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ABSTRACT

Precision Tuning of Silicon Nanophotonic Devices

through Post-Fabrication Processes

Charlton J. Chen

In recent years, silicon photonics has begun to transition from research to commercial-

ization. Decades of relentless advances in the field of computing have led to fundamental

bottlenecks in the design of computers, especially in interconnect bandwidth density. For

IBM, silicon photonics has become a potential technological solution for enabling the future

of server systems and cutting-edge supercomputers. For Intel, silicon photonics has become

a cost-effective solution for supplying the necessary bandwidth needed by future generations

of consumer computing products. While the field of silicon photonics is now advancing at

a rapid pace there is still a great deal of research to be done.

This thesis investigates ways of improving the performance of fundamental silicon nanopho-

tonic devices through post-fabrication processes. These devices include numerous optical

resonator designs as well as slow-light waveguides. Optical resonators are used to confine

photons both spatially and temporally. In recent years, there has been much research, both

theoretical and experimental, into improving the design of optical resonators. Improving

these devices through fabrication processes has generally been less studied. Optical waveg-

uides are used to guide the flow of photons over chip-level distances. Slow-light waveguides

have also been studied by many research groups in recent years and can be applied to an

increasingly wide-range of applications.

The work can be divided into several parts: Chapter 1 is an introduction to the field of

silicon photonics as well as an overview of the fabrication, experimental and computational

techniques used throughout this work. Chapters 2, 3 and 4 describe our investigations

into the precision tuning of nanophotonic devices using laser-assisted thermal oxidation

and atomic layer deposition. Chapters 5 and 6 describe our investigations into improving

the sidewall roughness of silicon photonic devices using hydrogen annealing and excimer



laser induced melting. Finally, Chapter 7 describes our investigations into the nonlinear

properties of lead chalcogenide nanocrystals.
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1.1 Introduction

In 2009, the Royal Swedish Academy of Sciences awarded the the Nobel Prize in Physics

to Charles Kao for the discovery of low-loss optical glass fiber for transmitting information

using light [1]. In the decades following the discovery in 1966, fiber optics became the

standard medium for transmitting ever larger amounts of information over long distances.

At first, fiber optics was used to carry primarily voice data by telecommunications compa-

nies. But the rise of the internet in the 1990s, resulted in an enormous increase in both

the diversity and volume of digital data. Fiber optic communications became increasingly

important for ever shorter distance applications, which were traditionally served by copper

wire and coaxial cable. Optical communications was able to deliver much higher band-

widths at lower costs, lower powers and with lower heat generation. The progression of

length scales spanned from ultra-long transoceanic distances to much shorter inter-city dis-

tances. Later, distances within metropolitan areas also became economically favorable for

fiber-optics. Each distance range required new technologies, often smaller in size, lower in

cost and larger in volume [2]. But the relentless progression of photonics to smaller length

scales did not stop at what is commonly referred to as the ”last mile” with the realization

of fiber-to-the-home. This is where silicon photonics entered the picture with the promise

of reaching for ”the last micron” and perhaps even ”the last nanometer”.

The field of silicon photonics aims to reuse the same material which has been so successful

in the microelectronics industry. But instead of being used to manipulate the flow of

electrons, here it is used to manipulate the flow of photons at the chip level. The band gap

of silicon is 1.11 eV, therefore near-infrared light with wavelengths above ∼ 1200 nm will

not experience band-to-band absorption and silicon will be transparent. This makes silicon

compatible with fiber optics which typically operate at wavelengths of 1.3 µm and 1.55 µm

which correspond to the attenuation minimums in silica glass. Work began in this field in

the mid-1980s by researchers such as Richard Soref at the Air Force Research Laboratory.

But only in the past decade has research in this field really taken off due to the enormous

increase in bandwidth demand created by the internet revolution of the previous decade.

Additionally, the 130 nm CMOS semiconductor process node was reached around the year

2000. At that technology node, silicon photonic structures start becoming feasible using
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photolithography.

The driving force behind silicon photonics has been industrial economics. Silicon is

a widely available material, comprising 26% of the earth’s crust. Forty years of continu-

ous investment in silicon processing technology for the microelectronics industry and more

recently the solar power industry has made silicon one of the most extensively studied mate-

rials. It has also resulted in a technologically advanced industry that can produce very high

quality silicon wafers and process those wafers with high fabrication yields and economies

of scale. No other material is comparable from an economics standpoint. Especially after

integrating low-cost photonics alongside low-cost electronics on the same chip.

But from a technical standpoint, the feasibility of using silicon as the platform for large-

scale integrated photonics has not been so obvious. As recent as a few year ago, the future

of silicon photonics was highly uncertain and many skeptics doubted work in this area would

ever escape the confines of research laboratories and lead to viable commercial technologies

[3].

Single-crystal silicon is a semiconductor with an indirect minimum-energy bandgap and

is therefore inefficient at emitting light. This makes it a seemingly unsuitable material for

lasers. But in 2005, researchers at Intel demonstrated the first all silicon laser by utiliz-

ing the Raman effect for optical gain [4]. Another shortcoming of single-crystal silicon is

its centrosymmetric crystal structure which does not allow for the Pockels effect, a linear

electro-optic effect used for building optical modulators in materials such as lithium niobate.

But once again, the technical hurdle was overcome by using a clever alternative approach.

A group at Cornell University demonstrated a compact silicon electro-optic modulator op-

erating on the Kerr effect, a quadratic electro-optic effect which is much weaker than the

Pockels effect. The refractive index change was enhanced using a ring resonator [5].

Silicon is a good material for photodetectors operating at visible wavelengths but it is

no longer effective at wavelengths beyond ∼ 1200 nm as the silicon bandgap is too large. To

overcome this problem, researchers have looked to depositing layers of silicon germanium.

Another approach is to utilize two-photon absorption, where the combined energy of two

photons is enough to overcome the energy bandgap. But such detectors operate at low

speeds [6].
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Even though silicon is transparent at wavelengths of the telecommunications wavelengths

of 1.3 µm and 1.55 µm, propagation losses in waveguides due are still quite high in com-

parison to fiber optics. For example silicon waveguides have been reported with losses of

0.3 dB/cm compared to 0.15 dB/km for optical fiber losses [7, 8]. While the 5 orders of

magnitude difference seems formidable, silicon photonics operates at the chip scale rather

than over ultra-long distances. Hence these losses might be acceptable for simple photonic

devices but lower losses will likely be needed as photonic circuit complexity increases. The

issues discussed above are just some of the problems faced as researchers worldwide have

been racing to ”siliconize” photonics 1.

Recently, the outlook for silicon photonics has become clearer as start-up companies

focusing on silicon photonics have emerged from stealth-mode and Intel corporation, the

world’s largest supplier of silicon products, is currently beginning production of a silicon

photonics product [9]. Intel’s Light Peak continues the trend to shorter and shorter optical

transmission distances, this time connecting board-to-board. Light Peak is a universal high-

speed data cable (50 gigabits per second) that is intended to replace the USB and monitor

cables on computers and consumer electronic devices. Each of these cables contains two

silicon photonic chips for electrical-to-optical signal conversion. This is an example of how

silicon photonics is now beginning to enable smaller form factors and lower costs in order

to address a mass consumer market where previously conventional photonics had been too

expensive.

In the years to come, photonics will likely continue it’s trend towards shorter distance

applications. Recent data has shown the number of components on integrated silicon pho-

tonic chips has been steadily increasing since 2002 [10]. This trend appears similar to

Moore’s Law for integrated semiconductor components where the number of components

doubles every 18 months. Photonics will no longer be confined to the function of data

transmission but also play a role in data processing. Recent advances in nonlinear optics

1Many of the largest technology corporations today have active research and development programs in

silicon photonics. These include Intel, IBM, NTT, HP and Oracle (Sun Microsystems), BAE Systems. In

addition many smaller companies and startups are also very active, including Luxtera, Avago, Lightwire,

Kotura.
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in silicon has made this all the more likely [11].

”A CMOS transistor is not known to be a particularly high-performance transis-

tor, but the ability to manufacture large numbers of them integrated on a single

substrate has undoubtedly changed the course of technology. Similarly, most sil-

icon photonics optical devices don’t perform as well as they might in another

material system, but the ability to integrate them in large numbers alongside

CMOS circuitry holds great promise.”

- Cary Gunn, Luxtera

1.2 Overview of Thesis

This thesis describes our investigations into new fabrication processes with the potential

of improving the performance of silicon photonic devices. The key issues addressed are

cavity resonance tuning, slow-light tuning, surface roughness modification and nonlinear

properties. The devices we focus on are optical resonators and photonic crystal waveguides.

In Chapter 2 we investigate using laser-assisted local oxidation to finely tune the post-

fabrication resonance of ultra-high Q nanocavities. Chapter 3 continues the work with reso-

nance tuning. Atomic layer deposition is used to globally compensate for wafer- or chip-wide

fabrication errors. The same monolayer deposition technique is then applied to the tuning

of slow-light waveguides in Chapter 4. The next two chapters discuss our investigations

into improving sidewall roughness. Chapter 5 deals with our studies of hydrogen anneal-

ing, a wafer-wide technique for achieving atomic-scale roughness as well as for fabricating

rounded geometries. Chapter 6 discusses our studies of excimer laser for sidewall roughness

modification. This technique can be used both locally as well as globally. The final chapter

discusses our investigations into the nonlinear properties of chalcogenide nanocrystals with
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the intention of incorporating these materials into silicon photonic devices. A number of

other investigations were also pursued but not discussed in this thesis due to the nature of

the projects and the relevance of the results to this thesis

In the following sections of this introductory chapter basic concepts of nanophotonic

devices are discussed. This is followed by discussions on the general design and fabrication

tools we employ, including numerical simulations. Finally optical testing and analysis tools

are examined. The technical improvements we have made in each of these fields are also

discussed.

1.3 Optical Resonators

Optical resonators or cavities are used to confine light both spatially and temporally. They

are fundamentally important to a large range of devices such as lasers, modulators, filters,

optical switches and optical memory. Unlike electrons, photons have no rest mass and

cannot be confined by electric and magnetic fields. Instead photons are trapped in optical

cavities by multiple reflections which result in standing waves. These resonant frequencies

are also known as the cavity modes. But over time, the number of photons trapped in

these cavities will decrease. Optical losses can be attributed to many mechanisms including

material absorption, scattering losses and evanescent field decay.

A measure of the temporal confinement of light in an optical resonator is the quality

factor or Q. Eqn. 1.1 describes the Q factor as the product of the resonant frequency (ω)

and the photon lifetime (τph) in a cavity. The inverse of the Q factor can be interpreted

as a measure of the lossiness of a cavity as seen in Eqn. 1.2 where Q is described by the

number of cycles needed for all the light stored in an optical cavity to escape:

Q = ωτph (1.1)

Q = 2π

(
stored energy

energy loss per cycle

)
(1.2)

Yet another way to think about Q is in terms of the spectral width of the resonance. In
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Eqn. 3, the resonance wavelength is λ and the full-width half-maximum (FWHM) of the

resonance is ∆λ:

Q =
λ

∆λ
(1.3)

A measure of the spatial confinement of light in an optical resonator is the modal volume

Vm. The modal volume can be calculated from the distribution of the electric field (E) and

index of refraction (n) using Eqn. 1.4. There are different definitions for modal volume

under different conditions, for example the definition for modal volume in the presence of

nonlinear effects will be different. The values for E(x,y,z) and n(x,y,z) can be calculated

using numerical simulations which will be discussed later in this chapter.

Vm =

∫
n2|E|2 dv

(|nE|max)2
(1.4)

The temporal confinement (Q) and spatial confinement (Vm) are often combined into the

ratio: Q/Vm. A high Q/Vm means that light is trapped in a very small volume for a long

period of time. The longer light bounces around in this cavity, the higher the probability

that the photons will interact with the material of the cavity. Hence, Q/Vm is associated

with enhanced light-matter interaction and this is important for nonlinear effects in photonic

crystal cavities [12]. High Q/Vm can also be exploited to make devices smaller. For example,

traditionally, silicon optical modulators are quite large and unsuitable for integrated silicon

photonics. But by utilizing high Q/Vm, micrometer-scale silicon modulators have been

realized [5].

In recent years, a large number of different silicon-on-insulator (SOI) based optical

resonator designs have been proposed and investigated. Table 1.1 lists the silicon micro-

and nanocavities that we have used in this this current work, along with the the notable

characteristics of each of these designs.
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Figure 1.1: SEM images of different types of silicon optical micro- and nanocavities used in

our work. (a) microring (b) microdisk (c) asymmetric resonator (d) photonic crystal defect

cavity with 3 missing air-holes (L3 cavity) (e) photonic crystal modegap cavity (f) photonic

crystal double-heterostructure cavity
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Table 1.1: Silicon photonic resonators

Resonator Q factor Modal Volume Refs.

Microring 105 [13]

(r = 20 µm)

Microring 104 12 (λ/nSi)
3 [14]

(r = 1.5 µm)

Microdisk 106 65 (λ/nSi)
3 [15, 16]

(r = 20 µm)

Microdisk 105 6 (λ/nSi)
3 [16]

(r = 1.5 µm)

Asymmetric Resonator 104 10 (λ/nSi)
3 [17, 18]

PhC Ln 105 0.7 (λ/nSi)
3 [19, 20]

PhC Modegap 106 1.5 (λ/nSi)
3 [21]

PhC Heterostructure 106 1.5 (λ/nSi)
3 [22, 23]
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1.3.1 Microdisks

Optical microdisks made of semiconductor material were first studied by McCall at Bell

Laboratories in the early 90’s [24]. Unlike Fabry-Perot cavities which have standing wave

modes, microdisks belong to a class of traveling wave resonators known as whispering-gallery

mode (WGM) resonators. The first few cavity designs in Table 1.1 (microdisks, microrings

and asymmetric resonators) have WGMs. Whereas the later designs are all photonic crystal

based nanocavities with standing-wave modes.

Whispering-gallery is an analogy to the dome-like architectural structures where sounds

as faint as a whisper can travel unusually long distances because the acoustic wave is guided

along the smooth surface of the dome with little attenuation 2. Fig. 1.1 (b) shows an SEM

image of a silicon microdisk. Fig. 1.2 shows a microdisk WGM as calculated by the 2-D

finite-difference time-domain method. In plane, the optical mode travels along the disk

periphery due to total internal reflection (TIR). TIR is also responsible for confining the

mode in the out-of-plane direction.

McCall’s WGM microdisk was made of InP/InGaAsP which, unlike silicon, is an active

gain material. He was able to optically pump the microdisk and achieve ultralow threshold

lasing at telecom wavelengths of 1.3 and 1.5 µm [24]. More recently a number of groups

have incorporated gain material onto silicon microdisks to enable lasing [25, 26]. Because

of their simple design and ease of fabrication, microdisks have also been used in numerous

photonic studies in recent years, including self-induced optical modulation [27] and cavity

quantum electrodynamics [28].

1.3.2 Microrings

The microring consists of a narrow strip waveguide in an enclosed circular pattern as shown

in Fig. 1.1(a). A variation of this design is the racetrack resonator which is a microring

elongated in one direction. Silicon microrings are generally fabricated on SOI substrates

without removing the underlying oxide. This is one reason why the Q of microrings is

lower than the Q of microdisks as seen in Table 1.1. The experimentally measured Q of

2One such whispering gallery can be found adjacent to the Oyster Bar at Grand Central Station in New

York City where it is occasionally used by mischievous individuals to spook unsuspecting passers by.



CHAPTER 1. INTRODUCTION 11

Figure 1.2: FDTD simulation of a whispering gallery mode in microdisk.

a 20 µm radius microdisk is ∼ 106 whereas the experimentally measured Q of a 20 µm

radius microring is ∼ 105. A second reason why the Q of the microring is lower is because

it has two sidewall surfaces, outer and inner, whereas the microdisk has only one sidewall

surface. In silicon photonics, sidewall roughness is more problematic than surface roughness.

Wafers are chemically mechanically polished and have very smooth top surfaces. During

fabrication, the silicon is dry etched and this process introduces significant sidewall. This

is a topic we will explore in more detail later in this thesis.

An important attribute of ring resonators is the free spectral range (FSR), also known

as the mode spacing. It is defined in Eqn. 1.5. Conversely it can also be defined as a

frequency spacing, Eqn. 1.6

δλFSR =
λ2

neffL
(1.5)

δνFSR =
c

neffL
(1.6)

Where λ is the wavelength, ν is the frequency, neff is the effective index and L is the

round-trip distance of the cavity, i.e. L = 2πR for microrings and microdisks.



CHAPTER 1. INTRODUCTION 12

1.3.3 Asymmetric Resonators

Due to radial symmetry, microdisk lasers do not have a directional preference for light

emission. The lack of directionality is also the reason evanescent waves must be used to

couple to these cavities. Recently, there has been interest in cavity geometries that break

rotational symmetry and allow directional emission [17, 29, 18]. This was the motivation

for our collaboration with Pascal Heider, a mathematician and visiting scholar from the

University of Cologne in Germany. Pascal had previously been studying asymmetrically

shaped resonators from a purely theoretical perspective.

My role in the collaboration was to take his theoretically derived designs and turn them

into actual silicon photonic devices for the purpose of experimental investigations. The

fabrication was performed using e-beam lithography at Columbia University. An SEM

image of this egg-shaped cavity is shown in Fig. 1.1 (c). The optical experiments were done

by Jie Gao and Xiaodong Yang [17] at wavelengths ranging from 1530 to 1560 nm.

1.3.4 Photonic Crystal Ln Cavities

The SEM image in Fig. 1.1 (d) shows a PhC defect cavity with 3 missing air-holes. Such

a cavity is commonly referred to as a L3 cavity. In our work, we have also used many L5

cavities.

Table 1.1 shows that as microdisks and microrings become smaller, their Q factor will

also drop. This can be attributed to increased bending losses. This phenomenon limits

the maximum Q/Vm ratios that WGM resonators can achieve. The quest for ever higher

Q/Vm has lead researchers to photonic crystal (PhC) nanocavities. In the mid-2000’s a

number of breakthroughs came from researchers in Japan. PhC cavities have generated

much interest because high Q/Vm also comes with a decrease in device dimensions and is

therefore favorable for higher component integration density.

PhCs were first proposed by Eli Yablonovitch and Sanjeev John in 1987. Initial studies

were conducted at microwave wavelength scales. Only more recently has the field moved to

optical wavelengths and semiconductor materials such as silicon. In planar PhC cavities,

light is confined in-plane by the photonic bandgap of the surrounding periodic dielectric

structures, i.e. by Bragg reflections. Light is confined out-of-plane by total internal reflec-
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tion or Snell’s law.

In 2003, the group of Susumu Noda at Kyoto University discovered it was possible to

increase the Q of a PhC defect cavity by a factor of 20 to 100,000 by carefully shifting

the nearby air-holes. Additionally, this did not affect the modal volume of the cavity [19].

The fine tuning increased the magnitude of the Bragg reflection by creating a mode profile

closer in shape to a gaussian function. As a result, the 2D fourier transform of the spectrum

showed less k-vector components inside the leaky region after this air-hole tuning.

1.3.5 Photonic Crystal Heterostructures

In 2005, Noda’s group once again made a leap foward by achieving experimental Q’s of

600,000 using a double-heterostructure design [22]. Theoretical calculations of these cavities

showed Q’s of over 20,000,000. Through improved fabrication the experimentally achievable

Q was soon increased by over 60% to 1,000,000 [23]. An SEM image of a PhC double

heterostructure cavity is shown in Fig. 1.1 (f).

1.3.6 Photonic Crystal Modegap Cavities

In 2006, the group of Masaya Notomi at NTT Research Laboratories outside of Tokyo

reported a cavity design based on mode-gap confinement that achieved Q’s of ∼800,000.

The cavity had an ultrasmall modal volume of 1.5(λ/nSi)
3 [21]. The theoretical Q for these

cavities was as high as 7×107 as calculated by numerical simulations. An SEM image of a

PhC modegap cavity we have used is shown in Fig. 1.1 (e).

1.4 Fabrication

All of the devices used in our studies (shown in Fig. 1.1) have been fabricated on silicon-on-

insulator wafers. Our wafers are obtained from wafer manufacturer Soitec Inc. of France.

The SOI wafers are manufactured using wafer bonding followed by an ion implantation

assisted cleaving process to remove most of the top wafer. The wafer then goes through

annealing and chemical mechanical polishing (CMP). Wafers generally have a p-type doping

concentration of 1016 cm−3.
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SOI is a standard platform used in CMOS fabrication because it allows isolation of

transitor devices and improved electrical performance but at increased wafer costs. SOI is

used in the field of silicon photonics because of the large refractive index difference between

Si to SiO2, 3.5 to 1.5 respectively. The high index contrast allows for better confinement

of optical modes. This is advantageous for compact devices and highly integrated systems.

Additionally, the oxide beneath silicon structures can be locally removed to further improve

the optical confinement. This is done through resist patterning and oxide etching, resulting

in suspended membranes with air cladding both above and below.

Despite SOI’s widespread use, the exact specifications needed for our wafers are generally

only used by the silicon photonics community. Hence, such wafers can sometimes be difficult

to obtain. Our device layer consists of 250 nm of high quality (100) single-crystal silicon.

Beneath this is a thermal oxide layer, 2-3 µm in thickness. The bulk substrate is also single-

crystal silicon, with thicknesses ranging from 500 µm to 750 µm. Larger wafers (300 mm)

have thicknesses that are on the higher end of this range. This is necessary to ensure wafer

planarity. But thinner substrates are favorable because they can be more easily cleaved.

This is important for achieving good edge facets for coupling to on-chip waveguides. To

get a thinner substrate, CMP can be used on the back surface of the wafer after device

fabrication.

Most research groups fabricate their photonic devices using electron-beam (e-beam)

lithography because of its high resolution and direct-writing capability. Our group has

been using a combination of e-beam lithography and high-resolution optical lithography.

During my time at Columbia, our facilities did not have a high-end e-beam lithography

system. Our resources were limited to a Scanning Electron Microscope (SEM) modified

with a JC Nabity Lithography System for e-beam writing. The system was limited to a

writing field of ∼ 1 mm. Lacking interferometric stages, stitching error between writing

fields was several microns, unacceptably large. Because of this, it was impractical to write

structures requiring waveguides. This was one of our motivations for pursuing deep- UV

optical lithography as an alternative fabrication method.

From a manufacturing point of view, optical lithography is essential to the future of

silicon photonics. As a researcher, optical lithography can have both advantages and dis-
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advantages. The advantage is an extremely large number of test structures can be printed

quickly as opposed to the very slow raster-scanning speeds of the e-beam lithography. The

disadvantages include increased turn-around time for mask making and fabrication runs.

Optical lithography also has lower resolution, limited by diffraction effects. This can be

problematic for photonic devices with many nanoscale features.

Some of the photonic chips used in my work were designed and fabricated by the Silicon

Integrated Nanophotonics Group at IBM Research in Yorktown Heights, New York. This

was done using e-beam lithography in their research fab. More recently, the Center for

Functional Nanomaterials (CFN) at Brookhaven National Laboratory (BNL) installed a

JEOL JBX-6300FS electron beam lithography system. The facilities are within convenient

travel distance from New York City and our group had prior collaborations with Aaron

Stein, CFN’s resident e-beam expert. I was able to quickly receive training on the tool and

have used it to fabricate a number of high-quality devices.

After fabrication most of our devices were airbridged, i.e. the oxide underneath was

removed. This was always done using the cleanroom at Columbia University. The airbridg-

ing process involves a number of fabrication steps. First the chip is cleaned in acetone,

isopropanol and water along with ultrasonic agitation. Next the chip is dehydrated on a

hotplate at 180 ◦C for 5 minutes. Then the chip is spin-coated with HMDS, an adhesion

promoter. A thick photoresist is spin-coated over the chip and soft-baked. A contact aligner

is used to pattern transfer a series of large low-resolution windows around the devices where

the oxide is to be removed. The resist is then developed and hard-baked. The resulting

resist mask is used to prevent the waveguides on the chip from lifting off in the subse-

quent buffered oxide etching (BOE). After BOE, the chip is rinsed in water and then put

into either Nanostrip or Piranha to remove the resist mask. The chip is then rinsed again

in water and transferred to acetone to remove any residual organics. Finally, the chip is

transferred to hot methanol at 60-80 ◦C before being removed into air. Hot methanol has

low surface tension when evaporating and is less likely to cause waveguide collapse during

drying. An alternative to hot methanol is supercritical drying. But the process is more

time consuming and I found it unnecessary for my particular devices. After all these steps

have been performed, the chip is ready for SEM imaging (Fig. 1.3) and optical testing.
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Figure 1.3: Photonic crystal structure after buffered oxide etching.

1.5 Experimental Setups

In order to perform the optical measurements in this thesis, I built several different experi-

mental test setups. For chip based measurements, I used two different approaches to couple

light to on-chip devices. For WGM cavities, laser light was coupled evanescently using a

single-mode optical fiber which had been pulled under a hydrogen flame to a diameter of

∼ 1 mu m. We had to fabricate the tapered fibers ourselves. The process is discussed

later. For PhC cavities light was coupled onto the chip using lensed fibers. Several kinds of

single-mode lensed fibers were used including tapered lensed fibers from Nanonics Imaging

and laser etched lensed fiber from Oz Optics. Polarization maintaining lensed fiber was also

used.

1.5.1 Lensed Fiber Setup

Fig. shows the basic components of the lensed fiber coupling test setup. The other com-

ponents of the setup will depend on the specific experiment and will therefore be described

in later chapters. The test chip is mounted on the central 4-axis stage. Lensed fibers are

positioned on both sides of the chip by high precision XYZ translational stages. The stages
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Figure 1.4: Lensed fiber experimental setup, Inset: Closeup image of lensed fiber made by

Nanonics Imaging Ltd.

have optional piezoelectric actuators.

Laser light was sent through single mode optical fiber and coupled to strip waveguides

on the test chip using the lensed fiber shown in the inset to Fig. . Sometimes spot-size

coverters (made of either polymer or oxide) were used to reduce the coupling loss to ∼ 1 dB

for TE polarized light [30]. The strip waveguide is then butt-coupled to a suspended PhC

line defect waveguide. Light is coupled to the PhC cavity by tunneling through several layers

of air-holes. Due to the number of coupling interfaces, as well as waveguide propagation

losses, the total losses experienced when using the lensed fiber test setup are higher than

the total losses when using the tapered fiber coupling setup.

1.5.2 Tapered Fiber Setup

The tapered fiber test setup shown in Fig. is similar to the design used by Kartik Srinivasan

at the National Institute of Standards and Technology (NIST). Kartik provided us with

generous help, both with this test setup as well as the accompanying tapered fiber pulling

setup.

I worked with Felice Gesuele, a postdoc in our group, to build this test setup. Later the

test setup was also used by other group members for numerous experiments. The sample is
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mounted on a stage with both XYZ translational movement as well as complete rotational

movement. The tapered fiber is mounted on an adjacent XYZ translational stage with

piezoelectric actuators which can be used to scan the tapered fiber with 5 nm resolution

across a range of 20 µ m. A long working-distance objective lens is used to image the test

sample and tapered fiber. The objective lens is connected to an ultra zoom system and

images are captured using a CMOS video camera.

For certain experiments, an oxygen-free environment is necessary. Hence, the test setup

is enclosed in a nitrogen box. Even when nitrogen is not used, the enclosure serves to

minimize air flow thereby improving the stability of the tapered fiber. There were actually

several alternative gases to nitrogen we considered. Both argon and sulfur hexafluoride are

inert, non-toxic gases with higher densities than nitrogen. Argon is 40% denser and sulfur

hexafluoride is 483% denser. Denser gases will stay in an enclosed area for longer periods

of time. While we found this to be highly advantageous, our setup happened to be located

in small room with no ventilation 3. Additionally, both gases are colorless and odorless. In

the end we decided nitrogen was the wiser choice.

The front panel of the nitrogen box is similar to a glove box, thereby allowing access to

the manual stage controls even when the box is filled with nitrogen gas. The box was not

designed to have a perfect air-tight sealing. Instead, nitrogen is flowed into the chamber on

one side and flowed out of the chamber on the other. Flow meters at both the input and

output are used to ensure the pressure inside of the box is higher than outside.

1.5.3 Tapered Fiber Pulling

Tapered fibers are pulled using a hydrogen flame setup shown in Fig. 1.5. The setup was

built by Xiaodong Yang, a previous doctoral student in our group.

The procedure is as follows: A length of fiber is cut from a spool of Corning SMF-28e

single mode optical fiber. Next, the polymer coating is stripped from both ends as well as

in the center. These areas are then cleaned with isopropanol. The ends are cleaved and

inserted into bare fiber connectors which are then connected to an ASE laser and optical

spectrum analyzer (OSA) as shown in Fig. 1.5 (a). The fiber is then clamped down onto

3Argon is commonly used in the poultry industry as an asphyxiant.
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Figure 1.5: Tapered fiber test setup. (a) Nitrogen box enclosure of the tapered fiber setup.

(b) The tapered fiber is mounted on the holder and used to probe optical devices on the

silicon test chip. Positioning is done using precision XYZ translational stages as well as a

rotational stage. The fiber and device are imaged using a long working distance objective

lens.
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stages attached to two linear motors. The hydrogen gas is turned on and the hydrogen

flame is ignited using a flint lighter. Next, the linear motors slowly pull on two ends of

the fiber while a small cladding-stripped region along the mid-length of the fiber is exposed

to the hydrogen flame. The hydrogen flame in air has a blue color and a temperature of

2100 ◦C. This is higher than the melting point of silica, so the flame needs to be kept

small and stable. The optical transmission is monitored on the OSA to determine the stop

point whereupon the minimum fiber diameter has decreased from 9 µm to approximately

1 µm. The taper is then bent, with a resulting bend radius of approximately 0.5 mm, and

attached with adhesive tape to a fiber mount. A high quality tapered fiber can have losses

as low as 2 dB. Over long periods of time, the lossiness of the fiber steadily increases due

to environmental contamination.

In actuality, pulling a good fiber is harder than it seems. In our group, this setup has

long been akin to a medieval torture device 4 due to the long hours of frustration endured

by helpless graduate students trying to pull a single tapered fiber, so that they could carry

on with their experiments. Having suffered through this inhumane torture, I decided to

carefully study the causes of fiber breakage so that I could improve the setup.

The overwhelming majority of fiber breakages occur after the fiber has already been

pulled and is being removed from the setup. Fig.1.7 shows two common causes of breakage.

In Fig.1.7 (a) the fiber breaks as the fiber clamps are lifted. This is generally due to tension

in the fiber line. In Fig.1.7 (b) the fiber breaks as the fiber is lifted off of the fiber mounts.

This is due to forces exerted by the person’s hands. Sadly, most engineers lack the fine

motor skills of a neural surgeon.

After some experimentation, I found solutions to both of these problems. Fig. 1.8 (a)

shows how long tubes for holding the fiber are added to both stages. The tubes serve to

remove tension in the fiber line which is caused by bends in the fiber. In Fig. 1.8 (b) the

clamps holding the fiber down can be removed without any risk of fiber breakage. The

solution to the second problem is shown in 1.8 (c). Instead of using both hands to remove

the fiber, simply use one hand. The same hand bends the fiber and grabs the other end.

Then the fiber is then mounted onto the fiber holder. As simple as this procedure now

4The rack was a medieval contraption for pulling people rather than optical fibers.
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appears, it was quite unexpected when it worked the first time due to the extreme fragility

of the fiber taper. These improvements made it much easier for our group to pull high

quality tapered fibers.

1.6 Design Layout

All of the early chip layout in our group was done using AutoCAD. This worked fine for

a surprisingly long time but design software such as AutoCAD is inherently unsuitable for

chip layouts with large numbers of photonic crystal devices. AutoCAD does not support

hierarchical design, i.e. in AutoCAD every point on the design must be specified in memory

even when there are large numbers of repeating units. The repeating air-holes in photonic

crystal structures can quickly result in enormously sized design files. This eventually became

a problem with our mask maker. I was already familiar with hierarchical design from my

earlier work fabricating large-scale bioarrays for biological studies. I began looking for a

hierarchical design tool to solve our problems. With help from Frank Zhang, a graduate

student working in chip design, I was able to start designing my photonic crystal layouts

using Cadence Virtuoso. Virtuoso turned out to be a good choice because of its powerful

scripting language. A fellow group member, James McMillan, quickly became a virtuso at

Cadence Virtuoso. He wrote a number of software tools which have greatly simplified the

the design layout process.

Fig. 1.9 shows one of our typical chip layouts. The chip is ∼ 25 x 12 mm in size and

contains designs from most of our group members. Using high resolution photolithography,

an entire wafer of these chips can be fabricated at a foundry with relative ease, something

which is not possible with e-beam lithography. The downside of the photolithography

approach in research is the long lag-times between fabrication runs. When many design-

fabricate-test iterations are needed, direct-write e-beam lithography is preferable.

1.7 Simulations

Simulation tools are a valuable resource for analyzing electromagnetic phenomena in dielec-

tric micro- and nanostructures. Some tools are frequency-domain while others are time-
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Figure 1.6: Tapered fiber pulling setup.
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Figure 1.7: After pulling the fiber down to an ∼ 1 µm diameter taper, it becomes extremely

fragile. Here are some common causes of fiber breakage when removing the fiber from the

pulling setup.

Figure 1.8: Improvements to the tapered fiber setup and pulling technique.
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Figure 1.9: Chip layout containing designs from many group members. Such a large chip

(∼ 25 x 12 mm) is impractical to fabricate by e-beam lithography due to the long write

time. Large numbers of this chip design were fabricated by deep-UV photolithography at

IME’s research foundry.

domain. The plane wave expansion (PWE) method is used to solve Maxwell’s equations

(Eqns. 1.7-1.10) in the frequency- domain by direct computation of eigenstates and eigenval-

ues. Finite-difference time domain (FDTD) solves Maxwell’s equation in partial differential

form on a discretized grid. The finite-element method (FEM) is a numerical technique that

also solves partial differential equations but often using a highly non-uniform mesh. All

three of these methods can be used for solving problems in electromagnetics, each with it’s

own pros and cons. I have used the last method, FEM, for modeling thermal effects. These

tools are available in both commercial as well as open source software packages.

∇ · D = ρf (1.7)

∇ · B = 0 (1.8)

∇ × E = − ∂B

∂t
(1.9)

∇ × H = Jf +
∂D

∂t
(1.10)
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1.7.1 Frequency Domain Mode Solver - MPB

MIT Photonic Bands (MPB) is freely available software developed by the group of John

Joannopoulos at the Massachusetts Institute of Technology [31, 32, 33]. MPB is an iterative

eigensolver of Maxwell’s equations in the frequency domain. The error in mode calculation

decreases exponentially with the number of iterations. This efficiency allows the program

to run well on a single computer as opposed to a computer cluster.

I used MPB for calculating the band structure of photonic crystal geometries. The

program can also be used to calculate resonantor modes. The modes and field data are

determined simultaneously and can be quickly outputted and visualized. The program is not

well-suited for calculating time-dependent properties, such as temporal losses (waveguide

propagation losses, cavity Q factor, etc.).

1.7.2 Finite-Difference Time-Domain - MEEP and Fullwave

The finite-difference time-domain (FDTD) method calculates the time-dependent Maxwell’s

equations on a discrete grid in an iterative fashion. First the electric field vector components

are solved for a time increment. Then the magnetic field vector components are solved for

the next time increment [34]. And the process repeats itself.

When I first started on simulations, I used RSoft Fullwave which is commerical software

that is widely used in the photonics industry. In 2006, Steven Johnson at MIT released

Meep which is freely available open-source software that can be customized for specific

purposes. I immediately began using this software also [35, 36]. Eventually, half of our

group members converted to Meep. The other half has been quite happy with Fullwave.

The FDTD method is good for solving problems which involve losses. I have used it

to calculate the Q-factor of different optical resonator designs. The electric field data can

be outputted and used to determine the modal volume of a cavity. The FDTD method is

also suitable for calculating waveguide transmission and simulating the effects of nonlinear

materials.

Unlike the frequency-domain method described in the previous section, the FDTD

method is computationally more intensive. I generally start out with a 2-D simulations

a single computer. Once I am reasonably confident about my design and simulation param-
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eters, I will move to 3-D simulations run on a multi-node linux cluster. Clustering allows

the problem to be broken up and solved in parallel, thereby increasing the overall memory

size and ultimately the resolution of the simulation. It does not necessarily improve the

time needed to run the simulation.

1.7.3 Finite Element - Comsol Multiphysics

I use COMSOL Multiphysics, a commercial software package based on FEM, for modeling

thermal effects during processes such as laser irradiation, oxidation, annealing and melting.

Other group members have also used COMSOL in place of Meep or Fullwave. FEM does

not require a rectangular grid and can be optimized for for complex geometries by varying

the density of grid points at different locations (Fullwave also supports a non-uniform grid).
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Chapter 2

Local Oxidation Resonance Tuning
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2.1 Introduction

Photonic crystal nanocavities are increasingly employed in photonic studies and applica-

tions because of their high quality factor (Q) to modal volume (Vm) ratios [1, 2, 3]. These

nanocavities are also used in photonic devices of increasing complexity where high accuracy

of the resonant wavelength is critical. However, due to fabrication imperfections, reso-

nances will often deviate from their desired precise values. Several post-fabrication tuning

techniques have been proposed and demonstrated to address this issue. Some of these tech-

niques are listed in Table 2.1, where a positive tuning increment represents a redshift in the

cavity resonance, while a negative tuning increment represents a blueshift. These methods

can be divided into 2 groups: global and local. Global tuning creates a uniform change

over the entire chip, [4, 5, 6] whereas local tuning only changes a small area such as a single

nanocavity [8, 9, 10, 11, 12, 13, 14]. Global tuning is useful for correcting uniform errors but

cannot address the random local errors that often occur during fabrication. Local tuning

can be very important to applications such as the all-optical analog to electromagnetically

induced transparency [2] and optical buffers, which require precisely coupled cavities. An-

other example is in solid-state cavity quantum electrodynamics where local tuning can be

used to spectrally match a cavity resonance to a single exciton transition.

Figure 2.1: (a) Illustration of laser-assisted local thermal oxidation in a silicon double-

heterostructure cavity. (b) SEM image of a double-heterostructure cavity.

In this work, we study the selective thermal oxidation of silicon photonic crystal mem-

branes with a highly localized laser beam at ambient conditions in order to finely tune

the high-Q resonances. Laser-assisted local oxidation is advantageous to previously demon-
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strated tuning techniques because it allows for automation of the tuning process by using

a computer-controlled stage, shutter or optical modulator and in-situ monitoring system.

Such a system would enable the post-fabrication fine-tuning of large numbers of nanocavi-

ties.

Laser-assisted local tuning has been demonstrated with the photodarkening of chalco-

genide films on GaAs photonic crystals [10] with a Q of ∼ 8000. Laser-assisted local tuning

has also been studied in the oxidation of GaAs photonic crystal L3 cavities [8] with a Q

of 1800. In this work, we study the precise local tuning in silicon, of photonic crystal

double-heterostructure nanocavities with high-Qs of ∼ 200,000 or higher.

Continuous-wave lasers have been used in oxidation studies of silicon and silicon-on-

insulator substrates [15, 16], including temperature independent contributions to silicon

oxidation from photon flux [15]. Using a diffraction limited beam, Deustchmann et al. [17]

was able to oxidize lines as narrow as 200 nm at a power of approximately 15 mW. Such

spatial confinement is possible in thin single crystal silicon films because increased phonon

scattering reduces heat flow in the lateral direction [18]. In addition to cavity tuning, local

oxidation might be applicable to other post-fabrication tasks such as tuning the dispersion

[19, 20] and surface states [21, 22].

2.2 Local oxidation cavity resonance tuning

The photonic crystal double-heterostructure nanocavities [1] used in this work were fab-

ricated by high quality photolithography and dry etching on silicon-on-insulator (250 nm

thick) substrates, with 117 nm hole radii and 410 nm lattice parameter. In the cavity region,

the lattice parameter increases to 415 and 420 nm. The waveguide-to-cavity separation is 6

layers of air-holes. Approximately 1.5 µm of oxide beneath the photonic crystal region was

removed as described in Ref. 4.

A 532 nm diode-pumped solid-state laser, with a collimated beam and power controlled

using a variable neutral density filter to ∼ 20 mW powers, was used. A 60× objective lens

(NA of 0.65) focuses the laser onto the chip and is also used for imaging. The spot-size

is measured using the knife-edge technique. The full-width half-maximum beam waist was
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Table 2.1: Passive post-fabrication photonic-crystal cavity tuning techniques.

Method Material Extent Tuning

Range

Tuning

Increment

Ref.

Atomic Layer Si global > 20 nm +122 pm [4]

Deposition

Chemical Si global > 20 nm -430 pm [5]

Oxidation

Wet Etching GaAs global > 20 nm -2.1 nm [6]

Self-Assembled GaAs global 3-5 nm +3-5 nm [7]

Monolayer

Laser-Assisted GaAs local 2.5 nm ∼ -200 pm [8]

Local Oxidation

Electron-Beam InGaAsP local 14 nm < +200 pm [9]

Induced Nanodots

Photodarkening of GaAs local 3 nm < +250 pm [10]

Chalcogenide

AFM Oxidation GaAs local 4 nm -100 pm [12]
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2.5 µm, corresponding to a maximum energy density at the chip surface of 1×108 W/cm2.

The oxidation is carried out in ambient conditions of 22 ◦C and 20% relative humidity.

Cavity resonance transmission and radiation measurements were performed as described

in Refs. 2 and 4. Oxidation results in a blueshift in the cavity resonance as shown in Fig.

2.4 (a). This is the result of a larger decrease in refractive index from the silicon consumed

outweighing a smaller increase in refractive index from the oxide generated. Following the

initial anomalous oxidation, subsequent tuning follows a parabolic rate law where the cavity

resonance blueshift is observed to be proportional to the square root of the oxidation time

(Fig. 2.4 (b) and (c)). The decreasing oxidation rate is attributed to the longer diffusion

time of oxygen through the thicker oxide in order to reach the silicon-oxide interface where

the oxide growth occurs [23]. Corresponding radiation measurements of the high-Q cavity

are shown in Fig. 2.5.

Oxidation is expected to occur on both the top and bottom surfaces of the silicon

membrane as well as the surface of the air holes because both the 1/e absorption depth

of the green laser (1 µm) and the depth of focus of the beam after the objective lens (400

nm for 60× objective) are larger than the 250 nm thickness of the silicon membrane. The

oxidation profile remains highly localized with AFM studies showing lateral dimensions 40%

smaller than the spot diameter [16]. This can be attributed to a number of factors. The

thermal conductivity of silicon is dominated by phonon transport with a smaller contribution

from free charge carriers. While the thermal conductivity of silicon is relatively high at

room temperature, it decreases significantly at higher temperatures with increased phonon

scattering [24, 25]. In addition, as the substrate thickness decreases from bulk dimensions,

phonon-boundary scattering increases and the presence of air holes will further decrease the

phonon mean free path [18].

2.3 Transient effects from oxide surface chemistry

During the oxidation process, as the cavity is heated to high temperatures by optical absorp-

tion of the focused green laser beam, there will be a large redshift in the cavity resonance.

The redshift is attributed to the thermal-optic effect in silicon causing a temperature-
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dependent refractive index change. When the green laser is turned off, the cavity temper-

ature quickly returns to room temperature and the large redshift disappears. But within

1-2 minutes after oxidation (i.e. after the green laser is turned off), a smaller magnitude

redshifting of the cavity resonance is observed. The rate of this redshifting is rapid at first

and decreases over time, taking many hours to reach a stable value. This transitory effect

is caused by water molecules on the surface of the cavity.

The surface chemistry effects occur both during and after laser irradiation, and are

illustrated in Fig. 2.6. Upon heating the cavity there is a temporary blueshift from oxide

surface and oxide bulk dehydration. After the cavity cools back down, there is a slow

redshift caused by gradual rehydration of water molecules onto the cavity. The total shift

ranges from ∼ 100 pm to hundreds of picometers and appears to be dependent on the

oxide thickness. Laser exposure at low powers (less than 1 mW for 10 minutes) shows a

completely reversible blueshift, indicating no real oxidation has occurred (i.e. there is only

a temporary blueshift from cavity dehydration followed by a rehydration redshift returning

the cavity resonance to its original wavelength).

Silicon dioxide terminated by hydroxyl groups (SiOH) is hydrophillic and will readily

adsorb water molecules, as schematically shown in Fig. 2.6 (a). At temperatures above

∼ 170 ◦C the hydrogen bonded water molecules will desorb. The process is reversible but

at higher temperatures (400 ◦C) the hydrogen in the hydroxyl groups can sometimes be

removed resulting in a hydrophobic siloxane surface. The long times required to complete

the redshift are indicative of a slower diffusion-limited process [26, 27]. While water absorp-

tion is known to be much less significant for thermally grown oxides than deposited oxides,

[28], studies of laser grown oxides indicate their composition are less dense than traditional

thermally oxidized films due to presence of suboxides, especially for thinner films [29]. In

order to obtain reliable results, our measurements were taken either immediately after oxi-

dation (less than 1 min) when the cavity region was still dehydrated or immediately after

the cavity was re-heated at sub-oxidation threshold powers.
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2.4 Thermal oxidation

Prior to oxidation, the test chip had a native oxide (approximately 12 Å in thickness) as it

was exposed to ambient conditions. In addition to the native oxide, it was observed that

initial oxidation can occur at very low laser powers. Because of this, an accurate initial

oxidation threshold power was difficult to determine. This initial growth was anomalous in

respect to the Deal-Grove and Massoud models for oxide growth [23, 30]. It has been shown

by x-ray photoelectron spectroscopy studies that the initial ∼ 22 Å of oxide growth occurs

at a very high rate [31]. At this stage, even at very low powers oxidation might occur.

Following the initial anomalous oxidation, subsequent tuning follows a parabolic rate

law. The oxidation resonance tuning is permanent and stable. Repeated measurements over

the span of many days shows no change within the measurement error. The uncertainty

in the cavity resonance measurements is approximately ± 100 pm and primarily attributed

to random thermal fluctuations in the ambient environment. This uncertainty is the lim-

iting factor in determining the minimum tuning increment. A number of other factors

will affect the minimum achievable tuning increment including: power stability, exposure

time accuracy, beam targeting accuracy and beam shape uniformity. Another group has

demonstrated a resonance tuning increment of 100 pm using AFM nano-oxidation of GaAs

[12].

The inset to Fig. 2.4 (a) shows quality factor measurements during the oxidation process.

During the initial oxidation there is a sizeable drop in the Q. Afterwards the Q appears to

remain stable upon further oxidation. The initial drop in Q might be attributed to increased

optical scattering from the interfacial layer between the silicon and oxide. Surface states

might also result in increased absorption at the interface. In this work, the local oxide was

left on the chip after the tuning. Removing the oxide with an HF dip [8] has been shown

to improve the Q and will also further blueshift the resonance.

The decrease in overall air-hole size can be used to estimate the oxide thickness. The

SEM image in Fig. 2.1 (b) shows the double-heterostructure cavity after local oxidation

resulting in a 2.1 nm cavity resonance blueshift. Image analysis of the experimental device

indicates a hole size change smaller than the error of the SEM measurements (± 5% of the

hole diameter). In addition, a redshift of 0.8 nm was observed in the cavity resonance after



CHAPTER 2. LOCAL OXIDATION RESONANCE TUNING 38

SEM imaging the cavity region (Fig. 2.7 (b)). This is likely caused by contamination of

the sample in the SEM chamber during imaging. It is well known that organic molecules

from vacuum pump oil can be deposited onto the substrate surface by the focused electron

beam during SEM imaging [9]. For this reason, SEM imaging was generally avoided while

the sample was being tuned. Fig. 2.7 (a) shows an SEM image of the sample after a cavity

resonance tuning of 10.4 nm. Using hole-size analysis it is estimated that 1 nm of resonance

blueshift corresponds to 1.9 nm of oxide growth. A comparison with calculated resonance

shifts is provided in the next section.

2.5 Numerical analysis

Three-dimensional finite-element simulations (COMSOL Multiphysics) are used to estimate

the temperature increases caused by optical absorption at different laser powers. The model

uses the static heat equation:

∇[κ(T )∇T ] = −[1−R(T )]I0α(T ) exp

(
−(x2 + y2)

2σ2

)
exp

(
−
∫ z

0
α(T (x, y, z′))dz′

)
(2.1)

where κ(T ) is the temperature-dependent thermal conductivity, R(T ) is the reflection co-

efficient and α(T ) is the temperature-dependent absorption coefficient. The incident CW

laser beam has a Gaussian spatial distribution with a 1/e-squared beam spot-size σ and a

center intensity I0. The reflection coefficient takes the form R(T ) = R0 + c(T −T0) [32, 15].

The temperature dependent absorption is experimentally fitted as α(T ) = α0 exp(T/T0)

[33]. Both the absorption and thermal conductivity of silicon are temperature dependent.

The absorption of silicon increases significantly at higher temperatures. The thermal con-

ductivity for bulk silicon at room-temperature is 148 WK−1m−1 but as the temperature

increases, the thermal conductivity will decrease. For a thin porous photonic crystal slab,

the thermal conductivity can be reduced even further. In-plane thermal conductivity is

reduced to approximately 90 WK−1m−1 at room temperature for silicon-on-insulator (SOI)

devices with a silicon thickness of 260 nm [34], mainly due to increased phonon boundary

scattering [25, 35, 36]. Periodic structures on single-crystalline silicon membranes can have

thermal conductivity values as small as ∼ 6.8 WK−1m−1 due to coherent phononic effects

[37].
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In order to determine the thermal conductivity for our device, we used our finite-element

model along with experimental measurements. Silicon melting is observed to occur at inci-

dent laser powers of ∼ 35 mW as shown in Fig. 2.7 (a). This was used as a reference point

for our model and the resulting room-temperature thermal conductivity was estimated to

be 67 WK−1m−1. The simulated temperature profile around the double-heterostructure

cavity is shown in Fig. 2.8 (a). Cross-sections of the temperature profile corresponding to

incident power of 30 mW and 35 mW are shown in Fig. 2.8 (b) along with the laser inten-

sity profiles at those powers. The temperature profiles show how the temperature gradient

increases due to higher absorbed energies and lower thermal conductivity at higher mem-

brane temperatures. The local maximum temperature for different incident laser powers is

shown in Fig. 2.8 (c). The features observed in Fig. 2.7 (a) are consistent with results of

the numerical model.

The finite-difference-time-domain (FDTD) method [38] with sub-pixel averaging [39] is

used to calculate the effects of silicon oxidation on the cavity resonance. The native oxide

is assumed to be 1.2 nm. We also assume that if 1 nm of silicon is oxidized (consumed), the

resulting oxide grown is 2.17 nm. As the silicon is consumed, the total thickness of the slab

(silicon + oxide) will increase, while the air-hole radii will decrease. Simulation results in

Fig. 2.9 (b) show that every 0.6 nm of oxide grown results in 1 nm of resonance blueshift.

By comparison, the previously discussed SEM hole analysis estimates that 1.9 nm of oxide

growth results in 1 nm of resonance blueshift. There are several possible explanations for

this discrepancy. It is possible that the amount of oxidation on the bottom-side of the silicon

membrane is less than the top-side if the beam focus is less than optimal. In addition, the

laser grown oxide might be less dense than furnace grown thermal oxide [29]. Finally, the

slight melting of the silicon membrane at 35 mW laser irradiation might have resulted in a

decrease in the air-hole size without a proportional increase in oxide growth.

2.6 Conclusions

We have demonstrated the tuning of high-Q double-heterostructured silicon photonic crys-

tal nanocavities using laser-assisted local thermal oxidation. Cavity Q is preserved in the
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range 2×105, for the range of oxidation times and laser powers examined. The effects of

water absorption and thin oxide growth were also observed. Numerical simulations were

used to model the temperature distribution in the silicon photonic crystal membrane and

resonance shift of the optical mode due to oxidation. While our work only focuses on laser-

assisted thermal oxidation, other work has shown that under certain conditions there are

temperature independent contributions to silicon oxidation from photon flux [15].
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Figure 2.2: Experimental setup for local oxidation tuning and cavity resonance measure-

ments. The green laser on the left-hand side is used to assist the thermal oxidation. On

the right-hand side are cameras and photodetectors operating at both visible and IR wave-

lengths. The cameras are used to image the sample. The detectors are used to measure the

radiation signal along with the lock-in amplifier and data acquisition system. At the bot-

tom, near-IR light from a tunable laser is coupled onto the device under test by a tapered

lensed fiber.
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Figure 2.3: SEM image of a device after local oxidation. The oxidized region is white

colored in the SEM because of charging effects in the non-conductive oxide. Note: this is a

different device than the one used for cavity measurements in Fig. 2.4.
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Figure 2.4: (a) Experimental results showing the blueshift from tuning using an initial laser

power of 19.5 mW (at the device surface). The same device is then further tuned at 22.5

mW. The inset shows measurements of the loaded quality factor as the cavity is tuned. (b)

Fitting of the resonant wavelength shift to the square root of oxidation time for incident

power of 19.5mW and (c) for 22.5mW.
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Figure 2.5: Radiation measurements at three different tuning increments corresponding to

the numbered positions in Fig. 2. Left inset: near-IR radiation pattern for the Fabry-Perot

modes on the left. The dotted lines indicate the position of cavity waveguide (upper) and

input/output waveguide (lower). Right inset: near-IR radiation pattern for the cavity mode

on the right.

Figure 2.6: Transitory surface chemistry effects. (a) Water molecules absorb onto the oxide

surface at room temperature and desorb from the oxide surface at elevated temperatures. (b)

During laser irradiation, the cavity experiences a resonance blueshift from oxide dehydration

in addition to silicon oxidation. After the cavity cools, water will slowly rehydrate the oxide

surface resulting in a gradual redshift.
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Figure 2.7: (a) SEM image of cavity after local oxidation tuning at laser power of 35 mW.

The white ring indicates oxide charging effects during SEM imaging. The center region is

darker because of slight melting. Inset: Hole melted through the silicon membrane after

irradiation at ∼ 35 mW for several minutes (different device from the main figure). (b) Local

oxidation tuning over a larger wavelength range. The blue region (upper-left) corresponds

to the data shown in Fig. 2(a). The upper arrow corresponds to the SEM image in Fig.

1(b). The lower-right arrow corresponds to the SEM image in Fig. 5(a).
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Figure 2.8: (a) Finite-element simulation (COMSOL Multiphysics) of temperature distri-

bution across silicon double-heterostructure cavity during green laser irradiation at 35 mW.

(b) Solid lines represent the temperature distribution as a function of distance from the

center of the laser beam. Dotted lines represent the intensity profile of the laser beam. (c)

Simulation results of local maximum temperature versus laser power. Temperatures range

from room temperature to the melting point of silicon.

Figure 2.9: (a) Calculated electric field Ey profile of high-Q mode supported by double-

heterostructure cavity. (b) Calculated wavelength shift of the resonant mode due to local

oxidation of the silicon photonic crystal membrane.
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3.1 Introduction

Two-dimensional 2D PhC slabs confine light by Bragg reflection in-plane and total internal

reflection in the third dimension. Introduction of point and line defects into 2D PhC slabs

create localized resonant cavities and PhC waveguides respectively, with full control of

dispersion ab initio. Such defect cavities in high-index contrast materials, such as monolithic

silicon, possess strong confinement with subwavelength modal volumes (Vm) at ∼ (λ/n)3,

corresponding to high field intensities per photon for increased nonlinear and nonclassical

interactions. Moreover, photonic crystal cavities with remarkable high quality factors (Q)

[1, 2] have been achieved recently, now permitting nanosecond photon lifetimes for enhanced

light-matter interactions. The strong localization and long photon lifetimes in these high-

Q/Vm photonic crystal nanocavities are strong candidates for enhanced nonlinear optical

physics, such as optical bistability [3, 4, 5] and Raman lasing [6, 7], and cavity quantum

electrodynamics [8].

These applications require precise control of cavity resonances to achieve tuned spectral

overlap between the cavity modes and the gain or emitter material for controlled light-matter

interactions. The cavity resonances is strongly dependent on the fabricated lattice constant

a and the hole radius r of photonic crystals; slight differences in the photonic crystal

geometries will result in large differences (a few to tens of nanometers in wavelength) in the

dispersion characteristics. Active tuning using thermal (with associated phonon broadening

of quantum dots) [9] or piezoelectric effects [10] can be employed. A passive post-fabrication

tuning mechanism is particularly demanded, without external input power, to precisely align

the designed resonant wavelengths. Specifically, wet chemical digital etching techniques [11]

were recently developed for GaAs photonic crystal nanocavities, where the controlled blue

shift of the cavity resonance was around 2-3 nm/cycle. Additionally, condensation of Xe

[12] or self-assembled monolayers (such as a 2-nm polypeptide monolayer) [13] can be used,

where a 3-5 nm cavity red shift per monolayer was observed for the latter. To achieve

hundreds of picometer cavity resonance tuning, thin films below one nanometer is needed

to be etched or deposited.

Atomic layer deposition (ALD) is widely used for gate dielectric and capacitance mem-

ory applications due to its high dielectric constant, precise thickness control, and highly
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Figure 3.1: Steps in the ALD process involved in depositing a single monolayer of HfO2.

(a) A pulse of Hg(DEA)4 precursor flows into chamber. (b) Unreacted Hg(DEA)4 precursor

is flushed out of chamber. (c) A pulse of oxidant flows into the chamber. (d) Unreacted

oxidant is flushed out of chamber.

conformal properties. Several metal oxides such as aluminum oxide (Al2O3), hafnium oxide

(HfO2), and titanium dioxide (TiO2) have been used in low temperature ALD thin film

growth. All these materials have been widely used in optical coating applications with rela-

tively high refractive indices (at 1.55 µm, n = 1.88 for HfO2 [14], n = 1.57 for Al2O3 [15], and

n = 2.18 for TiO2 [16]) and a wide band gap with low absorption from the near-ultraviolet

to the mid-infrared. Recently, ALD has become a promising tool for the fabrication of high

quality three-dimensional photonic crystals from inorganic (opal) and organic (patterned

polymer) templates [17, 18, 19, 20]. Photonic band structure tuning in a 2D periodic lattice

was also demonstrated, with 12% tuning range and 0.005% precision based on a deposition

rate of 0.51 Å TiO2 per ALD cycle [21].

Here we investigated the post-fabrication digital resonance tuning of high-Q/Vm silicon

photonic crystal nanocavities using self-limiting atomic layer deposition of HfO2. The verti-

cal radiation from the top of the nanocavities was collected to analyze the mode resonances

after each conformal coating step with slightly decreased r/a and increased t/a ratios in
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air-bridged photonic crystal slabs. The results demonstrate wide tuning range and precise

fine control of cavity resonances while preserving high quality factors. The observed depo-

sition rate is around 0.93 Å HfO2 per ALD cycle, which leads to the red shift of resonant

wavelength with precision of 122 ± 18 pm for a resonant wavelength ∼ 1.55 µm. Total res-

onant wavelength tuning range is around 17 nm and currently only limited by the number

of deposition steps (7 steps which is equivalent to 140 ALD cycles) used in this study.

3.2 Design and Fabrication

The structure investigated is an air-bridged triangular lattice photonic crystal slab with

silicon membrane thickness of 190 nm (t/a = 0.4524) and air holes radii of 90 nm (r/a =

0.2143), where the lattice period a = 420 nm. High-Q/Vm nanocavities with five linearly

aligned missing air holes (L5) are side coupled with photonic crystal waveguides, as shown

in Figure 3.3(a). The shift S1 of two air-holes at cavity edge is 0.02a, 0.06a and 0.10a,

respectively, for three different L5 nanocavities studied, in order to tune the radiation mode

pattern for increasing the Q factors. The waveguide-to-cavity separation is five layers of

holes. The devices were initially patterned with deep UV lithography at the Institute of

Microelectronics in Singapore, and subsequently etched with SF6/C4F8-based inductively

coupled plasma (ICP) into the silicon-on-insulator substrate.

Post-fabrication processing to air-bridge the test chip was done at the Columbia Univer-

sity cleanroom. It was shown that the post-fabricaton processes used effected the quality of

the ALD film later deposited. Fig. 3.2 shows a comparison between our initial process which

had poor surface quality and improved process with better surface quality. We concluded

that the high surface roughness in Figs. 3.2 (a) and (c) was at least partially related to

the critical point drying (CPD) procedure. Optimal results involved no CPD, a lower ALD

processing temperature (150◦C) and processing steps as follows. Optical lithography with

AZ4620 photoresist was used to open a window in photonic crystal region, and 10 minutes

HF BOE (6:1) was used to release the air-bridged structures. Samples were then cleaned

using Piranha (H2SO4:H2O2 3:1) solution for 5 minutes followed by HF BOE (6:1) solution

dip for 30 seconds and deionized water rinse. Hot methanol was used as the final rinsing
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liquid to prevent stiction due to its lower surface tension. This procedure results in ∼ 6

Å of (O-H)-terminated silicon oxide on the surface of silicon air-bridged photonic crystal

slabs [22]. All samples were exposed to UV generated ozone for 10 minutes to restore the

hydrophilic character of surface immediately prior to HfO2 deposition. Figure 3.3(a) shows

the top-view scanning electron microscopy (SEM) image of air-bridged L5 cavity with S1

= 0.02a before ALD. Figure 3.5(a) shows the electric field Ey of the resonance mode mid-

slab from 3D finite-difference time-domain simulations, calculated using a freely available

software package with subpixel smoothing for increased accuracy [23].

Figure 3.2: ALD surface quality resulting from different post-fabrication processes. AFM

images of ALD surface resulting from (a) initial post-fabrication method and (b) modi-

fied post-fabrication method. SEM images of ALD surface resulting from (c) initial post-

fabrication method and (d) modified post-fabrication method.

Thin films of amorphous HfO2 are deposited conformally on silicon air-bridged photonic

crystal slabs by means of ALD at 150◦C. A lower substrate temperature down to 90◦C is

also possible with our machine, but at the expense of slow deposition rates. Films were

deposited using tetrakis (diethylamido) hafnium (IV) [Hf(DEA)4] and water (H2O) vapor
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Figure 3.3: Top-view SEM images of airbridged L5 nanocavity (a) before ALD (b) after 140

ALD cycles of HfO2 (c) angled view before ALD (d) angled view after ALD (e) schematic

of PhC cross-section before ALD (f) cross-section after ALD

in alternating pulses with N2 purge of the reaction chamber between pulses. The process

is self-limiting because the chemistry only allows one monolayer to form during each ALD

cycle. The steps involved in one ALD cycle is shown in Fig. 3.1. In Fig. 3.1 (a) Hf(DEA)4

is injected into the chamber with a 0.25 seconds long pulse. The precursor reacts with the

hydrophillic surface resulting in a single layer of Hafnium. Next, N2 is used to purged the

ALD chamber for 150 seconds. In Fig. 3.1 (c) H2O vapor is injected into the chamber

with a 0.02 second pulse. It reacts with the chip surface to create a single layer of oxygen

terminated bonds on top of the hafnium. Next, a 200 second N2 purge removes the excess

oxidant from the chamber. This completes one cycle. The next cycle follows the exact same

steps. Using SEM analysis (averaged over a large number of cycles) our observed linear

deposition rate is around 0.93 Å per cycle, which is about a monolayer of hafnium oxide.

We define a deposition step to be the number of ALD cycles performed before the test
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sample is removed from the chamber for optical measurements. We chose our deposition

step to be 20 ALD cycles. Figure 3.3(b) shows a top-down SEM image of a L5 cavity

after seven deposition steps, with the same magnification as in Figure 3.3(a). Based on

geometrical statistical analysis of high-resolution SEM images, the hole radius reduces from

92.8 ± 1.6 nm to 79.9 ± 2.7 nm [24]. Figure 3.3(c) and 3.3(d) are the angled SEM images of

air-bridged photonic crystal slabs before ALD and after seven deposition steps, respectively.

The surface is still smooth enough to support high-Q modes for L5 nanocavities after HfO2

deposition. The thickness of photonic crystal slabs increases from 190 nm to 216 nm based

on SEM estimates. These geometry changes agree well with the deposition schematic cross

section of the sample morphology drawn in Figures 3.3(e) and (f).

With slightly decreased r/a and increased t/a ratios in air-bridged photonic crystal

slabs, the photonic band gap will shift to lower frequencies. In addition to a frequency

shift, the photonic bandgap also decreases from an 11.4% to a 9.7% gap with a deposition

of HfO2 as computed using a freely available software package [25]. This can be attributed to

a lower-index contrast between the holes and the bulk dielectric. The resonant wavelength

of L5 nanocavities will undergo a redshift.

3.3 Experimental Setup

For the measurement setup, a polarization controller and a lensed fiber are used to couple

transverse-electric (TE) polarization light from tunable laser source (1480-1580 nm, wave-

length accuracy 10 pm with 200 kHz linewidth) into the waveguide. A second lensed fiber

collects the transmission from the waveguide output to check the total transmission loss

of the whole system, which is around 24.8 dBm at wavelength of 1550 nm. The vertical

radiation from the top of nanocavities collected by a 40X objective lens (NA of 0.65) and

a 4X telescope was sent to the photodetector and lock-in amplifier to analyze the cavity

resonances. In order to exclude optical nonlinear effects, low input power of 10 µW was

coupled to the waveguide. Figure 3.5(e) plots the measured cavity resonances after each

deposition step for L5 cavity with S1 = 0.02a. The quality factor Q is estimated from the

full-width at half maximum and is ∼ 49,000. From the 3D FDTD method, the Q factor
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Figure 3.4: Test setup for taking radiation measurements from on-chip PhC nanocavity

devices.
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and modal volume are calculated around 50,000 and ∼ 0.98 cubic wavelengths ((λ/n)3)

respectively.

3.4 Cavity Resonance Tuning

Figure 3.5(a) shows how the tuned resonant wavelength scales linearly with the number of

deposition steps for all three L5 cavities under investigation. Total resonant wavelength tun-

ing range is around 17 nm with the current 7 deposition steps. With more deposition steps,

wider tuning range can be obtained. The 3D FDTD simulations (inset of Figure 3.5(a))

show a linear shift in the resonant wavelength as expected from small perturbations, al-

though there is more uncertainty in the simulations due to the high spatial resolution (∼

a few nanometers or less) required to capture this digital tuning. Figure 3.5(b) plots the

resonant wavelength increment for each deposition step. An average wavelength red shift

of 2.4 ± 0.4 nm is obtained for each step, which corresponds to a resonance shift of 122

± 18 pm per HfO2 monolayer deposition. An oscillatory variation of the resonance shift

is also observed, as shown in Figure 3.5(b). This could be due to variations in the film

deposition thickness, which is not exactly the same in each step. In addition, we observe

that the resonance increment itself increases slightly from 2.2 nm to 2.7 nm based on the

linear curve fit. This is because, due to the conformality of ALD process, more dielectric

material will be added relative to the previous step due to the expanded surface area, so

that the resonance increment also slightly goes up, as illustrated in deposition schematics

in Figure 3.3(f).

With different deposition material, the precision of the resonant wavelength shift per

ALD cycle can be changed. Single monolayer of HfO2 induces an average 122 pm shift (n =

1.88 at 1.55 µm, 0.93 Å per ALD cycle at 150 ◦C). From first-order perturbation estimate,

a monolayer of TiO2 (n = 2.18 at 1.55 µm, 0.5 Å per ALD cycle at 100 ◦C [16]) can induce

approximately 54 pm shift, while a monolayer of Al2O3 (n = 1.57 at 1.55 µm, 1 Å per ALD

cycle at 100 ◦C [15]) can generate approximately a 158 pm wavelength shift.

Figure 3.5(d) illustrates the variation of quality factor Q with the number of deposition

steps for all three L5 cavities. After the first deposition step, Q values drop almost by half for
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Figure 3.5: (a) FDTD calculated electric field Ey profile of the high-Q mode supported in

the L5 nanocavity. (b) The tuned resonant wavelength scales linearly with the number of

deposition step for all three L5 cavities under investigation. Inset: 3D FDTD calculated

wavelength shift (∆λ) for increasing thicknesses (∆t) of HfO2 deposited for all three cavities

studied. (c) The wavelength increment δλ for each deposition step. (d) The variation of the

quality factor Q with the number of deposition steps for all three L5 cavities. (e) Measured

cavity resonances after each deposition step (”1” to ”7” in legend; ”0” is unperturbed) for

L5 cavity with S1=0.02a.
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all cavities. This is because the ALD deposited film has a larger roughness initially, leading

to more surface and air hole sidewall roughness scattering. The larger roughness is caused

by the formation of an interfacial layer between the Si and HfO2 layers. With subsequent

deposition steps, the conformal deposition gives a smoother film surface, permitting the Q

values to recover back to almost their initial values. The Q values always maintain at least

20,000 or more during the deposition steps; this characteristic is also observed in our 3D

FDTD simulations. This demonstrated shift in the resonance, while preserving the cavity

Q, in response to a monolayer deposition also suggests these cavities as possible integrated

sensors with pronounced responsivity to environmental conditions.

3.5 Selective Tuning

The ALD tuning process previously described is a global process, i.e. it affects the entire

chip simultaneously. This is a useful tool for correcting a uniform wafer-wide fabrication

errors. But other fabrication errors require more localized tuning. We have proposed

and investigated a selective ALD process can be used to tune individual cavities or regions

without perturbing nearby structures. The process is described in Fig. 3.6 (a). We first start

with chip which has already been airbridged. Because of this, extra precautions must be

taken to avoid damaging the delicate Si PhC membrane. First the chip is carefully cleaned

acetone, isopropanol and water. In order to prevent damage to the delicate suspended

membrane, the chip should not be allowed to dry during the cleaning process. The chip

should be placed in methanol heated on a hotplate at ∼ 80◦C before being allowed to dry

in air on the hot plate. Next PMMA e-beam resist is spin-coated onto the chip. The areas

to be tuned are patterned using e-beam lithography and carefully developed, once again

ensuring there is minimal surface tension during drying. Next the ALD is used to deposit

discrete monolayers of HfO2 using the process described earlier in this chapter. Finally, the

PMMA is removed in acetone. Note that possible alternatives to e-beam patterning include

direct-write laser patterning and photolithography.

Fig. 3.6 (b), demonstrates how selective ALD tuning can be used for cavity resonance

matching, which is important for fields such as the optical analogue to electromagnetically-
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induced transparency (EIT) and cavity quantum-electrodynamics(QED). The resonance of

the cavity on the right has been digitally tuned by ∼ 2 nm to match the resonance of the

cavity on the left. The cavity resonance can be tuned by even finer increments by patterning

a small sub-cavity sized region for selective ALD deposition as shown in Fig. 3.7. Due to

the smaller index perturbation the resonance tuning increment of a single monolayer will

also decrease.

Figure 3.6: Selective ALD (a) process steps (b) selective resonance tuning of a single high-Q

cavity. Inset: the left cavity is tuned while the right cavity is unperturbed

3.6 Conclusions

In summary, we have developed a technique for fine tuning the resonant wavelengths of high-

Q/Vm silicon photonic crystal nanocavities digitally using ALD of HfO2 monolayers. The

results demonstrate a nearly linear tuning across a range of around 17 nm. The tuning range

is currently limited only by the number of deposition steps used in this study. The tuning

precision is 122 ± 18 pm per ALD cycle while preserving high quality factors of resonant

modes in L5 photonic crystal nanocavities. With selective patterning, HfO2 monolayers

can be selectively deposited only within the nanocavity region using low-temperature ALD

[26] for even finer tuning control. The highly controlled, digital tuning of high-Q modes
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Figure 3.7: SEM image of L3 nanocavity coated with PMMA. A 250 nm diameter hole has

been patterned in the center of the cavity for selective ALD tuning.

in silicon photonic crystal nanocavities allows for practical realization of optical devices

involving multiple resonances and matching transitions between quantum dots and optical

resonances for cavity quantum electrodynamics.
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Chapter 4

Atomic Layer Deposition

Slow-Light Tuning
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4.1 Overview

Dramatic reduction of the group-velocity of light has been demonstrated in atomic and solid-

state systems [1, 2, 3, 4, 5]. This reduction is accompanied by a large increase in light-matter

interaction, although typically at the expense of bandwidth. Slow-light in photonic-crystal

(PhC) waveguides, through strong structural dispersion, allows larger bandwidth for poten-

tial applications such as optical buffering and switching [6, 7, 8, 9] , disordered localization

[10, 11], and nonclassical optics [12, 13]. The dispersion-to-loss ratio [14] is comparable to

that of single-mode optical fibers, allowing strong enhancement of nonlinear processes on

the chip, such as third-harmonic generation, self-phase modulation, Raman and parametric

processes [15, 16, 17, 18, 19]. However, in order to operate at a particular frequency, these

devices often possess stringent fabrication requirements that are difficult to achieve using

current e-beam or deep-UV lithography; even slight fabrication deviations at the nanome-

ter level can shift the tight operating bandwidths of the integrated photonic devices [20].

Active approaches to tune photonic elements include aligned external pump laser beams

[21], integrated piezoelectric elements [22] or micro-heaters [6]. To maintain the shifted

dispersion or resonances in active tuning approaches, a finite external power must be con-

tinuously applied to the photonic elements. Alternatively, passive tuning approaches have

been examined, such as GaAs wet-etching [23], nitrogen or Xe condensation in cryostats

[24, 25], self-assembled polypeptide monolayers [26] and electron beam induced compaction

[27]. Recently we examined an ALD approach to tune PhC microcavity resonances with

a precision of ∼ 122 pm per hafnium oxide (HfO2) layer [28]; additionally, the tuning of

photonic bands in silicon-on-insulator slab PhC structures has also been examined with

titanium dioxide deposition [29]. Here we propose and demonstrate for the first time a pas-

sive post-fabrication scheme for tuning dispersion in slow-light PhC waveguides by utilizing

a digital self-limiting deposition of HfO2 monolayers.

4.2 Experimental Setup

To study the effect of passive tuning of the slow-light regime, we designed PhC waveguides

and Mach-Zehnder interferometer (MZI) devices for transmission measurements in the near-
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Figure 4.1: Test setup for ALD dispersion tuning studies. Polarization of light from the

laser source (supercontinuum / tunable laser) is controlled by a polarizer and waveplate

and coupled to the photonic crystal chip with a polarization maintaining lensed fiber. The

output light is sent to a photodetector or optical spectrum analyzer. The chip is imaged

with a 40X objective lens and IR camera.
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Figure 4.2: SEM image of (a) PhC waveguide and strip waveguide interface (b) MZI struc-

ture with PhC waveguide on upper section and strip waveguide on lower section. (c) PhC

before deposition (upper image) and after 160 ALD layers of HfO2.

infrared [6, 30]. Each MZI device consists of a Y-splitter connected to a strip waveguide

on one arm and to a PhC waveguide on the other arm, as shown in Figure 4.2(b). The

interference fringes from MZI spectral measurements are used to determine group-velocity

using a procedure described below. The PhC waveguides are W0.9 line defects created by

removing a single row of air holes in a hexagonal lattice of air holes along the Γ-K direction

and then decreasing the defect width by 10%. The lattice parameter of the PhCs (a) is

410 nm with air hole radii of 108 nm (r/a ratio of 0.265). The structures were fabricated

by e-beam lithography on SOI substrates with a silicon slab thickness of 220 nm (t/a ratio

of 0.537). The PhC waveguide is 250 µm long and butt-coupled to strip waveguides at

both ends, and has previously demonstrated low-loss of 2.4-dB/mm [22]. The underlying

oxide was subsequently removed by HF etching. The silicon strip waveguides are tapered

adiabatically as they connect to polymer couplers which are used for low-loss coupling to

off-chip polarization-maintaining tapered-lensed fibers [31].

Figure 4.3(a) shows the projected band structure of our PhC waveguide, computed

through 3D plane wave expansion [32]. In order to get the best fitting to experimental

data a procedure described in reference [30] was used. Within the band gap, there are two

TE-like modes (even and odd modes). The even mode exhibits slow-light characteristics

near the band-edge where dω/dk becomes increasingly small, resulting in large group indices,

ng = c(dk/dω). The corresponding projected band structure for the TM-like mode is shown

Figure 4.3(b) where, although no band gap exists, one observes a Bragg stop gap due to
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Figure 4.3: Band structures calculated using plane-wave expansion method. Solid-lines

correspond to no HfO2 deposition. Dotted-lines and dashed-lines correspond to 80 and 160

atomic layers of HfO2 deposition, respectively. (a) Projected band diagram for TE-like

W0.9 waveguide modes (b) Corresponding TM band diagram. Note that the vertical and

horizontal ranges are different than in (a).
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the periodic modulation of the effective index in the propagation direction [33].

4.3 Fabrication

In order to tune the structures, sequential conformal deposition of HfO2 atomic layers was

performed. HfO2 was chosen as the ALD material due to its wide band gap, low optical

absorption [34], and direct CMOS-compatibility having been used as a high-k dielectric gate

insulator in the 45 nm technology node [35]. Prior to each deposition step, samples were

cleaned with acetone, isopropanol and UV ozone. The UV generated ozone was used to cre-

ate a hydrophilic surface favorable for the ALD process. Monolayer films were deposited at a

temperature of 200 ◦C using two precursors, tetrakis(diethylamido)hafnium(IV) [Hf(DEA)4]

and water (H2O) vapor, in alternating pulses. Nitrogen gas was flowed through the reaction

chamber during the entire process. Lower temperature depositions are also possible with

the trade-off of longer deposition times. The process is self-limiting and deposits one atomic

layer at a time, with deposition rate of approximately 0.1 nm per minute. As shown by the

SEM image in Figure 4.2(c), the ALD deposited film is high quality and uniform even inside

of the air holes. Because ALD is a conformal process, each cycle incrementally decreases

the hole radii and increases the slab thickness. The increase in brightness around the hole

after ALD deposition is due to charging effects in the HfO2 during SEM imaging.

4.4 Slow Light Tuning

Digital tuning was performed in increments of 40 atomic layers, with 1.05 ± 0.05 Å thick-

ness for each HfO2 atomic layer [36]. After each of these deposition steps (40 atomic

layers), transmission measurements were performed for both the TE and TM polarizations.

Light from a supercontinuum source was coupled into the on-chip polymer couplers using

a polarization-maintaining tapered-lensed fiber. The output from the chip was similarly

coupled to a tapered-lensed fiber and measured with an optical spectrum analyzer in the

spectral range of 1300 to 1600 nm. The measured transmission spectra were normalized by

the transmission spectra through a reference strip waveguide.

Figure 4.4(a) shows a series of TE transmission spectra after sequential ALD deposi-
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tion steps. A wide bandwidth transmission region extends across the lower wavelength

range followed by a sudden drop in transmission around 1514 nm for the pre-deposition

measurement. The slow-light regime, which is close to onset of the waveguiding mode, is

characterized by high group-indices as shown in figure 4.5(a). We observed a deterministic

red-shift in the slow-light TE-like mode onset edge from 1513.8 nm (before ALD tuning)

to 1533.7 nm (after 160 ALD deposition cycles), with the slow-light edge determined by

a 10-dB drop in transmission corresponding to a group index of approximately 40. The

inset of Figure 4.5(a) illustrates that the red-shift is linear, with a 140 ± 10 pm per mono-

layer control of the slow-light mode onset edge. The initial deposition step was not used

in calculating this value because the slow-light red-shift in the first deposition step was

slightly smaller than subsequent deposition steps. This is likely due to the formation of

an 8-10 Å interfacial layer between HfO2 and silicon during the first 20 ALD deposition

cycles [36, 37]. In addition, on a different chip we have also tuned the slow-light edge across

the entire optical communications C-band (and into part of the L-band), with tuning from

1530.6 nm to 1597.8 nm with 450 ALD cycles, i.e. 150 ± 10 pm per monolayer.

Figure 4.4(b) shows a series of TM transmission spectra after sequential ALD deposition

steps. Unlike the TE-like slow-light mode which is found in the TE band gap, the TM-like

slow-light modes are found on either side of the stop gap (illustrated by the dashed-lines

in the computed band structure of Figure 4.3(b)). The TM-like modes are also red-shifted

with the ALD deposition. The red-shift for the shorter-wavelength TM slow-light mode is

likewise linear with control from 1370.7 nm to 1403.5 with 160 ALD layers, or 250 ± 10

pm per monolayer. The larger TM shift is due to the larger modal area and overlap with

the HfO2 monolayers. In comparing the slow-light tuning of the TE and TM modes, we

note that there is a differential shift of 110 ± 30 pm per monolayer. This difference can be

used for exact tuning of the pump-Stokes frequency spacing, in order to match the optical

phonons (15.6-THz) in single-crystal silicon, for cross-polarized Raman amplification [33].

Along with PhC waveguide transmission measurements, MZI transmission measure-

ments were taken to determine group indices using a frequency-domain interferometric

technique [6, 30]. The MZI structure is shown in Figure 4.2(b). The results of the measure-

ments (over a total of 160 atomic layers) are summarized in Figure 4.5(a). The solid lines
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Figure 4.4: (a) TE transmission measurements for different ALD tuning steps. The different

colors denote the various ALD layers. (b) Corresponding TM transmission measurements.



CHAPTER 4. ATOMIC LAYER DEPOSITION SLOW-LIGHT TUNING 77

are from exponential fitting of group indices which were in-turn deduced from the spec-

tral positions of minima and maxima in the MZI transmission with: ng(λ) = λmin λmax /

(2L(λmin - λmax )+ ng
ref , where L is the PhC waveguide length [6]. Both before and after

ALD controlled tuning, group indices of more than 60 were consistently obtained in our

measurements.

4.5 Higher Order Dispersion

Higher order dispersion was also studied because of the important role it plays in pulse

propagation in slow-light PhC waveguides [6, 38]. At low group-velocities there can be a

significant increase in temporal pulse width and pulse shape asymmetry due to higher order

dispersion [39]. We investigated the effects of ALD on higher order dispersion, particularly

the group velocity dispersion (GVD; λ2/2πc)(∂ng/∂λ) and third-order dispersion (TOD;

λ2/2πc)(∂(GVD)/∂λ). The GVD and TOD results for the different ALD deposition steps

are summarized in Fig. 4.5(b) and 4.5(c) respectively. The results show that the GVD and

TOD do not change appreciably while the slow-light mode onset edge is deterministically

tuned by ALD, with a variation of only 3% when determined from experimental group-index

data which has been fitted. This small variation is not necessarily due to ALD tuning but

can also originate in part from uncertainty in fitting the data.

4.6 Tuning Range

Figure 4.6 shows the slow-light TE-like mode onset edge is tuned across a wavelength range

of approximately 20 nm, from 1513.8 nm to 1533.7 nm. On a separate chip, the slow-

light edge has been tuned across a much wider wavelength range covering the entire optical

communications C-band and part of the L-band using deposition steps of 150 atomic layers.

This is shown in Figure 4.6. The slow-light edge is tuned from 1530.6 nm to 1597.8 nm with

450 atomic layers of HfO2. On this chip, a smaller average red-shift per monolayer was also

observed during an initial 20 monolayer deposition. This is likely due to the formation of

an 8-10 Å interfacial layer between HfO2 and silicon.



CHAPTER 4. ATOMIC LAYER DEPOSITION SLOW-LIGHT TUNING 78

Figure 4.5: (a) Group-index measurements from MZI devices. The number of atomic layers

deposited is indicated by the color of the circles. Refer to the color code described in

Figure 3(a). The solid lines are provided for clarity. Inset: measured slow-light (SL) mode

onset (red circles) and numerical simulations (blue dashed line). (b and c) Measured group-

velocity dispersion and third-order dispersion for the different ALD tuning steps.

4.7 Propagation Losses

Surface roughness is recognized as a significant factor in PhC waveguide losses [40]. Previous

work [41] using similar waveguides has demonstrated a decrease in propagation loss as

the size of the hole is decreased, which is attributed to the smaller surface area which

results in reduced scattering. Ultra-smooth ALD films have also been demonstrated to not

significantly affect the quality factors of optical resonators [28]. Atomic force microscopy

studies by Puthenkovilakam et al. [37] have confirmed deposited HfO2 films can have

a root-mean-square roughness as small as 2.7 Å, which is much smaller than the silicon

sidewall roughness of the PhC structures as fabricated [42]. If extra surface roughness was

introduced due to the deposition, an increase in propagation losses would steadily reduce the
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Figure 4.6: TE transmission measurements before HfO2 ALD and after deposition in in-

crements of 150 atomic layers. The slow-light mode onset edge is tuned across the C-band

and also across part of the L-band.

maximal group indices which can be resolved by the interferometric measurements. Since

the ranges of group-index values extracted are comparable for each deposition thickness,

our measurements suggest that the addition of ALD HfO2 to the PhC waveguide structure

does not introduce extra roughness or increase the propagation losses.

Another factor which can affect the propagation loss of PhC waveguides is the spa-

tial confinement of slow-light modes. Increased field overlap with the sidewall will cause

increased light scattering in the presence of roughness [40]. The effects of ALD on confine-

ment were studied for various group indices using 3D plane wave expansion computations

[32]. Figure 4.7 shows the average effective modal area of slow-light modes for two different

group-indices (of 50 and 6) at different deposition steps. Figure 4.7(b) shows a cross-section

of the slow-light mode (at a group-index of 50) through the air-clad silicon PhC waveguide

before deposition and after deposition of 160 HfO2 atomic layers. Note that the slow-light

mode is less localized than the waveguide mode at a group-index of 6, suggesting potentially

higher sensitivity to ALD deposition. For the group-index of 50, the effective modal area

increases from 1.79×10−13 m2 to 2.03×10−13 m2, i.e. by 13.4% after 160 atomic layers.
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Figure 4.7: (a) Average effective area of PhC waveguide slow light modes with ALD depo-

sition at group-index of 50 (red line) and group-index of 6 (blue line). Calculated modes of

W0.9 waveguide at (b) group-index of 50 (c) group-index of 6. The blue dotted line indi-

cates where the cross-sections are taken perpendicular to the Y-Z plane. The resulting Y-X

cross-sections before and after 160 atomic layers of HfO2 have been deposited are shown

below the Y-Z figures.
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For a group-index of 6, the effective modal area also increases with ALD depositions (from

1.24×10−13 m2 to 1.32×10−13 m2), albeit a smaller increase of 6.4% compared to the slow-

light mode. As discussed previously, the deposition is conformal and does not introduce

extra roughness; thus, the fabrication-induced roughness stays the same (or decreases) with

increasing number of layers. However, the higher refractive index of HfO2 compared to air

results in a slightly graded structure wherein the mode interacts less with the surface. As

shown in Figures 4.7(a), the average effective modal area increases at a slower rate than the

increase in cross-sectional area of the dielectric material due to the conformal ALD coating

(25.5% after 160 ALD layers) Thus, the conformal deposition reduces Rayleigh scattering

thereby reducing the propagation loss.

4.8 Coupling into Slow Light

As group indices increase, coupling into slow-light PhC waveguides become increasingly

difficult. This is a serious problem which places limitations on practical slow-light devices.

It has been shown that surface terminations have a significant effect on the dispersion of

surface states. This in turn affects the slow-light coupling [43, 44]. When surface states

are tuned in resonance with the PhC waveguide slow light mode, transmission is improved.

This is analogous to impedance matching in electronic circuits.

Here we investigated whether slight adjustments to surface states at the interface be-

tween the PhC lattice and single-mode strip waveguide using ALD could improve slow-light

coupling. We investigated 3 different PhC terminations (τ = 0, 0.5 and 0.75) as shown in

Fig. 4.8. Coupling coefficients were derived from the minima and maxima of interference

fringes in our MZI measurements, using the equation Imin/Imax = (1 − A)2/(1 + A)2. In

addition to coupling loss, these values also incorporate other kinds of loss such as scattering

loss. The coupling coefficients before and after ALD are shown in Fig. 4.8 (b) and (c),

respectively. It appears that the slight changes in surface termination by 160 atomic layers

of deposition were insufficient to cause a noticeable change between the three termination

types. But there is a slight decrease in coupling across all three termination types after

deposition. This is likely due to increased waveguide propagation loss rather than a change
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in surface state coupling.

Figure 4.8: (a) SEM images of different PhC terminations at the interface between the

PhC lattice and strip waveguide. From left to right: τ = 0, τ = 0.5 and τ = 0.75. (b)

Experimentally determined coupling coefficients as a function of group index (log-log scale)

before ALD. Points correspond to the following surface terminations: τ = 0 (red), τ =

0.5 (green), and τ = 0.75 (blue). c) Coupling coefficients after 160 atomic layers of HfO2

deposited.

4.9 Conclusions

In conclusion, we have demonstrated the control of slow-light dispersion characteristics of

W0.9 PhC waveguides using a self-limiting monolayer precision process. High group indices

were digitally tuned with sequential atomic layer depositions without increasing propagation

losses. A red-shift of 140 ± 10 pm per atomic layer was observed for the slow-light mode

onset edge, while no appreciable change was observed in the GVD and TOD. A differential
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shift of 110 ± 30 pm per monolayer in slow-light tuning of the TE and TM modes was

observed. This difference can be used for exact tuning of the pump-Stokes frequency spacing

for Raman amplification. As a low temperature post-fabrication process, the atomic layer

deposition of HfO2 is an enabling passive tuning technology for many practical chip-scale

slow-light devices and modules.
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5.1 Overview

Hydrogen annealing of silicon-on-insulator (SOI) wafers was first studied to improve wafer

bonding technology. These studies showed that hydrogen annealing could improve the

surface roughness to an extent comparable to chemical mechanical polishing [1]. More

recently, hydrogen annealing has received interest in silicon photonics for its ability to

improve post-etching sidewall roughness as well as its ability to create rounded features[2, 3].

Improved sidewall roughness can decrease the propagation loss in waveguides and increase

the quality factor of optical resonators.

The hydrogen annealing process involves placing substrates in a high temperature hy-

drogen environment. Often, low pressures are also used. The smoothening of surfaces and

rounding of sharp corners is the result of atom migration driven by surface energy mini-

mization. Gibbs 1 described the equilibrium shape of a droplet or crystal as depending on

the minimization of the quantity ∆Gi:

∆Gi =
∑
n

Anγn (5.1)

An is the area of the nth crystal face. γn is the surface energy or surface tension per unit

area of the nth face and it can also be thought of as the amount of work needed to create

a new surface from bulk material [4]. From this equation, it can be seen that round shapes

are often thermodynamically favorable because they minimize the overall surface area.

Thermal reflow techniques have been used on optical microstructures made of amor-

phous materials such as oxide and polymers. Fig. 5.1 is an SEM image of a surface tension

induced silica microcavity made by thermal reflow using a CO2 laser. The original shape

of this device was a microdisk but upon reflow it formed into a toroid. The toroidal shape

is in thermodynamic equilibrium and will not be effected by further thermal processing [5].

Armani has created similar toroidal microcavities with Q over 100 million [5]. The equilib-

1Joshiah Willard Gibbs was awarded the first Ph.D. in engineering in the United States in 1863 from

Yale University. One year later, the King’s College School of Mines was founded. The school is now known

as the Columbia University Fu Foundation School of Engineering and Applied Science.
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Figure 5.1: Silica microtoroid fabricated by laser induced thermal reflow. The pedestal is

single-crystal silicon.

rium shape of reflowed devices is not purely geometry dependent but can also be material

dependent. Grossman has demonstrated that when poly(methyl methacrylate) microdisks

are reflowed they adopt a self-limiting conical shape. These conical microresonators have

been shown to have a Q of 2 million [6].

Unlike amorphous materials, crystalline materials often show directional preferences

during fabrication processes such as etching. Thermal reflow can also have directionally

dependent effects on single-crystal materials but this will be discussed later. Maleki and

Mailis have thermally reflowed a number of single-crystal optical materials including lithium

niobate, lithium tantalate, sapphire and calcium fluoride [7, 8]. The optical resonators in

Maleki’s experiments were fairly large, on the millimeter scale. A summary is shown in

Table 5.1.

The material we are most interested in is single-crystal silicon and Wu has fabricated

a 39 µm diameter silicon microtoroid with a surface roughness of less than 2.6 Å. While

the device has atomic level smoothness, it’s Q-factor is unexpectedly low at 1.1×105 [12].

Due to it’s large size, the microtoroid’s Q is not radiation limited. The vast improvement

in surface roughness should increase the Q significantly but this was not observed. By
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Table 5.1: Thermal reflow on amorphous and crystalline optical materials

Material Atomic Device Q-factor Ref.

Structure

Silica amorphous microtoroid 1×108 [5]

(SiO2) (r=47µm)

Poly(methyl methacrylate) amorphous conical cavity 2×106 [6]

(PMMA) (r=40µm)

Arsenic Trisulfphide amorphous waveguides n/a [9, 10]

(As2S3)

Lithium Niobate crystalline toroid > 2×108 [7, 8]

(LiNbO3) (r∼3mm)

Lithium Tantalate crystalline toroid > 2×108 [8]

(LiTaO3) (r∼3mm)

Sapphire crystalline toroid > 1×109 [8]

(Al2O3) (r∼3mm)

Calcium Fluoride crystalline toroid 4×108 [11]

(CaF2) (r=50µm)
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comparison, atomically smooth amorphous silica microtoroids have a Q of 1×108 [5] and

even unannealed silicon microdisks have been fabricated with a Q of 3×106 [13].

Hence, the purpose of this study was to better characterize the effects of hydrogen

annealing on improving the quality of silicon microresonators. If indeed hydrogen annealing

failed to improve the resonators performance despite achieving atomic-scale roughness it was

of interest to understand what other factors were limiting the Q.

5.2 Fabrication

The silicon microdisks used in this experiment were fabricated by two different methods,

both on SOITEC SOI wafers with 250 nm of slilcon, approximately 2 µm of oxide, and p-type

doping concentration of 1016 cm−3. Some of the disks were fabricated using high quality

photolithography at IME. Other disks were fabricated in the Columbia cleanroom using

the NPGS e-beam lithography system. While e-beam generally produces higher quality

devices, the IME devices had superior surface and sidewall roughness due the limitations of

dry-etching equipment as well as relatively high particle count in the Columbia cleanroom.

The different surface roughnesses were purposely fabricated in order to help evaluate the

effects of hydrogen annealing.

5.3 Hydrogen Annealing

The annealing furnace used in this experiment was part of the laboratory of Stephen O’Brien

and the hydrogen annealing was done with Limin Huang, a research scientist in the group.

Samples were placed on a cermanic boat and inserted into the middle of a 1-inch diameter

quartz tube furnace. Hydrogen gas at a pressure of 760 torr was flowed through the tube

at a rate of approximately 500 cm3/min. On some runs, inert argon gas was added to the

gas flow in order to reduce the hydrogen content (40 torr H2 : 720 torr Ar). For safety

reasons as well as to prevent oxidation, care was taken to stop oxygen from leaking into

the system. The furnace temperature controller allowed for steady ramp up and cool down

of the temperature. Experiments were performed at atmospheric pressure as there was no

vacuum on the system. Work by other groups has shown that surface smoothening using
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hydrogen annealing at atmospheric pressures. The tradeoff has been the longer annealing

times required [14].

Annealing was performed at temperatures up to 950◦C which was the upper limit for

this particular furnace. A temperature ramp up rate of 20◦C/min was used. The sample was

held at the annealing temperature for periods ranging from 1 to 6 hours. After annealing,

the sample was allowed to cool down slowly overnight in order to minimize thermal stress.

Prior to the experiment a RCA clean was performed on the sample. In addition, the quartz

furnace tube was physically cleaned and then purged with an argon gas flow for 1 hour to

remove contaminants.

5.4 Discussion

Fig. 5.2 shows SEM images from a microdisk surface taken before and after hydrogen an-

nealing. It is apparent that instead of decreasing surface roughness, the thermal processing

has actually increased roughness. This phenomenon occurred throughout the range of dif-

ferent process parameters used. We found this was very puzzling at first but later became

aware that some other research groups had actually observed similar phenomena during

hydrogen annealing [15, 16]. For example, both Yanase and Habuka observed rectangular

shaped pitting in (001) silicon and triangular shaped pitting in (111) silicon [17]. We also

observed rectangular pitting with our chips fabricated on (001) silicon.

The cause of increased surface roughness is due to hydrogen etching of the silicon by

two reactions:

Si + 2H2 (g) −→ SiH4 (g) (5.2)

Si + H2 (g) −→ SiH2 (g) (5.3)

But if the etching of silicon is uniform, it should not cause pitting and surface nonuniformi-

ties. Another reaction also plays an important role, the etching of oxide by the hydrogen gas.

The etch rate of the oxide is slower than for silicon and also more temperature dependent
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Figure 5.2: SEM images of silicon microdisk surface and edge; (a) before hydrogen annealing

(b) after hydrogen annealing. Scale bar in both images represents 500 nm.

[15].

SiO2 + H2 (g) −→ SiO (g) + H2O (g) (5.4)

The difference in etch rates is the cause of pitting during hydrogen annealing. Residual

islands of oxide on the surface will serve as etch masks as the silicon is etched away. Even

a native oxide as thin as 4 Å can result in increased surface roughness.

In our experiment we performed a RCA clean to remove the native oxide and metallic

contaminants before putting the sample into the annealing furnace. But it required 10-15

minutes to transport the sample from the acid hood in the cleanroom to the laboratory

with the furnace. It is also possible that trace amounts of moisture and oxygen from the

hydrogen gas tank could have resulted in thin oxide formations.

The solution to this problem would be to anneal at higher temperatures where the

etch rate for oxide is higher. Indeed, Habuka observed less surface roughness with higher

temperature annealing [15]. In addition, a lower pressure would decrease the etching of both

silicon and oxide and also increase atom migration and rounding effects [2]. Unfortunately,

neither of these two options was available to us due to the inherent limitations of the furnace
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being used.

Carbon contamination may have also played a role in increasing roughness. The forma-

tion of carbon-silicon bonds on the surface could lead to micromasking, similar to residual

oxide islands previously described. Carbon-silicon bonds can be difficult to break, requir-

ing high temperatures of over 1200◦C [14]. The SEM image in Fig. 5.3(a) shows carbon

nanotube growth, the result of carbon contamination in the furnace flow chamber. The

furnace had been previously used for carbon nanotube growth but was rigorously cleaned

and purged before this experiment. Even when the quartz tube was replaced with a new

and unused tube, carbon nanotube contamination was still observed.

In addition to surface roughness effects, linear crystallographic defects known as dis-

locations were observed after hydrogen annealing. Stresses are generated in the substrate

by large temperature gradients during thermal processing. When stresses are sufficiently

high, silicon bonds can break and reform with adjacent atoms resulting in a misalignment

of atoms in the crystal lattice. These dislocations must exist as complete loops and cannot

end inside of the crystal. Hence, they are visible on the crystal surface as seen in the SEM

images in Fig. 5.3. While dislocations are generally atom-scale in width, the dislocations in

the SEM image appear to be much wider. Indeed, it is the hydrogen induced etching which

exposes the dislocations, which otherwise might not be observable by SEM. Preferential

etching of silicon around the dislocations is attributed to weaker atomic bonds caused by

higher stress fields around the dislocations. This results in wide trenches along the path

of the dislocation. Where the dislocation changes direction and goes into the plane of the

crystal, deep holes are also etched following the dislocation down into the crystal.

5.5 Conclusions

The results from the hydrogen annealing were unexpected. Upon further analysis, it is

believed that the resulting surface morphology was due to equipment limitations. For

surface roughness improvement, a higher temperature and lower pressure are needed. In

addition, a higher purity hydrogen gas flow and prevention of carbon and other contaminates

into the flow tube is also necessary.
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Figure 5.3: SEM images of silicon surface after hydrogen annealing. Pitting, dislocations

and carbon nanotube contamination can be seen. The region in (a) enclosed by the dotted

line is magnified and shown in (b). The scale bar in (a) is 10 µm and in (b) is 1 µm.
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While this experiment failed to meet our expectations for improving surface roughness,

it did provide us with some valuable insights. One of the motivations for this experiment

was to understand the unusually low Q values observed by Wu in atomically smooth hy-

drogen annealed silicon microtoroids [12]. Our results give a potential explanation for this.

The presence of dislocations and possibly also point defects caused by the stresses in high

temperature processing can degrade the performance of single-crystal nanophotonic devices.

These atomic-level defects might serve as color centers resulting in increased light absorp-

tion. They might also result in increased light scattering. These are potential areas for

further research.

An alternative form of thermal processing could potentially circumvent these thermal

stress issues. Localized thermal processing via lasers (as discussed earlier in this thesis) can

minimize thermal stresses. For SOI devices, the different coefficients of thermal expansion

between silicon and oxide can result in large stresses during thermal processing. Since

thermal expansion is proportional to the length of a heated object, a smaller heating region

will minimize the atomic displacements experienced between the silicon and oxide layers.
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6.1 Overview

Whispering gallery mode (WGM) optical microcavities such as microspheres, microtoroids

and microdisks have been widely studied and applied to applications such as low-threshold

microcavity lasers [1, 2, 3] and biomolecular sensors [4, 5]. Thermal techniques have been

employed to improve resonator quality factors by improving the smoothness of the micro-

cavity surfaces. Examples of this are polymer reflow for conical polymeric microcavities [6]

and CO2 laser assisted reflow for silica microcavities [5]. Larger-sized calcium fluoride mi-

crodisks (millimeter-scale) have shown Q > 3×105 [7]. Thermal reflow has also been studied

with chalcogenide glass waveguides [8] as well as single-crystalline lithium niobate struc-

tures [9]. Similarly, thermal methods such as hydrogen annealing have also been applied to

silicon microcavities [10].

WGM resonators made of silicon have several disadvantages to other material systems

but can be more readily integrated into the silicon photonics platform. For example, direct

bandgap materials such as gallium nitride are more ideal for microdisk lasers than silicon

which is an indirect bandgap material [1]. Silica based microtoroids can also be made

into lasers by applying an Erbium-doped sol-gel thin film around the resonator [11]. And

similarly for silicon rich oxide based microtorids by doping with silicon nanocrystals [3].

Another disadvantage of silicon-based WGM resonators is that higher quality factors have

been achieved in other systems. Silica microtoroids have shown Q values of 4x108 whereas

silicon microtoroids fabricated via hydrogen annealing have only shown Q-values of 1.1x105.

The diameter of the disks were 29 µm and 39 µm, respectively [12, 10]. Despite the lim-

itations, silicon photonics is very much an active area of research due to its commercial

potential.

Rayleigh scattering, the elastic scattering of photons from subwavelength scale particles

or density fluctuations, can adversely affect optical performance of silicon microcavities. The

source of edge roughness can be attributed to fabrication, particularly the dry etching step.

Using resist reflow and low-damage plasma dry etch Q factors of 5x106 have been achieved.

For disks having a diameter larger than 10 µm the Q-limiting factor is no longer Rayleigh

scattering but rather surface state absorption and bulk absorption [13]. Smaller microdisks

are more susceptible to the effects of surface roughness. Improving the Q factors for small
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diameter microdisks is important for applications requiring high-Q to modal volume ratio

(Q/Vm).

Research by Chou’s group has shown that the sidewall roughness of silicon devices can

be substantially decreased by excimer laser assisted melting and re-solidification, a process

they refer to as self-perfection by transient liquefaction [14]. As a processing tool, excimer

laser has several unique advantages. Roughness is improved by a single shot lasting only

20-30 ns. Time-resolved reflectivity measurements using a HeNe laser show that melting

can begin to occur after 1 ns and the silicon can stay molten for over 200 ns [15]. Melting

only occurs on the top silicon surface to a depth of 50-300 nm. Hence there will be minimal

effect on any underlying structures. By comparison, longer wavelength lasers such as 532-

nm green lasers, have a much longer coupling depth and will tend to heat up the bulk

substrate as illustrated in Fig. 6.1 1. The excimer beam is strongly absorbed by silicon but

only weakly absorbed by oxide because the bandgap is too large. The band gaps of silicon

and oxide are 1.12 eV and 8.9 eV, respectively. Also the spot size of the excimer beam can

be varied with a mask. The mask size can range from microns up to millimeters and allow

for selective exposure to certain locations.

Figure 6.1: Comparison between the coupling depth of the green laser and excimer laser in

SOI substrates. Not drawn to scale. The top silicon layer is 250 nm, the oxide layer is 3

µm, and the bulk silicon substrate is ∼ 750 µm.

1Our work with laser-assisted local oxidation in Chapter 2 shows that it is possible to achieve localized

surface melting with the green laser if the beam is focused to a small spot size (∼ 2.5 µm radius).
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6.2 Fabrication and Experiment

In this work, we investigate using excimer laser to decrease the edge roughness of silicon

microdisks and microrings in order to improve the properties of optical resonators. The

devices were fabricated on SOI wafers with a 250 nm top layer of single-crystal silicon and

3 µm of thermal oxide. The microdisk is a good device for studying the effects of surface

roughness because the optical confinement of its whispering-gallery mode can be varied by

changing the disk radius. This allows the effects of losses due to sidewall roughness to

be separated from other loss mechanisms [16]. Microrings were also studied due to their

different geometry and hence silicon melting profiles. Note that microdisks are suspended

by a central oxide pedestal, whereas microrings are directly on top of oxide. In addition,

microrings should be more sensitive to sidewall roughness effects as they have both inner

and outer sidewalls.

Figure 6.2: Dark-field optical microscope image of highly non-uniform silicon surface mor-

phology after excimer exposure if BOE dip prior to exposure is not performed.

Several different fabrication methods were employed for our microdisk and microring

devices, in order to create different initial sidewall roughnesses. SEM image analysis of

devices fabricated by IME (process described in previous chapters) using high-quality pho-

tolithography showed sidewall roughenss of less than ∼ 3 nm. Microdisks fabricated in
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the Columbia Cleanroom and dry etched at Brookhaven CFN showed a far higher initial

sidewall roughness. In this process, AZ5214E resist was spin coated on the SOI substrates.

A Suss contact aligner was used for pattern transfer from a chrome mask (PhotoSciences,

Inc.) with 50 nm roughness to the substrate. After development, a thermal reflow step was

applied in order to reduce the sidewall roughness of the resist patterns. Subsequently, a

cryogenic plasma etch process with straight sidewalls was used to transfer the pattern from

resist into silicon.

Excimer laser irradiation was performed on microdisks both with and without the un-

derlying oxide layer etched. However, chips that were not etched prior to the excimer

exposure were etched afterwards. The oxide was etched in buffered hydrofluoric acid and

the resulting undercut beneath the microdisk was approximately 2 µm. No oxide etching

was performed for the microring devices. Just prior to exposure, all chips were dipped in

dilute buffered oxide etch (BOE) for 5 seconds to remove any native oxide. Samples that

did not go through the BOE dip, showed highly non-uniform surface morphology under the

optical microscope after excimer exposure, as shown in Fig 6.2.

The laser used was a Lambda Physik (Coherent) 308 nm XeCl excimer with a 28 ns

pulse. The energy densities used ranged from 228 to 1300 mJ/cm2. Lower energy densities

can also be achieved by attenuating the beam but these lower energies were well below the

threshold of melting for the silicon samples. Light intensity drops by I = I0exp(−αz) and

melting only occurs to a depth of 50-300 nm. Energy transfer primarily consists of rapid

heat diffusion into the oxide pedestal and possibly evaporative cooling at higher energies.

Convective and radiative cooling are negligible [17]. The heat flow throught the oxide

pedestal will be slower due to its lower heat conductivity but the heat will quickly dissipate

once it reaches the bulk silicon substrate. At higher energies, ablation can occur which will

result in the redeposition of ablated silicon particles on the top surface of the devices and

surrounding areas.

The threshold melting energy is dependent on the geometry. SEM analysis shows slight

melting at the microdisk edges at energy densities as low as ∼ 260 mJ/cm2 when the mi-

crodisk oxide has been undercut by 2 µm. Microdisks with no undercut prior to irradiation

had a melting threshold of ∼ 400 mJ /cm2. This is much lower than the 800 mJ /cm2
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threshold reported by Chou [15]. The difference being our samples are SOI whereas his are

bulk silicon.

Two-dimensional finite element simulations (COMSOL Multiphysics) of heat flow through

the silicon microdisks and oxide pedestal show that heat becomes concentrated at the upper

edge of the microdisk. The edge regions will heat up the most and hence melt even before

the top surface. This behaviour is also confirmed from SEM images which showed melting

along the upper edge of the microdisk before spreading to other areas.

The silicon stays molten for several hundred nanoseconds [15]. While previous work

shows that the molten time is sufficient for smoothening out of the surface [14], this is not

the case for different geometries. Another issue is the preservation of the single-crystalline

structure of silicon. If the single-crystal silicon is melted too deeply, solidification will occur

at numerous nucleation sites and result in grain growth. The result will be polycrystalline

silicon which is highly unfavorable in silicon photonics because of the increased light scat-

tering from the grain boundaries. This will result in increased optical losses.

6.3 SEM Image Analysis

SEM images were taken before and after excimer irradiation in order to analyze changes in

edge roughness. Low accelerating voltages of 0.8 kV were used for imaging surface roughness

because of the reduced penetration depth of the electron beam and minimal charging effects

in the oxide layer. Top-down SEM images were taken at magnifications of 100,000× and

150,000× where the pixel sizes were ∼ 1 nm and ∼ 0.7 nm respectively.

The root mean square edge roughness as defined in Eqn.(6.1) was determined through

SEM image analysis. The parameters N and δ are the total number of pixels in the x-

direction and the distance from the average surface edge, respectively. In order to char-

acterize the spatial distribution of the roughness, the correlation length ξ was determined

from the correlation function, Eqn.(6.2). ξ can also be defined as the minimum length where

σ becomes independent of the length [18].



CHAPTER 6. EXCIMER LASER AND SIDEWALL ROUGHNESS 108

Figure 6.3: SEM image analysis of a line edge prior to excimer exposure. The RMS rough-

ness is 2.8 nm.

σ =

√∑N
i=1 δ

2
i

N
(6.1)

G(r) =

√√√√ 1

N −m

N−m∑
i=1

(δi+m − δi)2 (6.2)

α ≤ σ2

k0d4n1
κ (6.3)

Eqn.(6.3) is an analytical relationship between scattering loss (α) and roughness (σ) [19].

The other parameters k0, d, n1 and κ are the free space wavenumber, thickness, refractive

index and a statistical factor, respectively. Eqn.(6.3), which describes the upper limit for

scattering loss, assumes the correlation length is comparable to the beat length between

the guided and radiation modes resulting in maximum scattering. The equation shows the

importance of minimizing the sidewall roughness. [19].

6.4 Experimental Setup

Two different test setups were used in this experiment. This was dictated by the different

approaches needed to couple light in the microdisk and microring devices. For microdisks,
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evanescent coupling by tapered fiber allows for quick measurements and low losses. But the

evanescent coupling technique does not work well for SOI microrings because the evanescent

field from the fiber taper will couple into the underlying oxide. Instead, light is coupled to

microrings by on-chip strip waveguides. Lensed fibers are used to couple off-chip light into

these waveguides.

A tapered fiber with 2 dB loss was pulled from single mode optical fiber (Corning SMF-

28e). The fiber pulling was done using linear motors to slowly pull on two ends of the

fiber while a small cladding-stripped region along the mid-length of the fiber was exposed

to a small hydrogen flame. The optical transmission was monitored to determine the stop

point whereupon the minimum fiber diameter has decreased from 9 µm to approximately

1 µm. The taper was then bent, with a resulting bend radius of approximately 0.5 mm,

and mounted on a 3-axis stage with differential actuators for regular stage movements and

piezoelectric actuators for fine movements (20 nm resolution). The test chip was mounted on

a 4-axis stage and imaged from above with a 50x long-working distance objective connected

to an ultra-zoom lens system with a high-resolution CMOS camera. An image of the fiber

to microdisk coupling is shown in Fig.6.4

Despite the different coupling approaches, the rest of the test setup is fairly similar. A

broadband ASE source and optical spectrum analyzer with 10 pm resolution are used to

take transmission measurements. For higher resolution measurements, a tunable laser with

a spectral width of 200 kHz, InGaAs detector and lock-in amplifier are used. A polarization

controller was used to change between TE and TM polarizations. The TE polarization was

determined by referencing to the known TE polarization of a silicon photonic crystal cavity.

6.5 Excimer Irradiation Results

Figure 6.5 shows a SEM image of a microdisk after excimer laser irradiation. Excimer-

assisted melting begins along the upper edge of the microdisk and moves inwards. Unlike

the CO2 laser-assisted reflow of silica microtoroids [20], the excimer-assisted melting does

not result in a self-limiting microtorid. One difference is the oxide pedestal which cannot

dissipate heat as efficiently as a silicon pedestal. At high enough energies and long enough
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Figure 6.4: (a) Dark-field optical microscope image of excimer irradiated (∼ 300 mJ/cm2)

and unirradiated regions. The irradiated region is brighter, indicating increased light scat-

tering and roughness. (b) Optical microscope image of tapered fiber to microdisk coupling

for optical measurements.

melting times, the edges of the microdisk will completely migrate to the center and form a

dome-like shape.

In addition to SEM analysis, optical measurements were used to characterize microdisk

and microring devices after the excimer processing (Fig. 6.10). The data from these mea-

surements did not show an improvement in the quality factors of these cavities. Microring

structures as shown in Fig. 6.10 (a) and microdisk structures as shown in Fig. 6.4 were

excimer laser irradiated. The energy densities used were slightly above melting threshold.

Optical measurements of the microring quality factor, as shown in Fig. 6.10 (b), were

taken. The Q-factor of the microdisk was measured using a tapered fiber as shown in Fig.

6.4 (b). In both cases, no conclusive improvement in the Q-factor after laser irradiation

was observed. A dark-field optical microscope image containing both irradiated and unir-

radiated regions is shown in Fig 6.4. We observed that the laser irradiated regions would

always be brighter than the unirradiated regions. The brightness is inidicative of increased

light-scattering and hence increased roughness, contrary to our desired result.
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Figure 6.5: SEM image of silicon microdisk after excimer laser irradiation.

Figure 6.6: SEM image of edge of silicon edge region that has been half excimer laser

irradiated (right) with an energy density of 1200 mJ/cm2. The silicon is 250 nm thick.

Note that in this case the oxide underneath has not been removed.

6.6 Analysis and Discussion

While Chou has demonstrated that small structures (∼ 50-300 nm) can be made smoother

using the excimer laser, our results indicate that larger structures do not improve in rough-

ness. We observed an increase in both large-scale (micron-level) roughness as well as an

increase in small-scale (nanometer-level) roughness.

Figure 6.6 shows a region of silicon on top of oxide that has been partially exposed to

the excimer laser. The edge of the irradiated region flows inwards when melted. The edge

is no longer straight but becomes wavy. The surface also becomes rippled. We attribute
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Figure 6.7: SEM image of edge of silicon edge region that has been half excimer laser

irradiated (left) with an energy density of 240 mJ/cm2. The silicon is 250 nm thick. The

oxide underneath has been isotropically etched by several microns.

Figure 6.8: SEM image of undercut silicon edge region that has been excimer laser irradiated

at an energy density of 370 mJ/cm2.
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Figure 6.9: SEM image of undercut silicon edge region that has been excimer laser irradiated

at an energy density of 460 mJ/cm2.

these waves to the low viscosity of molten silicon [21] which makes it easy for the liquid

to splash around when there is ambient vibration. The migration of the silicon interface

inwards is due to the high surface tension of silicon. The surface tension of molten silicon

can be expressed as γ = 733− 0.062(T − 1687), where γ is the surface tensions in (mN/m)

and T is the temperature in K in a range from 1357-1890 K [22]. By comparison the surface

tension of a polymer such as PMMA is ∼ 50 (mN/m). Surface energy minimization creates

a strong internal pressure that pulls the liquid interface inwards. Additionally, this interface

contraction might cause disturbances in the liquid silicon which result in the ripples in the

solidified silicon. Solidification occurs over a period of less than ∼ 50 ns.

Another cause of increased roughness upon solidification could be due to the density

difference between liquid and solid silicon. Similar to water, silicon is more dense as a

liquid than as a solid and will expand as it freezes. If the the molten silicon solidifies from

the inside outwards, a non-uniform solidification front can result in non-uniformities at the

surface. Solidification driven extrusions have been observed during excimer laser irradiation

of silicon nanopillars [23].

Figures 6.8, 6.7 and 6.9 show excimer irradiated structures that were originally straight

edges. Prior to laser irradiation the oxide underneath the edge of these silicon structures had



CHAPTER 6. EXCIMER LASER AND SIDEWALL ROUGHNESS 114

Figure 6.10: (a) SEM image of 15 µm diameter silicon microring on top of oxide. (b)

Transmission measurements from 15 µm diameter silicon microring after excimer irradiation.

been etched by several microns using HF. In Fig. 6.8, the left-half of the silicon ledge shown

has been exposed to a single excimer laser pulse with an energy density of 240 mJ/cm2.

This top-down SEM image shows a large increase in sidewall roughness. This is the result

of the energy density being insufficient to completely melt the entire 250 nm thick ledge.

The rough region is the silicon on the lower surface of the silicon ledge that has not been

melted.

Higher energy irradiation with a single-shot energy density of 370 mJ/cm2 is shown in

6.7. While the edge is now more rounded, it is also no longer straight along the vertical

direction. In addition there appears to be some ablation of the silicon contributing to
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increased roughness. The SEM image in Fig. 6.9 is after an excimer shot of 460 mJ/cm2.

While the features are highly rounded, it can also be seen that the previously straight

edge can no longer be maintained and is now unacceptably random. At higher energies

silicon structures can reach an equilibrium shape which is also a function of the underlying

oxide geometry. For small structures the equilibrium shape is often spherical. The surface

roughness is not perfect, possibly due to ablation effects. Waveguides also have trouble

maintaining their straight edges and will become wavy. At higher energies they will turn

into discrete spheres.

6.7 Conclusions

Qualitative and quantitative improvements in sidewall roughness of silicon devices using ex-

cimer irradiation has not been shown. This can be attributed to a number of the material

properties of the silicon, as well the thermal characteristics of the cavity designs. There

may be ways to get around or take advantage of these limitations and here are some ideas.

First, it appears that this technique is more suitable for applications requiring small spher-

ical shapes (several microns or smaller) because they have reached an equilibrium shape.

Second, a silicon microtoroid might be possible if a pedestal material is used which is more

thermally-conductive than silicon. Third, in order to effect sidewall roughness, the chip

might need to be mounted at an angle to the incident excimer beam in order to receive

adequate exposure. Forth, the solidification period might be increased by high-temperature

back-side heating of the silicon chip (hot plate) simultaneously with laser irradiation, hence

allowing more time for features to smoothen out. But, this would need to be performed in

an oxygen-free environment (such as a nitrogen chamber) in order to prevent silicon oxida-

tion.
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7.1 Properties of Nanocrystals

First studied in the early 1980s by Louis Brus at Bell Laboratories, nanocrystals (also known

as nanoparticles and quantum dots) are nanoscale units of single-crystalline material. In

colloidal form, nanocrystals have ligand shells and are generally dispersed in solvents such as

chloroform and trichloroethylene. The ligand shells are composed of an organic surfactant

such as oleic acid which prevents the nanocrystals from aggregating into larger particle

units.

There has been much interest in nanocrystals because of their highly size-dependent

properties. Improvements in synthesis techniques have led to the ability to create highly

monodisperse solutions of nanocrystals. With the ability to finely tune nanocrystal prop-

erties, a host of different applications have appeared ranging from fluorescent markers in

biology to nanocrystal displays for cell phones. Our interest in nanocrystals arises from the

ability to tune to nonlinear properties to match the resonance of silicon photonic cavities.

A relationship between the polarization density (P) and electric field (ε) that contains

the higher order nonlinear terms is:

P = ε0χε+ 2dε2 + 4χ(3)ε3 + · · · (7.1)

Where ε0 is the permittivity of free space and χ is the electric susceptibility of the material.

Because silicon is a centrosymmetric material, it does not possess the second order term in

Eqn. 7.1. Silicon does possess third order nonlinearities, χ(3). But these nonlinearities are

quite weak in silicon. While our eventual goal was to incorporate the strong third order

nonlinearities of chalcogenide nanocrystals onto silicon photonic devices, we first needed to

characterized the magnitude of these nonlinearites in various nanocrystals.

Lead-chalcogenide semiconductor nanocrystals [1] have been suggested to possess large

optical nonlinearities [2, 3, 4] with potential ultrafast response times at telecommunica-

tion wavelengths, making them technologically interesting materials. Nonresonant optical

nonlinearities can have near-instantaneous response times but the magnitude of these non-

linearities are generally smaller than resonant nonlinearities. Resonant nonlinearities, which

occur when the photon energy matches an optical transition, have slower response times due
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to the slow decay of excitons and free carriers but have susceptibilities scaling as (aB/R)3

where aB is the exciton Bohr radius and R is the crystallite radius. [3] In the strong

quantum-confinement limit (where aB/R � 1), resonant nonlinearities can be very large

due to the large density of states and spectral concentration of transition strength. [4]

Narrow gap PbS and PbSe nanocrystals have some of the strongest confinement among

semiconductor nanocrystals, with exciton Bohr radii of 20 nm and 46 nm, respectively,

for crystallite diameters from 2 to 5 nm. This diameter range gives near-infrared emission

such as used in single nanocrystal spectroscopy. [7, 5, 6] The intrinsic linewidth broad-

ening affecting the transition strength is also reduced in lead chalcogenide nanocrystals

due to the reduced exciton-phonon coupling and resulting near-identical electron and hole

wavefunctions achieved in the strong confinement limit. [4]

7.2 Overview of Experiment

High-capacity optical networks and systems require dynamic switching functionalities such

as add-drop filters, signal regeneration, and wavelength conversion in the near-infrared

C-band. While these functionalities are currently performed through an optical-electronic-

optical conversion, all-optical solutions can provide significant increases in capacity with low

latencies, with potentially reduced cost, size and power requirements per bit. The design

of such devices is embodied in a figure-of-merit[8] (FOM) where the Kerr nonlinearity is

compared to a nonlinear absorption (typically two-photon absorption) for a given material

at a specific wavelength. This FOM (n2/βλ where n2 and β are the Kerr and two-photon

absorption coefficients respectively) is found to be large in chalcogenides [9, 10, 11, 12, 13]

at 1.55 µm. Specifically, studies on glasses containing chalcogenides at 1.55 µm have shown

FOM greater than 3 and Kerr nonlinearities up to approximately 900 times that of fused

silica.

Saturable absorption has been measured in glasses doped with PbS nanocrystals [14, 15]

as well as in solutions of PbS nanocrystals. These results showed ∼ 5 to 50 ps resonant

decay lifetimes[16]. In addition, third-order χ(3) susceptibilities have been characterized at

visible and ∼ 1.06 µm wavelengths in nanocrystal-doped nanocomposites;[17, 18, 19, 20] χ(3)
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has also been studied recently for the case of colloidal PbSe nanocrystals. [21] However,

a direct experimental comparison of nonlinearities for PbS and PbSe lead chalcogenide

nanocrystals has not been investigated. In this work, we measure and compare the optical

nonlinearities of both colloidal monodispersed PbS and PbSe nanocrystal solutions in the

near-infrared. In addition, by using the femtosecond Z-scan technique, we examine the

different activation mechanisms for thermal and Kerr nonlinearities in the resonant regimes

of PbS and PbSe nanocrystals tuned to near-infrared wavelengths. Finally, we determine

the spectrally-dispersive nonlinear refractive index (n2) and nonlinear absorption (β) for

the nanocrystals for wavelengths ranging from 1.0 to 1.6 µm. The electronic contributions

for these two nonlinearities are shown to be greater than thermal contributions, thereby

allowing their use for ultrafast optical signal processing in high-capacity optical networks

and devices.

The highly monodisperse PbSe and PbS nanocrystals were synthesized in a solution-

based wet chemical process to obtain a well-controlled size, less than 5% size distribution,

and good surface passivation. The nanocrystals are synthesized by the Murray group. [22]

The synthesis procedures for PbSe and PbS are similar. First, 2.16 g lead acetate trihydrate

and 7.3 ml oleic acid were dissolved in 40 ml squalane for the PbSe nanocrystals. This mix-

ture was heated to 100◦C for 1.5 h under vacuum in order to form lead oleate and to drive

off the solvent. Then, a lead oleate solution was heated to 178◦C and 18 ml 1M solution

of TOPSe in TOP was injected in the presence of vigorous stirring. The reaction mixture

was kept at 155-160◦C for 4-10 min and then promptly cooled to room temperature. The

PbSe crude solution was mixed with hexane (1:1 by volume). The nanocrystals were pre-

cipitated by adding ethanol and collected by centrifugation. Precipitated nanocrystals were

re-dissolved in hexane (∼ 10 ml) and precipitated with ethanol. Finally, the nanocrystals

were re-dispersed in chloroform. This method allowed nanocrystal size to be controlled

by systematically adjusting the reaction conditions. [22] The properties of the prepared

nanocrystals are listed in Table 1. Absorption spectra of nanocrystal solutions were mea-

sured using a UV/Vis/NIR spectrometer. Nanocrystal size was estimated by comparing

absorption data to that in the literature [22] to be approximately 3.9 nm and 5.1 nm in

diameter respectively. The linear absorption at the first exciton peak was approximately
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Table 7.1: Properties of lead chalcogenide nanocrystals investigated.

Properties Units PbSe PbS

Lattice constant (bulk) Å 6.124 5.936

Bulk band gap eV 0.26 0.37

Measured first exciton peak nm 1399 1426

Crystallite diameter nm 3.9 5.1

Est. exciton Bohr radius nm 46 20

Bulk index at 1.5 µm 5.0 4.2

Concentration mg/mL 18.8 4.5

Size distribution % < 5 < 5
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20 cm−1 for both PbS and PbSe nanocrystal solutions. Concentrations were determined by

measuring the mass of 100 µL of nanocrystal solution while boiling off the solvent in a ther-

mogravimetric analyzer. These measurements included the mass of the ligands. Both PbSe

and PbS were prepared to equal concentrations 52 ± 2 µM and had equivalent absorption

peaks at 1410 ± 15 nm.

7.3 The Z-scan Technique

The Z-scan technique, developed by Mansoor Sheik-Bahae in 1989, is a way of measuring

the nonlinear refractive index and nonlinear absorption coefficient. The technique is widely

used and the orignal papers have received over 3000 citations [23, 24]. While the technique

is relatively straight-forward for bulk materials, it can be more complicated for disperse

colloidal materials. There are numerous subtle but important details that are sometimes

overlooked in nanocrystal Z-scan literature. These details will be discussed below.

Figure 7.1: Diagram of the Z-scan test setup used in this experiment.
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We used the Z-scan technique [23, 24] to determine nonlinear refractive index n2 and

nonlinear absorption β, which correspond to the real (refractive) and imaginary (absorptive)

parts of the third-order susceptibility χ(3). These dispersive measurements were performed

from 1000 nm to 1600 nm wavelengths using a high sensitivity single-beam technique. [23]

A cuvette containing the nanocrystal solution was moved along the z-axis through the focus

of a beam. As the sample was brought towards the focus of the beam from the near-field,

nonlinear self-lensing collimated the beam and resulted in increased transmittance through

an aperture in the far field. As the sample traveled past the beam focus, self-defocusing

resulted in beam divergence, which lowered the transmittance through the aperture. The

resulting peak-to-valley self-defocusing transmittance profiles of typical Z-scans are shown

in Fig. 7.2(a). Correspondingly, open aperture scans were used to determine the absorptive

nonlinear properties (Fig. 7.2 (b)). In order to reduce noise in the collected data, a small

portion of the incoming beam was split-off prior to the sample and used as a reference. The

path length L of the cuvette was greater than the depth-of-focus zo of the beam. With a

L/zo ratio of 2.5, we used the thick media analysis [25] for our measurements.

An optical parametric amplifier (OPA) pumped by a regeneratively amplified Ti:Sapphire

laser was used to produce 100 fs pulses at a 250 kHz repetition rate at wavelengths ranging

from 1.0 to 1.6 µm, corresponding to h̄ω/Eg from 1.4 to 0.9, where Eg is the nanocrystal

gap. The spectral width of the beam varied from 40 nm at 1550 nm to 20 nm at 1050 nm

and the Gaussian beam radius at the focus ωo was determined to be 10.8 µm using the

knife-edge technique. Typical average powers of 2.5 mW and peak intensities of ∼ 2.6×1010

W/cm2 were used. Approximately 8% of the power was lost through Fresnel reflection from

the front side of the cuvette. Neither beam-induced sample damage nor inhomogeneities

across different positions in the cuvette were observed. Time-resolved photoluminescence

was also used to determine the exciton radiative lifetime (T1) of the 1Se-1Sh transition for

the chalcogenide nanocrystals, in the range of 900 ns, as shown in Fig. 7.2 (c).
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7.4 Measurements

Figures 7.3 and 7.4 show the dispersive nonlinear refractive index measured for PbS and

PbSe nanocrystals respectively, along the linear absorption superimposed. For both PbS

and PbSe, the observed n2 values follow the linear absorption closely. The maximum n2

value for the PbSe and PbS nanocrystal solutions were of -3.4×10−14 cm2/W and -1.5×10−14

cm2/W, respectively. Hence, the n2 of PbSe was measured to be approximately twice as

large as that of PbS. This is because of the stronger quantum confinement in PbSe (with its

larger exciton Bohr radius-to-crystallite radius ratio) while maintaining similar nanocrystal

transition lifetimes. [4, 26] This measurement supports the feasibility of achieving larger

χ(3) susceptibility in PbSe nanocrystals. Although the measured nonlinear refractive index

is observed to be of the same order as nonlinear bulk chalcogenide glasses (∼ 6.0×10−14 to

0.2×10−14 cm2/W) [11] and bulk silicon (∼ 4.5×10−14 cm2/W), [27, 28] the nonlinearity of

the colloidal nanocrystal media scales considerably with concentration.

Nonlinear absorption was also observed for both nanocrystals through open aperture

Z-scans. These measurements showed nonlinear absorption saturation in the range from

1200-1500 nm. The magnitude of n2 and linear absorption curves for both nanocrystals

followed a similar trend, reaching a value of approximately -8×10−11 cm2/W near the first

exciton peak. Due to the absorption saturation, two-photon absorption in this region was

masked. Farther from the resonance, two-photon absorption was observed by Z-scans in

the range of approximately 1000-1250 nm for the PbS nanocrystal with a resulting figure-

of-merit of 2.3 at 1240 nm.

7.5 Thermal Effects

In Z-scan measurements it is important to ensure that thermal effects are not obscuring the

results; we note that thermal lensing is negligible in our measurements. Thermal lensing

occurs when a laser pulse creates temperature and density gradients in a solution, resulting

in a refractive index variation that approximately follows the spatial beam profile. Absorp-

tion of heat from the laser pulse causes the solution to expand causing acoustic density

changes. [29] These changes have a time scale of tad = ωo/Vs, where ωo is the beam radius
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Figure 7.2: (a) Closed aperture Z-scans of colloidal PbS nanocrystal solution. (b) Open

aperture z-scan of colloidal PbS nanocrystal solution at 1240 nm. (c) Time-resolved photo-

luminescence used to determine the ∼ 930 ns radiative lifetime (T1) for the colloidal PbS

nanocrystals.
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and Vs is the speed of sound in chloroform at 979 m/s. For our experimental setup, tad =

10 ns which is much longer than our 100 fs pulse duration and therefore thermal lensing due

to acoustic density changes can be ruled out. Another cause of thermal lensing is thermal

accumulation. This will occur if heat generated from absorption does not diffuse away from

the illuminated region at a fast enough rate so as to prevent a temperature rise. The time

scale for thermal diffusion to occur is tD = ω2
0 /4D, where ωo is the beam radius and D is

the thermal diffusivity of our host matrix (D = 0.81×10−7 m2/s for chloroform [30]). Hence

tD = 0.3 ms for our system. Since our input pulses were chopped at 1 kHz with a 50% duty

cycle, this gives an excitation window of 0.5 ms for the arrival of successive pulses. This

time is longer than the thermal diffusion time scale tD thereby preventing thermal accumu-

lation. Notice that our pulse repetition rate of 250 kHz avoids thermal accumulation more

readily than for the usual 82 MHz of most Ti:Sapphire lasers. [21] Thus in the experiment

described in ref. 21 thermal nonlinearities may play a role in the measurement since the

chopped excitation window period of 1.25 ms in that case is shorter than the 12 ms thermal

diffusion time scale. Note also that our repetition rate is sufficient to show that an excited

dot having a ∼ 930 ns lifetime will decay before a second pulse re-excites the dot, i.e. the

repetition rate is slower than the ∼ 1 to 3 MHz exciton radiative lifetimes of the 1Se-1Sh

transition [31] thus allowing a ground state measurement of the nonlinearities.

In addition, the thermal contribution of the solution to the nonlinear index change, as

heated by a single pulse, will exceed the electronic contribution of the nanocrystals if the

pulse duration is greater than n2ρ0C/((dn/dT )α) [32], where ρo and C are the material

density and heat capacity per unit volume, dn/dT the thermo-optic coefficient, and α the

linear absorption of the solution. For our setup, a pulse duration of greater than 10 ps is

needed in order for thermal contributions to the refractive index change to be significant.

Our 100 fs pulses are much shorter, hence the electronic contributions should exceed the

thermal contributions.
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Figure 7.3: Measured linear absorption and nonlinear refractive indices for the colloidal

PbS nanocrystals studied.

Figure 7.4: Measured linear absorption and nonlinear refractive indices for the colloidal

PbSe nanocrystals studied.
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7.6 Discussion

In the strong confinement regime, the mechanism responsible for Kerr nonlinearity is gen-

erally state-filling. [33] In this phenomena, photoexcitations result in the filling of energy

levels thereby blocking further interband transitions since no two electrons can fill the same

state (Pauli exclusion), thus saturating the absorption. The observed absorption saturation

near the band edge for both kinds of nanocrystals would seem to indicate the role of state-

filling. The effect, however, should be accompanied by a blue shift of the peak n2 value.

Our data does not show this blue-shift. Hence it is possible that the dominant mechanism

for our observed nonlinearity is a mechanism such as free carriers. Free carrier nonlinearity

is a fifth-order nonlinearity that becomes dominant over band-filling at higher intensities.

[34]

7.7 Conclusions

In summary, we study and compare resonant optical nonlinearities in strongly quantum-

confined PbSe and PbS nanocrystals. These nanocrystals have many interesting techno-

logical applications thus motivating this study. In addition, the size-tunable properties of

nanocrystals makes them more versatile than bulk materials for optical applications. On

resonance with the exciton peak, the nanocrystals show a strong saturable absorption and

nonlinear refractive index that follows the linear absorption spectra. We attribute our ob-

served optical nonlinearites to be more likely from free carriers instead of state-filling. Given

the similarities in the measured n2 of PbSe and PbS in the regime we studied, the more

technologically practical nanocrystal would be PbSe due to its larger size which would offer

more reliable tunability. In other regimes and other nonlinear mechanisms the comparison

between PbSe and PbS could be very different. The ultrafast large nonlinearities, absorp-

tion saturation, and large off-resonance figure-of-merits observed in these near-infrared lead

chalcogenide nanocrystals are promising for chip-scale ultrafast switching and all-optical

signal processing.



CHAPTER 7. Z-SCAN OF LEAD CHALCOGENIDE NANOCRYSTALS 132

7.8 Acknowledgements

The Z-scan experiment was performed using the Ti:Sapphire femtosecond laser in the labo-

ratory of Prof. Osgood in the Electrical Engineering department. Jerry Dadap, a research

scientist in Prof. Osgood’s group, provided generous help with the project. The radia-

tive lifetime measurements were taken by Ranojoy Bose, a member of our group. The

lead chalcogenide nanocrystals were synthesized by Jeffrey Urban in Christopher Murray’s

group (Nanoscale Materials and Devices Group) at IBM Research in Yorktown Heights,

New York. We also used nanocrystals from Evident Technologies of Troy, New York.



BIBLIOGRAPHY 133

Bibliography

[1] V. I. Klimov, ”Optical nonlinearities and ultrafast carrier dynamics in semiconductor

nanocrystals”, Journal of Physical Chemistry B 104, 6112 (2000).

[2] L. Brus, ”Quantum crystallites and nonlinear optics”, Applied Physics A: Mater. Sci.

and Process. 53, 465 (1991).

[3] L. Banyai, Y. Z. Hu, M. Lindberg, and S. W. Koch, ”Third-order optical nonlinearities

in semiconductor microstructures”, Phys. Rev. B 38, 8142 (1988).

[4] F. W. Wise, ”Lead salt quantum dots: the limit of strong quantum confinement”,

Accounts of Chemical Research 33, 773 (2000).

[5] R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, Optics Express

17, 22474 (2009).

[6] M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, Optics Express 19, 1786

(2011).

[7] R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, ”Weak coupling interactions

of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near

1.55 µm at room temperature”, Applied Physics Letters 90, 111117 (2007).

[8] V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, ”Two-

photon absorption as a limitation to all-optical switching”, Optics Letters 14, 1140

(1989).



BIBLIOGRAPHY 134

[9] J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, ”Highly nonlinear Ge-As-Se

and Ge-As-S-Se glasses for all-optical switching”, IEEE Photonics Technology Letters

14, 822 (2002).

[10] G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E.

Slusher, S.-W. Cheong, J.S. Sanghera and I. D. Aggarwal, ”Large Kerr effect in bulk

Se-based chalcogenide glasses”, Optics Letters 25, 254 (2000).
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Chapter 8

Conclusions

In this thesis we have investigated fabrication-related solutions to key issues in advancing

the field of silicon photonics from the laboratory to commercial applications. While this

work focused primarily on fabrication issues, we note that more fabrication-tolerant device

designs will also play a major role in future advancements.

We proposed and investigated two different techniques for precisely tuning the reso-

nance of high-Q/Vm silicon photonic crystal nanocavities. One was a global technique for

tuning an entire wafer while the other was a highly localized technique for tuning individual

nanocavities. The atomic layer deposition technique allows for deposition hafnium oxide

thin films with monolayer control and hence resonance tuning in discrete redshifted steps of

122±18 pm. Nearly linear tuning was demonstrated over a 17 nm tuning range. The cavity

had an initial Q of > 49,000 which was fairly well maintained during the tuning. The local

oxidation technique was applied to ultra-high Q photonic crystal heterostructures. Unlike

the highly linear ALD technique, this tuning technique blueshifted the resonance according

to the parabolic rate law associated with silicon oxidation. A tuning range of ∼ 10 nm was

demonstrated. Initial Q values of > 300,000 were fairly well maintained. In these nanoscale

studies we discovered tuning anomalies that occur during the initial tuning. These are

attributed to interfacial layers, surface chemistry and other material related phenomena.

In addition to nanocavities, these techniques can be applied to other structures such

as waveguides. We investigated the use of atomic layer deposition for tuning the slow-

light regime in silicon photonic-crystal waveguides. Here we show that the high group-
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index regime can be deterministically controlled, redshifted by 140±10 pm per atomic layer,

without affecting the group-velocity dispersion and third-order dispersion.

Another important issue in the practical realization of silicon photonics is improving

the sidewall roughness of devices. Here we investigated two different techniques: hydro-

gen annealing and excimer laser-assisted melting. While our hydrogen annealing studies

were limited by equipment issues, some valuable insights were discovered. The presence of

thermal stress related crystallographic defects such as dislocations may be the cause of the

poor performance of hydrogen annealed silicon photonic devices. Excimer laser irradiation

was investigated as a way to improve the performance of devices such as microdisks and

microrings.

The final chapter discusses our investigations into the nonlinear properties of colloidal

lead chalcogenide nanocrystals in the near-infrared spectrum with the intention of incor-

porating these materials into silicon photonic devices. A number of other investigations

were also pursued but not discussed in this thesis due to the nature of the projects and the

relevance of the results to this thesis.
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