s requirements for a synchronization mechanism

are unique in that it must transparently provide synchronization without applications

being aware of any mechanism being applied. That is, local synchronization must

be possible for multimedia applications running on a THINC server, and network

synchronization must be applied for client playback.

A number of remote audio/video conferencing solutions are in wide use today.

These include applications such as NetMeeting [89], VIC [77], and RAT [117]. They

provide specialized support for bidirectional, synchronized real-time playback of audio

and video. These solutions are complementary to THINC. THINC focuses on the

problem of providing multimedia application support for the computing infrastructure

of large organizations where the primary audio/video input is from outside sources

and not directly from end users for specialized conferencing purposes.

7.3 Support for Mobile Devices

The ability for thin clients to improve web browsing performance on wireless PDAs

was first quantitatively demonstrated in a previous study [70]. This study demon-

strated that thin clients can provide both faster web browsing performance and greater

web browsing functionality. The study considered a wide range of web content in-

cluding content from medical information systems. Our work builds on this previous

study and considers important issues such as how usable existing thin clients are

in PDA environments, the trade-offs between thin-client usability and performance,

CHAPTER 7. RELATED WORK 210

performance across different PDA devices, and the performance of thin clients on

common web-related applications such as video.

Many thin clients have been developed and some have PDA clients, including

Microsoft’s Remote Desktop [25, 82], Citrix MetraFrame XP [23], Virtual Network

Computing [118, 88], GoToMyPC [46], and Sun’s Secure Global Desktop [142]. These

systems were first designed for desktop computing and retrofitted for PDAs. Unlike

pTHINC, they do not address key system architecture and usability issues important

for PDAs. This limits their display quality, system performance, available screen

space, and overall usability on PDAs. pTHINC builds on THINC [13], extending the

server architecture and introducing a client interface and usage model to efficiently

support PDA devices for mobile web applications.

Other approaches to improve the performance of mobile wireless web browsing

have focused on using transcoding and caching proxies in conjunction with the fat

client model [38, 58, 59, 76]. They work by pushing functionality to external proxies,

and using specialized browsing applications on the PDA device that communicate

with the proxy. Our thin-client approach differs fundamentally from these fat-client

approaches by pushing all web browser logic to the server, leveraging existing in-

vestments in desktop web browsers and helper applications to work seamlessly with

production systems without any additional proxy configuration or web browser mod-

ifications.

With the emergence of web browsing on small display devices, web sites have been

redesigned using mechanisms like WAP and specialized native web browsers have

been developed to tailor the needs of these devices. Recently, Opera has developed

the Opera Mini [100] web browser, which uses an approach similar to the thin-client

model to provide access across a number of mobile devices that would normally be

incapable of running a web browser. Instead of requiring the device to process web

CHAPTER 7. RELATED WORK 211

pages, it uses a remote server to pre-process the page before sending it to the phone.

7.4 Display Recording and Text Capture

The ability to record display output for later playback has been proposed and imple-

mented in numerous systems in the past. Some of them have focused on providing

tools for remote collaboration [42, 119, 133] or as teaching aids [2]. However, most of

these approaches rely on using custom-made applications and environments, which

can severely affect their wide use. More recently, a VNC-based approach [72] extends

the normal VNC architecture [150] to provide a generic environment for asynchronous

collaboration and as a teaching aid. In this system, a proxy sits between the VNC

server and clients, and records all output. The proxy is able to playback earlier output

to support late comers and mobile users (in the case of a collaboration environment),

or do complete offline playback (for teaching purposes). While THINC’s approach is

similar, and both systems rely on a remote display architecture to provide transpar-

ent display recording, their goals are different and mostly orthogonal. Furthermore,

VNC’s approach does not provide a way to index and search the recording, as opposed

to THINC’s text capture and display indexing system.

Screencasting provides a recording of a desktop’s screen that can be played back

at a later time [56, 152, 155, 157, 164, 171]. It has become very popular as a tool

to create computer tutorials and demonstrations. Screencasting works by screen

scraping and taking screenshots of the display many times a second. It requires

higher overhead and oftentimes more storage and bandwidth than THINC’s display

recording, and the common approach of also using lossy video codecs to compensate

further increases recording overhead and decreases display quality. THINC’s display

recording technology overcomes this limitation by recording only updates to the screen

CHAPTER 7. RELATED WORK 212

in the form of simple remote display commands, not just raw pixels, to capture the

original display fidelity.

Furthermore, THINC goes beyond screencasting by not only recording the display

state, but by capturing text and extracting contextual information to enable display

search. OpenMemex [98] extends VNC-based screencasting to also provide display

search by using offline OCR to extract text from the recorded data. THINC differs

from OpenMemex in that it is able to extract information in addition to just text, and

its use of accessibility interfaces will result in better text capture, given the current

state of OCR technology. Most commercially available OCR systems are designed

for document processing, and desktop content (e.g., small point fonts) may prove

challenging to process.

Chapter 8 213

Chapter 8

Conclusions and Future Work

This dissertation presented THINC, a virtual and remote display architecture for

desktop computing. In building THINC we departed from the common practice of

focusing on improved protocols and compression mechanisms, and instead proposed,

and demonstrated, that the architecture of the system is just as important to the

overall remote display performance.

THINC is built around a virtual device driver model that abstracts a computer’s

display and input hardware, by introducing simple device drivers that look and be-

have like traditional, hardware-specific drivers. In this manner, desktop output can

be redirected over the network to simple clients, while leveraging continuing advances

in window server technology, and working seamlessly with unmodified applications,

window systems, and operating systems. THINC’s virtual display architecture intro-

duces novel translation optimizations that take advantage of semantic information

to efficiently convert high-level application requests to simple low-level protocol com-

mands. On top of these translation mechanisms, a number of delivery optimizations

are introduced that prioritize important updates, and automatically discard irrelevant

ones.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 214

We implemented this basic architecture as a device driver for the X Window Sys-

tem in Linux, and a simple Xlib-based client application. Our implementation illus-

trates the simplicity of THINC’s protocol and the effectiveness of its translation and

delivery architecture. We conducted an experimental evaluation that compared the

web browsing performance of THINC to a number of existing commercial remote dis-

play products, on both LAN and WAN environments. Our results show that THINC

can deliver good interactive performance even when using clients located around

the world. THINC provides superior web performance over other systems, with up

to 4.5 times faster response time in WAN environments. Our results demonstrate

how THINC’s unique mapping of application-level drawing commands to protocol

primitives and its command delivery mechanisms significantly improve the overall

performance of a remote display system.

Going beyond remote display, this dissertation has also shown how THINC pro-

vides a fundamental building block for a broad range of applications.

First, we introduced a mechanism to natively support multimedia content in a re-

mote display system. For video playback, THINC extends existing video acceleration

interfaces that leverage client hardware capabilities. For audio support, we continue

our virtualization approach, and introduce a virtual audio device driver, that looks

and behaves like a normal sound card, and provides remote audio playback and cap-

ture. Finally, we provide a simple, client-based mechanism that synchronizes audio

and video data delivered over separate channels.

Second, recognizing the growing mobility of users, and the increasing popularity

of small mobile devices such as PDAs, we introduced the pTHINC architecture for

wireless PDAs. pTHINC provides key architectural and usability mechanisms such

as server-side screen resizing, video support, optimal use of screen space for display

updates, and leverage of existing PDA control buttons for UI elements. In this man-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 215

ner, pTHINC is able to provide mobile users with ubiquitous access to a consistent,

personalized, and full-featured web environment across heterogeneous devices.

Third, we integrated THINC’s architecture into a full-fledged, desktop utility com-

puting system. This infrastructure provides perhaps a glimpse of the future, where

desktop computers are delivered as utility services. We also presented mechanisms

that leverage the advantages of overlay networks and THINC’s unique protocol char-

acteristics to protect the desktop utility infrastructure from distributed denial of

service attacks, with minimal impact on the performance of the system.

Finally, we moved beyond remote display, and used THINC to build a novel

display recording system for desktop users. The system takes advantage of THINC’s

architecture and remote display protocol to do transparent recording with very low

storage requirements and performance impact. Using desktop accessibility interfaces,

we also provide text capture to index the recording. In this way, users are not only

able to browse and playback through their desktop log, but also search its contents.

We have implemented all of these systems, and extensively measured their func-

tionality and performance on a number of real world scenarios. All our results validate

the notion that THINC’s architecture is sound, and can be effectively extended to

provide high performance systems that can transparently interface with existing ap-

plications, window and operating systems. They also demonstrate that THINC can

provide a valuable foundation for building systems to improve desktop computing.

8.1 Future Work

The work developed on this dissertation opens up the possibility for a number of

improvements and new directions for future research work.

Our most immediate goal is to continue actively participating in the develop-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 216

ment and implementation of a standard for remote displays. This standard, named

Net2Display [96], and being developed within the Video Electronics Standards Asso-

ciation (VESA) [148]. The standard has taken some of the principles we developed

with THINC’s architecture [32, 134] and other existing remote display systems to sup-

port a wide variety of display devices, from simple, output-only displays, projectors,

kiosks, booths, thin-client terminals, to powerful workstations.

One of the most pressing directions for future research is how to effectively support

3D applications inside a remote desktop system. While previous work has focused on

remote 3D rendering of specialized applications [129] or taking advantage of render-

ing clusters [53], effectively supporting 3D applications in the context of traditional

desktops has been an elusive goal. This area of work has become even more impor-

tant given the extensive use of high-end visual effects in the most popular desktop

environments in use today.

Supporting high-end desktops and 3D applications remotely on commodity hard-

ware and networks provides some unique challenges. First, 3D applications have high

and specialized resource requirements, both in terms of computational power, which

have driven the development of complex and powerful video cards, and data transfer

requirements, which have helped foster the development of faster internal computer

buses, such as AGP and PCI Express [160]. Second, the latency sensitive nature of

3D applications, such as interactive video games, and desktop environments, where

3D effects are normally generated in response to user interaction with the desktop,

severely limit the amount of overhead a remote display system is allowed to incur in

order to efficiently support this content. Third, a remote 3D display system will need

to be able to provide support, and in some cases interoperability, for the two major

hardware interfaces in use today, OpenGL [97] and DirectX [81].

In practice, these challenges translate in an uncertainty about the most appropri-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 217

ate division of work between the client and the server. The straightforward approach

of pushing all rendering work to the client has the advantage of leveraging the client’s

video card to do most of the work, effectively extending the internal video card bus

over the network. Perhaps the best example of this approach is the X Window System

and its AIGLX [3] component. However, this approach has a number of drawbacks.

First, blindly pushing all data will overload most commodity networks, which can

only provide a fraction of the bandwidth available on a computer’s internal bus.

Compressing the 3D data may alleviate this problem, but care must be taken to

carefully control the compression overhead on the latency of the system. Second, the

client is not guaranteed to be able to cope with the requirements of the applications.

In environments where clients are meant to be simple devices, this approach may not

provide a viable solution. Third, the client becomes a stateful entity in the system,

with the attendant drawbacks associated with this situation. In particular, the server

will need to do some work to maintain the state of the 3D engine to allow it to be

replicated if a client disconnects and reconnects again. Finally, relying on the client to

do all rendering work may cause interoperability issues. For example, attempting to

access a Windows desktop from a Unix-based client would force the client to convert

from DirectX to OpenGL before it can take advantage of its local hardware.

Another approach would be to do all the rendering work on the server and send

simple primitives to the client, similarly to the approach taken by THINC for 2D

applications. In this scenario, the client can be simple and stateless, and interoper-

ability can be handled transparently on the server by providing a translation layer

between the native API and the primitives used by the remote display system. Net-

work overhead could be reduced if the primitives chosen can provide a more compact

representation of the changes on the screen than traditional 3D data. Finally, in an

environment with powerful servers, the system would able to leverage this computa-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 218

tional power to do the rendering work. The best example of this approach is Virtu-

alGL [149], which uses a GLX forking architecture [136, 137] to perform all rendering

on the server and only send the finished images to the client. However, this approach

suffers from limited scalability and resource contention, particularly in environments

where multiple users share a single computer to host their desktops, and they must

compete for access to the server’s video card and its computational resources. Re-

cent developments in I/O and GPU virtualization [107] provide a possible solution

to alleviate these problems, by allowing multiple users to gain concurrent access to a

single video card. Previous shortcomings in video card architectures which provided

slow read back speeds, thus limiting the rate at which rendered images could be gen-

erated, appear to be mostly addressed by the current generation of video cards [34]

and system buses.

A compromising approach that partitions the rendering work at some intermediate

stage of the rendering process could provide the most optimal solution, by leveraging

the best of the two previously described approaches. However, such an approach

may be overly complex, given the high level of abstraction of hardware 3D interfaces,

and their large size and complexity. Finding an appropriate partition work that

would serve the needs of most applications may prove to be a challenging task in this

environment.

Our work on desktop recording provides a new approach for information storage

and retrieval that opens up new directions for future research. In the immediate

future, we envision conducting user studies to explore usage patterns to better under-

stand how this functionality will be exploited by users over extended periods of time

and how the user interface can be enhanced to better fit daily usage needs. In terms

of text capture and search, more work is needed on quantifying and improving the

relevance and presentation of search results by exploring the use of desktop contextual

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 219

information such as time, persistence, or the relationships among desktop objects. It

may also be interesting to explore the possibility of recording desktop audio (both

played back and captured), and use it as an additional indexing element, and search

tool.

Finally, there are a number of improvements that can help THINC’s remote desk-

top access architecture. In terms of multimedia support, reducing bandwidth usage of

video playback and providing video capture will become a necessity as video confer-

encing becomes an integral part of our everyday experience. We envision our virtual-

ization approach to provide a perfectly suitable architecture to accomplish these goals.

In terms of mobile device support, user interface improvements in the form of touch

screen support and gestures, and leveraging newer image resizing techniques [10] can

provide an even better experience for mobile users accessing their desktops remotely.

Chapter 8 220

Bibliography

[1] 100x100 Project. http://100x100network.org/.

[2] Gregory D. Abowd, Christopher G. Atkeson, Jason Brotherton, Tommy En-

qvist, Paul Gulley, and Johan LeMon. Investigating the capture, integration

and access problem of ubiquitous computing in an educational setting. In Pro-

ceedings of the SIGCHI conference on Human Factors in Computing Systems,

pages 440–447, April 1998.

[3] Accelerated Indirect GLX (AIGLX). http://fedoraproject.org/wiki/

RenderingProject/aiglx.

[4] Aditya Akella, Jeffrey Pang, Anees Shaikh, Bruce Maggs, and Srinivasan Se-

shan. A Comparison of Overlay Routing and Multihoming Route Control. In

Proceedings of ACM SIGCOMM, August - September 2004.

[5] ALSA asym plugin. http://alsa.opensrc.org/index.php/Asym.

[6] Advanced Linux Sound Architecture. http://www.alsa-project.org/.

[7] Analog Realtime Synthesizer. http://www.arts-project.org/.

http://100x100network.org/
http://fedoraproject.org/wiki/RenderingProject/aiglx
http://fedoraproject.org/wiki/RenderingProject/aiglx
http://alsa.opensrc.org/index.php/Asym
http://www.alsa-project.org/
http://www.arts-project.org/

BIBLIOGRAPHY 221

[8] David G. Andersen, Alex C. Snoeren, and Hari Balakrishnan. Best-Path vs.

Multi-Path Overlay Routing. In Proceedings of the Internet Measurement Con-

ferencee, October 2003.

[9] Paul J. Ausbeck. A Streaming Piecewise-constant Model. In Proceedings of the

Data Compression Conference (DCC), March 1999.

[10] Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing.

In Proceedings of the 34th International Conference on Computer Graphics and

Interactive Techniques (SIGGRAPH), August 2007.

[11] Rajive Bagrodia, Wesley W. Chu, Leonard Kleinrock, and Gerald Popek. Vi-

sion, Issues, and Architecture for Nomadic Computing. IEEE Personal Com-

munications, 2(6):14–27, December 1995.

[12] Nikhil Bansal and Mor Harchol-Balter. Analysis of SRPT scheduling: inves-

tigating unfairness. In Proceedings of the Joint International Conference on

Measurement & Modeling of Computer Systems (SIGMETRICS/Performance),

pages 279–290, June 2001.

[13] Ricardo Baratto, Leonard Kim, and Jason Nieh. THINC: A Virtual Display

Architecture for Thin-Client Computing. In Proceedings of the 20th ACM Sym-

posium on Operating Systems Principles (SOSP), October 2005.

[14] Ricardo Baratto, Shaya Potter, Gong Su, and Jason Nieh. MobiDesk: Mobile

Virtual Desktop Computing. In Proceedings of the 10th Annual ACM Interna-

tional Conference on Mobile Computing and Networking (MobiCom), Septem-

ber - October 2004.

[15] BBC News. http://news.bbc.co.uk.

http://news.bbc.co.uk

BIBLIOGRAPHY 222

[16] Calista Virtual Desktop. http://www.calistatechnologies.net/.

[17] M. Chapman. http://www.rdesktop.org.

[18] Bernd Oliver Christiansen and Klaus Erik Schauser. Fast Motion Detection for

Thin Client Compression. In Proceedings of the Data Compression Conference

(DCC), April 2002.

[19] Bernd Oliver Christiansen, Klaus Erik Schauser, and Malte Münke. A Novel

Codec for Thin Client Computing. In Proceedings of the Data Compression

Conference (DCC), March 2000.

[20] Bernd Oliver Christiansen, Klaus Erik Schauser, and Malte Münke. Streaming

Thin Client Compression. In Proceedings of the Data Compression Conference

(DCC), March 2001.

[21] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike

Wawrzoniak, and Mic Bowman. PlanetLab: An Overlay Testbed for Broad-

Coverage Services. SIGCOMM Comput. Commun. Rev., 33(3):3–12, July 2003.

[22] Citrix Application Delivery. http://www.citrix.com/English/ps2/

products/feature.asp?contentID=683723.

[23] Citrix Metaframe. http://www.citrix.com.

[24] CrossLoop. http://crossloop.com/.

[25] Brian Craig Cumberland, Gavin Carius, and Andrew Muir. Microsoft Windows

NT Server 4.0, Terminal Server Edition: Technical Reference. Microsoft Press,

Redmond, WA, July 1999.

http://www.calistatechnologies.net/
http://www.rdesktop.org
http://www.citrix.com/English/ps2/products/feature.asp?contentID=683723
http://www.citrix.com/English/ps2/products/feature.asp?contentID=683723
http://www.citrix.com
http://crossloop.com/

BIBLIOGRAPHY 223

[26] Diego López de Ipiña. Visual Sensing and Middleware Support for Sentient

Computing. PhD thesis, Cambridge University, January 2002.

[27] Delegate. http://www.delegate.org.

[28] Desktone. http://www.desktone.com.

[29] Distributed Multihead X Project. http://dmx.sourceforge.net/.

[30] DoS-Resistant Internet Working Group Meetings. http://www.

communicationsresearch.net/dos-resistant, February 2005.

[31] ’Dumb Terminals’ Can Be a Smart Move. http://online.wsj.com/

public/article/SB117011971274291861-oJ6FWrnA8NMPfMXw3vBILth1EiE_

20080129.html?mod=blogs.

[32] Efforts pursue separate paths to streamlined PCs. http://www.eetimes.com/

showArticle.jhtml?articleID=199904407.

[33] Enlightenment Sound Daemon. http://www.tux.org/~ricdude/EsounD.

html.

[34] Fast Texture Downloads and Readbacks using Pixel Buffer Objects in OpenGL.

http://developer.nvidia.com/object/fast_texture_transfers.html.

[35] Raphael A. Finkel and Jon Louis Bentley. Quad Trees: A Data Structure for

Retrieval on Composite Keys. Acta Inf., 4:1–9, March 1974.

[36] Fog Creek Copilot. http://www.copilot.com.

[37] For Networks, Thin Is In. http://www.nytimes.com/2007/09/12/

technology/techspecial/12thin.html.

http://www.delegate.org
http://www.desktone.com
http://dmx.sourceforge.net/
http://www.communicationsresearch.net/dos-resistant
http://www.communicationsresearch.net/dos-resistant
http://online.wsj.com/public/article/SB117011971274291861-oJ6FWrnA8NMPfMXw3vBILth1EiE_20080129.html?mod=blogs
http://online.wsj.com/public/article/SB117011971274291861-oJ6FWrnA8NMPfMXw3vBILth1EiE_20080129.html?mod=blogs
http://online.wsj.com/public/article/SB117011971274291861-oJ6FWrnA8NMPfMXw3vBILth1EiE_20080129.html?mod=blogs
http://www.eetimes.com/showArticle.jhtml?articleID=199904407
http://www.eetimes.com/showArticle.jhtml?articleID=199904407
http://www.tux.org/~ricdude/EsounD.html
http://www.tux.org/~ricdude/EsounD.html
http://developer.nvidia.com/object/fast_texture_transfers.html
http://www.copilot.com
http://www.nytimes.com/2007/09/12/technology/techspecial/12thin.html
http://www.nytimes.com/2007/09/12/technology/techspecial/12thin.html

BIBLIOGRAPHY 224

[38] Armando Fox, Ian Goldberg, Steven D. Gribble, and David C. Lee. Experience

With Top Gun Wingman: A Proxy-Based Graphical Web Browser for the 3Com

PalmPilot. In Proceedings of Middleware ’98, Lake District, England, September

1998, September 1998.

[39] Eric T. Freeman. The Lifestreams Software Architecture. PhD thesis, Yale

University, May 1997.

[40] GNOME accessibility project. http://developer.gnome.org/projects/

gap/.

[41] Jim Gettys. Personal communication, July 2004.

[42] Werner Geyer, Heather Richter, Ludwin Fuchs, Tom Frauenhofer, Shahrokh

Daijavad, and Steven Poltrock. A team collaboration space supporting capture

and access of virtual meetings. In Proceedings of the International ACM SIG-

GROUP Conference on Supporting Group Work, September - October 2001.

[43] Jeffrey. M. Gilbert and Robert W. Brodersen. A Lossless 2-D Image Compres-

sion Technique for Synthetic Discrete-Tone Images. In Proceedings of the Data

Compression Conference (DCC), March - April 1998.

[44] Global Crossing’s IP Network Performance. http://www.globalcrossing.

com/network/network_performance_current.aspx.

[45] Google Browser Sync. http://www.google.com/tools/firefox/

browsersync/index.html.

[46] GoToMyPC. http://www.gotomypc.com/.

[47] GraphOn GO-Global. http://www.graphon.com.

http://developer.gnome.org/projects/gap/
http://developer.gnome.org/projects/gap/
http://www.globalcrossing.com/network/network_performance_current.aspx
http://www.globalcrossing.com/network/network_performance_current.aspx
http://www.google.com/tools/firefox/browsersync/index.html
http://www.google.com/tools/firefox/browsersync/index.html
http://www.gotomypc.com/
http://www.graphon.com

BIBLIOGRAPHY 225

[48] Krishna P. Gummadi, Harsha V. Madhyastha, Steven D. Gribble, Henry M.

Levy, and David Wetherall. Improving the Reliability of Internet Paths with

One-hop Source Routing. In Proceedings of the 6th Symposium on Operating

Systems Design & Implementation (OSDI), December 2004.

[49] M. Handley, J. Padhye, and S. Floyd. TCP Congestion Window Validation,

RFC 2861. ACIRI, June 2000.

[50] Health Insurance Portability and Accountability Act. http://www.hhs.gov/

ocr/hipaa/.

[51] http load. http://www.acme.com/software/http_load/.

[52] George V. Hulme. Extortion online. Information Week, September 13 2004.

[53] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter

Kirchner, and James T. Klosowski. Chromium: A Stream Processing Frame-

work for Interactive Rendering on Clusters. In Proceedings of the 29th Inter-

national Conference on Computer Graphics and Interactive Techniques (SIG-

GRAPH), July 2002.

[54] i-Bench version 1.5. http://etestinglabs.com/benchmarks/i-bench/

i-bench.asp.

[55] Yutaka Ishibashi and Shuji Tasaka. A comparative survey of synchronization

algorithms for continuous media in network environments. In Proceedings of the

25th Annual IEEE Conference on Local Computer Networks, November 2000.

[56] Istanbul. http://live.gnome.org/Istanbul.

http://www.hhs.gov/ocr/hipaa/
http://www.hhs.gov/ocr/hipaa/
http://www.acme.com/software/http_load/
http://etestinglabs.com/benchmarks/i-bench/i-bench.asp
http://etestinglabs.com/benchmarks/i-bench/i-bench.asp
http://live.gnome.org/Istanbul

BIBLIOGRAPHY 226

[57] Wenyu Jiang, Kazuumi Koguchi, and Henning Schulzrinne. QoS Evaluation of

VoIP End-points. In Proceedings of IEEE International Conference on Com-

munications (ICC), May 2003.

[58] Anupam Joshi. On proxy agents, mobility, and web access. Mobile Networks

and Applications, 5(4):233–241, December 2000.

[59] Jussi Kangasharju, Young Gap Kwon, and Antonio Ortega. Design and Imple-

mentation of a Soft Caching Proxy. Computer Networks and ISDN Systems,

30(22–23):2113–2121, November 1998.

[60] K Desktop Environment. http://www.kde.org.

[61] Keith Packard. An LBX Postmortem. http://keithp.com/~keithp/talks/

lbxpost/paper.html.

[62] Joeng Kim, Ricardo Baratto, and Jason Nieh. An Application Streaming Ser-

vice for Mobile Handheld Devices. In Proceedings of the IEEE International

Conference on Services Computing (SCC), September 2006.

[63] Joeng Kim, Ricardo Baratto, and Jason Nieh. pTHINC: A Thin-Client Archi-

tecture for Mobile Wireless Web. In Proceedings of the Fifteenth International

World Wide Web Conference (WWW), May 2006.

[64] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans

Kaashoek. The Click Modular Router. ACM Transactions on Computer Sys-

tems, 18(3):263–297, August 2000.

[65] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji Kihara, and

Satoshi Moriai. The Linux Implementation of a Log-structured File System.

ACM SIGOPS Operating Systems Review, 40(3):102–107, July 2006.

http://www.kde.org
http://keithp.com/~keithp/talks/lbxpost/paper.html
http://keithp.com/~keithp/talks/lbxpost/paper.html

BIBLIOGRAPHY 227

[66] Oren Laadan. A Personal Virtual Computer Recorder. PhD. Thesis, Computer

Science Deparment, Columbia University, April 2011.

[67] Oren Laadan, Ricardo Baratto, Dan Phung, Shaya Potter, and Jason Nieh.

DejaView: A Personal Virtual Computer Recorder. In Proceedings of the 21th

ACM Symposium on Operating Systems Principles (SOSP), October 2007.

[68] Oren Laadan and Jason Nieh. Transparent Checkpoint-Restart of Multiple Pro-

cesses on Commodity Operating Systems. In Proceedings of the 2007 USENIX

Annual Technical Conference, June 2007.

[69] Albert Lai and Jason Nieh. Limits of Wide-Area Thin-Client Computing. In

Proceedings of the International Conference on Measurement & Modeling of

Computer Systems (SIGMETRICS), June 2002.

[70] Albert Lai, Jason Nieh, Bhagyashree Bohra, Vijayarka Nandikonda, Ab-

hishek P. Surana, and Suchita Varshneya. Improving Web Browsing on Wireless

PDAs Using Thin-Client Computing. In Proceedings of the 13th International

World Wide Web Conference (WWW), May 2004.

[71] Laplink. http://www.laplink.com/.

[72] Sheng Feng Li, Quentin Stafford-Fraser, and Andy Hopper. Integrating Syn-

chronous and Asynchronous Collaboration with Virtual Network Computing.

IEEE Internet Computing, 4(3):26–33, May - June 2000.

[73] Alexander Ya li Wong and Margo Seltzer. Operating System Support for Multi-

User, Remote, Graphical Interaction. In Proceedings of the USENIX Annual

Technical Conference, San Diego, CA, June 2000.

[74] Linphone. http://www.linphone.org.

http://www.laplink.com/
http://www.linphone.org

BIBLIOGRAPHY 228

[75] Linux Terminal Server Project. http://www.ltsp.org/.

[76] Anuj Maheshwari, Aashish Sharma, Krithi Ramamritham, and Prashant

Shenoy. TranSquid: Transcoding and caching proxy for heterogenous ecom-

merce environments. In Proceedings of the 12th IEEE Workshop on Research

Issues in Data Engineering (RIDE), February 2002.

[77] Steven McCanne and Van Jacobson. vic: A Flexible Framework for Packet

Video. In Proceedings of the 3rd ACM International Conference on Multimedia,

November 1995.

[78] Media Application Server. http://www.mediaapplicationserver.net/.

[79] MediaMall Technologies. http://www.themediamall.com/.

[80] Microsoft DirectSound. http://msdn2.microsoft.com/en-us/library/

bb219818(VS.85).aspx.

[81] Microsoft DirectX. http://www.microsoft.com/directx.

[82] Microsoft Remote Desktop Protocol: Basic Connectivity and Graphics Remot-

ing Specification. http://msdn2.microsoft.com/en-us/library/cc240445.

aspx.

[83] Microsoft Remote Desktop Protocol: Graphics Device Interface (GDI) Acceler-

ation Extensions. http://msdn2.microsoft.com/en-us/library/cc241537.

aspx.

[84] Microsoft Remote Desktop Protocol: Graphics Device Interface (GDI) Accel-

eration Extensions: Alternate Secondary Orders. http://msdn2.microsoft.

com/en-us/library/cc241625.aspx.

http://www.ltsp.org/
http://www.mediaapplicationserver.net/
http://www.themediamall.com/
http://msdn2.microsoft.com/en-us/library/bb219818(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/bb219818(VS.85).aspx
http://www.microsoft.com/directx
http://msdn2.microsoft.com/en-us/library/cc240445.aspx
http://msdn2.microsoft.com/en-us/library/cc240445.aspx
http://msdn2.microsoft.com/en-us/library/cc241537.aspx
http://msdn2.microsoft.com/en-us/library/cc241537.aspx
http://msdn2.microsoft.com/en-us/library/cc241625.aspx
http://msdn2.microsoft.com/en-us/library/cc241625.aspx

BIBLIOGRAPHY 229

[85] Microsoft RemoteFX. http://technet.microsoft.com/en-us/library/

ff817578(WS.10).aspx.

[86] Microsoft Terminal Services RemoteApp. http://go.microsoft.com/fwlink/

?LinkId=84895).

[87] Mozilla.org. https://bugzilla.mozilla.org/show_bug.cgi?id=372201.

[88] .NET VNC Viewer for PocketPC. http://dotnetvnc.sourceforge.net/.

[89] Windows NetMeeting. http://www.microsoft.com/windows/netmeeting.

[90] Netperf. http://www.netperf.org/.

[91] Network Audio System. http://radscan.com/nas.html.

[92] Jason Nieh, S. Jae Yang, and Naomi Novik. A Comparison of Thin-Client Com-

puting Architectures. Technical Report CUCS-022-00, Department of Computer

Science, Columbia University, November 2000.

[93] Jason Nieh, S. Jae Yang, and Naomi Novik. Measuring Thin-Client Performance

Using Slow-Motion Benchmarking. ACM Transactions on Computer Systems,

21(1):87–115, February 2003.

[94] Jakob Nielsen. Designing Web Usability. New Riders Publishing, Indianapolis,

IN, December 1999.

[95] NoMachine NX. http://www.nomachine.com.

[96] Kenneth Ocheltree, Steven Millman, David Hobbs, Martin McDonnell, Jason

Nieh, and Ricardo Baratto. Net2Display: A Proposed VESA Standard for Re-

moting Displays and I/O Devices over Networks. In Proceedings of the Americas

Display Engineering and Applications Conference (ADEAC), October 2006.

http://technet.microsoft.com/en-us/library/ff817578(WS.10).aspx
http://technet.microsoft.com/en-us/library/ff817578(WS.10).aspx
http://go.microsoft.com/fwlink/?LinkId=84895)
http://go.microsoft.com/fwlink/?LinkId=84895)
https://bugzilla.mozilla.org/show_bug.cgi?id=372201
http://dotnetvnc.sourceforge.net/
http://www.microsoft.com/windows/netmeeting
http://www.netperf.org/
http://radscan.com/nas.html
http://www.nomachine.com

BIBLIOGRAPHY 230

[97] OpenGL. http://www.opengl.org.

[98] OpenMemex. http://openmemex.devjavu.com.

[99] OpenSSL Project. http://www.openssl.org.

[100] Opera Mini Browser. http://www.opera.com/products/mobile/operamini/.

[101] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The Design and

Implementation of Zap: A System for Migrating Computing Environments. In

Proceedings of the Fifth Symposium on Operating Systems Design and Imple-

mentation (OSDI), December 2002.

[102] Open Sound System. http://www.opensound.com/.

[103] oSync: Opera Sync and Backup. http://osync.sourceforge.net/.

[104] Pluggable Authentication Modules (PAM) for Linux. http://www.kernel.

org/pub/linux/libs/pam/.

[105] David Patterson and Jim Gray. A Conversation with Jim Gray. ACM Queue,

1(3), June 2003.

[106] PC Anywhere. http://www.pcanywhere.com.

[107] PCI Express gains I/O virtualization. http://www.virtualization.info/

2006/08/pci-express-standard-to-gain-io.html.

[108] PCoIP: Teradici Corporation. http://www.teradici.com/.

[109] Colin Perkins. RTP: Audio and Video for the Internet. Addison-Wesley Pro-

fessional, Boston, MA, June 2003.

http://www.opengl.org
http://openmemex.devjavu.com
http://www.openssl.org
http://www.opera.com/products/mobile/operamini/
http://www.opensound.com/
http://osync.sourceforge.net/
http://www.kernel.org/pub/linux/libs/pam/
http://www.kernel.org/pub/linux/libs/pam/
http://www.pcanywhere.com
http://www.virtualization.info/2006/08/pci-express-standard-to-gain-io.html
http://www.virtualization.info/2006/08/pci-express-standard-to-gain-io.html
http://www.teradici.com/

BIBLIOGRAPHY 231

[110] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson,

Howard Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Comput-

ing Systems, 8(3):221–254, Summer 1995.

[111] Thomas Porter and Tom Duff. Compositing Digital Images. Computer Graph-

ics, 18(3):253–259, July 1984.

[112] Shaya Potter and Jason Nieh. WebPod: Persistent Web Browsing Sessions

with Pocketable Storage Devices. In Proceedings of the Fourteenth International

World Wide Web Conference (WWW), May 2005.

[113] Shaya Potter and Jason Nieh. Highly Reliable Mobile Desktop Computing in

Your Pocket. In Proceedings of the IEEE Computer Society Signature Confer-

ence on Software Technology and Applications (COMPSAC), September 2006.

[114] PulseAudio. http://www.pulseaudio.org.

[115] Quicken Personal Finance Software. http://quicken.intuit.com.

[116] Qumranet. http://www.qumranet.com/.

[117] Robust Audio Tool. http://www-mice.cs.ucl.ac.uk/multimedia/

software/rat.

[118] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy

Hopper. Virtual Network Computing. IEEE Internet Computing, 2(1), Jan-

uary/February 1998.

[119] Mark Roseman and Saul Greenberg. Teamrooms: network places for collabora-

tion. In Proceedings of the ACM conference on Computer Supported Cooperative

Work, November 1996.

http://www.pulseaudio.org
http://quicken.intuit.com
http://www.qumranet.com/
http://www-mice.cs.ucl.ac.uk/multimedia/software/rat
http://www-mice.cs.ucl.ac.uk/multimedia/software/rat

BIBLIOGRAPHY 232

[120] Runaware.com. http://www.runaware.com.

[121] Tarantella Web-Enabling Software: The Adaptive Internet Protocol. SCO Tech-

nical White Paper, December 1998.

[122] Robert W. Scheifler and James Gettys. X Window System. Digital Press, third

edition, 1992.

[123] Robert W. Scheifler and Jim Gettys. The X Window System. ACM Transac-

tions on Graphics, 5(2):79–106, April 1986.

[124] Brian K. Schmidt, Monica S. Lam, and J. Duane Northcutt. The Interactive

Performance of SLIM: A Stateless, Thin-Client Architecture. In Proceedings of

the 17th ACM Symposium on Operating System Principles (SOSP), December

1999.

[125] Bruce Schneier. Applied Cryptography. John Wiley and Sons, 2nd edition, 1996.

[126] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport

Protocol for Real-Time Applications. RFC 3550 (Standard), July 2003.

[127] Select system call. http://en.wikipedia.org/wiki/Select_(Unix).

[128] ServerEngines. http://www.serverengines.com/.

[129] SGI OpenGL Vizserver. http://www.sgi.com/software/vizserver/.

[130] ShowMyPC.com. http://showmypc.com/.

[131] SIMtone Corporation. http://www.xdsinc.net/.

[132] Skype. http://www.skype.com.

http://www.runaware.com
http://en.wikipedia.org/wiki/Select_(Unix)
http://www.serverengines.com/
http://www.sgi.com/software/vizserver/
http://showmypc.com/
http://www.xdsinc.net/
http://www.skype.com

BIBLIOGRAPHY 233

[133] Peter J. Spellman, Jane N. Mosier, Lucy M. Deus, and Jay A. Carlson. Collabo-

rative virtual workspace. In Proceedings of the International ACM SIGGROUP

Conference on Supporting Group Work, November 1997.

[134] Standard aims to bolster thin client PCs. http://www.eetimes.com/

showArticle.jhtml?articleID=199903238.

[135] Angelos Stavrou, Ricardo Baratto, Angelos Keromytis, and Jason Nieh. A2M:

Access-Assured Mobile Desktop Computing. In Proceedings of the 12th Infor-

mation Security Conference (ISC), September 2009.

[136] Simon Stegmaier, Joachim Diepstraten, Manfred Weiler, and Thomas Ertl.

Widening the remote visualization bottleneck. In Proceedings of the 3rd In-

ternational Symposium on Image and Signal Processing and Analysis (ISPA),

September 2003.

[137] Simon Stegmaier, Marcelo Magallón, and Thomas Ertl. A Generic Solution for

Hardware-Accelerated Remote Visualization. In Proceedings of the symposium

on Data Visualisation (VISSYM), May 2002.

[138] Ralf Steinmetz and Klara Nahrstedt. Multimedia: Computing, Communications

and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, July 1995.

[139] Ao-Jan Su, David Choffnes, Aleksandar Kuzmanovic, and Fabian E. Busta-

mante. Drafting Behind Akamai (Travelocity-Based Detouring). In Proceedings

of ACM SIGCOMM, September 2006.

[140] Gong Su. MOVE: Mobility with Persistent Network Connections. PhD. Thesis,

Computer Science Deparment, Columbia University, October 2004.

[141] Sun Ray Clients. http://www.sun.com/sunray.

http://www.eetimes.com/showArticle.jhtml?articleID=199903238
http://www.eetimes.com/showArticle.jhtml?articleID=199903238
http://www.sun.com/sunray

BIBLIOGRAPHY 234

[142] Sun Secure Global Desktop Software. http://www.sun.com/software/

products/sgd/.

[143] Thin-Client market to fatten up, IDC says. http://news.com.com/

2100-1003-5077884.html.

[144] TightVNC. http://www.tightvnc.com/.

[145] TPC-W Java Implementation. http://mitglied.lycos.de/jankiefer/

tpcw/.

[146] Thomas E. Truman, Trevor Pering, Roger Doering, and Robert W. Brodersen.

The InfoPad Multimedia Terminal: A Portable Device for Wireless Information

Access. IEEE Transactions on Computers, 47(10):1073–1087, October 1998.

[147] International Telecommunication Union. ITU-T Recommendation G.114: One-

way transmission time. May 2003.

[148] Video Electronics Standards Association (VESA). http://www.vesa.org.

[149] VirtualGL. http://www.virtualgl.org.

[150] Virtual Network Computing. http://www.realvnc.com/.

[151] VMware, Inc. http://www.vmware.com.

[152] VMware Movie Capture. http://www.vmware.com/support/ws5/doc/ws_

running_capture.html.

[153] VMware View. http://www.vmware.com/products/view/.

[154] VMware VMotion overview. http://www.vmware.com/products/vi/vc/

vmotion.html.

http://www.sun.com/software/products/sgd/
http://www.sun.com/software/products/sgd/
http://news.com.com/2100-1003-5077884.html
http://news.com.com/2100-1003-5077884.html
http://www.tightvnc.com/
http://mitglied.lycos.de/jankiefer/tpcw/
http://mitglied.lycos.de/jankiefer/tpcw/
http://www.vesa.org
http://www.virtualgl.org
http://www.realvnc.com/
http://www.vmware.com
http://www.vmware.com/support/ws5/doc/ws_running_capture.html
http://www.vmware.com/support/ws5/doc/ws_running_capture.html
http://www.vmware.com/products/view/
http://www.vmware.com/products/vi/vc/vmotion.html
http://www.vmware.com/products/vi/vc/vmotion.html

BIBLIOGRAPHY 235

[155] vnc2swf. http://www.unixuser.org/~euske/vnc2swf/.

[156] VNC Proxy. http://vncproxy.sourceforge.net/.

[157] vncrec. http://www.sodan.org/~penny/vncrec/.

[158] Grant Wallace and Kai Li. Virtually Shared Displays and User Input Devices.

In Proceedings of the USENIX Annual Technical Conference, June 2007.

[159] WengoPhone. http://www.wengophone.com/.

[160] Why PCI Express Architecture for Graphics? http://www.intel.com/

technology/pciexpress/devnet/docs/PCIExpressGraphics1.pdf.

[161] Wi-Fi Planet. http://www.wi-fiplanet.com/.

[162] Windows XP Remote Assistance. http://www.microsoft.com/windowsxp/

using/helpandsupport/learnmore/remoteassist/intro.mspx.

[163] Windows Server 2003 Terminal Services. http://www.microsoft.com/

windowsserver2003/technologies/terminalservices/default.mspx.

[164] Wink. http://www.debugmode.com/wink/.

[165] Worldwide Enterprise Thin Client Forecast and Analysis, 2002-2007: The

Rise of Thin Machines. http://www.idcresearch.com/getdoc.jhtml?

containerId=30016.

[166] Charles P. Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan, David P.

Quigley, Erez Zadok, and Mohammad Nayyer Zubair. Versatility and Unix Se-

mantics in Namespace Unification. ACM Transactions on Storage, 2(1), March

2006.

http://www.unixuser.org/~euske/vnc2swf/
http://vncproxy.sourceforge.net/
http://www.sodan.org/~penny/vncrec/
http://www.wengophone.com/
http://www.intel.com/technology/pciexpress/devnet/docs/PCIExpressGraphics1.pdf
http://www.intel.com/technology/pciexpress/devnet/docs/PCIExpressGraphics1.pdf
http://www.wi-fiplanet.com/
http://www.microsoft.com/windowsxp/using/helpandsupport/learnmore/remoteassist/intro.mspx
http://www.microsoft.com/windowsxp/using/helpandsupport/learnmore/remoteassist/intro.mspx
http://www.microsoft.com/windowsserver2003/technologies/terminalservices/default.mspx
http://www.microsoft.com/windowsserver2003/technologies/terminalservices/default.mspx
http://www.debugmode.com/wink/
http://www.idcresearch.com/getdoc.jhtml?containerId=30016
http://www.idcresearch.com/getdoc.jhtml?containerId=30016

BIBLIOGRAPHY 236

[167] Dapeng Wu, Yiwei Thomas Hou, Wenwu Zhu, Ya-Qin Zhang, and Jon M. Peha.

Streaming Video over the Internet: Approaches and Directions. 11(3):282–300,

March 2001.

[168] Wyse Technology. http://www.wyse.com.

[169] X Web FAQ. http://www.broadwayinfo.com/bwfaq.htm.

[170] X.org Foundation. http://www.x.org/.

[171] xvidcap. http://xvidcap.sourceforge.net/.

[172] S. Jae Yang, Jason Nieh, Matt Selsky, and Nikhil Tiwari. The Performance of

Remote Display Mechanisms for Thin-Client Computing. In Proceedings of the

USENIX Annual Technical Conference, June 2002.

[173] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC

4251 (Proposed Standard), January 2006.

[174] Lei Zhang. Implementing Remote Display on Commodity Operating Systems.

M.S. Thesis, Computer Science Deparment, Columbia University, January 2006.

[175] Zinkmo: IE Favorite and Firefox Bookmark Synchronization and Sharing.

http://www.zinkmo.com/.

http://www.wyse.com
http://www.broadwayinfo.com/bwfaq.htm
http://www.x.org/
http://xvidcap.sourceforge.net/
http://www.zinkmo.com/

Chapter A 237

Appendix A

THINC Protocol specification

This section provides a formal specification of the THINC remote display protocol.

The protocol is designed to provide efficient remote display across LAN and WAN

environments with very simple clients. It is built around a server-push model with

minimum synchronization. Finally, the protocol assumes a reliable transport channel

is used to transport all protocol messages, e.g., TCP.

This specification is organized as follows. Section A.1 provides a description of

the basic packet format of all protocol messages. Section A.2 presents the protocol

messages used by clients to obtain a connection to a running THINC server. Fi-

nally, Section A.3 describes the messages used during normal operation, i.e., after the

handshake has succeeded.

A.1 Packet Format

The packet format of all THINC protocol messages is shown in Figure A.1.

APPENDIX A. THINC PROTOCOL SPECIFICATION 238

0 7 8 15 16 31

type flags mbzHeader {
message

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure A.1 – THINC packet format

A.1.1 Message Type and Flags

The first byte of the header is the packet type. The second byte is a set of flags which

are specific to the message type. The type namespace is separate for server-to-client

messages and client-to-server messages. In addition, the handshake protocol has a

namespace that is separate from that of normal protocol messages. Tables describing

each of the message types and flags can be found in Sections A.2 and A.3.

A.1.2 Unused Field (mbz)

The last 16 bits of the header are currently unused. In a previous version, they

were used to store the length of the message. However, this imposed a limitation

on the message size of 64KB. The current version of the protocol imposes no limits

on the maximum length of a message. Instead, the protocol specification defines

the length of each message type, and if additional, type-specific data accompany a

message, it is expected that this length will be stored as part of the message. This

approach was taken as it allows for easy modification of the protocol, which is crucial

for our prototyping purposes. However, it may not be an optimal approach from a

performance point of view, since multiple read calls will be needed in order to read

any particular message.

APPENDIX A. THINC PROTOCOL SPECIFICATION 239

A.2 Handshake Protocol

When clients try to connect to a running THINC server, a handshake process takes

place before they are allowed to access the desktop, receive display updates, and send

input events. This section describes the process. Implementation details and the

motivation for this process can be found in Section 2.6.3.

To establish a connection, a client has to go through the following stages.

A.2.1 Version verification

The server sends a version string. The client verifies this string, and if acceptable,

sends back its own version string. The server reads the client’s version string, and

if acceptable moves on to the next stage. Otherwise it closes the connection and

the handshake is terminated. A version string is sent as a NULL-terminated ASCII

string. Currently, the only version string accepted is:

THINC 0.2 0

A.2.2 Security Handshake

Next, the client and server must set up a secure channel to communicate. By default

THINC uses an encrypted and authenticated channel. However, both of these options

may be disabled at handshake time. First, the server sends a message containing what

security features it supports. This packet has type T-SERV-SEC-CAPS1.

0 1 2 31

E
N
C

A
U
T
H

reserved

Figure A.2 – Security capabilities packet

1A table summarizing all message types may be found at the end of this section

APPENDIX A. THINC PROTOCOL SPECIFICATION 240

The ENC bit means the server supports encrypting the communication channel.

The AUTH bit means the server requires the client to authenticate before it can proceed

any further. The client replies with its own security capabilities, a message with the

same structure, but type T-CLIENT-SEC-CAPS. The client capabilities should be a

subset of the capabilities sent by the server. Finally, if the server accepts the set of

capabilities, it replies with a T-SESS-SEC-CAPS message. This message provides both

a confirmation from the server that the client can proceed, and a summary of the

security capabilities for the session.

If the ENC bit is set in the session capabilities, the encrypted channel is set up. If

the AUTH bit is set in the session capabilities, authentication information is exchanged.

While the current protocol specification uses a very simple username/password au-

thentication scheme, any standard authentication protocol can be used. In the current

scheme, the client sends a T-CLIENT-AUTH message with the authentication informa-

tion:

0 15 16 31

username length password length
username

password

If authentication succeeds, the server replies with a T-SERV-OK message. Other-

wise, a T-SERV-NOTOK message is sent back and the connection is closed. The reason

is an optional string, specifying the reason for rejecting the client.

0 31

reason length
reason

APPENDIX A. THINC PROTOCOL SPECIFICATION 241

A.2.3 Parameter Negotiation

After the secure channel has been established, the client starts sending requests to

the server to negotiate aspects of the connection, using the T-CLIENT-REQ message:

0 15 16 31

request type reserved

The first 16 bits of the packet represent the identifier of the request being sent.

The next 16 bits are unused for now, and reserved for future use. The following table

lists the currently available requests:

Type Name Description

3 T-REQ-FBINFO Basic framebuffer information

4 T-REQ-CURSOR Cursor information and data

5 T-REQ-FBDATA Contents of the framebuffer

6 T-REQ-ENCODER How is image data encoded

7 T-REQ-CACHESZ Size of caches in use

8 T-REQ-VIDEO Does the server support video playback?

9 T-REQ-NOVIDEO Client informing the server that it does not
support video

10 T-REQ-VIDEO-SERV-FMTS List of video formats supported by the server

11 T-REQ-VIDEO-CLIENT-FMTS Client informs server of its video formats

12 T-REQ-KEEPALIVE Does the client support keepalives? Does the
server support them?

Table A.1 – List of client requests

The only request which sends additional data beyond the simple request header is

T-REQ-VIDEO-CLIENT-FMTS, which has the same format as the T-REQ-VIDEO-SERV-FMTS

reply defined below. The server replies to these requests with a T-SERV-REPLY mes-

sage:

The reply type field takes the same values as the request type, plus the following

extra values:

APPENDIX A. THINC PROTOCOL SPECIFICATION 242

0 15 16 31

reply type reserved
reply message

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Type Name Description

0 T-REPLY-OK Positive reply

1 T-REPLY-NOTOK Negative reply (non-fatal)

2 T-REPLY-UNKNOWN Unknown request sent

Table A.2 – List of server replies

A.2.3.1 Packet Format of Server Replies

• T-REQ-FBINFO

0 1 15 16 31

B
O
M

reserved color depth bits per pixel

width height

• T-REQ-CURSOR

• T-REQ-ENCODER

Valid values for the encoder field:

T-ENCODER-NONE: 0x00

T-ENCODER-PNG: 0x01

T-ENCODER-ZLIB: 0x02

APPENDIX A. THINC PROTOCOL SPECIFICATION 243

0 7 8 15 16 23 24 31

flags cursor data size

width height xhot yhot
cursor
parameters

{
x ycursor

position

{
foreground color

background color

0 1 2 31

en
co
der

reserved

• T-REQ-FBDATA

0 31

flags

framebuffer data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Valid flags:

T-FB-COMPRESSED 0x01 The framebuffer data is compressed.

• T-REQ-CACHESZ

Each field represents the size of a cache, represented as the number of bits that

are to be used as an identifier in the cache. Thus, the cache will have 2size

entries. image is the cache for RAW updates. bitmap is the cache for BITMAP

updates. tile is the cache for PFILL updates.

APPENDIX A. THINC PROTOCOL SPECIFICATION 244

0 7 8 15 16 24 25 31

image cache bitmap cache tile cache reserved

• T-REQ-VIDEO-SERV-FMTS and T-REQ-VIDEO-CLIENT-FMTS

numformats

format id

format id

...

format id

List
of
supported
formats



Valid formats:

T-FOURCC-YV12 0x32315659 (’2’|’1’|’V’|’Y’)

T-FOURCC-YUY2 0x32595559 (’2’|’Y’|’U’|’Y’)

T-FOURCC-UYVY 0x59565955 (’Y’|’V’|’U’|’Y’)

Once the client is finished sending requests, it sends the T-CLIENT-DONE message

and the handshake is finished.

A.2.4 Summary of Handshake Messages

Table A.3 summarizes all the messages used during the handshake.

Table A.3 – List of handshake protocol messages. The first column represents
the value of the type field in the message header. The second column is the canonical
name of the message. Server to client messages are presented first, followed by client
to server messages

Type Name Description

Server → client messages

1 T-SERV-OK Server positive ack

2 T-SERV-NOTOK Server negative ack. After sent, the connection will

be closed

APPENDIX A. THINC PROTOCOL SPECIFICATION 245

Type Name Description

3 T-SERV-SEC-CAPS Server security capabilities

4 T-SESS-SEC-CAPS Session security capabilities

5 T-SERV-REPLY Server reply to client request

Client → server messages

1 T-CLIENT-OK Client positive ack

2 T-CLIENT-NOTOK Client negative ack

3 T-CLIENT-SEC-CAPS Client security capabilities

4 T-CLIENT-AUTH Client authentication information

5 T-CLIENT-REQ Client handshake request

6 T-CLIENT-DONE Client is done with handshake

A.3 Remote Display Protocol

Table A.4 lists all the THINC protocol messages.

Table A.4 – List of protocol messages. The first column represents the value of
the type field in the message header. The second column is the canonical name of
the message. Server to client messages are presented first, followed by client to server
messages

Type Name Description

Server → client messages

9 T-SPING Keepalive message

12 T-FB-RAW RAW

13 T-FB-COPY COPY

14 T-FB-SFILL SFILL

15 T-FB-PFILL PFILL

16 T-FB-GLYPH GLYPH

17 T-FB-BILEVEL BILEVEL

110 T-VIDEO-START Start playing video

111 T-VIDEO-NEXT Next video frame

APPENDIX A. THINC PROTOCOL SPECIFICATION 246

Type Name Description

112 T-VIDEO-END End video playback

113 T-VIDEO-MOVE Change the position of a video

114 T-VIDEO-SCALE Change the destination size of a video

115 T-VIDEO-RESIZE Change the source size of a video

Client → server messages

11 T-EV-MOTION Mouse motion event

12 T-EV-BUTTON Mouse button event

13 T-EV-KEYB Keyboard event

110 T-VIDEO-STARTOK Acknowledge succesful video playback

start

A.3.1 Server Messages

• T-SPING: A keep alive message. The message does not carry anything beyond

the header. The purpose is to try and keep the server to client link from getting

idle.

Size: 0 bytes

• T-FB-RAW: A raw rectangular frame buffer update. Carries the description of

the location and size of the update.

Size: 8 bytes

Data: height lines of size width*bpp, representing the new contents of the

described frame buffer region

Header Flags:

APPENDIX A. THINC PROTOCOL SPECIFICATION 247

Name Value Description

T-FB-RAW-COMPRESSED 0x01 Data is compressed

T-FB-RAW-RESIZED 0x02 Data has been resized

T-FB-RAW-CACHED 0x04 Data is cached

T-FB-RAW-ADDCACHE 0x08 Data should be cached

Packet Format:
0 15 16 31

x y

width height

extra headers
...

data
...

Extra Headers:

– If T-FB-RAW-COMPRESSED is set, the following header contains information

about the compressed data:

0 31

compressed size

decompressed size

– If T-FB-RAW-RESIZED is set, the following header contains information

about the resized data:
0 15 16 31

width height

size

– If T-FB-RAW-CACHED or T-FB-RAW-ADDCACHE are set, the following header

has the information to retrieve from or add the data to the cache, respec-

tively:

APPENDIX A. THINC PROTOCOL SPECIFICATION 248

0 31

cache id

• T-FB-COPY: Tells the client to copy the area of size width × height, from the

source coordinates to the destination coordinates

Size: 12 bytes

Packet Format:
0 15 16 31

source x source y

destination x destination y

width height

• T-FB-SFILL: Fill all the passed rectangles with the pixel value color

Size: 6 bytes

Data: numrects rectangles

Packet Format:
0 15 16 31

color

num rects unused
x y

width height

...

x y

width height

List
of
Rectangles



• T-FB-PFILL: Tile a pixmap along a list rectangles. (x, y) tells the client where’s

the origin of the tiling region. Note that the rectangles may (and most of the

time will) describe a subregion of the tiling region, for example if only the lower

left corner of the region needs to be painted. This information is necessary

for proper alignment of the pixmap. In other words, the client should not just

paint the pixmap starting at the origin of each of the rectangles, clipping and

APPENDIX A. THINC PROTOCOL SPECIFICATION 249

alignment needs to be done.

Size: 10 bytes

Data: The tile data followed by numrects rectangles

Header Flags:

Name Value Description

T-FB-PFILL-RESIZED 0x01 Tile data has been resized

T-FB-PFILL-CACHED 0x02 Tile data is cached

T-FB-PFILL-ADDCACHE 0x04 Tile data should be cached

Packet Format:
0 15 16 31

x y

width height
Tile
Information

{
num rects unused

...
Extra
Headers


...

Tile
Data


x y

width height

...

x y

width height

List
of
Rectangles


Extra Headers: The same extra headers defined for T-FB-RAW.

• T-FB-GLYPH: Fill the passed rectangles using the bitmap as a stipple to fill the

region: If there is a 1 on the bitmap the color specified in the message should

be applied. If there is a 0 no operation should be performed on that pixel.

Size: 12 bytes

APPENDIX A. THINC PROTOCOL SPECIFICATION 250

Data: The bitmap to use as stipple. Bitmap’s size is d(width/8)×heighte.

Followed by list of rectangles to fill.

Header Flags:

Name Value Description

T-FB-BITMAP-ADDCACHE 0x02 Bitmap data should be cached

T-FB-BITMAP-CACHED 0x04 Bitmap data is cached

Packet Format:
0 15 16 31

x y

width height
Bitmap
Information

{
color

num rects unused

...
Extra
Headers


...

Bitmap
Data


x y

width height

...

x y

width height

List
of
Rectangles


Extra Headers: The same extra headers defined for T-FB-RAW.

• T-FB-BILEVEL: Fill the passed rectangles using the bitmap as a stipple to fill

the region: If there is a 1 on the bitmap the foreground color specified in the

message should be applied. If there is a 0 the background color should be

applied

Size: 16 bytes

APPENDIX A. THINC PROTOCOL SPECIFICATION 251

Data: The bitmap to use as stipple. Bitmap’s size is d(width/8)×heighte.

Followed by list of rectangles to fill.

Header Flags:

Name Value Description

T-FB-BITMAP-ADDCACHE 0x02 Bitmap data should be cached

T-FB-BITMAP-CACHED 0x04 Bitmap data is cached

Packet Format:
0 15 16 31

x y

width height
Bitmap
Information

{
foreground color

background color

num rects unused

...
Extra
Headers


...

Bitmap
Data


x y

width height

...

x y

width height

List
of
Rectangles



Extra Headers: The same extra headers defined for T-FB-RAW.

• T-VIDEO-START: Asks the client to start playing video which will come in the

format specified in the message. It also defines an ID for this video stream

which will be used in subsequent messages. Since the client hardware is used

to perform scaling, the video has two dimensions associated with it: the size of

APPENDIX A. THINC PROTOCOL SPECIFICATION 252

the video data, and the size at which it should be displayed

Size: 20 bytes

Packet Format:
0 15 16 31

video id

format id
x y

width height

destination width destination height

• T-VIDEO-NEXT: Contains the video data for the next frame in the specified video

Size: 12 bytes

Packet Format:
0 31

video id

size
timestamp

video data

...

• T-VIDEO-END: Finish playback of the specified video

Size: 4 bytes

Packet Format:
0 31

video id

APPENDIX A. THINC PROTOCOL SPECIFICATION 253

• T-VIDEO-MOVE: Change the coordinates of the specified video

Size: 8 bytes

Packet Format:
0 15 16 31

video id
x y

• T-VIDEO-SCALE: Change the destination dimensions of the specified video

Size: 8 bytes

Packet Format:
0 15 16 31

video id

width height

• T-VIDEO-RESIZE: Change the source dimensions of the specified video

Size: 8 bytes

Packet Format:
0 15 16 31

video id

width height

APPENDIX A. THINC PROTOCOL SPECIFICATION 254

A.3.2 Client Messages

• T-EV-MOTION: A mouse motion event being reported by the client. Position is

reported as absolute (x,y) coordinates

Size: 4 bytes

Packet Format:
0 15 16 31

x y

• T-EV-BUTTON: A mouse button was pressed/released. If the DOWN bit is set, the

button was pressed. Otherwise, it was released

Size: 1 byte

Packet Format:
0 1 7

D
O
W
N

button

• T-EV-KEYB: The specified key was pressed (down field is 1) or released

Size: 5 bytes

Packet Format:
0 31 32 39

key down

APPENDIX A. THINC PROTOCOL SPECIFICATION 255

• T-VIDEO-STARTOK: Response to T-VIDEO-START. If ok is 1, client can play the

video. Otherwise, the server should refrain from sending more video data

Size: 5 bytes

Packet Format:
0 31 32 39

video id ok

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgments
	1 Introduction
	1.1 Contributions
	1.2 Dissertation Roadmap

	2 THINC Architecture
	2.1 Remote Display Design
	2.2 Display Virtualization
	2.3 Remote Display Protocol
	2.4 Display Update Translation
	2.4.1 Offscreen Drawing

	2.5 Display Update Delivery
	2.6 Implementation
	2.6.1 Back End
	2.6.1.1 Creating Commands
	2.6.1.2 Adding and Manipulating Commands
	2.6.1.3 Abstracting Command Destinations
	2.6.1.4 Delivering Commands

	2.6.2 Front End
	2.6.3 Remote Display Implementation

	2.7 Experimental Results
	2.7.1 Web Browsing Benchmark
	2.7.2 Results

	2.8 Summary

	3 Multimedia
	3.1 Video Support
	3.2 Audio Support
	3.3 Media Synchronization
	3.4 Implementation Details
	3.5 Experimental Results
	3.5.1 Experimental Setup and Benchmarks
	3.5.2 Results

	3.6 Summary

	4 Mobile Devices
	4.1 pTHINC Usage Model
	4.2 pTHINC System Architecture
	4.2.1 Display Management
	4.2.2 Video Playback

	4.3 Experimental Results
	4.3.1 Experimental Testbed
	4.3.2 Application Benchmarks
	4.3.3 Qualitative Results
	4.3.4 Quantitative Results

	4.4 Summary

	5 Desktop Virtualization
	5.1 MobiDesk: Mobile Virtual DesktopComputing
	5.1.1 Display Virtualization
	5.1.2 Operating System Virtualization
	5.1.3 Network Virtualization

	5.2 A2M: Access-Assured Mobile Desktop Computing
	5.2.1 System Operation

	5.3 Experimental Results
	5.3.1 MobiDesk Virtualization Overhead
	5.3.2 MobiDesk Application Performance
	5.3.3 A2M Performance Evaluation
	5.3.3.1 Overall Performance
	5.3.3.2 Interactive Applications
	5.3.3.3 Wireless

	5.4 Summary

	6 Display Recording and Text Capture
	6.1 Display Recording
	6.2 Text Capture
	6.3 Playback
	6.4 Search
	6.5 DejaView
	6.6 Experimental Results
	6.7 Summary

	7 Related Work
	7.1 Remote Display and Thin-Client Computing
	7.2 Multimedia Support
	7.3 Support for Mobile Devices
	7.4 Display Recording and Text Capture

	8 Conclusions and Future Work
	8.1 Future Work

	Bibliography
	A THINC Protocol specification
	A.1 Packet Format
	A.1.1 Message Type and Flags
	A.1.2 Unused Field (mbz)

	A.2 Handshake Protocol
	A.2.1 Version verification
	A.2.2 Security Handshake
	A.2.3 Parameter Negotiation
	A.2.3.1 Packet Format of Server Replies

	A.2.4 Summary of Handshake Messages

	A.3 Remote Display Protocol
	A.3.1 Server Messages
	A.3.2 Client Messages

