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ABSTRACT

Quantitative Modeling of Credit Derivatives

Yu Hang Kan

The recent financial crisis has revealed major shortcomings in the existing approaches for modeling

credit derivatives. This dissertation studies various issues related to the modeling of credit deriva-

tives: hedging of portfolio credit derivatives, calibration of dynamic credit models, and modeling

of credit default swap portfolios.

In the first part, we compare the performance of various hedging strategies for index collater-

alized debt obligation (CDO) tranches during the recent financial crisis. Our empirical analysis

shows evidence for market incompleteness: a large proportion of risk in the CDO tranches appears

to be unhedgeable. We also show that, unlike what is commonly assumed, dynamic models do not

necessarily perform better than static models, nor do high-dimensional bottom-up models perform

better than simpler top-down models. On the other hand, model-free regression-based hedging

appears to be surprisingly effective when compared to other hedging strategies.

The second part is devoted to computational methods for constructing an arbitrage-free CDO

pricing model compatible with observed CDO prices. This method makes use of an inversion

formula for computing the aggregate default rate in a portfolio from expected tranche notionals,

and a quadratic programming method for recovering expected tranche notionals from CDO spreads.

Comparing this approach to other calibration methods, we find that model-dependent quantities

such as the forward starting tranche spreads and jump-to-default ratios are quite sensitive to the



calibration method used, even within the same model class.

The last chapter of this dissertation focuses on statistical modeling of credit default swaps

(CDSs). We undertake a systematic study of the univariate and multivariate properties of CDS

spreads, using time series of the CDX Investment Grade index constituents from 2005 to 2009. We

then propose a heavy-tailed multivariate time series model for CDS spreads that captures these

properties. Our model can be used as a framework for measuring and managing the risk of CDS

portfolios, and is shown to have better performance than the affine jump-diffusion or random walk

models for predicting loss quantiles of various CDS portfolios.

Keywords: credit derivatives, credit default swaps, index default swaps, collateralized debt obli-

gations, default intensity, pricing, hedging, inverse problem, model calibration, statistical modeling
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Chapter 1

Introduction

Credit derivatives, in particular credit default swaps (CDSs) and collateralized debt obligations

(CDOs), played an important role in the recent financial crisis. In particular, the crisis revealed

major shortcomings in the existing approaches for modeling and risk management these instruments

and posed new challenges for modeling the risks associated with them. In this dissertation, we study

various issues related to the modeling of credit derivatives: hedging of portfolio credit derivatives,

calibration of dynamic credit models, and modeling of credit default swap portfolios.

This chapter gives an introduction to the credit derivatives market discusses various issues which

motivated our study and summarizes the contributions of the thesis.

1.1 Credit derivatives

A credit derivative is similar to an insurance contract against the loss incurred in the case of “credit

events” associated with a single or a pool of reference entities, which are referred to as “names” or

“obligors”. A credit event, which is also called a default, that triggers the contractual payment is

defined as any of the following:

• Bankruptcy: the risk that the reference entity will become bankrupt.
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• Failure to pay: the risk that the reference entity will default on one of its obligations such as

a bond or loan.

• Obligation acceleration: the risk that an obligation of the reference entity will be accelerated

e.g. a bond will be declared immediately due and payable following a default.

• Repudiation or moratorium: the risk that the reference entity or a government will declare a

moratorium over the reference entity’s obligations.

• Restructuring: the risk that obligations of the reference entity will be restructured.

Unlike insurance contracts, investors do not have to hold the bonds to buy a credit derivative on

the bonds, whereas with an insurance contract, insurance buyers need to have a direct economic

exposure to the reference entities. Moreover, insurance contracts are mostly not traded, where

credit derivatives are traded over the counter or via central counterparties.

Given the function for credit risk migration that favors hedgers and the built-in leverage that

attracts speculators, size of the credit derivative market has grown enormously from late 1990s

until the recent financial crisis. According to the survey data from the Bank of International

Settlements1, the total notional amount of credit default swaps increases from $6.4 trillion in 2005

to $58 trillion in 2008. After the financial crisis, it drops to $33 trillion in 2010.
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Figure 1.1: Outstanding notional value and gross market value of credit default swaps. Source: the Bank
of International Settlements.

1See http://www.bis.org/statistics/derstats.htm
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1.1.1 Commonly traded credit derivatives

The most commonly traded credit derivatives are single-name credit default swaps (CDSs), index

default swaps and collateralized debt obligations (CDOs). In the following, we describe the mech-

anism of the three credit derivatives. A mathematical formulation is presented in chapter 2 and

more details can be found in [20].

Credit default swaps is a contract between two parties, a protection buyer and a protection

seller, whereby the protection buyer is compensated for the loss generated by a credit event of a

reference entity. In return the protection buyer pays a premium equal to an annual percentage

of the notional to the protection seller (see Figure 1.2). The premium, quoted in basis points

or percentage points of the notional, is called the CDS spread. This spread is paid periodically,

typically quarterly, in arrears until either maturity is reached or default occurs. In practice, CDS

is quoted in terms of its fair spread, or known as the CDS par spread, which is the premium rate

that gives zero market value to both the protection buyer and seller.

Figure 1.2: Cashflows of a credit default swap. Solid line represents the premium payment from the
protection buyer and dashed line represents default payment from the protection seller.

There are various methods for settlement at default. In a cash settlement, the protection seller

pays the protection buyer the face value of the reference asset minus its post-default market value.

In a physical settlement, the protection buyer receives face value of the reference asset, but in turn

must make physical delivery of the reference asset or a bond from a pool of eligible assets to the

protection seller in exchange for par. In both cases, the post-default market value of the reference

is typically determined by a dealer poll.

Figure 1.3 shows the 5-year CDS par spreads and the spread daily log returns of MetLife from

2005 to 2010. As we can see, the CDS spreads appear to be substantially more volatile during the
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financial crisis from late 2007 to 2010.
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Figure 1.3: 5-year CDS par spreads and CDS spread daily log return of MetLife.

Index default swap, which is also known as CDS index, is a natural extension of single-name

CDS, which insures against the cost of credit events arise from a portfolio of obligors. Similar

to CDS, the protection buyer pays a quarterly premium, equal to an annual percentage of the

remaining notional value of the portfolio, to the protection seller until either maturity is reached

or all reference obligors have defaulted (see Figure 1.4). Upon an arrival of a credit event from the

reference credit portfolio, the protection buyer delivers the bond of the defaulted obligor in return

for a cash payment of par in the case of a physical settlement. In a cash settlement, the protection

buyer receives the par minus the post-default market value of the bond. After that, the outstanding

notional of the basket is reduced by the notional of the defaulted obligor. Index default swap is

quoted in terms of its index par spread, which is the premium rate that sets the market value of the

contract equal to zero. Economically, an index default swap can be thought of an equally weighted

portfolio of CDSs.

Figure 1.4: Cashflows of an index default swap. Solid line represents the premium payment from the
protection buyer and dashed line represents default payment from the protection seller.

Commonly traded indices include the iTraxx Europe indices for European corporates and the
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CDX North America indices for North American corporates. In particular, the iTraxx Investment

Grade index and CDX Investment Grade index each represents an equally weighted basket of 125

CDSs. The index composition changes every half year and some obligors, typically those have been

downgraded, will be replaced. The latest composition is called the on-the-run series, while other

former compositions are called off-the-run series. The on-the-run series appears to have higher

trading volume as investors switch to the new series. Figure 1.5 shows the 5-year on-the-run CDX

Investment Graded index spreads from 2005 to 2010. Similar to the previous observations from

CDS spreads in Figure 1.3, volatility of the CDX index spread increases significantly during the

financial crisis.
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Figure 1.5: 5-year index par spreads and index spread daily log return of CDX.NA.IG on-the-run series.

Collateralized debt obligation (CDO) is a credit derivative that is also written on a portfolio

of obligors. But unlike index default swaps, it only insures against part of the total losses generated

from the credit events, which is defined by the level of subordination (tranche). We will focus on

synthetic CDO where the underlying is a portfolio of CDSs, as opposed to an underlying of actual

bonds. Figure 1.6 shows the standard subordination of CDX investment grade index CDOs.

Consider a CDO tranche with attachment-detachment interval [a, b], i.e. the initial notional

value of the tranche is b − a. The protection buyer of this tranche pays a quarterly premium,

equal to an annual percentage of the remaining notional value of the tranche, to the protection

seller until either maturity is reached or the cumulative loss on the underlying portfolio exceeds

the detachment level b. Upon arrival of a credit event, if the cumulative loss on the underlying
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Figure 1.6: Standard CDO tranche subordination of the CDX North America Investment Graded index.

portfolio (including the loss from the latest credit event) is smaller than the attachment level a,

no payment will be made by the protection seller. Otherwise, if the cumulative loss exceeds the

attachment level a, the protection buyer will receive the loss given default of the defaulting obligor

(par minus the deliverable bond price), or the cumulative portfolio loss in excess of the attachment

level, whichever is smaller (see Figure 1.7). The total default payment received by the protection

buyer is capped by the width of the tranche, b− a. The cumulative loss of the tranche [a, b] can be

expressed as

L
[a,b]
t = max(Lt − a, 0) − max(Lt − b, 0),

where Lt is the cumulative loss from the underlying portfolio at time t. Following the credit event,

the remaining notional value of the tranche is reduced to b− a− L
[a,b]
t . Furthermore, the notional

value of the most senior tranche, which has detachment level equal to 100% of the total notional

value, is reduced by the recovery on the bond. This ensures that the sum of the remaining notional

value of all tranches is equal to the remaining notional value of the whole portfolio. CDO tranches

are also quoted in terms of their fair spreads, CDO tranche par spreads, which are the premium

rates that set the tranche values equal to zero.
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Figure 1.7: Cashflows of a CDO tranche. Solid line represents the premium payment from the protection
buyer and dashed line represents default payment from the protection seller. Lt is the cumulative portfolio
loss at default time and LGD stands for loss given default.

Figure 1.8 shows the 5-year par spreads and spread daily log returns of CDX Investment Graded

index tranche [3%, 7%] in 2008. Observe that there is a sharp “jump” in the CDO spread in the

middle of September 2008. This jump in fact happened on 15 September 2008 when Lehman

Brothers filed for bankruptcy.
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Figure 1.8: 5-year par spreads and spread daily log return of CDX.NA.IG series 10 tranche [3%,7%].

1.1.2 Valuation and quotation

For each of the above three credit derivatives, the stream of payments can be divided into default

payments from the protection seller (default leg) and premium payments from the protection buyer

(premium leg). Value of the credit derivative is then the difference between the present value of

the default leg and the premium leg. For a protection seller who receives premiums,

Protection seller value = Premium leg value − Default leg value,

and the corresponding protection buyer value is simply the negative of the protection seller value.

In practice, the present value is evaluated under a risk-neutral probability measure determined by
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the choice of pricing models. The par spread (par premium rate), which is usually quoted in the

market, can be expressed as

Par spread =
Default leg value

Premium leg value with premium rate = 100%
.

For simplicity, we will use the term CDS spread (resp. index spread, CDO tranche spread) inter-

changeably with CDS par spread (resp. index par spread, CDO tranche par spread), unless noted

otherwise.

In 2009, major changes to credit derivative contracts and conventions have been made which is

known as “the Big Bang”2. CDSs, indices and CDO tranches are suggested to quote in terms of

an upfront payment with a fixed periodic premium instead of a periodic spread with zero upfront

payment. Nevertheless, most of our analysis will still be based on the old conventional par spreads

because first, most historical prices are still recorded in terms of the par spreads, and second,

since there is an one-to-one relationship between the two quotation conventions, studying of fair

spreads (with zero upfront) can easily be transformed to those of the new conventional CDS upfront

payments (with fixed periodic premium).

1.1.3 Economic benefits

In principle, credit derivatives should make the financial market more efficient and improve capital

allocation. By using credit derivatives, financial institutions who provide the capital can reside the

credit risk of the borrowers to a third party, who may be in a better position to bear the credit

risk. In this case, financial institutions can make loans that they were not able to make previously

and this can reduce the cost of capital for firms.

Moreover, credit derivative market appears to be a better forum for credit risk discovery than

the bond market. Blanco, Brennan and Marsh [11] show that information on credit risk mostly

flows from the CDS market to the bond market. This result may not be surprising as liquidity

2See http://www.markit.com/cds/announcements/resource/cds big bang.pdf for description of CDS Big Bang.
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should be less of a factor in trading credit derivatives than the underlying bonds as actual bonds

involve funding issues.

Finally, credit derivative market provides more investment opportunities. For example, even if

we believe that the credit quality of a firm will deteriorate, it can be difficult to short sell the firm’s

bonds and loans. On the other hand, we can buy protection on the firm’s debts by entering a credit

derivative contract. When the credit quality gets worsen but the firm has not defaulted yet, the

value of our position as a protection buyer will increase due to the rise of the protection premium.

If the firm eventually defaults, we will receive payment from the protection seller. In either case,

we are benefiting from the deterioration of the firm’s credit quality.

1.2 Quantitative modeling of credit derivatives and the financial

crisis

Despite the contributions to market efficiency and credit risk assessment, the financial crisis in

2007-08 revealed various issues related to credit derivatives [94]. This dissertation is motivated by

problems arising in the risk management of portfolio credit derivatives, implementation of dynamic

credit models and statistical modeling of CDS portfolios.

1.2.1 Risk management of portfolio credit derivatives

The hedging benefit of credit derivatives should have made it possible for credit risk to be located

with those institutions which can efficiently bear the risk. However, the recent financial crisis shows

that many of those institutions, especially insurance companies that sell protections such as AIG,

do not have the ability to absorb the credit risk that they have taken. As pointed out by Stulz [94],

the benefit of credit risk hedging turns out to be illusory, or the risk is ultimately transferred to

taxpayers. According to a report by the International Swaps and Derivatives Association [1], AIG

had borrowed a total of almost $128 billion by the end of 2008 from the Federal Reserve and the
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Treasury:

• $40 billion from a bridge loan designed to help the company continue operating while it sells

off non-core assets.

• $28 billion to purchase the collateralized debt obligations on which AIGFP had sold protec-

tion.

• $20 billion of the $22.5 billion allotted to purchase subprime mortgage backed securities in

which AIG had invested as part of its securities lending program.

• $40 billion capital investment through the TARP program.

The report also states that “The acute liquidity crunch, triggered by AIG’s credit rating downgrade,

that ultimately led to AIG’s bailout is attributable to AIG’s failure to assess the risks of MBS, CDOs

and other mortgage market exposures.”

In order to maintain the effectiveness of credit derivatives to protect investors from losses given

defaults, it is important for those who are selling protections to have a sound risk management. In

particular, a successful risk management can be achieved by having effective hedging strategies for

credit derivatives, especially for the more complex derivatives such as CDO tranches. The Gaussian

copula model [74] has been widely used for hedging such portfolio credit derivatives. In the model,

the risk of a credit derivative is characterized in terms of sensitivities to shifts in risk factors [44, 85],

and hedging practices have typically been based on such measures of sensitivity. However, the recent

turmoil in the credit derivative market shows that these commonly used hedging approaches are

inefficient.

In section 1.3, we discuss various approaches for hedging of portfolio credit derivatives and

compare their performances during the crisis period. We also address various claims in the literature

that have not been justified by using empirical data. Those include examinations of whether

strategies using single-name CDSs perform better than hedges using the credit index, and whether
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dynamic models provide better hedges than the static copula models. The analysis is based on the

article [26], and the details are shown in chapter 2.

1.2.2 Implementation of dynamic credit models

While some of the credit derivatives are not liquidly traded, such as index CDO tranches with

nonstandard attachment levels, valuation and risk assessment of those contracts have to be done

by using credit models. The Gaussian copula model [74] has been the market standard for pricing

and hedging portfolio credit derivatives, but it also faces heavy criticism regarding its static nature

and the inability to generate arbitrage-free prices for nonstandard CDO tranches [25]. In chapter

3, we give an example of how such arbitrage opportunities can actually arise.

By knowing the deficiency of the static copula-based models, it then leads to the development

of various dynamic credit models. One of the main obstacles in implementing and using these dy-

namic models is the availability of efficient calibration algorithms. Previous studies on calibration

of dynamic models have mostly been based on black-box optimization procedures applied to non-

convex least squares minimization problems. The lack of convexity entails that the convergence and

stability of these methods are not guaranteed, casting doubts on the reproducibility of calibration

results and their stability.

In section 1.4, we present a stable calibration method to recover the default intensity from a

given set of CDO tranche spreads. The method makes use of a closed-form expression of the local

intensity function, which is an analog to the Dupire [43] formula for the local volatility function,

and a quadratic programming method to recover expected tranche notionals from the CDO tranche

spreads. We also show that this calibration method overcomes the stability and convergence prob-

lems that appear in other black-box calibration algorithms. The derivation is based on the article

[25], and the details are shown in chapter 3.
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1.2.3 Central clearing and statistical modeling of CDS

Many researchers have focused on problems caused by counterparty risk in arguing that credit

derivatives made the financial crisis worse. In particular, credit derivatives lead to a huge network

of exposures across financial institutions [29, 30]. If an institution fails, it can lead other institutions

to fail as they experience losses on their exposures. Therefore, this web of exposures can lead to

systemic risk. Credit derivatives arguably heighten this concern because the protection sellers may

face sudden and substantial losses when defaults occur. The typical example is the bankruptcy of

Lehman Brothers in September 2008, which then leads to concerns of the credit quality of various

financial institutions afterwards.

A popular proposal for reducing systemic risk arising from over-the-counter trading of credit

derivatives is to clear the transactions via central counterparties (CCPs) [18, 24, 42]. Given their

important role as a bulwark against counterparty risk and contagion, CCPs need to use stringent

risk management procedures to ensure their own financial stability, especially when a large clearing

member defaults. In practice, margin requirements are used to absorb losses in the case of the

default of a clearing member [63, 91]. Since the credit derivative prices are observed to be highly

volatile, such margin requirements should cover losses which may arise from this price volatility.

For example, Figure 1.9 shows that CDS spread returns exhibit two-sided heavy-tailed distribution

and large co-movements. Therefore, computation of the margins should be based on a statistical

model which accounts for such empirical properties of the credit derivative prices.

In section 1.5, we present a systematic study of the univariate and multivariate properties of

CDS spreads, using time series of spreads for the constituents of the CDX Investment Grade index

from 2005 to 2009. We then propose a heavy-tailed multivariate time series model that captures

these properties, and which can be used as a framework for measuring and managing the risk of

CDS portfolios. The model appears to provide accurate prediction of loss quantiles for a variety of

CDS portfolios and performs well during the financial crisis. The analysis is based on the article

[27], and the details are shown in chapter 4.
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Figure 1.9: Evidence of heavy-tailed distribution and large co-movements of CDS spreads. Left: QQ-plot
for 5-year CDS spread daily log return of MetLife. Right: 5-year CDS spread daily log return of MetLife vs
First Energy.

1.3 Comparison of strategies for hedging index CDO tranches

The recent turmoil in financial market reveals inefficiency of the commonly used hedging approaches

for portfolio credit derivatives, namely the sensitivity-based hedging methods under the Gaussian

copula model [74]. One of the main criticisms is the lack of well-defined dynamics for the risk factors

in such static models, which prevents any model-based assessment of hedging strategies. Knowing

the deficiencies of copula-based hedging methods, alternatives have been proposed to tackle the

problem of hedging (see, for example [8, 9, 44, 51, 53, 71]). However, these studies approach

the problem from different, often incompatible, standpoints, and a systematic comparison of the

resulting hedge ratios and the subsequent hedging performance has not been done in a realistic

setting with market data. These studies often assume a complete market environment [8, 9, 71]

which is indeed not realistic according to the experience of the credit derivative market turmoil,

leading to questionable conclusion. On the other hand, some studies, such as [51, 53], acknowledge

market incompleteness and approach the hedging problem by incorporating both spread risk and

default risk. However, those analyses only focus on a particular model, and a comprehensive

examination across different models and strategies has not been addressed. Needless to say, in

order for such a comparison to be meaningful, the models need to be calibrated to the same data

set. The very feasibility of this calibration is a serious (computational) constraint which excludes
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many models discussed in the literature, leading us to focus on the class of tractable models.

In chapter 2, we assess the performance of hedging strategies for index CDO tranches derived

under various model assumptions, which is motivated by previous studies indicating the impact

of model uncertainty on hedging of derivative instruments [23, 39]. To our knowledge, this study

is the first to compare a variety of models and hedging strategies under a realistic setting using

historical data. Models that are considered include:

• The Gaussian copula model [74] is a static copula model in which the correlations between

default arrivals are specified via a Gaussian copula function. In this model, the marginal

distribution of the default time for each underlying obligor is calibrated to the corresponding

CDS term structure. Then correlation parameters of the Gaussian copula function are fitted

to the CDO tranche spreads. In practice, the common approach is to consider a one-factor

Gaussian copula model with one correlation parameter and the CDO tranche spreads are ex-

pressed as different implied correlations. Therefore, CDO market is also known as correlation

market [20].

• The affine jump-diffusion model is a multiname reduced-form model which is first introduced

by Duffie and Gârleanu [41]. In this model, the default arrival times are modeled as Cox pro-

cesses where the default intensity for each obligor is driven by affine jump-diffusion processes.

Unlike the Gaussian copula model, this model is dynamic and the correlation structure is

modeled through the loading of each default intensity on the common affine process.

• The Herbertsson model [60] is a simple Markovian portfolio default model where the credit

portfolio loss is assumed to follow a finite-state continuous-time Markov process with a tran-

sition rate that depends on time and the loss level. The transition probability of the loss

process has a semi-analytic expression which leads to an efficient calibration algorithm. How-

ever, such model does not incorporate spread volatility, meaning that it implies deterministic

movements of the index and CDO tranche spreads between successive defaults.
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• The bivariate spread-loss model [5] is an extension of the Herbertsson model where the port-

folio default intensity is governed by the portfolio loss process itself and also an additional

factor which drives spread volatility between defaults. This model, which is introduced by

Arnsdorf and Halperin [5], is able to incorporate both spread and default risk.

Under the above modeling frameworks, we consider the following hedging strategies.

• Delta hedging of spread risk is the most common strategy for hedging CDO tranches. Investors

use either the underlying CDSs or the index to protect against small movements in the CDO

tranche values. However, this does not take into account of either changes in the implied

correlations or large movements in the credit derivative values.

• Gamma hedging of spread risk is an extension of delta hedging which attempts to neutralize

the convexity of change in the CDO tranche values with respect to shifts in CDS spreads.

This strategy involves trading of other CDO tranches.

• Hedging of implied correlation movements can be achieved by trading other CDO tranches.

However, implied correlations do not necessarily move in parallel and the performance of such

strategy is questionable.

• Hedging of default risk is carried out by entering position in the underlying CDS or the index

according to the jump-to-default ratio, which is defined as the change in the CDO tranche

value over the change in the CDS or index value with respect to a constituent default.

• Quadratic hedging is the strategy that minimizes the quadratic hedging error under the risk-

neutral pricing measure. In the case of a Markovian model, such as the Herbertsson model

and the bivariate srpead-loss model, there is an analytical expression for the optimal hedge

ratio.

• Regression-based hedging estimates the optimal hedge ratios by regressing the changes in

CDO tranche values against the changes of the index values based on historical data. Unlike
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quadratic hedging which is computed under the risk-neutral probability measure, the regres-

sion approach incorporates the statistical (real-world) relationship between the CDO tranches

and the underlying index.

By using the CDX.NA.IG data in 2008, we compare the performance of the above strategies

for hedging index CDO tranches. The performance is measured in terms of the reduction in

magnitude and volatility of the daily profit-and-loss. Our empirical analysis shows evidence for

market incompleteness: a large proportion of risk in the CDO tranches appears to be unhedgeable.

This suggests that market completeness is by no means an acceptable approximation, and toy

models [9, 71] which assume a complete market may fail to provide useful insight for issues related

to hedging of CDO tranches. We also show that, unlike what is commonly assumed [8], dynamic

models do not necessarily perform better than static models, nor do high-dimensional bottom-

up models perform better than simpler top-down models. When it comes to hedging, top-down

and regression-based hedging provide significantly better results during the crisis than bottom-up

hedging with single-name CDS contracts. This leads us to question the need for computationally

costly dynamic bottom-up models instead of the top-down models for hedging portfolio credit

derivatives. Model-free regression-based hedging appears to be more effective than other hedging

strategies. This suggests that incorporating the statistical behavior of credit spreads is an important

criterion for a successful hedging strategy. Our empirical study also reveals that while significantly

large moves, “jumps”, do occur in CDS, index, and CDO tranche spreads, where these jumps do

not necessarily occur on the default dates of index constituents, an observation which shows the

insufficiency of some recently proposed portfolio credit risk models [53].

Our empirical study has left out some of the practical considerations such as (il)liquidity of CDS

contracts, higher transaction costs for trading CDSs than for the index, and higher computational

costs for the bottom-up multiname models than for the top-down aggregate loss models into ac-

count. If we take these aspects into account in addition to our backtesting analysis, it would tilt the

comparison even more in favor of top-down/index hedging as opposed to hedging with single-name
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CDSs.

1.4 A non-parametric approach for recovering default intensities

implied by CDO spreads

The inadequacy of the Gaussian copula model and its various extensions for pricing and hedging

is emphasized by the recent turmoil in the credit derivative market. In particular, those static

models are not able to price path-dependent derivatives such as forward starting CDO tranches,

and pricing non-standard CDO tranches based on implied correlations interpolation yields static

arbitrage opportunities (see [25]). It then leads to the development of various dynamic models for

portfolio credit risk.

One of the main obstacles in implementing and using these dynamic models has been the avail-

ability of efficient calibration algorithms. Previous studies on dynamic models have mostly been

based on black-box optimization procedures applied to non-convex least squares minimization prob-

lems (for example [5, 45, 54, 60]). The lack of convexity entails that the convergence and stability

of these methods are not guaranteed, casting doubts on the reproducibility of calibration results

and their stability.

Recovering implied default rates from market data is by nature an ill-posed problem. Although

the actual default rate may depend on the past market history, it has been argued [28, 31, 93] that

the information contained in CDO tranche spreads can be used at best to recover the local intensity

function, a(., .), which is defined as the conditional expectation of the portfolio default intensity

given the loss level:

a(t, i) := EQ[λt|Nt− = i,F0],

where Q is a risk-neutral pricing measure, Nt is the number of underlying defaults happened by

time t, (λt) is the (portfolio default) intensity for the counting process (Nt), and F0 represents the
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information observed today (time 0). The local intensity function is analogous to the local volatility

function introduced by Dupire [43] for equity derivatives. It summarizes all information available

from CDO tranche spreads on the marginal loss distributions of the credit portfolio.

In chapter 3, we derive a simple computational method for constructing an arbitrage-free CDO

pricing model in terms of the local intensity function which matches a prespecified set of CDO

tranche spreads. Our method can overcome the convergence problem arises from black-box op-

timization and it is carried out in two steps. In the first step, we recover the so-called expected

tranche notionals, which are essentially the expected put payoffs:

P (T,K) := EQ[(K − LT )+|F0],

with different maturity T and strike K. We show that a set of arbitrage-free expected notionals can

be obtained from the market CDO tranche spreads by solving a quadratic programming problem.

Linear constraints in the optimization represent the no-arbitrage conditions and the consistency

with respect to the market CDO tranche spreads. We then solve for the set of arbitrage-free

expected tranche notionals that is “closest” to a set of reference expected tranche notionals in

terms of their sum of the squared differences. The reference values can represent a “prior” view

on the market, which can also be computed from a reference model such as the Gaussian copula

model.

In the second step, values of the local intensity function are obtained by using an analytical

inversion formula:

a(T, i) =





−∂TP (T, δ)

P (T, δ)
, i = 0,

−∇K∂TP (T, iδ)

∇2
KP (T, (i − 1)δ)

, i = 1, ..., n − 1,

0, i = n,

where n is the total number of obligors in the underlying portfolio, δ is the loss given default

that is assumed to be constant, ∂TP (T, δ) is the partial derivative with respect to maturity, and
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∇KP (T, iδ) = P (T, (i+1)δ)−P (T, iδ) is the forward difference of the function in strike. Application

of this formula is justified by an existence theorem, which states that if the local intensity function

is bounded, there exists a Markovian point process (Mt) with intensity (a(t,Mt−)) such that the

marginal distributions of this Markovian point process match the given set of expected tranche

notionals. Details of the theorem are presented in chapter 3.

Since the calibration method only requires to solve a quadratic programming problem and make

use of an analytical formula, convergence and uniqueness of the resulting default intensity are

guaranteed. Moreover, we show that this method is significantly more stable with respect to shifts

in the market CDO tranche spreads than the parametric method introduced by Herbertsson [60].

Unlike the calibration algorithm introduced by Cont and Minca [28], our method has the advantage

of requiring only relatively simple mathematical techniques.

Comparing this approach to other calibration methods using iTraxx Europe index CDO spreads,

we find that model-dependent quantities such as the forward starting tranche spreads and jump-

to-default ratios are quite sensitive to the calibration method used, while the default intensities

maintain a good match to the CDO market spreads. This illustrates clearly the ill-posedness of the

calibration problem, and also demonstrates that uncertainty due to the choice of the calibration

method can have a large impact on both pricing and hedging of credit derivatives.

Since the local intensity function can be defined for a wide range of credit portfolio models, it

also provides a common basis for model comparison. By comparing the local intensity functions

implied by different credit portfolio models, we find that apparently different models, such as static

Student-t copula models [70] and reduced-form affine jump-diffusion models [41, 83], lead to similar

marginal loss distributions and tranche spreads. This suggests that market CDO prices alone are

insufficient to discriminate between these model classes.

Our results emphasize the importance of model uncertainty when addressing the pricing and

hedging of portfolio credit derivatives and call for more research in this direction.
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1.5 Statistical modeling of credit default swap portfolios

The recent financial crisis illustrates that investors in credit derivatives can experience substantial

losses even in absence of any defaults. The risk associated with such volatility in market values

is mainly due to the change of credit quality of the underlying obligors, which is reflected in

their credit spreads. This spread risk, overlooked in the first generation of default risk models

[16, 25, 28, 60, 67, 68, 80], turned out to be the major risk faced by investors in credit derivatives.

In our opinion, a realistic model for CDS spreads should (at least) be capable of explaining the

empirical properties that are observed in the historical data. However most existing default risk

models have focused on analytical tractability rather than statistical properties of credit spreads

[41, 49, 83], and spread dynamics implied by these models do not necessarily correspond to observed

dynamics of spreads. This may result in poor performance of these models for hedging and risk

management [26].

Modeling of spread risk is also important for calculating the margin requirements for centrally

cleared credit derivatives. Regulatory reform in the light of 2008 crisis has moved CDS trading from

over-the-counter bilateral trading to clearing houses. The consistent computation of such margin

requirements requires a multivariate model for (co-)movements in CDS spreads.

As shown by Collin-Dufresne, Goldstein and Martin [21], credit spread changes are principally

driven by supply/demand fluctuations that are independent from factors traditionally considered

in credit risk modeling. This observations suggests that direct stochastic modeling of CDS spread

returns is more effective than trying to explain spread movements in terms of other economic

variables. This is the approach we adopt here: in chapter 4, we first undertake a systematic study

of the univariate and multivariate properties of CDS spreads. By using the CDS time series of CDX

investment grade index constituents in 2005-09, we observe the following statistical properties:

• CDS spread returns can be modeled as stationary processes with positive autocorrelations,

positive serial correlations in extreme values, conditional heteroscedasticity and two-sided
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heavy tails.

• Large co-movements are observed in the CDS spread series, indicating the presence of heavy-

tailed common factors. However, these large co-movements are not necessarily linked to credit

events.

• Correlations across obligors of CDS spread returns increase substantially in 2007-09.

• Principal component analysis suggests that the main contribution to the variance of CDS

spread returns comes from idiosyncratic jumps.

• Credit events do not necessarily lead to large upward moves in the CDS spreads.

These properties can serve as a guideline to check whether a credit model is valid for modeling

CDS spreads. In particular, we show that the affine jump-diffusion model [41, 49, 83] fails to

reproduce the serial dependence and the two-sided heavy-tailed distribution for CDS spread returns.

Moreover, the affine jump-diffusion model estimated by a Markov Chain Monte Carlo method [49]

overestimates the probability of having large co-movements in the CDS spreads. While previous

studies, such as [6, 49], show that the affine jump-diffusion model fits well to the CDS and CDO

tranche spread time series, our results illustrate that goodness-of-fit does not necessarily lead to

the desired statistical properties.

Recognizing insufficiency of the affine jump-diffusion model, we propose a heavy-tailed multi-

variate AR-GARCH model (MAG model) for CDS spread returns. In this model, the CDS spread

returns are modeled as AR(1)-GARCH(1,1) processes:

ri
t = Ci + φiri

t−1 + ǫit,

ǫit = σi
tZ

i
t ,

where the index i represents the reference obligor i, (ri
t) is the CDS spread daily returns, (Zi

t) is

an i.i.d. sequence, and σi
t is the conditional volatility which follows

(σi
t)

2 = Ki +Gi(σi
t−1)

2 +Ai(ǫit−1)
2,
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where Ki > 0, Gi ≥ 0, Ai ≥ 0, Gi + Ai < 1. We assume that the i.i.d. sequence (Zi
t) follows a

heavy-tailed distribution

Zi
t = aiV 0

t + biV i
t ,

where (V 0
t ) and (V 1

t , ..., V
n
t ) are i.i.d. sequences which follow a Student t distribution with degree of

freedom ν0 and a multivariate Student t distribution with degree of freedom ν respectively. Notice

that Zi
t is a weighted sum of two Student t distributed variables with possibly different degrees of

freedom. By using a quasi maximum likelihood method to estimate the model parameters, we show

that this model is able to reproduce the observed statistical properties of CDS spreads as well as

their multivariate dependence structures adequately.

In the final section of chapter 4, we compare the MAG model to the affine jump-diffusion

model and a random walk model introduced by Saita [91] in terms of predicting loss quantiles of

various examples of CDS portfolios. Loss quantiles for CDS portfolios is important in practice since

it underlies the risk measurement for the portfolios and is used for the determination of margin

requirements for the clearing of CDS contracts by central counterparties. In particular, we compute

the 99% quantile of the daily loss, which corresponds to the 99% 1-day Value-at-Risk (VaR), and

compare these quantile levels to the realized daily losses.

We first use the Kupiec test [65] to examine whether the exceedance probability, the probability

that the realized loss is larger than the VaR estimate, is significantly different from 1%. According

to our backtest, the MAG model gives the fewest number of portfolios whose exceedance probability

is significantly different from the target 1%. The random walk model appears to perform better

than the affine jump diffusion model in 2005-07, but the two models are comparable in 2007-09.

We then investigate the timing of exceedances and check whether the exceednaces exhibit auto-

correlations by using the Ljung-Box test on the exceedance sequence (1{Lt>V aRt}) for each portfolio

where Lt is the portfolio loss at time t and V aRt is the VaR estimate. We find that the random

walk model gives positively autocorrelated exceedances, especially in late 2008 when a series of
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market shocks was triggered by Lehman Brother’s bankruptcy. This reveals that random walk

model is inadequate for predicting loss quantiles in difficult market condition. On the other hand,

the MAG model gives the fewest number of portfolios that have autocorrelated exceedances.

Finally, we examine whether the sample expected shortfall is statistically different from the

model expected shortfall. We follow McNeil, Frey and Embrechts [79] and compute the confidence

intervals for the sample expected shortfall by using the bootstrap method [46, 79]. Our results show

that the MAG model gives the best performance, which has the fewest number of portfolios that

can reject the hypothesis that the sample expected shortfall is different from the model expected

shortfall.

Overall, our heavy-tailed multivariate AR-GARCH model compares favorable to the affine jump-

diffusion model [41] and the random walk model [91], while it provides more accurate prediction

for the quantiles of the loss distribution of a wide variety of CDS portfolios.
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Chapter 2

Dynamic hedging of portfolio credit

derivatives

Static factor models, in particular the Gaussian copula model [74], have been widely used for

hedging portfolio credit derivatives such as collateralized debt obligations (CDOs). In such models,

the risk of a CDO tranche is characterized in terms of sensitivities to shifts in risk factors [44, 85].

Accordingly, hedging practices have typically been based on such measures of sensitivity. The most

common hedging approach has been to “delta hedge” spread fluctuations using credit default swaps

(CDSs).

However, the recent turmoil in credit derivatives markets shows that these commonly used hedg-

ing approaches are inefficient. One of the main criticisms has been the lack of well-defined dynamics

for the risk factors in such static models, which prevents any model-based assessment of hedging

strategies. In particular, delta hedging of spread risk is loosely justified using a Black-Scholes anal-

ogy which does not necessarily hold, and the corresponding hedge ratios, the spread-deltas, are in

fact computed from a static model without spread risk. Indeed, delta hedging of spread risk is

not deduced from any theory of derivative replication. Furthermore, delta hedging of spread risk

ignores default risk and jumps in the spreads, which appeared to be critical for risk management
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during the difficult market environment in 2008. Although gamma hedging can improve perfor-

mance slightly, it is not sufficient to solve these issues. Finally, the common approach to price

portfolio credit derivatives using copula-based models does not guarantee the absence of arbitrage.

Cont, Deguest, and Kan [25] show that pricing CDO tranches based on linear interpolation of the

base correlations in a one-factor Gaussian copula model can lead to static arbitrage.

Given the deficiencies of copula-based hedging methods, alternatives have been proposed to

tackle the problem of hedging portfolio credit derivatives. Durand and Jouanin [44] describe com-

mon hedging practices for credit derivatives and correctly point out the inconsistency between most

of the pricing models, where the sole risk is in the occurrence of defaults, and delta hedging strate-

gies, where the trader seeks to protect his/her portfolio against small movements in CDS spreads.

Bielecki, Jeanblanc, and Rutkowski [9] show that, in a bottom- up hazard process framework driven

by a Brownian motion, perfect replication is possible by continuously trading a sufficient number of

liquid CDS contracts. Bielecki, Crépey, and Jeanblanc [8] discuss hedging performance in bottom-

up and top-down models using simulation but do not comment on the performance of such strategies

in a real market setting.

Laurent, Cousin, and Fermanian [71] study hedging of synthetic CDO tranches in a local in-

tensity framework without spread risk, and show that CDO tranches can then be replicated by a

self-financing portfolio consisting of the index default swap and a risk-free bond. However, as we

will show in section 2.2, spread fluctuation is a major source of risk even in the absence of defaults,

so failure to incorporate spread risk can lead to unrealistic conclusions.

Using a more realistic approach which acknowledges market incompleteness and incorporates

both spread risk and default contagion, Frey and Backhaus [51] observe significant differences

between the sensitivity-based hedging strategies computed in the Gaussian copula framework and

the dynamic hedging strategies derived in their setup. They also show that variance-minimization

hedging provides a model-based endogenous interpolation between the hedging against spread risk

and default risk.
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Giesecke, Goldberg, and Ding [53] discuss an alternative hedging approach based on a self-

exciting process for portfolio defaults and compare the hedging performance for equity CDO

tranches in September 2008 with a Gaussian copula model.

The hedging methods in these studies approach the problem from different, often incompatible,

standpoints, and a systematic comparison of the resulting hedge ratios and the subsequent hedging

performance has not been done in a realistic setting with market data. Needless to say, in order

for such a comparison to be meaningful, the models need to be calibrated to the same data set.

The very feasibility of this calibration is a serious (computational) constraint which excludes many

models discussed in the literature, leading us to focus on the class of tractable models.

Motivated by previous studies indicating the impact of model uncertainty on the pricing and

hedging derivative instruments [23], our objective is to assess the performance of hedging strategies

of index CDO tranches derived under various model assumptions. We compare the performance of

different dynamic hedging strategies across a range of models including the Gaussian copula model,

a multiname reduced-form model introduced by Duffie and Gârleanu [41], a Markovian portfolio

default model [60], and a two-factor model with spread and default risk [5]. Strategies considered

include delta hedging of spread risk, hedging of default risk, variance minimization (quadratic

hedging), and regression-based hedging.

In particular we shall attempt to address some important questions which have been left unan-

swered by previous studies:

• How did various hedging strategies for CDOs perform during major credit events in 2008?

• Do complete market models provide the right insight for hedging credit derivatives?

• How good are delta hedging strategies for CDO tranches?

• Does gamma hedging improve hedging performance?

• Do hedge ratios based on jump-to-default fare better than sensitivity-based hedge ratios?
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• Are dynamic models better for hedging than static models?

• Do hedging strategies using single-name CDSs perform better than hedges using the index?

• Are bottom-up models more suitable for hedging than top-down models?

This chapter is structured as follows. Section 2.1 describes the cash flow structure of credit de-

fault swaps, index default swaps, and index CDO tranches. Section 2.2 presents the dataset used

for the empirical analysis and describes some important statistical features of the CDO and CDS

markets. Section 2.3 introduces the models under consideration and discusses procedures used for

parameter calibration. Section 2.4 discusses the hedging strategies under consideration. Section 2.5

compares the performance of different strategies for the hedging of index tranches in 2008. Section

2.6 summarizes our main findings and discusses some implications.

2.1 Credit derivatives

A credit derivative is a financial instrument whose payoff depends on the losses due to defaults of

the reference obligors (debt instruments). A portfolio credit derivative is a credit derivative whose

payoffs depend on default losses in a reference portfolio of obligors. We will consider here index

credit derivatives, for which the underlying portfolio is an equally weighted portfolio, such as the

CDX or iTraxx indices. Typically, the payoffs depend only on the aggregate loss due to defaults in

the index, not on the identity of the defaulting firm.

Consider an equally weighted portfolio consisting of n obligors, and assume for simplicity a

constant recovery rate R (typically assumed to be 40%) and deterministic interest rates. Let τi be

the default time of obligor i. The portfolio loss (in fraction of total notional value) at time t is

equal to

Lt =
1 −R

n

n∑

i=1

1τi≤t =
1 −R

n
Nt,



Chapter 2. Dynamic hedging of portfolio credit derivatives 28

where Nt is the number of defaults by time t. The portfolio loss (Lt) is modeled as a stochastic

process on a (filtered) probability space (Ω,F , (Ft),Q), where Ω is the set of market scenarios, (Ft)

represents the flow of information, and Q is a risk-neutral probability measure representing the

market pricing rule.

We will consider the three most commonly traded credit derivatives: credit default swaps

(CDSs), index default swaps (index), and collateralized debt obligations (CDOs). All three deriva-

tives are swap contracts between two parties, a protection buyer and a protection seller, whereby

the protection buyer is compensated for the loss generated by the default of a reference obligor

(CDS) or defaults from a pool of obligors (index and CDO). In return, the protection buyer pays

a premium to the protection seller. A more detailed description of these products can be found in

[28, 51, 76].

2.1.1 Credit default swaps

Consider a reference obligor i and its corresponding CDS contract initiated at time 0 with unit

notional and payment dates T1 < T2 < ... < TM , where T = TM is the maturity date. Assume that

the default payments are made on the next payment date1, then if obligor i defaults between time

Tm−1 and Tm, the default payment at time Tm is equal to 1−R. On the other hand, if obligor i has

not defaulted yet at time Tm, the protection seller will receive a premium payment si
0(Tm −Tm−1),

where si
0 is the CDS spread that has been determined at the inception.

The par CDS spread si
t quoted in the market at date t is defined as the value of the spread

which sets the present values of the default leg and the premium leg equal. The mark-to- market

value of a protection seller’s position at time t is equal to the difference between the net present

values of the two legs:

V i
t = (si

0 − si
t)
∑

Tm>t

B(t, Tm)(Tm − Tm−1)Q(τi > Tm|Ft), (2.1)

1The default payment is sometimes assumed to be made immediately after the default. Nevertheless, the choice
of payment schedule has negligible effects on our analysis in this chapter.
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where B(t, Tm) is the discount factor from time t to Tm. In what follows we will refer to the value

of the protection seller’s position as the mark-to-market value, and we will use scds
t = (s1t , ..., s

n
t )

to denote the vector of constituent CDS spreads and Dt = (1τ1≤t, ..., 1τn≤t) to denote the vector of

default indicators at time t.

2.1.2 Index default swap

Index default swaps are now commonly traded on various credit indices such as iTraxx and CDX

series which are equally weighted indices of CDSs. In an index default swap transaction initiated at

time 0, a protection seller agrees to pay all default losses in the index in return for a fixed periodic

spread sidx
0 paid on the total notional of obligors remaining in the index.

The index default swap par spread sidx
t quoted in the market at time t is defined as the value

of the spread which balances the present values of the default leg and the premium leg. The mark-

to-market value of a protection seller’s position at time t is equal to the difference between the two

legs, which can be expressed as

V idx
t =

(
sidx
0 − sidx

t

) ∑

Tm>t

B(t, Tm)(Tm − Tm−1)E
Q

[
1 − NTm

n

∣∣∣Ft

]
. (2.2)

Here, we assume that the outstanding notional value is calculated at payment dates2.

2.1.3 Collateralized debt obligations

Consider a tranche defined by an interval [a, b], 0 ≤ a < b ≤ 1, for the portfolio loss normalized

by the total notional value of the underlying portfolio. We call a (resp., b) the attachment (resp.,

detachment) point of the tranche. A synthetic CDO tranche swap is a bilateral contract in which

the protection seller agrees to pay all portfolio loss within the interval [a, b] in return for a periodic

spread s
[a,b]
0 , which is determined at inception t = 0, on the remaining tranche notional value.

2A more precise valuation would consider the average outstanding notional value over the time period between
the payment dates [15], but the approximation above has negligible effects on our analysis.
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The par tranche spread s
[a,b]
t quoted in the market at time t is defined as the spread which sets

the present values of the default leg and the premium leg to be equal. The mark-to-market value

of a protection seller’s position (normalized by the total tranche notional value) at time t is equal

to the difference between the two legs, which can be expressed as

V
[a,b]
t =

(
s
[a,b]
0 − s

[a,b]
t

) ∑

Tm>t

B(t, Tm)

b− a
(Tm − Tm−1)E

Q
[
(b− LTm)+ − (a− LTm)+

∣∣∣Ft

]
. (2.3)

2.2 Data analysis

Our dataset contains the 5-year CDX North America Investment Grade Series 10 (CDX) index

spreads; the standard tranche spreads with attachment/detachment points 0%, 3%, 7%, 10%, 15%,

30%, 100%; and the constituent 5-year CDS spreads, all obtained from Bloomberg. The time series

runs from 25 March, 2008 until 25 September, 2008. Figure 2.1 illustrates the time series of the

index, tranche [10%, 15%], CDS of IBM and Disney Corp.
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Figure 2.1: Left: 5Y CDX.NA.IG.10 index and tranche [10%, 15%] spreads. Right: 5Y CDS spreads of IBM
and Disney Corp. (DIS)

2.2.1 Co-movements in CDSs and CDO tranches

A CDO hedging strategy should be based on a good understanding of the relation between the profit

and loss (P&L) of the hedging instruments, namely the CDSs and the index, and that of the target

instruments, the CDO tranches. Given that the P&L is driven mainly by the changes in spreads,
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this requires a correct representation of co-movements in the credit spreads. Figure 2.2 shows the

tranche [10%, 15%] daily spread returns against the index and IBM CDS daily spread returns. The

crosses and circles represent the data points where spread returns of the two credit derivatives

move in the same and opposite directions, respectively. Here we use IBM CDS and the [10%, 15%]

tranche data for illustration, but similar results are obtained by looking at other constituent CDSs

and tranches. From the figure, we can immediately observe two important properties:

1. CDS/Index spreads tend to move together with the tranche spreads when the movements are

large.

2. In many cases, CDS/Index spreads and tranche spreads move in opposite directions, especially

when the movements are small.

Large co-movements of the spreads, or common jumps, can be explained by the exposures of the

credit derivatives to common risk factors which undergo large movements. This phenomenon can

be seen more clearly in Table 2.1, which shows that the correlation between the index and tranche

spread returns increases substantially if we condition on larger observations.

From a hedging perspective, frequent opposite movements between the CDS/index and the

tranche spreads can lead to serious problems, because most hedging strategies imply positive hedge

ratios with respect to the CDSs or the index. When the values of the hedging instruments and the

tranche move in opposite directions, those strategies may fail to reduce the exposure of the tranche

positions or, more seriously, can substantially amplify the overall exposure. As we will see in our

empirical study in section 2.5, this problem frequently arises in common hedging strategies.

Index spread return Unconditional > 8% > 5% > 1% < −1% < −5% < −8%

Correlation 0.63 0.82 0.82 0.60 0.68 0.71 0.81
Observations 126 4 12 52 43 11 6

Table 2.1: Conditional correlations between daily spread returns of the index and tranche [10%, 15%] show
evidence of a common heavy-tailed factor.
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Figure 2.2: Tranche [10%, 15%] daily spread returns versus index daily spread returns and IBM CDS daily
spread returns. Crosses represent data points where spread returns have the same signs (movements in the
same direction), and circles represent data points where spread returns have opposite signs (movements in
opposite directions).

2.2.2 Impact of defaults on credit spreads

Our sample period covers several important credit events: the takeover of Fannie Mae and Freddie

Mac, which led to losses in the CDX, and the bankruptcy of Lehman Brothers, which led to a

significant shock to the market.

During the sample period, Fannie Mae and Freddie Mac were taken over by the U.S. government

on 7 September, 2008, which generated a credit event in the CDX reference portfolio. According to

Bloomberg, the recovery rates of the 5-year senior CDS contracts of Fannie Mae and Freddie Mac

were 92% and 94%, respectively, which will be used to determine the losses in our empirical study.

On the other hand, although Lehman Brothers is not a reference obligor in the CDX, Figure 2.1

shows that there is considerable upward movement of the spreads on the next business day after

Lehman Brothers announced bankruptcy.

Table 2.2 shows the daily spread returns on the next business day after Fannie Mae/Freddie

Mac and Lehman Brothers credit events in units of sample standard deviation. Interestingly, we

observe that the IBM, the index, and the super senior tranche [30%, 100%] spreads decrease on

the next business day after Fannie Mae/Freddie Mac were taken over. Although the spreads of

other tranches do increase, the magnitudes of these changes are rather small, less than 0.5 standard
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deviations.

On the other hand, we do observe jumps in CDX spreads, but not necessarily on the dates

corresponding to constituent defaults. The typical example is on 16 September, 2008 when Lehman

Brothers filed for bankruptcy. Although Lehman Brothers is not a constituent of the CDX, the IBM,

index, and tranche spreads increase by as much as 4.9 standard deviations, which are substantial

upward moves and can be attributed to jumps.

These observations have two important implications. First, they show that jumps in the spreads

are not necessarily tied to defaults in the underlying portfolio, as is the case in Markovian contagion

models [5, 60] and self-exciting models [48, 53], where jumps occur only on portfolio default dates.

Jumps may be caused by information external to the portfolio, such as macroeconomic events, of

which the Lehman credit event is an example. Second, jump sizes at default dates appear to depend

on the severity of the events, with lower recovery rate implying fewer or no upward jumps in the

spreads. This suggests that models with constant jumps in the default intensity at each default

are insufficient for capturing the impact of defaults on the spread movements: this impact should

depend on the severity of loss in the given default, as suggested in [53]. We note that this may be

difficult in practice, since recovery rates are usually not observable immediately after default and

can be determined only after liquidation.

IBM Index 0%-3% 3%-7% 7%-10% 10%-15% 15%-30% 30%-100%

8-Sep-08 -0.66 -1.10 0.16 0.05 0.04 0.44 0.02 -0.06
16-Sep-08 3.23 4.55 3.51 4.92 4.45 3.91 4.14 4.05

Table 2.2: Daily spread returns on the next business day after Fannie Mae/Freddie Mac (8 September, 2008)
and Lehman Brothers ( 16 September, 2008) credit events, normalized by unconditional sample standard
deviations.

2.3 Models for portfolio credit derivatives

We will consider four different modeling approaches in our analysis: the one-factor Gaussian copula

model [74], a bottom-up affine jump- diffusion model [41], a local intensity model [25, 28, 60, 77, 93],
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and a top-down bivariate spread- loss model [5].

2.3.1 Gaussian copula model

The one-factor Gaussian copula model [74] is a standard market reference for pricing CDO tranches,

in which the default times are constructed as

τi = F−1
i (Φ(ρM0 +

√
1 − ρ2Mi)),

where M0, Mi are independent standard normal random variables, Φ(.) is the standard normal

distribution function, Fi is the marginal distribution of τi, and ρ is a correlation parameter. The

distribution function Fi(.) is calibrated to the single-name CDS spreads by assuming a constant

hazard rate.3 Then, we fit one correlation to each tranche, which is a situation known as compound

correlations. If multiple correlations give the same tranche spread, we will choose the smallest one.

There are two reasons why we consider compound correlations instead of the base correlations

[75] for calibration. As noted by Morgan and Mortensen [82], we found that computing the spread-

deltas while keeping base correlations fixed can lead to a negative sensitivity of a tranche with

respect to a change in the CDS spreads. Therefore, even if the CDS and the tranche spreads move

in the same direction, especially when the movement is large, the negative spread-deltas will have

the wrong sign and give poor hedging results. Second, unlike the Black-Scholes implied volatility,

which is in a one-to-one correspondence to the vanilla options prices, base correlations are not

guaranteed to exist. For instance, we were not able to calibrate the base correlation for 15% strike

on many of the dates in our sample.

In order to express the hedging positions in later sections, it is convenient to write the mark-

to-market values of the credit derivatives as functions of the modeling variables. Given the CDS

spreads scds
t = scds = (s1, ..., sn), the default indicators Dt = D, and the set of compound correla-

tions ρt = ρ, we write the mark-to-market values of CDS i, the index, and a tranche [a, b] at time t

3The hazard rate term structure is usually assumed to be piecewise constant. Since we consider only CDS with
one maturity for each obligor, it reduces to a constant hazard rate.
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computed under the Gaussian copula model as V i
gc(t, s

i), V idx
gc (t, scds,ρ,D) and V

[a,b]
gc (t, scds,ρ,D)

respectively.

2.3.2 Affine jump-diffusion model

Various dynamic reduced-form models have been proposed to overcome some of the shortcomings

of static copula-based models. An example of such a model used in industry is the affine jump-

diffusion model introduced by Duffie and Gârleanu [41]. In this model the default time τi of an

obligor i is modeled as a random time with a stochastic intensity (λi
t) given by

λi
t = Xi

t + aiX0
t , (2.4)

where the idiosyncratic risk factors (X1
t , ...,X

n
t ) and the common (macro) risk factor (X0

t ) are

independent affine jump-diffusion processes

dXi
t = κ(θ −Xi

t)dt+ σ
√
Xi

tdW
i
t + dJ i

t ,

where (W i
t ) are standard Brownian motions and (J i

t ) are compound Poisson process with exponen-

tially distributed jump sizes. The conditional survival probability is then given by

Q(τi > T |Ft) = EQ

[
exp(−

∫ T

t
λi

udu)
∣∣∣Ft

]
.

We will denote by Xt = (X0
t ,X

1
t , ...,X

n
t ) the risk factor values at time t. In order to calibrate the

model, we follow the algorithm proposed by Eckner [45]. The tractability of this model relies on

the conditional independence assumption of the default processes and also an analytical formula

for the characteristic function of the affine jump-diffusion process. We refer readers to [41, 45] for

the details of the calibration procedure.

Since (Xt,Dt) is a Markov process, given the values Xt = X = (X0,X1, ...,Xn) and the default

indicators Dt = D, we can write the mark-to-market values of CDS i, the index, and a tranche

[a, b] at time t computed under the affine jump-diffusion model as V i
af (t,X0,Xi), V idx

af (t,X,D) and

V
[a,b]
af (t,X,D) respectively. The mark-to-market values are computed as given in (2.1), (2.2) and

(2.3).
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2.3.3 Local intensity models

Local intensity models [25, 28, 60, 77, 93] are top-down models in which the number of defaults Nt

in a reference portfolio is modeled as a Markov point process with an intensity λt = f(t,Nt−): the

portfolio default intensity is a (positive) function of time and the number of defaulted obligors.

We consider the following parametrization of the local intensity function, introduced by Her-

bertsson [60]:

λt = (n −Nt−)

Nt−∑

k=0

bk, (2.5)

where {bk} are the parameters. The interpretation of (2.5) is that the portfolio default intensity

jumps by an amount bk when the kth default happens. There is no sign restriction on {bk} as long

as the portfolio default intensity remains positive. As in [60] we parametrize {bk} as

bk =





b(1) 1 ≤ k < µ1,

b(2) µ1 ≤ k < µ2,

...

b(I) µI−1 ≤ k < µI = n,

(2.6)

where 1, µ1, ..., µI is a partition of {1, ..., n} which includes the attachment points of the tranches.

The local intensity model is a Markovian top-down model in which the only risk factor is the loss

process. Therefore we can express the mark-to-market values of the index and a tranche [a, b] at

date t computed as functions V idx
lo (t,N) and V

[a,b]
lo (t,N) of the number of defaults and time.

2.3.4 Bivariate spread-loss model

One major shortcoming of the local intensity model is that spreads have piecewise-deterministic

dynamics - i.e., no “volatility” - between defaults. As we have seen in Figure 2.1, credit derivative

positions fluctuate substantially in value even in the absence of defaults in the underlying credit

portfolio, so a hedging strategy based on the jump-to-default ratio may lead to poor performance.
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A more realistic picture is given by a two-factor top-down model [5, 77] which accounts for both

default risk and spread volatility by allowing the portfolio default intensity to depend on the number

of defaults and a factor driving spread volatility:

λt = F (t,Nt−, Yt).

Arnsdorff and Halperin [5] model the number of default Nt in a reference portfolio as a point

process which has a (portfolio default) intensity (λt) that follows

λt = eYt(n−Nt−)

Nt−∑

k=0

bk, (2.7)

where {bk} are parameters and the second factor (Yt) generates spread volatility between default

dates which follows an Ornstein-Uhlenbeck process

dYt = −κYtdt + σdWt,

where (Wt) is a standard Brownian motion. Notice that the parameters {bk} will provide enough

degrees of freedom to fit the CDO tranche spreads on a given date, so the remaining parameters

(κ, σ) are estimated from time series of tranche spreads as follows:

• On the first sample day: Set Y0 = 0, κ = 0.3, and σ = 0.7 and calibrate {bk} to index and

tranche spreads on day 1.

• On the jth sample day:

1. Fix {bk} as those calibrated on day j − 1.

2. Calibrate Y0, κ, and σ by minimizing the mean square pricing error of day j − 10, j −

9, ..., j.

3. Calibrate {bk} to the index and the tranche spreads on day j.

Since (Nt, Yt) is a Markov process, given the values Nt = N and Yt = Y , we can write the mark-to-

market values of the index and a tranche [a, b] at time t computed under the bivariate spread-loss

model as functions V idx
bi (t, Y,N) and V

[a,b]
bi (t, Y,N) of the state variables.
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2.3.5 Calibration results

All models are calibrated to the same market data using a 40% recovery rate. Table 2.3 shows

the root mean square calibration error (RMSE). Since we calibrate the Gaussian copula model to

each tranche with a different correlation (compound correlations), it by design gives good fits to

the tranche spreads. The discrepancy of CDS spreads is due to the adjustment to match the index

spreads. Top-down models are amendable to calibration to the market data as well. The RMSE

are well within 2% for all tranches and around 5% for the CDS and the index. On the other hand,

the Duffie-Gârleanu affine jump-diffusion does not calibrate market data as well as the top-down

models. The CDS and the tranche spreads have RMSE at about 10%, which is still reasonable,

but the fit to the index spread has RMSE larger than 20%, which is a poor fit. This is due to the

fact that its calibration involves a high dimensional nonlinear optimization problem which is not

guaranteed to converge. Therefore, we will consider only a hedging strategy using the single-name

CDS as the hedging instruments in the affine jump-diffusion framework, so that the poor calibration

to the index will not affect our analysis significantly. Note that, for all models under consideration,

we have experienced a poor fit to the super senior tranche [30%, 100%], even with the Gaussian

copula model. Since poor calibration leads to inaccurate computation of the mark-to-market values

and the hedge ratios, we will omit the [30%, 100%] tranche in what follows.

Model CDS Index 0%-3% 3%-7% 7%-10% 10%-15% 15%-30%

Gaussian copula 6.04 0.00 0.00 0.18 0.05 0.00 0.00
affine jump-diffusion 14.53 21.67 14.56 5.05 10.40 13.91 6.17

Local intensity - 6.29 1.60 0.95 0.46 0.34 1.71
Bivariate spread-loss - 6.67 1.67 1.02 0.42 0.39 1.79

Table 2.3: Relative calibration error (RMSE), as a percentage of market spreads.
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2.4 Hedging strategies

Our objective is to hedge a position in a tranche [a, b] using the constituent CDSs and the index,

and sometimes with an additional tranche [l, u]. We will now introduce different dynamic hedging

strategies that aim to achieve this task.

We assume a continuously rebalancing framework and let (φi
t), (φidx

t ) and (φ
[l,u]
t ) be predictable

processes which denote the hedging positions in CDS i, the index, and a tranche [l, u], respectively.

In addition, we will use the same notation as in section 2.3 to represent the mark-to-market values

of the credit derivatives computed under different models. All hedging strategies are implemented

using daily rebalancing.

2.4.1 Delta hedging of single-name spread movements

The most common approach for hedging CDO tranches is to hedge against small changes in the

single-name CDS spreads [44, 85]. In practice, traders usually consider delta hedging under the

Gaussian copula model where the corresponding hedging position in CDS i is known as the spread-

delta:

φi
t =

δsiV
[a,b]
gc (t, scds

t− ,ρt−,Dt−)

δsiV i
gc(t, s

i
t−)

, (2.8)

where

δsiV [a,b]
gc (t, scds,ρ,D) = V [a,b]

gc (t, scds + ei,ρ,D) − V [a,b]
gc (t, scds,ρ,D),

δsiV i
gc(t, s

i) = V i
gc(t, s

i + 1bp) − V i
gc(t, s

i)

are the change in values of a tranche [a, b] and CDS i with respect to an increase in the CDS spread

of obligor i by 1 basis point, while the correlations and other CDS spreads remain unchanged.

ei ∈ Rn is a vector with all entries equal to 0 except for the ith entry equal to 1 basis point.

In order to compute the spread-deltas, we first calibrate the one-factor Gaussian copula model

[74] to the market CDS and the tranche spreads as described in section ??. After that, we perturb
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the CDS spread of, say, obligor i by 1 basis point while keeping all other CDS spreads and the

correlations unchanged. Then, we recalibrate the hazard rate function of obligor i and compute the

new values for CDS i and the tranche. The spread-delta defined by (2.8) is the ratio of the change

in the tranche value to the change in the CDS value.

The main drawback of implementing the spread-deltas (2.8) is the absence of well-defined dy-

namics for the single-name CDS spreads in the Gaussian copula framework. On the other hand,

we can consider delta hedging under the dynamic affine jump-diffusion model [41]. Hedging moves

in the single-name CDS spreads is then equivalent to hedging against changes in the idiosyncratic

risk factor. The corresponding position in CDS i is equal to

φi
t =

∂XiV
[a,b]
af (t,Xt−,Dt−)

∂XiV i
af (t,X0

t−,X
i
t−)

, (2.9)

where ∂XiV
[a,b]
af (t,X,D) and ∂XiV i

af (t,X0,Xi) are the partial derivatives with respect to Xi which

can be approximated by finite differences. Note that one of the main differences between the hedge

ratio (2.9) and the spread-delta (2.8) is that there is no recalibration involved when computing

(2.9) under the affine jump-diffusion model.

2.4.2 Delta hedging of index spread movements

In section 2.2.1, we observe that the CDS and the tranche spreads appear to be driven by some

common risk factors. Therefore, we may argue that it is also important to hedge against global

movements in the CDS spreads. We use the Gaussian copula model and enter positions in the

index to neutralize the index spread-delta:

φidx
t =

∆
[a,b]
gc (t)

∆idx
gc (t)

, (2.10)

where

∆[a,b]
gc (t) = V [a,b]

gc (t, scds
t− + e,ρt−,Dt−) − V [a,b]

gc (t, scds
t− ,ρt−,Dt−),

∆idx
gc (t) = V idx

gc (t, scds
t− + e,Dt−) − V idx

gc (t, scds
t− ,Dt−),
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and e ∈ Rn is a vector with all entries equal to 1 basis point. Notice that ∆
[a,b]
gc (t) and ∆idx

gc (t) are

the changes of a tranche [a, b] and the index values with respect to a parallel shift in all CDS spreads

by 1 basis point while keeping the correlations unchanged. Computation of the index spread-delta

is the same as for the spread-deltas, except that we need to shift all CDS spreads by 1 basis point.

This strategy also has the advantage of being cost-effective. Unlike delta hedging individual

CDS fluctuations, which requires rebalancing multiple hedging positions, this strategy only requires

adjusting the position in the index.

If we consider the CDS/index spreads and the correlations as the market inputs, which is

analogous to the stock price and implied volatility moves in equity derivatives markets, the in-

dex spread-delta (2.10) can also be computed by models other than the Gaussian copula model.

The procedure is similar to the case described above in which we first calibrate the models to

the CDS/index spreads and the correlations. Then, we recalibrate the models to the perturbed

CDS/index spreads while keeping the correlations unchanged. The index spread-delta is the ratio

of the change in tranche value over the change in the index value.

Figure 2.3 shows the index spread-deltas (2.10) computed under different models. Interestingly,

we observe that the index spread-deltas are very similar across the models, except those for tranches

[7%, 10%] and [10%, 15%] computed from the affine jump-diffusion model. In fact, this discrepancy

is due only to the fact that the affine jump-diffusion model does not calibrate well to the market

data.

The similarity of the index spread-deltas across the models implies that there is no point in using

a more sophisticated model if its only use is to delta hedge spread risk. The standard one-factor

Gaussian copula model would be sufficient to carry out this strategy. Indeed, a more meaningful

hedging strategy for the dynamic models is to hedge against the underlying risk factors specified in

the modeling framework, taking into account the dynamics of these factors and their correlations.
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Figure 2.3: Index spread-deltas. Data: CDX.NA.IG.S10 on 25 March 2008.

2.4.3 Delta and gamma hedging of index spread movements

By analogy with gamma hedging of equity derivatives, one may consider hedging the second-order

changes in the tranche values due to fluctuations in the CDS spreads. We consider positions in the

index and a tranche [l, u] such that

∆[a,b]
gc (t) = φ

[l.u]
t ∆[l,u]

gc (t) + φidx
t ∆idx

gc (t),

Γ[a,b]
gc (t) = φ

[l.u]
t Γ[l,u]

gc (t) + φidx
t Γidx

gc (t),

where

Γ[a,b]
gc (t) = V [a,b]

gc (t, scds
t− + e,ρt−,Dt−) − 2V [a,b]

gc (t, scds
t− ,ρt,Dt−) + V [a,b]

gc (t, scds
t− − e,ρt−,Dt−),(2.11)

Γidx
gc (t) = V idx

gc (t, scds
t− + e,Dt−) − 2V idx

gc (t, scds
t− ,Dt−) + V idx

gc (t, scds
t− − e,Dt−) (2.12)

are the gammas of a tranche [a, b] and the index, or equivalently the second-order finite differences

in the values with respect to 1 basis point shifting of all CDS spreads. Solving for the hedge ratios,

we have

φidx
t =

∆
[a,b]
gc (t)Γ

[l,u]
gc (t) − ∆

[l,u]
gc (t)Γ

[a,b]
gc (t)

∆idx
gc (t)Γ

[l,u]
gc (t) − ∆

[l,u]
gc (t)Γidx

gc (t)
, (2.13)

φ
[l,u]
t =

∆
[a,b]
gc (t)Γidx

gc (t) − ∆idx
gc (t)Γ

[a,b]
gc (t)

∆
[l,u]
gc (t)Γidx

gc (t) − ∆idx
gc (t)Γ

[l,u]
gc (t)

. (2.14)

Note that we can also delta hedge against movements in the single-name CDS spreads in the

case of gamma hedging. However, we need to solve an ill-conditioned linear system which may lead
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to unstable hedge ratios. Moreover, as we will see in section 2.5, the main component of changes in

the single-name CDS spreads is a parallel move which is already reflected in the index spread. Thus,

the inclusion of single-name CDS corresponds to hedging higher-order principal components, which

have a smaller impact on the variance of the portfolio. Therefore, we do not include single-name

CDS hedges in our gamma hedging analysis.

Unlike the situation in a Black-Scholes model, where the gamma of a call or put option is always

positive and the gamma of a long position in a call or put option can be neutralized by shorting

another call or put option, such simple relations fail to hold in the Gaussian copula framework

for CDO tranches. Figure 2.4 shows the gammas of tranches [0%,3%] and [3%, 7%] computed for

various days in the sample. Observe that the gammas can be positive or negative, even for the

equity tranche. Moreover, the gammas of the two tranches do not have any clear relationship, in

the sense that they do not always have the same sign. These results also suggest that the empirical

performance of gamma hedging may depend on the choice of the hedging tranches, so we will

consider below different choices of tranches as hedging instruments.
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Figure 2.4: Values of gammas Γ
[a,b]
gc (t) for [0%, 3%] and [3%, 7%] CDX tranches. Each point represents one

day in the sample.



Chapter 2. Dynamic hedging of portfolio credit derivatives 44

2.4.4 Hedging parallel shifts in correlations

In addition to hedging against changes in spreads, by analogy with “vega” hedging in the Black-

Scholes model, one can argue that it is also important to manage the risk of the fluctuation in

another parameter of the Gaussian copula model, the implied correlation. We will consider scenarios

where all (compound) correlations shift by the same magnitude.

A joint hedge with respect to small changes in spreads and correlation then requires to enter

positions in the CDSs and a tranche [l, u] such that

δsiV [a,b]
gc (t, scds

t− ,ρt−,Dt−) = φ
[l,u]
t δsiV [l,u]

gc (t, scds
t− ,ρt−,Dt−) + φi

t δsiV i
gc(t, s

i
t−), i = 1, ..., n,

δρV
[a,b]
gc (t, scds

t− ,ρt−,Dt−) = φ
[l,u]
t δρV

[l,u]
gc (t, scds

t− ,ρt−,Dt−),

where

δρV
[a,b]
gc (t, scds,ρ,D) = V [a,b]

gc (t, scds,ρ + 0.1%,D) − V [a,b]
gc (t, scds,ρ,D)

is the change in the tranche value with respect to an increase in all compound correlations by 0.1%.

Since the index is insensitive to the correlations, we must consider another tranche as a hedging

instrument. Solving for the hedge ratios, we have

φ
[l,u]
t =

δρV
[a,b]
gc (t, scds

t− ,ρt−,Dt−)

δρV
[l,u]
gc (t, scds

t− ,ρt−,Dt−)
,

φi
t =

1

δsiV i
gc(t, s

i
t−) δρV

[l,u]
gc (t, scds

t− ,ρt−,Dt−)

(
δsiV [a,b]

gc (t, scds
t− ,ρt−,Dt−)δρV

[l,u]
gc (t, scds

t− ,ρt−,Dt−)

−δρV [a,b]
gc (t, scds

t− ,ρt−,Dt−)δsiV [l,u]
gc (t, scds

t− ,ρt−,Dt−)

)
.

Note that this strategy does not take into account the co-movements in the index and in correlations.

This is simply a first-order sensitivity-based hedge against moves in the CDS spreads and the

correlation movements.
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2.4.5 Hedging default risk

Although the common hedging practice is to protect against CDS spread fluctuations, the occur-

rence of defaults is also a major source of risk of a CDO tranche. The natural strategy to hedge

against constituent defaults is to enter positions in the CDS or the index according to the jump-

to-default ratio, which is defined as the ratio of the change in the tranche value over the change in

the index (or CDS) value with respect to one additional default.

Since the top-down models, such as the local intensity model, focus on the next-to-default rather

than the default of a specific obligor, there is only one jump-to-default ratio to be consider, which

is equal to

φidx
t =

V
[a,b]
lo (t,Nt− + 1) − V

[a,b]
lo (t,Nt−)

V idx
lo (t,Nt− + 1) − V idx

lo (t,Nt−)
. (2.15)

The jump-to-default ratio under the bivariate spread-loss model is defined in the same manner.

On the other hand, since the bottom-up models specify the default probabilities of each obligor,

there are n possible jump-to-default ratios to be considered. For the Gaussian copula model, the

jump-to-default ratio corresponding to obligor i, using the index as the hedging instrument, is equal

to

φidx
t =

V
[a,b]
gc (t, scds

t− ,ρt−,Dt− + ui) − V
[a,b]
gc (t, scds

t− ,ρt−,Dt−)

V idx
gc (t, scds

t− ,Dt− + ui) − V idx
gc (t, scds

t− ,Dt−)
, (2.16)

where ui ∈ Rn is a vector with all entries equal to 0 except for the ith entry equal to 1. We can

define the jump-to-default ratio for the affine jump-diffusion model in the same manner.

Figure 2.5 shows the jump-to-default ratios computed from different models using the index as

the hedging instrument as in (2.15) and (2.16). For the bottom-up models, the ratios are computed

in the scenario where IBM defaults. Unlike the index spread-deltas, the jump-to- default ratios

are substantially different across models. This implies that hedging against occurrence of default

is also exposed to substantial model risk, because the jump-to-default ratio, which is computed by

assuming the occurrence of one additional default, depends on the credit portfolio loss dynamic in
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the modeling framework. Although each model is calibrated to the same CDS, index, and CDO

market data, those credit derivatives provide information only on the marginal distribution of the

loss process at some fixed times. Therefore, the dynamic of the loss process cannot be uniquely

determined by the market data, and thus the jump-to-default ratios are substantially different

across models.
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Figure 2.5: Jump-to-default ratios. Data: CDX.NA.IG.S10 on 25 March 2008. Ratios of Gaussian copula
model and affine jump-diffusion model are computed by assuming IBM defaults.

2.4.6 Variance minimization

When spread risk and default risk are considered simultaneously, we are in an incomplete market

setting, and hedging strategies in this setting need to be determined by an optimality criterion

which takes both spread risk and default risk into account. A well-known approach to hedging in

incomplete markets is the variance-minimizing strategy, introduced by Föllmer and Sondermann

[50]. Unlike many other approaches to hedging in incomplete markets, it has been shown that this

approach actually leads to analytically tractable hedging strategies [33, 51].

Definition 2.1. Let H be a square-integrable contingent claim at maturity T , and (Xt) be the

discounted price process of the hedging instrument which is a square-integrable martingale under

Q. Let S the set of admissible self-financing strategies with EQ

[(∫ T
0 φtdXt

)2
]
< ∞. A variance-

minimizing strategy is a choice of initial capital c and a self-financing trading strategy (φt) ∈ S
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which minimizes the quadratic hedging error:

inf
c∈R,(φt)∈S

EQ

[(
c+

∫ T

0
φtdXt −H

)2
]
. (2.17)

The variance (2.17) is computed under the risk-neutral probability measure Q, because the

models are calibrated to the observed credit spreads which only provide information on the risk

factor dynamics under the risk-neutral measure. If we want to minimize the hedging error under the

real-world measure, we will need a statistical model. One example is the regression-based hedging

strategy in section 2.4.7.

Föllmer and Sondermann [50] characterize the variance-minimizing strategy in terms of a Galtchouk-

Kunita-Watanabe projection of the claim on the set of replicable payoffs (see section 2.7). One

nice property of the variance-minimizing strategy is that it coincides with the self-financing hedg-

ing strategy, which replicates the contingent claim in a complete market. Furthermore, in many

Markovian models with jumps, the variance-minimizing hedge ratios can be explicitly computed

[33, 51, 84]. The justification for this approach, which is not specific to credit derivatives, is dis-

cussed in [33, 51] from a methodological standpoint.

We will show that these variance-minimizing hedge ratios can be explicitly computed for the

local intensity model and the bivariate spread-loss model. Our analysis will omit the Gaussian

copula model and the affine jump-diffusion model. The reason is that since the Gaussian copula

model defines the marginal distribution of the portfolio losses only at fixed times, there is no

intrinsic dynamic for the loss process. For the affine jump-diffusion model, the computation requires

inverting a high dimensional matrix (125 × 125) which is numerically unstable.

2.4.6.1 Local intensity model

Laurent, Cousin, and Fermanian [71] show that the local intensity framework generates a complete

market in the sense that we can replicate the payoff of a tranche [a, b] by means of a self-financing
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portfolio with positions in the index default swap and a numeraire. The hedge ratio in the repli-

cation strategy then coincides with the variance-minimizing hedge ratio, which is equal to the

jump-to-default ratio.

Proposition 2.1. Consider a local intensity model in which the portfolio default intensity (λt)

under the risk-neutral measure Q has the form λt = f(t,Nt−) for some positive function f(., .) > 0.

Let V idx
lo (t,N) and V

[a,b]
lo (t,N) be the mark-to-market values of the index and a tranche [a, b] at

time t given N number of defaults which satisfy:

• For N = 0, ..., n, the functions t 7→ V idx
lo (t,N) and t 7→ V

[a,b]
lo (t,N) belong to C1([0, T )).

• |V idx
lo (t,N + 1) − V idx

lo (t,N)| > 0 for all t ∈ [0, T ], N = 0, ..., n − 1.

Then, the variance-minimizing hedge defined in Definition 2.1 for a tranche [a, b] using the index

as the only hedging instrument is given by

φt =
V

[a,b]
lo (t,Nt− + 1) − V

[a,b]
lo (t,Nt−)

V idx
lo (t,Nt− + 1) − V idx

lo (t,Nt−)
. (2.18)

The second condition in Proposition 2.1 implies that the index default swap value is always

sensitive to defaults in the underlying portfolio. The proof of this proposition is shown in section

2.8.1.

2.4.6.2 Bivariate spread-loss model

In the bivariate spread-loss model, the portfolio default intensity is driven by the loss process (Lt)

and a diffusion process (Yt). Since we consider the index as the only hedging instrument, the market

is incomplete in this two-factor framework. We use variance minimization to compute a trade-off

between default risk and spread risk, as follows.

Proposition 2.2. Consider the bivariate spread-loss model [5] in which the portfolio default inten-

sity (λt) under the risk-neutral measure Q follows (2.7). Let V idx
bi (t, Y,N) and V

[a,b]
bi (t, Y,N) be the
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values of the index and a tranche [a, b] at time t given N number of defaults and risk factor value

Y which satisfy:

• For N = 0, ..., n, the functions (t, Y ) 7→ V idx
bi (t, Y,N) and (t, Y ) 7→ V

[a,b]
bi (t, Y,N) belong to

C1,2([0, T ) × R).

• [∂Y V
idx
bi (t, Y,N)]2 + [δNV

idx
bi (t, Y,N)]2λ > 0 for all t ∈ [0, T ], Y ∈ R, N = 0, ..., n − 1.

• EQ

[∫ T
0

(
∂Y V

[a,b]
bi (t, Yt−, Nt−)

)2
dt

]
<∞

where λ = (n−N)
∑N

k=0 bk, ∂Y V
·
bi(t, Y,N) is the partial derivative with respect to Y and δNV

·
bi(t, Y,N)

= V ·
bi(t, Y,N + 1)− V ·

bi(t, Y,N) is the change of value with respect to one additional default. Then,

the variance-minimizing hedge defined in Definition 2.1 for a tranche [a, b] using the index as the

only hedging instrument is given by

φt =
∂Y V

[a,b]
bi (t, Yt−, Nt−) ∂Y V

idx
bi (t, Yt−, Nt−)σ2 + δNV

[a,b]
bi (t, Yt−, Nt−) δNV

idx
bi (t, Yt−, Nt−)λt[

∂Y V idx
bi (t, Yt−, Nt−)σ

]2
+
[
δNV idx

bi (t, Yt−, Nt−)
]2
λt

.(2.19)

The second condition in Proposition 2.2 implies that the index default swap is always sensitive to

either the change of the risk factor (Yt) or defaults in the underlying portfolio. The third condition

is an integrability condition to ensure that the optimal hedging portfolio has finite variance. The

proof of this proposition is shown in section 2.8.2.

Unlike the case of the local intensity model, the variance-minimizing hedge ratio for the bivariate

spread-loss model involves not only the jump-to-default values but also the partial derivatives of

the values with respect to the additional risk factor (Yt). This reflects the fact that variance-

minimization hedging is a strategy that takes both default risk and spread risk into account.

Figure 2.6 shows the variance-minimizing hedge ratios of the local intensity model and the bivari-

ate spread-loss model. Similar to the case of comparing the jump-to-default ratios, the variance-

minimizing hedge ratios are substantially different across the models, especially for the junior

tranches. The reason for the differences is the same as the case for the jump-to-default ratios:
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from (2.18) and (2.19), we can see that the variance-minimizing hedge ratio is a model-dependent

quantity.
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Figure 2.6: Variance-minimization hedge ratios. Data: CDX.NA.IG.S10 on 25 March 2008.

2.4.7 Regression-based hedging

One drawback of hedging strategies based on pricing models is that it is not clear how well the

models can capture the dynamics of the credit spreads under the real-world measure, which is an

important issue for hedging in practice. We now discuss a model-free, regression-based hedging

strategy based on the observed dynamics of the credit spreads.

Consider a simple regression model relating the daily changes in the index and tranche values:

δV
[a,b]
tj

= α[a,b] + β[a,b] δV idx
tj + ǫj ,

where δV ·
tj = V ·

tj − V ·
tj−1

is the daily change of value from time tj−1 to tj. α
[a,b] and β[a,b] can be

estimated by the ordinary least squares regression over a rolling window. Choosing the hedging

position in the index default swap as

β̂
[a,b]
t :=

∑
tj≤t(δV

idx
tj − δV idx

t )(δV
[a,b]
tj

− δV
[a,b]
t )

∑
tj≤t(δV

idx
tj

− δV idx
t )2

(2.20)

yields a model-free hedging strategy which we call the regression-based hedge. Here δV ·
t is the

average of daily P&L on [0, t] and β̂
[a,b]
t is the estimate of β[a,b] using observations over the period

[0, t].
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The main advantages of this strategy are its ability to directly capture the actual dynamics of

co-movements in credit spreads and its simplicity.

2.5 Empirical performance of hedging strategies

We now present an empirical assessment of the performance of the eight hedging strategies described

in section 2.4 using the dataset in section 2.2. Table 2.4 summarizes all the strategies that will be

considered. Note that we will consider two choices of hedging tranches for gamma hedging where

the details will be presented in the following subsections.

We consider the hedging of the protection seller’s position on a CDX tranche, initiated on the

first day of the sample period. On each day, we calibrate the models to the market data, as stated

in section 2.4, and compute the corresponding hedging positions. A successful strategy should

(substantially) reduce dispersion of the P&L distribution with respect to an unhedged position.

Here, we use the following metrics to assess the reduction in magnitude and volatility of the daily

P&L:

Relative hedging error =
∣∣∣ Average daily P&L of hedged position

Average daily P&L of unhedged tranche position

∣∣∣,

Residual volatility =
Daily P&L volatility of hedged position

Daily P&L volatility of unhedged tranche position
.

Note that the two ratios should be close to 0 for a good hedging strategy.

2.5.1 Does delta hedging work?

Our first analysis is to check whether the commonly criticized delta hedging strategies under the

Gaussian copula model work. In Figure 2.7, we see that delta hedging does not work well. Indeed,

the only effective strategy is a delta hedge against index movements, which reduces the absolute

exposures of tranches [0%, 3%], [3%, 7%], and [10%, 15%]. On the other hand, delta hedging

against single-name CDS movements fails to reduce absolute exposures. In terms of reduction in

P&L volatility, delta hedging of single name CDS movements results in a consistent reduction of
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Strategy Underlying risk Model Type Nature

1 Single-name CDS fluctuation Gaussian copula Bottom-up Static

2 Global CDS/index fluctuation Gaussian copula Bottom-up Static

3 1st and 2nd order Gaussian copula Bottom-up Static
global CDS fluctuation

4 Single-name CDS fluctuation Gaussian copula Bottom-up Static
+ correlations shifts

5 Single-name CDS fluctuation Affine jump-diffusion Bottom-up Dynamic

6 Default risk Local intensity Top-down Dynamic

7 Variance minimization Bivariate spread-loss Top-down Dynamic
(risk-neutral measure)

8 Variance minimization Ordinary least squares Statistical -
(statistical measure) regression

Table 2.4: Overview of hedging strategies.

volatility across all tranches, while delta hedging index movements fails to do so for the three most

senior tranches.
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Figure 2.7: Comparison among delta hedging strategies based on the Gaussian copula model.

2.5.2 Does gamma hedging improve the performance?

In order to examine whether gamma hedging can improve performance, we consider two different

choices of tranches as the hedging instruments, as illustrated in Table 2.5.

Hedging tranches in Case 1 are chosen such that they give the best performance in our sample

in terms of the relative hedging errors, and those in Case 2 are chosen as a comparison with
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Tranche being hedged 0%-3% 3%-7% 7%-10% 10%-15% 15%-30%

Hedging tranche: Case 1 7%-10% 7%-10% 10%-15% 15%-30% 10%-15%
Hedging tranche: Case 2 15%-30% 15%-30% 15%-30% 7%-10% 7%-10%

Table 2.5: Hedging tranches for gamma hedging strategy.

Case 1. Figure 2.8 shows that gamma hedging can help reduce the hedging error for the [0%,3%],

[3%,7%], and [15%,30%] tranches and reduce the P&L volatility for the tranches [3%,7%] and

[15%,30%]. However, gamma hedging worsens the hedging performance in all other cases. Moreover,

its performance is very sensitive to the choice of hedging tranches.

In summary, we conclude that gamma hedging, while very sensitive to the choice of hedging

instruments, does not necessarily perform well. Indeed, observations in section 2.2.1 suggest that

the appropriate correction to delta hedging is not the second-order sensitivity with respect to the

CDS spread movements but a correction taking into account jumps in spreads. This situation also

arises in other contexts when jump risk is present [33].
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Figure 2.8: Comparison among delta and gamma hedging strategies.

2.5.3 Can hedging parallel shifts in correlations improve the performance?

As shown in Figure 2.9, immunizing the portfolio against parallel shifts in the (implied) correlation

does not improve performance: for almost all tranches neither the hedging error nor the P&L

volatility is reduced. This suggests that the (observed) changes in the compound correlations are
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typically not parallel. Hedging performance may be improved if we consider other scenarios for

changes in the correlations.
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Figure 2.9: Comparison between delta hedging and the addition of hedging parallel shifts in compound
correlations.

2.5.4 Do dynamic models have better hedging performance than static models?

Copula- based factor models have faced a lot of criticism for their insufficiency for hedging, and

one popular explanation is that this is due to their static nature. In order to verify this claim, we

compare the hedging performance of delta hedging under the static Gaussian copula model and

under the dynamic affine jump-diffusion model [41].

Interestingly, the hedging error and the reduction in volatility ratios in Figure 2.10 do not

provide any evidence that dynamic models perform better than this simple static model. Although

the dynamic model successfully reduces the hedging error for tranches [10%,15%] and [15%, 30%],

it amplifies the hedging error significantly for the two most junior tranches. Moreover, the residual

volatilities from the dynamic model are larger than those from the static model for tranches [7%,

10%], [10%, 15%], and [15%, 30%].
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Figure 2.10: Comparison between delta hedging under the static Gaussian copula model and the dynamic
affine jump-diffusion model.

2.5.5 Do bottom-up models perform better than top-down models?

Although top-down models are more flexible for calibration, it has been suggested that they may be

inadequate for hedging [8]. However, this claim has not been backed by any empirical evidence: we

will attempt to verify whether there is indeed an advantage in using bottom-up models for hedging.

Figure 2.11 compares the performance of various strategies based on bottom-up models, delta

hedging based on the Gaussian copula model and the affine jump-diffusion model, versus the top-

down strategies, hedging default risk based on the local intensity model and variance minimization

based on the bivariate spread-loss model. First, we observe that the reduction of volatility is similar

across the strategies, which does not provide much information to distinguish them. By comparing

the hedging error, we find that the top-down models perform better than the bottom-up models

for the three junior tranches, [0%,3%], [3%,7%], and [7%,10%], while bottom-up models fare better

for the other two senior tranches.

Overall, there is no strong evidence that hedging based on the bottom-up models must perform

better than that based on the top-down models. This observation contradicts the statements

of Bielecki, Crépey, and Jeanblanc [8], who compare bottom-up and top-down hedging based on

simulation. Although bottom-up models provide additional degrees of freedom, the effectiveness
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of a hedging strategy is not about goodness of fit but depends on how well the model can predict

short-term co-movements of the target instrument and the hedging instruments. From our results it

appears that existing bottom-up models do a poor job at predicting such short-term co-movements.
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Figure 2.11: Comparison of top-down and bottom-up hedging.

2.5.6 How does model-based hedging compare to regression-based hedging?

Given the simplicity and intuitiveness of regression-based hedging, it is interesting to examine how

well it performs relative to the model-based strategies. In Figure 2.12, we observe that regression-

based hedging performs well across all tranches, consistently reducing both the hedging error and

the daily P&L volatility. In particular, it reduces the volatilities for all tranches more than do the

model-based strategies which are theoretically “optimal” in the respective models. This suggests

that model misspecification is nonnegligible in all the models considered above.

2.5.7 Performance on credit event dates

Of particular interest is the performance of the hedging strategies on the next business day after

the Lehman Brothers and Fannie Mae/ Freddie Mac credit events. Figure 2.13 shows the hedging

error on the next business days after the credit events under various hedging strategies. During the

Lehman Brothers event, we observe that the top-down and regression-based hedging outperform the
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Figure 2.12: Comparison among top-down, bottom-up and regression-based hedging.

bottom-up hedging for all tranches. In particular, variance minimization based on the two-factor

top-down model provides the best hedge for most tranches. This suggests that a macro event is

better captured by top-down hedging.

On the other hand, all strategies failed to reduce the P&L during the Fannie Mae and Freddie

Mac credit event, because, as we saw in section 2.2, the market happened to have anticipated the

event, and there are no significant movements in the spreads. In particular, we observe a negative

change in the CDS and index spreads, which leads to an increase in the overall exposure when we

try to hedge the tranche positions with positive hedge ratios.
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Figure 2.13: Comparison of strategies on the next business day after Fannie Mae/Freddie Mac (8 September
2008) and Lehman Brothers (16 September 2008) credit events.
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2.6 Conclusion

We have presented theoretical and empirical comparison of a wide range of hedging strategies

for portfolio credit derivatives, with a detailed analysis of the hedging of index CDO tranches.

By comparing the performance of these strategies in 2008, our analysis reveals several interesting

features:

• Our analysis reveals a large proportion of unhedgeable risk in CDO tranches. This suggests

that market completeness is by no means an acceptable approximation, and toy models which

assume a complete market may fail to provide useful insight for issues related to hedging of

CDO tranches.

• Delta hedging of CDO tranche positions based on the Gaussian copula model is not effective.

• Although gamma hedging can improve the performance for certain tranches, its effectiveness

is very sensitive to the choice of hedging instruments and is inconsistent across tranches.

• We do not find strong evidence that the Duffie and Gar̂leanu [41] bottom-up dynamic model

performs better than the static Gaussian copula model when it comes to delta hedging with

credit default swaps.

• Moreover, bottom-up models ([41] and [74]) do not appear to perform consistently better than

top-down models ([5] and [60]), in contrast to what has been asserted (without justification)

in the literature [8]. In fact, during the period around the Lehman Brothers default, hedging

strategies based on top-down models performed substantially better than those based on

bottom-up models. This leads us to question the need for computationally costly dynamic

bottom-up models instead of the top- down models for hedging portfolio credit derivatives.

• Model-free regression-based hedging appears to be surprisingly effective when compared to

other hedging strategies. This suggests - not surprisingly - that incorporating the statistical

behavior of credit spreads is an important criterion for a successful hedging strategy.
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• We find evidence for common jumps, or large co-movements, in spreads. However, index

and tranche spreads did not appear to have upward jumps at the default dates of index

constituents. This observation goes against models, such as Markovian contagion models

[5, 60] and self-exciting models [53], in which jumps in spreads occur only at constituent

default dates. Jumps in spreads may also arise from unexpected events not necessarily related

to defaults inside the portfolio.

We have left out many practically important considerations, such as liquidity, transaction costs,

and computational issues, when assessing hedging performance. The (il)liquidity of CDS contracts

leads to questions of feasibility of hedging strategies which require frequent rebalancing of positions

in single-name CDS. Transaction costs - as reflected, for instance, in bid-ask spreads - are known

to be higher for single-name CDS contracts than for the index, and taking them into account

would favor top-down/index hedging strategies as opposed to hedging with single-name CDS, which

requires rebalancing more than a hundred single- name CDS positions. Finally, computational

costs are much lower for the top-down models, especially when it comes to calibration: various fast

calibration methods have been proposed for top-down models [5, 25, 28, 77], whereas parameter

calibration, especially if it needs to be done on a periodic basis, remains nontrivial for bottom-up

models [45]. Therefore it should be clear that taking these aspects into account would tilt the

comparison even more in favor of top-down/index hedging as opposed to hedging with single-name

CDS.

2.7 Variance-minimizing hedge and Galtchouk-Kunita-Watanabe

decomposition

Our work in this section is similar to the earlier work by Frey and Backhaus [51]. We first define

the gain process for the index and tranches. Let P idx(Tm) be the net payment received from an

index default swap contract at time Tm which is bounded by definition. The mark-to-market value
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of an index default swap at time t is equal to

V idx
t =

∑

Tm>t

B(t, Tm)EQ[P idx(Tm)|Ft].

We define the discounted value process as

Ṽ idx
t := B(0, t)V idx(t).

Then, the gain process is defined as the present value of all cash-flows:

Gidx
t =

∑

Tm≤t

B(0, Tm)P idx(Tm) + Ṽ idx
t = EQ

[
∑

Tm>0

B(0, Tm)P idx(Tm)
∣∣∣Ft

]
, (2.21)

where (Gidx
t ) is a square-integrable (bounded) martingale under Q. Similarly, we can derive the

expression for the gain process of a [a, b] tranche (G
[a,b]
t ) which is also a square-integrable (bounded)

martingale under Q.

Consider the variance minimization setting in Definition 2.1. Our goal is to hedge a tranche [a, b]

using the index default swap. Although we consider a terminal payoff H at maturity in Definition

2.1, the results in [84] allow us to replace the conditional expected value of the terminal payoff

EQ[H|Ft] by the gain process value G
[a,b]
t . Let (φt) be the variance-minimizing hedging strategy

which represents positions in the index default swap. Then, it can be shown that (see [50]) (φt)

satisfies the Galtchouk-Kunita-Watanabe decomposition

G
[a,b]
t = G

[a,b]
0 +

∫ t

0
φsdG

idx
s + Zt, (2.22)

where the process (ZtG
idx
t ) is a martingale under Q. Therefore, the variance-minimizing strategy

satisfies

d〈G[a,b], Gidx〉t = φtd〈Gidx〉t, 0 ≤ t ≤ T, (2.23)

where (〈G〉t) denotes the unique predictable process with 〈G〉0 = 0 and right-continuous increasing

paths such that (G2
t − 〈G〉t) is a martingale under Q.
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Remark 2.1. Instead of variance minimization in Definition 2.1, Föllmer and Sondermann [50]

introduce a stronger optimality condition which is known as risk-minimization. However, since

the gain processes of the index and CDO tranches are bounded martingales under Q, the trading

strategies are the same under the two optimal criteria.

2.8 Derivation of the variance-minimizing hedge ratio

The key to computing the variance-minimizing hedge under a particular model is to express (Gidx
t )

and (G
[a,b]
t ) as stochastic integrals, use the Ito isometry formula for these stochastic integrals, then

solve (2.23) (see, e.g., [33]). In particular, Frey and Backhaus [51] show the derivation for the

convex counterparty risk model, and our following computations are similar to those in [51].

2.8.1 Proof of Proposition 2.1

Let (Ut) be a deterministic counting process which jumps by 1 at payment dates, i.e. UTm−UTm−1 =

1 for all m = 1, ...,M . Using Ito’s lemma, the dynamic of the discounted value process under Q for

the index follows

dṼ idx
lo (t,Nt−) =

∂

∂t
Ṽ idx

lo (t,Nt−)dt + δN Ṽ
idx
lo (t,Nt−)dNt −B(0, t)P idx(t)dUt,

where P idx(t) is the net payment received at time t. Using Ito’s lemma again and from (2.21),

dynamic of the gain process under Q for the index follows

dGidx
lo (t) = B(0, t)P idx(t)dUt + dṼ idx

lo (t,Nt−)

=
∂

∂t
Ṽ idx

lo (t,Nt−)dt+ δN Ṽ
idx
lo (t,Nt−)dNt

=

(
∂

∂t
Ṽ idx

lo (t,Nt−) + δN Ṽ
idx
lo (t,Nt−)λt

)
dt + δN Ṽ

idx
lo (t,Nt−)dN c

t

= δN Ṽ
idx
lo (t,Nt−)dN c

t ,

where (N c
t ) = (Nt −

∫ t
0 λsds) is the compensated version of (Nt). The last equality comes from the

fact that (Gidx
lo (t)) is a martingale under Q. Similar, the gain process of a tranche [a, b] under Q
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follows

dG
[a,b]
lo (t) = δN Ṽ

[a,b]
lo (t,Nt−)dN c

t .

We now compute the compensators involved in (2.23) and obtain

φt =
δN Ṽ

[a,b]
lo (t,Nt−)δN Ṽ

idx
lo (t,Nt−)λt

(δN Ṽ idx
lo (t,Nt−))2λt

=
B(0, t)δNV

[a,b]
lo (t,Nt−)

B(0, t)δNV idx
lo (t,Nt−)

=
V

[a,b]
lo (t,Nt− + 1) − V

[a,b]
lo (t,Nt−)

V idx
lo (t,Nt− + 1) − V idx

lo (t,Nt−)
.

Then, we want to show that the hedging portfolio by implementing the above strategy has finite

variance, i.e. EQ
[∫ T

0 φtdG
idx
lo (t)

]2
<∞, and it is sufficient to show that EQ

[∫ T
0 φ2

td〈Gidx
lo 〉t

]
<∞.

Since all the cash flows of tranche [a, b] are bounded, there exists a K > 0 such that |V [a,b]
lo (t,N)| ≤

K/2 for all t ∈ [0, T ], N = 0, ..., n, which implies that |δNV [a,b]
lo (t,N)| ≤ K for all t ∈ [0, T ],

N = 0, ..., n. Consider

EQ

[∫ T

0
φ2

t d〈Gidx
lo 〉t

]
= EQ



∫ T

0

(
δNV

[a,b]
lo (t,Nt−)

δNV
idx
lo (t,Nt−)

)2 (
δN Ṽ

idx
lo (t,Nt−)

)2
λtdt




≤ EQ

[∫ T

0

(
δNV

[a,b]
lo (t,Nt−)

)2
λtdt

]

≤ K2EQ

[∫ T

0
λtdt

]

≤ K2n <∞,

which gives the desired result.

Note that if we implement this hedging strategy, we have

dG
[a,b]
lo (t) = φtdG

idx
lo (t).

The tranche is perfectly hedged in this case, which is consistent with the results of [71].
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2.8.2 Proof of Proposition 2.2

Defining the deterministic counting process (Ut) as in section 2.8.1 and applying Ito’s lemma, the

dynamic of the discounted value process for the index becomes

dṼ idx
bi (t, Yt−, Nt−) =

∂

∂t
Ṽ idx

bi (t, Yt−, Nt−)dt +
∂

∂Y
Ṽ idx

bi (t, Yt−, Nt−)dYt

+
1

2

∂2

∂Y 2
Ṽ idx

bi (t, Yt−, Nt−)σ2dt+ δN Ṽ
idx
bi (t, Yt−, Nt−)dNt −B(0, t)P idx(t)dUt,

where P idx(t) is the net payment received at time t. Then, using Ito’s lemma again and from (2.21),

dynamic of the gain process for the index follows

dGidx
bi (t) = B(0, t)P idx(t)dUt + dṼ idx

bi (t, Yt−, Nt−)

=
∂

∂t
Ṽ idx

bi (t, Yt−, Nt−)dt +
∂

∂Y
Ṽ idx

bi (t, Yt−, Nt−)dYt

+
1

2

∂2

∂Y 2
Ṽ idx

bi (t, Yt−, Nt−)σ2dt+ δN Ṽ
idx
bi (t, Yt−, Nt−)dNt

=

(
∂

∂t
Ṽ idx

bi (t, Yt−, Nt−) − ∂

∂Y
Ṽ idx

bi (t, Yt−, Nt−)κYt

+
1

2

∂2

∂Y 2
Ṽ idx

bi (t, Yt−, Nt−)σ2 + δN Ṽ
idx
bi (t, Yt−, Nt−)λt

)
dt

+
∂

∂Y
Ṽ idx

bi (t, Yt−, Nt−)σdWt + δN Ṽ
idx
bi (t, Yt−, Nt−)dN c

t

=
∂

∂Y
Ṽ idx

bi (t, Yt−, Nt−)σdWt + δN Ṽ
idx
bi (t, Yt−, Nt−)dN c

t .

Similarly, the gain process of a tranche [a, b] follows

dG
[a,b]
bi (t) =

∂

∂Y
Ṽ

[a,b]
bi (t, Yt−, Nt−)σdWt + δN Ṽ

[a,b]
bi (t, Yt−, Nt−)dN c

t .

We can now compute the compensators of (G
[a,b]
bi (t)) and (Gidx

bi (t)) and use (2.23) to compute (φt)

which gives (2.19).

Let us now show that the hedging portfolio based on (2.19) has finite variance. Consider the
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following:

EQ

[∫ T

0
φtd〈Gidx

bi 〉t
]

= EQ

[∫ T

0

[
∂Y Ṽ

[a,b]
bi (t, Yt−, Nt−) ∂Y Ṽ

idx
bi (t, Yt−, Nt−)σ2

+δN Ṽ
[a,b]
bi (t, Yt−, Nt−)δṼ idx

bi (t, Yt−, Nt−)λt

]2

× 1

(∂Y Ṽ idx
bi (t, Yt−, Nt−)σ)2 + (δN Ṽ idx

bi (t, Yt−, Nt−))2 λt

dt

]

≤ EQ

[∫ T

0

[
∂Y V

[a,b]
bi (t, Yt−, Nt−) ∂Y V

idx
bi (t, Yt−, Nt−)σ2

+δNV
[a,b]
bi (t, Yt−, Nt−)δNV

idx
bi (t, Yt−, Nt−)λt

]2

× 1

(∂Y V idx
bi (t, Yt−, Nt−)σ)2 + (δNV idx

bi (t, Yt−, Nt−))2 λt
dt

]

≤ 2EQ



∫ T

0

[
∂Y V

[a,b]
bi (t, Yt−, Nt−) ∂Y V

idx
bi (t, Yt−, Nt−)σ2

]2

(∂Y V
idx
bi (t, Yt−, Nt−)σ)2 + (δNV

idx
bi (t, Yt−, Nt−))2 λt

dt




+2EQ



∫ T

0

[
δNV

[a,b]
bi (t, Yt−, Nt−)δNV

idx
bi (t, Yt−, Nt−)λt

]2

(∂Y V
idx
bi (t, Yt−, Nt−)σ)2 + (δNV

idx
bi (t, Yt−, Nt−))2 λt

dt


 .

Consider the first term. For a fixed time t, the integrand is equal to zero if ∂Y V
idx
bi (t, Yt−, Nt−) = 0.

If ∂Y V
idx
bi (t, Yt−, Nt−) 6= 0, we have

[
∂Y V

[a,b]
bi (t, Yt−, Nt−) ∂Y V

idx
bi (t, Yt−, Nt−)σ2

]2

(∂Y V idx
bi (t, Yt−, Nt−)σ)2 + (δNV idx

bi (t, Yt−, Nt−))2 λt
≤

[
∂Y V

[a,b]
bi (t, Yt−, Nt−)σ

]2
.

For the second expectation, for a fixed time t, the integrand is equal to zero if δNV
idx
bi (t, Yt−, Nt−)λt =

0. Otherwise, we have

[
δNV

[a,b]
bi (t, Yt−, Nt−)δNV

idx
bi (t, Yt−, Nt−)λt

]2

(∂Y V
idx
bi (t, Yt−, Nt−)σ)2 + (δNV

idx
bi (t, Yt−, Nt−))2 λt

≤
(
δNV

[a,b]
bi (t, Yt−, Nt−)

)2
λt.
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Using the fact that δNV
[a,b]
bi (t, Y,N) is bounded, we obtain

EQ

[∫ T

0
φtd〈Gidx

b i〉t
]

≤ 2EQ

[∫ T

0

[
∂Y V

[a,b]
bi (t, Yt−, Nt−)σ

]2
+
(
δNV

[a,b]
bi (t, Yt−, Nt−)

)2
λtdt

]

≤ 2σ2EQ

[∫ T

0

(
∂Y V

[a,b]
bi (t, Yt−, Nt−)

)2
dt

]
+ 2K2n <∞.

Therefore, EQ
[∫ T

0 φtdG
idx
bi (t)

]2
<∞.
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Chapter 3

Default intensities implied by CDO spreads:

inversion formula and model calibration

The inadequacy of widely used static factor models, such as the Gaussian copula model and its

various extensions, for pricing and hedging portfolio credit derivatives, as emphasized by the recent

turmoil in credit derivatives markets, has led to the development of various dynamic models for

portfolio credit risk.

One of the main obstacles in implementing and using these dynamic models has been the avail-

ability of efficient calibration algorithms. Once models are calibrated to market data, they can

be compared in terms of pricing and hedging performance. Previous studies on dynamic models

have mostly been based on black-box optimization procedures applied to nonconvex least squares

minimization problems. The lack of convexity entails that the convergence and stability of these

methods are not guaranteed, casting doubts on the reproducibility of calibration results and their

stability.

Recovering implied default rates from market data is by nature an ill-posed problem. Although

the actual default rate (intensity) may depend on the past market history, it has been argued

[28, 31, 93] that the information contained in collateralized debt obligation (CDO) tranche spreads
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can be used at best to recover the local intensity function, defined as the conditional expectation

of the portfolio default intensity given the loss level. The local intensity function is analogous to

the local volatility function introduced by Dupire [43] for equity derivatives. It summarizes all

information available from CDO tranche spreads on the marginal loss distributions of the portfolio

and provides a common basis to compare different models.

Herbertsson [60] and Lopatin and Misirpashaev [77] have used parametric methods to recover

local intensity functions from CDO data. Laurent, Cousin, and Fermanian [71] propose an implied

tree method for reconstructing the local intensity function. Reformulating the calibration of default

intensity as a stochastic control problem, Cont and Minca [28] proposed a stable nonparametric

approach based on relative entropy minimization for recovering the local intensity function.

We propose in this chapter an alternative, and simpler, approach based on an analytical inversion

formula for the local intensity function, which is analogous to the Dupire formula in diffusion models

[43]. This formula allows us to compute the local intensity function of a portfolio from its expected

tranche notionals. This yields a simple computational method for constructing an arbitrage-free

CDO pricing model which matches a prespecified set of tranche spreads.

Together with a quadratic programming method for recovering expected tranche notionals from

CDO spreads, our inversion formula leads to an efficient nonparametric method for calibrating

CDO pricing models. In a first step, we extract the expected tranche notionals from the CDO

spreads by solving a quadratic minimization problem under linear constraints. Next, the default

intensity is computed from the expected tranche notionals using the inversion formula. Unlike the

calibration methods introduced in [28, 60], our method requires only relatively simple mathematical

techniques.

Comparing this approach to other calibration methods using iTraxx Europe index CDO spreads,

we find that model-dependent quantities such as the forward starting tranche spreads and jump-to-

default ratios are quite sensitive to the calibration method used, even within the same model class.

On the other hand, comparing the local intensity functions implied by different credit portfolio
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models reveals that apparently different models, such as static Student-t copula models and reduced-

form affine jump-diffusion models, lead to similar marginal loss distributions and tranche spreads.

Figure 3.1 gives an overview of this chapter, and the details are structured as follows. Section

3.1 derives our main results concerning the existence and expression of the local intensity function

given the expected tranche notionals. Section 3.2 proposes a nonparametric method to recover

the local intensity function from the CDO market data. Section 3.3 compares this calibration

method with the parametric approach introduced by Herbertsson [60] and the entropy minimization

algorithm proposed by Cont and Minca [28]. Section 3.4 compares the local intensities implied by

various credit portfolio loss models. Section 3.5 summarizes our main findings and discusses some

implications. Proofs are presented in section 3.6.

Figure 3.1: Application of the inversion formula to recover the local intensity function.
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3.1 An inversion formula for the local intensity function

In this section, we first introduce the notions of effective intensity, local intensity function, and

expected tranche notionals. Then, we present two theorems that are related to the inversion

formula of the local intensity function. Those theorems are the key results for computing the

local intensity function implied by a credit portfolio loss model or the expected tranche notionals

obtained from the market data.

3.1.1 Local intensity function

We model credit events using a filtered probability space (Ω,F , (Ft)t∈[0,T ∗],Q) where Ω is the set

of market scenarios, the filtration (Ft)t∈[0,T ∗] represents the flow of information up to a terminal

date T ∗, and Q is a probability measure representing the market pricing rule (pricing measure).

Consider an equally weighted credit portfolio (index) consisting of n names. Our main interest

is the aggregate portfolio loss due to defaults, modeled as

Lt = δNt, (3.1)

where (Nt) is a point process representing the number of defaults and δ is the loss at each default,

assumed to be constant. Without loss of generality, we set N0 = 0 and assume that the timing

of default events is independent of the interest rates. We assume the existence of a (risk-neutral)

default intensity.

Assumption 3.1. The point process (Nt) admits an intensity: there exists a non-negative Ft-

predictable process (λt) such that for all t ∈ [0, T ∗],

∫ t

0
λsds <∞ Q − a.s.
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The portfolio default intensity can be seen as the conditional probability per unit time of the

next default:

λt = lim
∆t→0

1

∆t
Q(Nt−+∆t −Nt− = 1|Ft−).

It is characterized by the fact that, for any nonnegative Ft-predictable process (Ct)

EQ

[∫ T ∗

0
CsdNs

]
= EQ

[∫ T ∗

0
Csλsds

]
.

In general can be path-dependent i.e. it may depend on the entire market history. However, as

shown in , one can construct a Markovian pricing model whose marginal distributions mimick those

of (Lt). The intensity of this Markovian projection is called the effective default intensity .

In general, (λt) can be path dependent; i.e., it may depend on the entire market history. However,

as shown in [28, 31], one can construct a Markovian pricing model whose marginal distributions

mimic those of (Lt). The intensity (λeff
t ) of this Markovian projection is called the effective default

intensity [28].

Definition 3.1 (Local intensity function).

Consider a loss process satisfying Assumption 3.1 with

∀t ∈ (0, T ∗], EQ[λt|F0] <∞.

The local intensity function a : (0, T ∗] × {0, 1, .., n} 7→ R+ at time 0 is defined as

a(t, i) := EQ[λt|Nt− = i,F0]. (3.2)

If Q(Nt− = i|F0) = 0, we set a(t, i) = 0 by convention.

We call λeff
t := a(t,Nt−) the effective intensity of the loss process: it is the best estimate for

the default intensity given the portfolio loss level. a(t, i) may also be viewed as a forward default

rate for the portfolio given that i defaults have occurred in the portfolio [93]. Similarly to the local

volatility function in diffusion models [43], the local intensity function summarizes all the necessary
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information to price non-path-dependent portfolio credit derivatives: for any point process (Nt)

that satisfies Assumption 3.1, there exists a Markovian point process (Ñt) with transition rate

a(t, Ñt−) such that (Nt) and (Ñt) have the same marginal distributions at all dates t ∈ [0, T ∗] [31].

Moreover, given the local intensity function, the marginal distribution can be computed by solving

the forward Kolmogorov equations [93].

Given that the information content of market prices can be summarized in the local intensity

function, various calibration methods have been proposed in the recent literature for recovering

the local intensity function from CDO tranche spreads. Examples include parametric methods

introduced by Herbertsson [60] and Lopatin and Misirpashaev [77] and a nonparametric entropy

minimization algorithm proposed by Cont and Minca [28]. In section 3.2, we will introduce a novel

nonparametric calibration method which makes use of the inversion formula that will be shown

later in this section.

As the local intensity function can be defined for a wide range of credit portfolio loss processes,

it provides a common basis to compare models defined in different manners. We will further study

this aspect in section 3.4.

3.1.2 Expected tranche notionals

Consider the equity tranche of a synthetic CDO with detachment point K. The expected remaining

notional value of this equity tranche at time T > t is equal to

Pt(T,K) := EQ[(K − LT )+|Ft].

We follow the notation in [31] and call this quantity the expected tranche notional with maturity T

and strike K. For simplicity, we will fix the observation time at 0 in the remainder of the chapter

and drop the subscript t in the notation of the expected tranche notionals. Expected tranche

notionals verify the following static arbitrage constraints (a proof is given in section 3.6).

Property 3.1 (Static arbitrage constraints).
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(a) P (T,K) ≥ 0,

(b) P (T, 0) = 0,

(c) P (0,K) = K,

(d) K 7→ P (T,K) is convex,

(e) P (T2,K1) − P (T1,K1) ≥ P (T2,K2) − P (T1,K2) for any T1 ≤ T2, K1 ≤ K2,

(f) K 7→ P (T,K) is continuous and piecewise linear on [(i− 1)δ, iδ], i = 1, ..., n.

Cont and Savescu [31] show that the expected tranche notionals can be computed directly from

the local intensity function by solving a system of forward differential equations: for T ∈ (0, T ∗],

i = 1, ..., n,

∂TP (T, iδ) = −a(T, 0)P (T, δ) −
i−1∑

k=1

a(T, k)∇2
KP (T, (k − 1)δ), (3.3)

with initial condition P (0, iδ) = iδ,

where ∇K is the forward difference operator in strike:

∇KF (T, iδ) := F (T, (i+ 1)δ) − F (T, iδ)

for any function F : [0, T ∗] × {iδ : i = 0, ..., n − 1} 7→ R. In fact, the forward equations (3.3) is a

result of the forward Kolmogorov equations with the identities

Q(LT = iδ|F0) =





P (T, δ)

δ
, i = 0,

∇2
KP (T, (i − 1)δ)

δ
, i = 1, ..., n − 1.

(3.4)

3.1.3 Inversion formula and Markovian projection

To compute the local intensity function implied by a credit portfolio loss model, Theorem 3.1

shows that we can first compute the expected tranche notionals under the model assumption and

then convert them into a local intensity function using an inversion formula. This approach avoids

computing the conditional expectation of the default intensity (λt), which can be a difficult task.
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Theorem 3.1 (Inversion formula).

Consider a portfolio loss process Lt = δNt where the point process (Nt) verifies Assumption 3.1 and

∀T ∈ (0, T ∗], EQ[λT |F0] <∞.

The local intensity function (3.2) is given by

a(T, i) = EQ[λT |NT− = i,F0] =





−∂TP (T, δ)

P (T, δ)
, i = 0,

−∇K∂TP (T, iδ)

∇2
KP (T, (i− 1)δ)

, i = 1, ..., n − 1,

0, i = n,

(3.5)

for all T ∈ (0, T ∗], where P (T, iδ) = EQ[(iδ − LT )+|F0] is the expected tranche notional.

The proof is given in section 3.6.

In a practical situation, the default intensity (λt) is unobservable, but, if sufficiently many

tranche spreads are quoted, expected tranche notionals can be recovered from market data. We

will present a nonparametric method to recover the expected tranche notionals from the tranche

spreads in section 3.2. Given such a set of values of expected tranche notionals, Theorem 3.2 shows

that we can construct a Markovian loss process with an intensity in the form of (3.5) consistent

with these values. This result, which is analogous to the Dupire formula for local volatility [43], is

particularly useful when we want to recover a local intensity function from either the market data

or a model that does not satisfy Assumption 3.1, such as the static factor models.

Theorem 3.2 (Local intensity function implied by expected tranche notionals).

Let {P (T, iδ)}T∈[0,T ∗ ],i=0,...,n be a (complete) set of expected tranche notionals verifying Property

3.1 and define the function a : (0, T ∗] × {0, 1, .., n} by

a(T, i) =





−∂TP (T, δ)

P (T, δ)
, i = 0,

−∇K∂TP (T, iδ)

∇2
KP (T, (i − 1)δ)

, i = 1, ..., n − 1,

0, i = n,

(3.6)
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for all T ∈ (0, T ∗]. If a(., .) is bounded, there exists a Markovian point process (Mt) with intensity

γt = a(t,Mt−) defined on some probability space (Ω0,G, (Gt),Q0) such that

∀T ∈ [0, T ∗], ∀i ∈ {0, ..., n}, P (T, iδ) = EQ0 [(iδ − δMT )+|G0].

If in addition

∇K∂TP (T, iδ) < 0, (3.7)

the intensity function a(T, i) is strictly positive for all i < n.

Proof. Property 3.1 entails that the function a(., .) defined in the theorem is non-negative. Consider

a standard Poisson process (Nt) constructed on a probability space (Ω0,G, (Gt),P). Denote by

τ1 < τ2 < ... the jump times of (Nt) and set Mt = Nt∧τn . (Gt) is the filtration generated by (Mt).

Define now the non-negative predictable process

γt := a(t,Mt−).

Since the function a(., .) is assumed to be bounded, we know that for all t ∈ [0, T ∗]

∫ t

0
γsds <∞ P − a.s.

We now apply the change of measure theorem for point processes [14, Theorem T3, Ch. VI Sec 2],

and define a new probability measure Q0 by

dQ0

dP

∣∣∣
Gt

= exp

(∫ t

0
(1 − γs)ds

) ∏

τj<t

γτj
.

Under Q0, (Mt) is a Markovian point process with intensity (γt).

As shown in [31], the function u(T, i) = EQ0 [(iδ−δMT )+|G0] is a solution of (3.3). On the other

hand, substituting {a(T, i)}T∈[0,T ∗ ],i=0,...,n into the forward equations (3.3) shows that the expected

tranche notionals {P (T, iδ)}T∈[0,T ∗ ],i=0,...,n solve (3.3). The boundedness of a(., .) entails that the

linear system of ODEs (3.3) has a unique solution, so

P (T, iδ) = EQ0 [(iδ − δMT )+|G0]
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for all T ∈ [0, T ∗], i = 0, ..., n.

Finally, under (3.7), the positivity of a(T, i) is immediate from (3.6).

Formula (3.5) is analogous to the Dupire formula [43], which expresses the local volatility as a

function of the call prices:

σ2(T,K) =
2

K2

∂TC(T,K)

∂2
KC(T,K)

, T ≥ 0,K ≥ 0,

where C(T,K) is the call price with maturity T and strike K. In the diffusion framework, asset

prices take values in [0,∞), which leads to a marginal probability density defined on [0,∞). This

explains why a continuum of call prices in both strike and maturity is required to recover the local

volatility function. On the other hand, since we model the portfolio loss as a point process with

finite state space (iδ)i=0,...,n, we require only a set of expected tranche notionals with n strikes equal

to the possible loss levels to recover the local intensity function.

Schönbucher [93] shows a similar formula expressed in terms of the marginal distribution:

a(T, i) =
−∑i

k=0 ∂T Q(LT = iδ|F0)

Q(LT = iδ|F0)
, i = 0, ..., n − 1, T ∈ (0, T ∗]. (3.8)

However, formula (3.5) appears to have an important advantage over (3.8). As we will discuss in

section 3.2, the value of a CDO tranche can be expressed as a linear combination of a small set of

expected tranche notionals. In this case, recovering the expected tranche notionals from the CDO

market data can be achieved efficiently and the results can be used to compute the local intensity

function using formula (3.5). However, this procedure will become more difficult if we consider the

marginal distribution because we need the marginal distribution at all loss levels to express the

CDO mark-to-market values.

3.2 Non-parametric estimation of the local intensity function

We now present a non- parametric method for recovering the local intensity function from CDO

tranche spreads. The idea is to first extract the expected tranche notionals from the CDO market
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data using a nonparametric approach and then compute the local intensity function by using formula

(3.5), based on the results in Theorem 3.2.

We briefly recall the structure of index CDO tranches and their relationship with the expected

tranche notionals [26] and introduce a quadratic programming method to recover expected tranche

notionals from the CDO market data. Subsequently, we will outline the calibration algorithm for the

local intensity function. We show that, unlike our proposed method, which yields an arbitrage-free

pricing model, base-correlation interpolation does not guarantee the absence of arbitrage.

3.2.1 CDOs and expected tranche notionals

Consider a CDO tranche defined by an interval [a, b], 0 ≤ a < b ≤ 1. a and b are called, respectively,

the attachment and detachment points of the tranche and expressed in percentage of the total

notional value. A synthetic CDO tranche swap is a bilateral contract in which the protection seller

agrees to pay all portfolio loss within the interval [a, b] in exchange for a periodic spread s[a,b] on

the remaining notional value and an upfront payment U [a,b] on the initial notional value b− a.

Assume that the tranche is incepted at time 0, and the spread s[a,b] and the upfront payment

U [a,b] are given such that the mark-to-market value of the tranche is equal to zero. Then, we have1

U [a,b](b− a) =
m∑

j=1

D(0, tj) [P (tj , a) − P (tj , b) − P (tj−1, a) + P (tj−1, b)]

−s[a,b]
∑

tj>0

D(0, tj)(tj − tj−1) [P (tj , b) − P (tj, a)] , (3.9)

where D(0, tj) is the discount factor from time tj to 0, and 0 = t0 < t1 < ... < tm are the

payment times, where the last payment time tm corresponds to the expiration time. Notice that

equality (3.9) is linear in the expected tranche notionals with strikes equal to the attachment and

detachment points and maturities equal to the payment times.

1Expression (3.9) is slightly different for the most senior tranche. Please see section 3.7 for details.
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3.2.2 Recovering expected tranche notionals via quadratic programming

Assume that at time 0 we observe the spreads and upfront payments of CDO tranches [κi−1, κi]

for i = 1, ..., I. Without loss of generality, we assume I ≤ n 2 and denote the payment times

0 = t0 < t1 < ... < tm with expiration time tm
3.

Our goal is to recover a local intensity function from the CDO market data using the results

in Theorem 3.2. For computational purposes, we approximate the derivatives in formula (3.5) by

finite differences and therefore consider expected tranche notionals with maturities on a discrete

time grid. In particular, we focus on the set of expected tranche notionals {P (tj , iδ)}j=0,...,m;i=1,...,n,

which is represented in vector-form:

p = [P (t0, δ), ..., P (t0, n δ), · · · , P (tm, δ), ..., P (tm, n δ)]
T ∈ Rn(m+1).

By definition, {P (tj , iδ)}j=0,...,m;i=1,...,n has to satisfy Property 3.1. In order to apply The-

orem 3.2, the function defined by (3.5) has to be bounded, which means that the denominator

of formula (3.5) has to be strictly positive. Moreover, we impose additional condition (3.7) to

ensure that the local intensity function is strictly positive. Taking all constraints into account,

{P (tj , iδ)}j=0,...,m;i=1,...,n must verify the following conditions.

Condition 3.1.

(a) P (tj , δ) > 0, j = 1, ...,m,

(b) ∇2
KP (tj , (i− 1)δ) > 0, j = 1, ...,m, i = 1, ..., n − 1,

(c) ∇KP (tj−1, iδ) > ∇KP (tj , iδ) , j = 1, ...,m, i = 0, ..., n − 1.

Since the relations in Condition 3.1 are linear in the expected tranche notionals, they can be

written in matrix-form (see section 3.7):

Bp < 0, (3.10)

2It is natural to assume that the number of tranches I is less than the number of names n in the reference portfolio.
3Our formulation can be easily extended to CDO tranches with multiple expirations, but it will not be further

discussed in this chapter.
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where B is a 2nm× n(m+ 1) matrix.

In order to be consistent with the CDO market data, the expected tranche notionals must

satisfy (3.9) for each tranche. Although (3.9) may involve expected tranche notionals with strikes

not equal to the multiples of δ (because attachment and detachment points may not be multiples

of δ), Property 3.1(f) shows that we can always compute an expected tranche notional by linearly

interpolating its neighbors which have strikes equal to the multiples of δ. Therefore, we can express

(3.9) in terms of {P (tj , iδ)}j=0,...,m;i=1,...,n. Writing this in matrix-form (see section 3.7), we have

Ap = b, (3.11)

where b ∈ RI , A is an I × n(m + 1) matrix, and both depend on the CDO market data and

the discount factors. Thus, calibrating a set of expected tranche notionals that satisfies Condition

3.1 and is consistent with the CDO data is equivalent to finding a solution of the linear system

(3.10)-(3.11). However, this system has either no or infinitely many solutions.

Proposition 3.1. Given the CDO market data, there are either no or infinitely many sets of

expected tranche notionals with maturities t0 < ... < tm and strikes δ < ... < nδ which satisfy

(3.10)-(3.11).

In order to pinpoint a unique set of expected tranche notionals, we consider a convex optimization

problem under constraints (3.10)-(3.11). Consider a convex function f : R
n(m+1)
+ 7→ R, we calibrate

the expected tranche notionals by solving

min
p

f(p) subject to Ap = b, Bp ≤ −e. (3.12)

Here, we replace the strict inequalities in (3.10) by inequalities with an error vector e > 0 that

can be chosen arbitrarily. In fact, if (3.10)-(3.11) has a solution, then we can always pick e such

that (3.12) is feasible. If there exists a set of expected tranche notionals p that satisfies Condition

3.1 and is consistent with the CDO market data, solving (3.12) gives us a unique solution. In
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particular, we propose a selection criterion:

f(p) =

m∑

j=0

n∑

i=1

wij

(
P (tj, iδ) − P̃ (tj , iδ)

)2
, (3.13)

where (wij)j=0,...,m−1;i=1,...,n−1 are weights, and {P̃ (tj, iδ)}j=0,...,m;i=1,...,n−1 is a reference set of

expected tranche notionals. Using this objective function, we can impose a “prior” view by choosing

the reference expected tranche notionals, e.g. the reference expected tranche notionals can be

computed from a particular credit model. Furthermore, (3.12) reduces to a quadratic programming

problem which can be solved efficiently [12, 95].

3.2.3 Numerical issues

Notice that CDO tranche payments are typically made every quarter. In this case, the expected

tranche notionals {P (tj , iδ)}j=0,...,m;i=1,...,n obtained by solving (3.12) are sparsely spaced in ma-

turity. In order to obtain a finer set of expected tranche notionals, a simple method is to linearly

interpolate {P (tj , iδ)}j=0,...,m;i=1,...,n across maturities. This guarantees that the finer set will also

satisfy Condition 3.1. However, this method will give extremely large values to the local intensity

function for short maturities and may lead to computational instability. The reason is the following.

Assume that we are interested in computing the expected tranche notionals P (Tj , iδ) for j =

0, ..., q, i = 1, ..., n, on the finer time grid (Tj)j=0,...,q which includes the payment times (tj)j=0,...,m.

For i > 0, we compute P (T1, iδ) and P (T2, iδ) where T1 < T2 < t1 by linearly interpolating the

values P (t0, iδ) and P (t1, iδ). Then, the local intensity function computed from (3.5) is equal to

a(T1, i) =
(−∇KP (T2, iδ) + ∇KP (T1, iδ)) /(T2 − T1)

∇2
KP (T1, (i− 1)δ)

,

where we approximate the partial derivatives by finite differences. Since we compute P (T2, iδ) and

P (T1, iδ) by linear interpolation, the numerator of a(T1, i) is strictly positive and has the same value

for any T1 < T2 < t1. On the other hand, if T1 is close to 0, the denominator ∇2
KP (T1, (i− 1)δ) is

also close to 0 because K 7→ P (0,K) is linear. Therefore, a(T1, i) becomes extremely large when

T1 is small.
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To overcome this problem, we propose the following method.

Algorithm 1 Maturity interpolation of expected tranche notionals

1. Construct an arbitrage-free set {P (tj , iδ)}j=0,...,m;i=0,...,n of expected tranche notionals by
solving (3.12).

2. Fix an integer r such that n ≤ r < q and 0 = T0 < T1 < ... < Tr < t1. Arbitrarily set a
positive but sufficiently small value for the local intensity function at times (Tj)j=0,...,r−1 such
that ∇KP (Tr, iδ) > ∇KP (t1, iδ) for all i.

3. Compute the expected tranche notionals for maturities (Tj)j=0,...,r using forward equations
(3.3). Note that the set of expected tranche notionals at the maturity Tr, {P (Tr, iδ)}i=0,...,n,
automatically satisfies the strict convexity constraint in Condition 3.1(b).

4. Linearly interpolate expected tranche notionals in maturity starting from maturity Tr.

Since the linear interpolation starts from maturity Tr and {P (Tr, iδ)}i=0,...,n satisfies the strict

convexity constraint in Condition 3.1(b), the denominator in the local intensity function formula

(3.5) is strictly positive at maturity Tr. Therefore, having extremely large values for the local

intensity function at short maturities is avoided.

Remark 3.1. The purpose of Algorithm 1 is to compute the expected tranche notionals on a

finer time grid, but not to build a complete set of expected tranche notionals. In particular, if

T 7→ P (T, iδ) is piecewise linear, it will no longer be differentiable at certain points. If one is

interested in recovering a complete set of expected tranche notional and apply Theorem 3.2, all

necessary conditions must be verified carefully.

3.2.4 Calibration algorithm for the local intensity function

The above considerations lead to the following algorithm for computing a local intensity function

from a discrete set of CDO tranche spreads:
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Algorithm 2 Quadratic programming calibration for the local intensity function

1. Compute matrices A and b in (3.11) according to the CDO market data, and matrix B in
(3.10) according to Condition 3.1. (See section 3.7)

2. Solve quadratic programming problem (3.12) with objective function (3.13) and obtain a set
of expected tranche notionals which is consistent with the CDO market data.

3. Apply Algorithm 1 to obtain expected tranche notionals on a finer time grid if desired.

4. Convert the calibrated expected tranche notionals into a local intensity function using formula
(3.5).

3.2.5 Arbitrage opportunities when using base-correlation interpolation

To price non-standard CDO tranches, or equivalently expected tranche notionals, it is common to

use the base-correlation interpolation method under the Gaussian copula framework. For example,

if we want to price tranches [5%, 6%] and [6%, 7%] of the iTraxx investment grade (IG) portfolio,

we first calibrate the one-factor Gaussian copula model [74] to the standard tranches, and obtain

the base correlations [75] at the standard strikes 3%, 6%, 9%, 12% and 22%. Then, we interpolate

the base correlations for other strikes, say 5% and 7% in this example. After that, we compute the

expected tranche notionals at strikes 5% and 7% using the two different base correlations obtained

by interpolation and price the corresponding CDO tranches. However, we show that this method

does not guarantee absence of arbitrage.

Figure 3.2 shows the base correlations of the one-factor Gaussian copula model calibrated to the

iTraxx data in Table 3.2. By linearly interpolating the base correlations, we compute the upfront

payments of nonstandard tranches [5%, 6%] and [6%, 7%] with a fixed periodic spread 100bps in

Table 3.1. At first glance, we can see that the upfront payment of the more senior tranche [6%, 7%]

is larger than the upfront payment of tranche [5%, 6%]. To show that it leads to an arbitrage

opportunity, we take the following positions:

• Buy protection on tranche [5%, 6%],
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• Sell protection on tranche [6%, 7%].

At inception time t0, the cash flow of our positions is equal to the difference of the upfront payments:

(879.3 bps − 819.5 bps)(1%) = 0.598 bps,

which is strictly positive.

At payment time tj, the net premium received from our positions, Prem(tj), is equal to

Prem(tj) = 100 bps(tj − tj−1)
[
(7% − Ltj )

+ − (6% − Ltj )
+
]

−100 bps(tj − tj−1)
[
(6% − Ltj )

+ − (5% − Ltj )
+
]

= 100bps(tj − tj−1)
[
(5% − Ltj )

+ − 2(6% − Ltj )
+ + (7% − Ltj )

+
]
,

which is positive, due to the fact that K 7→ (K −L)+ is a convex function. Therefore, the value of

the premium leg at expiration time tm is positive and equal to

Value of premium leg at expiration =

m∑

j=1

D(tj , tm)−1Prem(tj) ≥ 0,

where D(tj, tm) is the risk-free zero coupon bond price at time tj with maturity tm.

On the other hand, at payment time tj, the net default payment received from the positions,

Def(tj), is equal to

Def(tj) =
[
(5% − Ltj )

+ − 2(6% − Ltj )
+ + (7% − Ltj )

+
]

−
[
(5% − Ltj−1)

+ − 2(6% − Ltj−1)
+ + (7% − Ltj−1)

+
]
,

and the value of the default leg at expiration time tm is equal to

Value of default leg at expiration =
m∑

j=1

D(tj , tm)−1Def(tj).

In section 3.6.4, we show that the value of the default leg is also positive. Therefore, our total

payoff (sum of premium leg and default leg) at expiration is positive. Recall that at the inception
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of the tranches at time t0, we received a strictly positive cash flow. As a result, our trading strategy

shows an arbitrage opportunity.

In contrast to our method in Algorithm 2, this example illustrates that interpolation of base

correlation can result in arbitrage opportunities.

3 6 9 12 22

0.7

0.8

0.9

1
Base correlations

Loss (%)

Figure 3.2: Base correlations of one-factor Gaussian copula model. Data: 5Y iTraxx Europe IG S9 on 25
March 2008.

Tranche 5% - 6% 6% - 7%

Upfront payment 819.5 bps 879.3 bps

Table 3.1: Upfront payments of 5-year iTraxx IG CDO tranches with 100bps periodic spread. Pricing
method: one-factor Gaussian copula model with linearly interpolated base correlations.

3.3 Application to iTraxx tranches

In this section, we illustrate the calibration method introduced in section 3.2 by using the iTraxx

data. We refer to this calibration method as the quadratic programming method (QP). The weights

in the objective function (3.13) are chosen to be proportional to the reference expected tranche

notionals which are computed from a flat local intensity function equal to 1. In addition, we

compare our results to two alternative calibration methods:

• A parametric method.
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Herbertsson [60] specifies the local intensity function in the parametric form

a(t, i) = (n− i)
i∑

k=0

bk, (3.14)

where the parameters b0, ..., bn are constants. This model states that the local intensity

function is constant except when defaults occur. There is no sign restriction on bk as long

as the local intensity function remains nonnegative. To recover the parameters from the

CDO spreads, we minimize the sum across observed tranches of squared differences between

model and market CDO spreads using a gradient-based algorithm. Note that this objective

function is not convex; hence the gradient-based algorithm may not necessarily yield a global

minimum, and the minimum need not be unique.

• Entropy minimization algorithm.

Cont and Minca [28] introduced a non-parametric method for recovering the local intensity

function as the solution of a relative entropy minimization problem

inf
Q∈Λ

EQ0

[
dQ

dQ0
ln

(
dQ

dQ0

)]

subject to calibration constraints (3.9). Q0 denotes the law of a prior Markovian point process,

and Λ is the set of laws of Markovian point processes, equivalent to Q0. To implement this

algorithm, we choose as prior measure the law of a standard Poisson process stopped at n.

These three methods are applied to the 5-year iTraxx Europe Investment Grade Index CDO tranche

spreads on 20 September 2006 and 25 March 2008, a portfolio consisting of 125 names. The recovery

rate is assumed to be R = 40%. Table 3.2 shows the result of the calibration.

3.3.1 Local intensity functions

Figures 3.3 to 3.5 show local intensity functions implied from iTraxx CDO spreads using the three

different approaches presented above on two different dates: 20 Sept 2006 and 25 March 2008.

These local intensity functions exhibit qualitatively similar features, but the value they imply for
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0% - 3% 3% - 6% 6%- 9% 9% - 12% 12% - 22% 22% - 100%

20-Sep-06

Market bid 11.8% 53.8 14.0 5.8 2.1 0.8
Market ask 12.0% 55.3 15.5 6.8 2.9 1.3

QP 11.9% 54.6 14.8 6.3 2.5 1.0
Parametric 11.9% 54.5 14.8 6.3 2.5 1.1

Entropy Min 11.9% 54.5 14.8 6.3 2.5 1.1

25-Mar-08

Market bid 37.7% 441.6 270.2 174.4 97.4 42.8
Market ask 39.7% 466.6 290.2 189.4 110.7 46.9

QP 38.4% 451.9 279.0 181.1 103.2 44.3
Parametric 38.7% 454.1 280.2 181.9 104.1 44.8

Entropy Min 38.6% 453.3 279.5 181.2 103.4 44.6

Table 3.2: Calibrated CDO tranche spreads of 5Y iTraxx Europe IG Series 6 on 20 September 2006 and
Series 9 on 25 March 2008. Quotes are given in bps except for equity tranches which are quoted as upfront
in percent with 500bps periodic coupons.
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Figure 3.3: Local intensity functions implied from 5Y iTraxx Europe IG tranche spreads using the quadratic
programming method (Algorithm 2) Left: S6 on 20 September 2006. Right: S9 on 25 March 2008.

the default intensity can be quite different. Also, for each calibration method, we observe that the

general shape of the local intensity function calibrated to the 2006 dataset is similar to the one

calibrated to the 2008 dataset.

For the quadratic programming method (Figure 3.3), we observe that at any fixed time, the local

intensity functions stay at a low level when the number of defaults is small but sharply increases

around 5 defaults: this sharp increase signals the onset of contagion. After that, the local intensity

functions stay almost flat at a high level when the number of defaults is larger than 5. The term



Chapter 3. Default intensities implied by CDO spreads: inversion formula and model calibration 86

0 25 50 75 100 125
0

5
0.0001

1

5000

No. of defaults

Parametric: 20−Sep−2006

Time (yr) 0 25 50 75 100 125
0

5
0.0001

1

5000

No. of defaults

Parametric: 25−Mar−2008

Time (yr)

Figure 3.4: Local intensity functions implied from 5Y iTraxx Europe IG tranche spreads using the a
parametric model [60]. Left: S6 on 20 September 2006. Right: S9 on 25 March 2008.
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Figure 3.5: Local intensity functions implied from 5Y iTraxx Europe IG tranche spreads using a non-
parametric entropy minimization method [28]. Left: S6 on 20 September 2006. Right: S9 on 25 March
2008.

structure is relatively flat in all examples.

The parametric approach (Figure 3.4) yields, by construction, smoother local intensity functions.

When the loss is large, unlike the local intensity functions obtained via quadratic programming,

the parametric local intensity functions decrease gradually towards zero as the number of defaults

increases. Interestingly, this feature is also observed in the local intensity functions obtained with

the nonparametric entropy minimization algorithm (Figure 3.5), but the decrease is much faster

for short times than the parametric model. Furthermore, the maximum attained value of the local

intensity function obtained via entropy minimization algorithm is substantially lower than both the



Chapter 3. Default intensities implied by CDO spreads: inversion formula and model calibration 87

parametric and quadratic programming methods.

3.3.2 Stability analysis

A crucial property of a calibration method is its stability with respect to the inputs. To examine

the stability of the various calibration methods considered above, we apply a 1% proportional shift

to all CDO market spreads, recalibrate the local intensity function to the shifted CDO spreads,

and measure the magnitude of the changes using the Frobenius norm:




n∑

i=0

q∑

j=0

|a(Tj , i) − â(Tj , i)|2



1/2

,

where {a(Tj , i)} and {â(Tj , i)} are, respectively, the local intensity functions calibrated to the

original and perturbed CDO tranche spreads . The smaller the value of this norm, the more stable

is the method. From Table 3.3, we observe that the entropy minimization algorithm is substantially

more stable than the other two methods with respect to a change in the inputs, while the parametric

approach is the most unstable one among the three. This result is in line with findings in similar

studies using equity derivatives [32].

QP Parametric Entropy Min

20-Sep-06 56.2 32116.2 2.0 × 10−2

25-Mar-08 673.2 728.3 2.0 × 10−1

Table 3.3: Frobenius norm of the changes in the local intensity function with respect to 1% proportional
increase in the CDO spreads. Data: 5Y iTraxx Europe IG S6 on 20 September 2006 and S9 on 25 March
2008.

3.3.3 Marginal distributions and expected losses

Figure 3.6 shows the marginal distribution of the default process on 25 March 2008. We see that the

marginal distributions are similar across the three calibration methods at year 1, but have more

significant differences for longer time at year 4. This suggests that pricing non-path-dependent
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credit derivatives is more sensitive to the choice of the calibration method used to recover the local

intensity function for longer maturities.

Another important quantity that we study is the expected portfolio loss. Figure 3.7 shows

the differences of the expected losses in a quarterly basis, i.e. E(LT ) − E(LT−0.25). Observe

that the differences in the expected losses are almost flat for all calibration methods when time

is smaller than 2 years. When time increases, the difference of the expected loss computed from

the parametric method increases gradually. On the other hand, the other two calibration methods

give similar differences of the expected loss along time, except a sharp increase at year 5 for the

quadratic programming method.
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Figure 3.6: Marginal distribution at year 1 and year 4, truncated up to 20 defaults. Data: 5Y iTraxx
Europe IG S9 on 25 March 2008.

0 1 2 3 4 5
0

0.5

1

1.5

Time (yr)

Lo
ss

 (
%

)

E[L(T)] − E[L(T−0.25)]

 

 
QP
Parametric
Entropy min

Figure 3.7: Term structure of the differences in the expected loss E(LT ) − E(LT−0.25). Data: 5Y iTraxx
Europe IG S9 on 25 March 2008.
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3.3.4 Forward starting tranche spreads

Forward starting tranches provide protection against tranche losses in a pre-specified future period

[t, T ]. The distinguishing feature is that default occurring prior to the starting date do not affect

the subordination of the tranche. In particular, a forward tranche with attachment-detachment

interval [a, b] can be valued as the forward value of a tranche with adjusted interval [a′, b′] where

a′ = min(1, a + Lt) and b′ = min(1, b + Lt). This dependence of the payoff on the loss makes the

forward tranche path dependent.

Table 3.4 shows the spreads of forward starting tranches which start in 1 year and mature 3 years

later. As we can see, the forward tranche spreads are significantly different across the calibration

methods. Table 3.5 shows the model uncertainty ratio [23], which is defined as

Model uncertainty ratio =
smax − smin

save
,

where smax, smin and save are the maximum, minimum and average forward spreads respectively

across the calibration methods. Notice that the ratio is larger than 90% for all tranches except for

the equity tranche. This reveals a serious problem because, even if we price exotic credit deriva-

tives in the same modeling framework (local intensity framework in this case), there is substantial

uncertainty in pricing exotic credit derivatives due to the choice of calibration method.

20 September 2006 25 March 2008
QP Parametric Entropy Min QP Parametric Entropy Min

0% - 3% 12.05 12.25 14.26 53.46 36.92 65.92
3% - 6% 2.72 17.89 33.62 93.79 290.65 482.23
6%- 9% 2.46 3.18 7.46 92.46 142.25 236.22

9% - 12% 2.21 0.79 4.14 91.45 63.45 170.80
12% - 22% 1.59 0.36 4.03 89.36 34.49 165.59
22% - 100% 0.03 0.15 0.69 37.99 13.38 27.60

Table 3.4: Spreads of forward starting tranches which start in 1 year and mature 3 years afterwards. Data:
5Y iTraxx Europe IG S6 on 20 September 2006 and S9 on 25 March 2008.
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0% - 3% 3% - 6% 6%- 9% 9% - 12% 12% - 22% 22% - 100%

20-Sep-06 17% 171% 115% 141% 184% 226%
25-Mar-08 56% 134% 92% 99% 136% 93%

Table 3.5: Model uncertainty ratio of the forward starting tranche spreads.

3.3.5 Jump-to-default ratios

In the local intensity framework, the market is complete and the self-financing strategy to replicate

the payoff of a CDO tranche involves trading the underlying index default swap. The corresponding

hedge ratio, which is known as the jump-to-default ratio, is defined by:

v[a,b](t,Nt + 1) − v[a,b](t,Nt)

vindex(t,Nt + 1) − vindex(t,Nt)

where v[a,b](t,m) and vindex(t,m) denote the mark-to-market values per unit notional of tranche

[a, b] and the index default swap respectively, conditional on m defaults being occurred by time t.

More details on this subject can be found in [26, 71].

Table 3.6 shows the jump-to-default ratios computed from the local intensities in section 3.3.1.

Interestingly, we observe that the jump-to-default ratios generated by the quadratic programming

and the entropy minimization methods are quite similar. However, substantial differences are

observed when comparing to the parametric method. This implies that uncertainty due to the

choice of the calibration method not only affects the pricing of credit derivatives, as we have

shown in section 3.3.4, but may also have a large impact on hedging strategies for portfolio credit

derivatives [26].

3.4 Local intensity function implied by credit portfolio loss models

Market practice has been to calibrate credit portfolio models to market observations of index

spreads and index tranche spreads and use the resulting parameters to price non-standard or illiquid

products. As observed in section 3.3, even in a local intensity model, the marginal distributions

for the portfolio loss generated by the model can vary substantially depending on the calibration
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20 September 2006 25 March 2008
QP Parametric Entropy Min QP Parametric Entropy Min

0% - 3% 6.29 20.97 6.32 1.03 3.62 1.60
3% - 6% 2.12 5.16 3.51 1.69 3.31 2.33
6%- 9% 1.63 2.00 2.23 1.68 2.65 2.15

9% - 12% 1.52 1.02 1.72 1.68 2.08 1.97
12% - 22% 1.47 0.48 1.39 1.68 1.48 1.76
22% - 100% 0.67 0.22 0.61 0.81 0.66 0.75

Table 3.6: Jump-to-default ratios computed from the calibrated local intensity functions. Data: 5Y iTraxx
Europe IG S6 on 20 September 2006 and S9 on 25 March 2008.

methods. This raises the question whether there is also a substantial difference of loss distributions

across different models, when these models are calibrated to the same market data.

We compare the local intensity functions implied by six different models: Herbertsson model

[60], bivariate spread-loss model [5], shot-noise model [52], one-factor Gaussian copula model [74],

one-factor Student-t copula model [70] and a bottom-up affine jump-diffusion model [41, 83, 45].

The first three are top-down models, which means that the portfolio default intensity is directly

specified. The one-factor Gaussian and Student-t copula models are bottom-up static factor models,

and the affine jump-diffusion model is a dynamic bottom-up model.

All models are calibrated to the iTraxx Europe IG Series 9 CDO data on 25 March 2008. Table

3.7 shows the calibration results. The Gaussian and Student-t copula models are calibrated using

the base-correlation method [75]. Except for the shot-noise model and the affine jump-diffusion

model, all models yield tranche spreads well within the bid-ask intervals.

In order to compute the local intensity functions, we first compute the expected tranche notionals

for each model. For the dynamic models, we apply Theorem 3.1 and convert the expected tranche

notionals into local intensity functions based on formula (3.5). For the copula models we compute

the implied portfolio default intensity using Theorem 3.2: the local intensity function is computed

using (3.6). The local intensity functions are shown in Figure 3.8.
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0% - 3% 3% - 6% 6%- 9% 9% - 12% 12% - 22% 22% - 100%

25-Mar-08

Market bid 37.7% 441.6 270.2 174.4 97.4 42.8
Market ask 39.7% 466.6 290.2 189.4 110.7 46.9

Bivariate spread-loss 38.7% 454.1 280.2 181.9 104.1 44.8
Shot-noise 43.8% 463.5 219.5 159.9 128.0 40.7

Gaussian Copula 38.7% 454.1 280.2 181.9 104.1 43.3
Student-t Copula 38.7% 454.1 280.2 181.9 104.1 44.9

Affine jump-diffusion 48.2% 493.0 244.8 186.5 154.4 37.2

Table 3.7: Calibration of different models to 5Y iTraxx Europe IG Series 9 tranche spreads on 25 March
2008. Quotes are given in bps except for equity tranches which are quoted as upfront in percent with 500bps
periodic coupons.

3.4.1 Herbertsson model

In section 3.3, we have presented the parametric model introduced by Herbertsson [60], in which

the portfolio default intensity has the functional form (3.14). Since the portfolio default intensity

only depends on the credit portfolio loss level, this is one of the “simplest” models in a sense that

the effective default intensity (λeff
t ) is the same as the portfolio default intensity (λt). It can serve

as a benchmark to compare with other models.

3.4.2 Bivariate spread-loss model

Arnsdorff and Halperin [5] introduce the bivariate spread-loss model in which the portfolio default

intensity not only depends on the loss process but also on a mean-reverting diffusion process (Yt)

which generates spread volatility. The portfolio default intensity is given by

λt = Yt F (Nt),

where F is called the contagion function. The factor (Yt) generates spread volatility between default

dates and follows

d lnYt = κ (b− lnYt) dt+ σdWt,

where (Wt) is a standard Brownian motion.
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Figure 3.8: Local intensity functions implied by credit portfolio loss models. Data: 5Y iTraxx Europe IG
S9 on 25 March 2008.

From Figure 3.8, we observe that the local intensity functions obtained from the bivariate

spread-loss model and Herbertsson’s parametric model are similar. The reasons is that Arnsdorff

and Halperin parameterize the contagion function F in the same way as Herbertsson specifies the

local intensity function.

Another interesting feature to investigate is how the local intensity function changes with respect

to the initial value of the risk factor Y0. In Figure 3.9, we show the time evolution of the difference

of the local intensity function a(t, i) calibrated with two different risk factors Y0. We represent only

this difference for i = 0 and i = 5 and observe that a change in the risk factor will mostly affect
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the local intensity function at short times. This observation is consistent with the fact that, since

the risk factor is specified as mean reverting, it will revert back to its average in the long run and

give similar local intensity functions for longer times.
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Figure 3.9: Change of the local intensity function implied by bivariate spread-loss model with respect to a
small increase of the risk factor value Y0 at time 0.

3.4.3 Shot-noise model

In order to better capture the possibility of extreme events, Gaspar and Schmidt [52] propose the

shot-noise model in which the portfolio default intensity has the form

λt = ηt + Jt,

where (ηt) is a continuous affine process

dηt = κ(b− ηt)dt + σ
√
ηtdWt

with (Wt) a standard Brownian motion, and (Jt) is a non-Gaussian Ornstein-Uhlenbeck process

which represents the shot-noise:

Jt =
∑

τi≤t

Yie
−α(t−τi)

where τi, i = 1, 2, ... are the jump times of a Poisson process and Yi, i = 1, 2, ... are independent and

identically distributed variables independent of the τi. We assume here Yi to have an exponential
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distribution. Under this setting, they provide a semianalytical expression for the local intensity

function:

a(T, k) =

∂k

∂θk

∣∣∣
θ=−1

∂
∂T

1
θS(θ, T )

∂k

∂θk

∣∣∣
θ=−1

S(θ, T )
(3.15)

where S(θ, T ) is the Laplace transform of the cumulative portfolio default intensity

S(θ, T ) = EQ
[
eθ

R T

0
λsds

∣∣∣F0

]
, θ < 0

which has a closed-form expression (see section 3.8). However, formula (3.15) is of little use for

computing the local intensity function for a typical credit portfolio which consists of more than 100

names, we have to (numerically) differentiate S(θ, T ) with respect to θ more than 100 times, which

yields an unstable result. This example illustrates the difficulty of computing the local intensity

function, even with a semianalytical formula. On the other hand, we can easily overcome this

problem by using the inversion formula (3.5).

In Figure 3.8, we see that the local intensity function implied by the shot-noise model first

increases sharply when the number of defaults is small and then slowly increases when the number

of defaults gets larger. This is consistent with the argument given by Gaspar and Schmidt [52]:

since the default intensity (λt) is not observed, the loss level (Lt) is used as a statistic to estimate the

default intensity. If the loss increases, it is more likely that the default intensity is high. Therefore,

it leads to an increasing local intensity function in the loss level.

3.4.4 Gaussian and Student-t copula models

Because of its tractability, the one-factor Gaussian copula model has been the financial industry

benchmark despite some well-known drawbacks. The Student-t copula model, which embeds the

Gaussian copula model as a limit when the degree of freedom goes to infinity, is widely used as

well. More precisely, given a family of marginal default time distributions (Fi, i = 1, ..., n), the joint
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distribution of the default times τi is modeled by first defining latent factors

Xi = S
(
ρZ0 +

√
1 − ρ2Zi

)
, with S =





1 for Gaussian copula
√
ν

V
for Student-t copula

where Z0, Zi ∼ N (0, 1), V ∼ χ2
ν are independent variables, and then defining the default times by

τi = F−1
i (FXi

(Xi)),

where FXi
(.) denotes the distribution of Xi. We refer readers to [70] for details.

To study the local intensity function implied by these two bottom-up models, we first calibrate

them using the base-correlation method [75]. Then, we study the local intensity function corre-

sponding to different base correlations. Notice that these two models are static, which means that

there is no default intensity defined in this framework: we are in effect representing the expected

tranche notionals in these models in terms of an equivalent local intensity function, which then

enables to compare these static models with dynamic models presented above.

Figure 3.8 shows the local intensity functions implied by the two copula models with base

correlations corresponding to tranche [6%, 9%]. Observe that the main difference between the two

local intensity functions is that for the Gaussian copula model, there is a sharp increase for short

times when the number of defaults is larger than 100. Other than that, both local intensity functions

appear to have a smooth dome shape. This relatively restricted form of local intensity function can

explain why a single correlation cannot fit the full set of CDO tranche spreads and why we usually

observe a base-correlation skew. Also, since the Student-t copula embeds the Gaussian copula as

a limit, it is not surprising that the local intensity functions implied by the two models are similar

in general shape. This also suggests that the additional degree of freedom in the Student-t copula

is still not able to generate a flexible enough local intensity function to match the full set of CDO

market data.
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3.4.5 Affine jump-diffusion model

Many “bottom-up” reduced form models [41, 45, 83, 92] based on diffusive or jump-diffusion dy-

namics for default intensities have been proposed for pricing portfolio credit derivatives. Most of

these models are built in the “doubly stochastic” framework by specifying the default intensities

for each name in the portfolio. A prominent example, which lends itself to implementation, is the

model proposed by Duffie and Gârleanu [41] where the default intensities follow correlated affine

jump-diffusion processes. We consider the extension of this model considered in Mortensen [83]

here. The default intensity for name i is represented as

λi,t = Xi
t + aiX

0
t ,

where a1, ..., an are parameters, and (Xi
t), i = 0, ..., n, are independent affine jump-diffusions with

dXi
t = κi(bi −Xi

t)dt + σi

√
Xi

tdW
i
t + dJ i

t ,

where (W i
t ), i = 0, ..., n, are independent Brownian motions and (J i

t ), i = 0, ..., n, are independent

compound Poisson processes with exponentially distributed jumps. This general specification is

theoretically appealing, but the calibration to 125 individual CDS spreads and 6 tranche spreads

of a CDO involves the solution to a nonlinear optimization problem in dimension 881: 125 factor

loadings, 126 initial risk factor values and 630 parameters for the risk factor dynamics. Eckner [45]

proposes a parsimonious version of this model, which we will adopt here.

Interestingly, Figure 3.8 shows that the local intensity function implied by the affine jump-

diffusion model [45] is similar to the one implied by the one-factor Student-t copula model. This

is a surprising result because the two modeling frameworks are fundamentally different: one is

dynamic, while the other one is static.
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3.5 Conclusion

We have proposed a simple and efficient calibration method for recovering the default intensity of

a portfolio from CDO spreads. Our method is based on two ingredients: a nonparametric method

based on quadratic programming for recovering expected tranche notionals from CDO spreads,

and an inversion formula for computing the local intensity function from the expected tranche

notionals. This method is shown to be much more stable, with respect to changes in inputs, than

the commonly used nonlinear least squares method based on parametric models (see, e.g. [60]).

Contrarily to the base-correlation method, our method yields an arbitrage-free model.

Comparing our calibration algorithm to a parametric calibration method [60] and to a nonpara-

metric entropy minimization method [28] using iTraxx Europe index CDO spreads, we observe that

these different calibration methods lead to quite different values of default intensity while main-

taining a good match to the observations: this illustrates clearly the ill-posedness of the calibration

problem. We also find that model-dependent quantities such as forward starting tranche spreads

and jump-to-default ratios are quite sensitive to the calibration method used, even within the same

model class.

On the other hand, comparing the local intensity functions implied by different credit portfolio

models reveals that apparently different models, such as static Student-t copula models and reduced-

form affine jump-diffusion models, lead to similar marginal loss distributions and tranche spreads.

Thus, market prices alone are insufficient to discriminate between these model classes.

These results emphasize the importance of model uncertainty when addressing the pricing and

hedging of portfolio credit derivatives and call for more research in this direction.
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3.6 Proofs

3.6.1 Proof of Property 3.1

Property 3.1(a)-(c) are immediate results from the definition. Since the payoff function (K−LT )+

is convex in K and taking expectation of the payoff function preserves convexity, Property 3.1(d)

holds. Since (Lt) is an increasing process, we know that for T1 ≤ T2, K1 ≤ K2

(K1 − LT2)
+ − (K1 − LT1)

+ ≥ (K2 − LT2)
+ − (K2 − LT1)

+.

Taking the expectation on both sides, we obtain Property 3.1(e).

For Property 3.1(f), consider K ∈ [(i − 1)δ, iδ] for any i ∈ {1, ..., n} and T ∈ [0, T ∗]. From the

definition of P (T,K), we have

P (T,K) = EQ[(K − LT )+|F0] =
i−1∑

k=0

(K − kδ)Q(LT = kδ|F0), (3.16)

which shows immediately that K 7→ P (T,K) is linear on [(i − 1)δ, iδ] and that K 7→ P (T,K) is a

continuous function.

3.6.2 Proof of Theorem 3.1

Since EQ[λT |F0] < ∞ for all T ∈ (0, T ∗], the local intensity function defined by (3.2) satisfies

a(T, i) < ∞ for all T and i. Therefore the forward equations (3.3) hold and have the solution

P (T, iδ) = EQ[(iδ − LT )+|F0]. By rewriting (3.3) in matrix-form for T ∈ (0, T ∗], we have

P′ = −Ma, (3.17)

where P′ = [∂TP (T, δ), ..., ∂T P (T, nδ)]T, a = [a(T, 0), ..., a(T, n − 1)]T, and M is a n-by-n lower

triangular matrix with entries

M(i, 1) = P (T, δ),

M(i, j) = ∇2
KP (T, (j − 2)δ), j = 2, ..., i,
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for i = 1, ..., n and M(i, j) = 0 otherwise. From (3.4), we know that:

M(i, 1) = δQ(NT = 0|F0),

M(i, j) = δQ(NT = j − 1|F0) j = 2, ..., i,

for i = 1, ..., n. Let K ⊆ {0, ..., n − 1} be the set of integers k such that Q(NT = k|F0) = 0.

We know that the (k + 1)th column of M is equal to zero for all k ∈ K, and this implies that

∂TP (T, kδ) = ∂TP (T, (k−1)δ). Moreover, in order to respect the convention given in the definition

of the local intensity function (3.2), for all k ∈ K, we have a(T, k) = 0.

Now, let M̃ be the (n − |K|) × (n − |K|) matrix resulting from the elimination of the (k + 1)th

row and column in M for all k ∈ K. M̃ is a lower triangular matrix with M̃(i, j) > 0 for all i and

j ≤ i, and therefore it is invertible. Since for all k ∈ K, we have set a(T, k) = 0 and noticed that

∂TP (T, kδ) = ∂TP (T, (k − 1)δ), we can rewrite the linear system (3.17) as

P̃′ = −M̃ã. (3.18)

where P̃′ and ã are (n − |K|)-vectors which result from the elimination of the (k + 1)th entries of

P′ and a respectively for all k ∈ K. Multiplying both sides of (3.18) by M̃−1, we have

ã = −M̃−1P̃′. (3.19)

Therefore, the local intensity function a(., .) is uniquely determined by the set of expected tranche

notionals via (3.19). By the Gaussian elimination method, it is easy to check that (3.19) is equivalent

to expression (3.5). Therefore, the local intensity function must have the form given in (3.5).

3.6.3 Proof of Proposition 3.1

Assume there exists a vector p ∈ Rn(m+1) that satisfies (3.10)-(3.11). Using the fact that rank(A) ≤

I < n(m + 1), we know from the rank-nullity theorem that there exists a non-zero y ∈ Rn(m+1)

such that

Ay = 0.
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Then, we choose the smallest µ0 < 0 and largest µ1 > 0 such that

B(p + µ0y) ≤ 0, B(p + µ1y) ≤ 0.

Then, for any µ ∈ (µ0, µ1), we have

B(p + µy) < 0.

Therefore, the vector p + µy also satisfies constraints (3.10)-(3.11) for all µ ∈ (µ0, µ1); i.e. there

are infinitely many solutions for the system (3.10)-(3.11).

3.6.4 Existence of arbitrage in the base correlation model

To show that the total default payments received from our trading strategy in section 3.2.5 is

positive, we consider different scenarios at the last payment time, or equivalently the expiration

time, tm.

• For Ltm−1 ≤ 5%, we are only possible to receive a default payment at the expiration time tm.

Then, we have

Value of default leg at expiration

= (5% − Ltm)+ − 2(6% − Ltm)+ + (7% − Ltm)+

−(5% − Ltm−1)
+ + 2(6% − Ltm−1)

+ − (7% − Ltm−1)
+

=





0, if Ltm ≤ 5%

Ltm − 5%, if 5% < Ltm ≤ 6%

7% − Ltm , if 6% < Ltm ≤ 7%

0, if 7% < Ltm

≥ 0.

• For 5% < Ltm−1 ≤ 6%, we would have received certain amount of default payments before

time tm from tranche [5%, 6%]. Taking the reinvestment of those received payments at risk-

free rate into account, we know that the total value of the received payments at time tm is
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greater than Ltm−1 − 5%. Then, we have

Value of default leg at expiration

≥ (Ltm−1 − 5%)

−2(6% − Ltm)+ + (7% − Ltm)+

+2(6% − Ltm−1)
+ − (7% − Ltm−1)

+

=





Ltm − 5%, if Ltm ≤ 6%

7% − Ltm , if 6% < Ltm ≤ 7%

0, if 7% < Ltm

≥ 0.

• For 6% < Ltm−1 ≤ 7%, we would have:

– received default payments from tranche [5%, 6%] before time tm, with value greater than

1% at time tm,

– paid default payments for tranche [6%, 7%] before time tm, with value greater than

Ltm−1 − 6% at time tm.

Since we would have received all default payments from tranche [5%, 6%] before paying any

default payments for tranche [6%, 7%], the difference in timing of the reinvestment tells us

that the total net value of default payments received before time tm is greater than 7%−Ltm−1 .

Then, we have

value of default leg at expiration

≥ (7% − Ltm−1) + (7% − Ltm)+ − (7% − Ltm−1)
+

= (7% − Ltm)+ ≥ 0.

• For 7% < Ltm−1 , all possible default payments have been made before time tm, and we would

have:
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– received default payments from tranche [5%, 6%], with value greater than 1% at time tm

– paid default payments for tranche [6%, 7%], with value greater than 1% at time tm.

Again, since we would have received all default payments from tranche [5%, 6%] before paying

any default payments for tranche [6%, 7%], the total net value of default payments received

before time tm is greater than 0.

Therefore, the value of the default leg at expiration is positive.

3.7 Matrix representation of constraints

Recall that we write the expected tranche notionals in vector-form:

p = [P (t0, δ), ..., P (t0 , n δ), · · · , P (tm, δ), ..., P (tm, n δ)]
T ∈ Rn(m+1).

Since t0 = 0 and N0 = 0, we must have P (t0, iδ) = iδ for all i.

3.7.1 Pricing constraints

Assume that there are I CDO tranches [κi−1, κi], i = 1, ..., I, written on the reference portfolio

with κ0 = 0 and κI = 1. Denoting 0 = t0 < t1 < · · · < tm the payment dates of the CDO tranches,

we can rewrite (3.9) for each tranche and obtain the following linear pricing constraints:

• For each of the mezzanine tranches [κi−1, κi], i = 2, ..., I − 1, without upfront payment, we
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have

0 =

m∑

j=1

D(0, tj)[(1 + s[κi−1,κi]∆tj)P (tj , κi) − (1 + s[κi−1,κi]∆tj)P (tj , κi−1)

− P (tj−1, κi) + P (tj−1, κi−1)]

=D(0, t1)P (t0, κi−1) −D(0, t1)P (t0, κi)

−
m−1∑

j=1

[D(0, tj)(1 + s[κi−1,κi]∆tj) −D(0, tj+1)]P (tj , κi−1)

+
m−1∑

j=1

[D(0, tj)(1 + s[κi−1,κi]∆tj) −D(0, tj+1)]P (tj , κi)

−D(0, tm)(1 + s[κi−1,κi]∆tm)P (tm, κi−1) +D(0, tm)(1 + s[κi−1,κi]∆tm)P (tm, κi).

where ∆tj = tj − tj−1.

• For the most senior tranche [κI−1, κI ] with κI−1 < nδ, each default in the portfolio will reduce

the notional value by 1
n − δ. In this case, the expected remaining notional value of tranche

[κI−1, κI ] at payment time tj is equal to

EQ

[
(1 − Ltj ) − (κI−1 − Ltj )

+ −
(

1

n
− δ

)
Ntj

]

= EQ

[(
1 − Ntj

n

)
−
(
κI−1 − Ltj

)+
]

=
1

nδ
P (tj , nδ) − P (tj , κI−1).

Taking this into account, we have a slightly different equality for the most senior tranche:

0 = D(0, t1)P (t0, κI−1) −D(0, t1)P (t0, nδ)

−
m−1∑

j=1

[D(0, tj)(1 + s[κI−1,κI ]∆tj) −D(0, tj+1)]P (tj , κI−1)

+

m−1∑

j=1

[
D(0, tj)

(
1 +

s[κI−1,κI ]∆tj
nδ

)
−D(0, tj+1)

]
P (tj , nδ)

−D(0, tm)(1 + s[κI−1,κI ]∆tm)P (tm, κI−1)

+D(0, tm)

(
1 +

s[κI−1,κI ]∆tm
nδ

)
P (tm, nδ).
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• For the equity tranche [κ0, κ1] with an upfront payment U [κ0,κ1], we have

−U [κ0,κ1] κ1 = −D(0, t1)P (t0, κ1)

+

m−1∑

j=1

[D(0, tj)(1 + s[κ0,κ1]∆tj) −D(0, tj+1)]P (tj , κ1)

+D(0, tm)(1 + s[κ0,κ1]∆tm)P (tm, κ1).

One may notice that the attachment/detachment points (κi)i=1,...,I of the CDO tranches are not

necessary multiples of δ; i.e. the existence of k such that κi = k δ is not guaranteed. Nonetheless,

Property 3.1 gives us the piecewise linearity of P (T, .) on each (iδ, (i + 1)δ), and therefore we can

write

pκ = A1 p,

where

pκ = [P (t0, κ1), ..., P (t0, κI−1), P (t0, nδ), · · · , P (tm, κ1), ..., P (tm, κI−1), P (tm, nδ)]
T,

which is a I(m+ 1) × 1 vector and matrix A1 is a linear interpolation operator equal to

A1 =




Ã1

. . .

Ã1




I(m+1)×n(m+1)

,

where the non-zero entries of Ã1 ∈ RI×n are

Ã1

(
i,
⌊

κi

δ

⌋)
= −κi

δ +
(⌊

κi

δ

⌋
+ 1
)
, i = 1, ..., I − 1,

Ã1

(
i,
⌊

κi

δ

⌋
+ 1
)

= κi

δ −
⌊

κi

δ

⌋
, i = 1, ..., I − 1,

Ã1(I, n) = 1.

Then, since each pricing constraint is linear in pκ and the transformation from p to pκ is linear as

well, it is easy to see that

A2A1 p = b,
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where

b =
[
−U [κ0,κ1] κ1 0 · · · 0

]T
∈ RI ,

and the non-zero entries of A2 ∈ RI×I(m+1) are

A2(1, 1) = −D(0, t1),

A2(1, I j + 1) = D(0, tj)(1 + s[κ0,κ1]∆tj) −D(0, tj+1), j = 1, ...,m − 1,

A2(1, I m+ 1) = D(0, tm)(1 + s[κ0,κ1]∆tm),

for i = 2, ..., I − 1,

A2(i, i− 1) = D(0, t1),

A2(i, i) = −D(0, t1),

A2(i, I j + i− 1) = −D(0, tj)(1 + s[κi−1,κi]∆tj) +D(0, tj+1), j = 1, ...,m − 1,

A2(i, I j + i) = D(0, tj)(1 + s[κi−1,κi]∆tj) −D(0, tj+1), j = 1, ...,m − 1,

A2(i, I m+ i− 1) = −D(0, tm)(1 + s[κi−1,κi]∆tm),

A2(i, I m+ i) = D(0, tm)(1 + s[κi−1,κi]∆tm),

and,

A2(I, I − 1) = D(0, t1),

A2(I, I) = −D(0, t1),

A2(I, I j + I − 1) = −D(0, tj)(1 + s[κI−1,κI ]∆tj) +D(0, tj+1), j = 1, ...,m − 1,

A2(I, I j + I) = D(0, tj)

(
1 +

s[κI−1,κI ]∆tj
nδ

)
−D(0, tj+1), j = 1, ...,m − 1,

A2(I, I (m+ 1) − 1) = −D(0, tm)(1 + s[κI−1,κI ]∆tm),

A2(I, I (m+ 1)) = D(0, tm)
(
1 + s[κI−1,κI ]∆tm

nδ

)
.

3.7.2 Relations in Condition 3.1

The strict positivity constraints in Condition 3.1(a) can be written as

B0p < 0,
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where,

B0 =




0 · · · 0 −1 0 · · · · · · · · · · · · · · · 0

0 · · · 0 0 · · · 0 −1 0 · · · · · · · · · · · · 0

...
...

...
...

...
...

...
...

0 0 0 · · · · · · · · · −1 0 · · · · · · 0

0 · · · 0 0 · · · · · · · · · · · · −1 0 · · ·




,

which is a m×n(m+1) matrix. The strict convexity constraints in Condition 3.1(b) can be written

as

B1p < 0,

where,

B1 =




0 ... 0 B̃1

...
...

. . .

0 ... 0 B̃1




(n−1)m×n(m+1)

,

B̃1 =




2 −1 0 · · ·

−1 2 −1 0 · · ·
. . .

. . .
. . .

. . .

0 −1 2 −1




(n−1)×n

.

Finally, Condition 3.1(c) can be written as

B2B3p < 0,
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where,

B2 =




B̃2

. . .

B̃2




nm×nm

with B̃2 =




1 0

−1 1
. . .

0 −1
. . .

. . .
. . .

. . . 0

0 −1 1




n×n

,

and

B3 =




−1 0 · · · 0 1 0 · · · 0 · · · 0 · · · 0 0 · · · 0

0 −1
. . . 0 0 1

. . . 0 · · · · · · · · ·
. . .

. . . · · · ...
. . .

. . .
...

...
. . .

. . .
...

...
... · · · ... −1 0

... 1 0

0 · · · 0 0 · · · 0 · · · 0 · · · 0 −1 0 · · · 0 1




.

which is a nm× n(m+ 1) matrix.

In summary, we can represent all strict inequality constraints conditions in matrix form:

Bp < 0,

where,

B =




B0

B1

B2B3




2nm×n(m+1)

.

3.8 Laplace transform of cumulative portfolio default intensity for

shot-noise model

Recall that the portfolio default intensity for the shot-noise model is equal to

λt = ηt + Jt,
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where (ηt) and (Jt) are independent. Therefore,

S(θ, T ) = EQ
[
eθ

R T

0
λtdt
∣∣∣F0

]
= EQ

[
eθ

R T

0
ηtdt
∣∣∣F0

]
EQ

[
eθ

R T

0
Jtdt
∣∣∣F0

]
.

Since (ηt) is an affine process, we have

EQ
[
eθ

R T

0 ηtdt
∣∣∣F0

]
= eA(θ,T )+B(θ,T )η0 ,

where

A(θ, T ) = −2κb

σ2
ln

(
c+ de−γT

c+ d

)
+
κbT

c
, B(θ, T ) =

1 − e−γt

c+ de−γT

with

γ =
√
κ2 − 2σ2θ, c = (κ+ γ)/2θ, d = (−κ+ γ)/2θ.

Since (Jt) is an Ornstein-Uhlenbeck process, we know that

EQ
[
eθ

R T

0
Jtdt
∣∣∣F0

]
= eC(θ,T )+D(θ,T )J0,

where

C(θ, T ) = l

(∫ T

0
ψ

(
θ

α
(1 − eα(s−T ))

)
ds− T

)
, D(θ, T ) =

θ

α
(1 − e−αT )

with ψ(u) := EQ[euY1 ] is the Laplace transform of Y1 and l is the intensity of the underlying Poisson

process. If Y1 is exponentially distributed with mean µ, then

C(θ, T ) =
lµ

1 − θµ

[
θT − 1

µ
ln
(
1 − θµ(1 − e−αT )

)]
.
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Chapter 4

Statistical modeling of credit default swap

portfolios

The first generation of credit risk models has primarily focused on the modeling of default risk,

either by modeling the capital structure of firms [80] or through reduced-form models for ’hazard

rates’ and default probabilities [16, 25, 35, 28, 53, 60, 67, 69]. However, during the recent financial

crisis, investors in credit derivatives experienced substantial losses even in absence of any defaults in

the portfolios underlying these contracts. Volatility in market values of credit-sensitive instruments

in absence of defaults is mainly due to the change of credit quality of the underlying obligors, which

is reflected in their credit spreads. This spread risk turns out to be the major risk faced by investors

in credit derivatives.

Consider for instance the CDX.NA.IG index, an equally weighted portfolio of 125 5-year credit

default swaps (CDS) (see section 4.1). Assume that the protection premium of each CDS is equal

to 100bps. If the recovery rate for each CDS is equal to 40%, which is a standard assumption

for pricing credit derivatives, default of a single obligor will generate a loss of 0.6/125 = 0.48%

of the total portfolio notional value. In an investment grade index, such a default is a rare event:
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8 defaults have been observed in the CDX.NA.IG since 20031. Table 4.1 shows that this loss is

equivalent to the loss generated by a change in the CDS spreads which corresponds to the 99th

percentile of daily changes, an event which occurs more than twice a year! This example shows

that, at least for investment grade credit portfolios, spread risk is at least as important as default

risk, if not more. Not surprisingly, credit risk models which did not accurately capture spread risk

performed poorly during the recent crisis [26].

Percentile of daily P&L
Period 1% 5% 10% 30% 50% 70% 90% 95% 99%

2005-09 -0.431% -0.206% -0.103% -0.015% 0.000% 0.011% 0.084% 0.192% 0.459%
2005-07 -0.070% -0.031% -0.020% -0.004% 0.003% 0.008% 0.020% 0.026% 0.049%
2007-09 -0.700% -0.297% -0.207% -0.071% -0.011% 0.038% 0.202% 0.313% 0.542%

Table 4.1: Percentiles of the daily profit-and-loss (percentage of the total portfolio notional value) of an
equally weighted credit portfolio consisting of the 5-year CDS written on the constituents in CDX.NA.IG.12.

The importance of spread risk calls for a better understanding of variations in credit spreads

and models which accurately reflect the characteristics of these variations. The empirical literature

shows that credit spreads have particular statistical features which need to be incorporated in a

model for spread risk [3, 4, 11, 21, 88]. Collin-Dufresne et al [21], Blanco, Brennan and Marsh [11]

and Alexander and Kaeck [2] explore the determinants of credit spreads and their relation with other

economic variables. Rahman [88] and Almer, Heidorn and Schmaltz [3] study empirical properties

of credit spreads for financial obligors; Rahman [88] proposed a multivariate DCC-GARCH model

for credit spreads.

As argued by Blanco, Brennan and Marsh [11], the CDS market has become the main forum for

credit risk price discovery. This work contributes to the previous empirical literature by undertaking

a systematic study of the relationship between CDS spreads and credit yield credit spreads. In

particular, CDS prices appear to be better integrated with firm-specific variables in the short run,

and both CDS and bond markets equally reflect those factors in the long run.

The risk management of credit sensitive instruments calls for models which are capable of ad-

1This includes both on-the-run and off-the-run series.
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equately reproducing the statistical properties of CDS spreads. Any default risk model implies

some dynamics for credit spreads, but most existing default risk models have focused on analyt-

ical tractability rather than statistical properties of (CDS) spreads, and spread dynamics implied

by these models do not necessarily correspond to observed dynamics of spreads. This results in

poor performance of these models for hedging and risk management [26]. Another context which

requires joint statistical modeling of CDS spreads is the risk management of CDS clearinghouses.

Regulatory reform in the light of the 2008 crisis has moved CDS trading from over-the-counter

bilateral trading to central clearing. Central counterparties require a deposit (initial margin) from

clearing participants, based on the risk of their CDS portfolios [24]. The consistent computation

of such margin requirements requires a multivariate model for (co-)movements in CDS spreads.

As shown by Collin-Dufresne et al [21], credit spread changes are principally driven by sup-

ply/demand fluctuations that are independent from factors traditionally considered in credit risk

modeling and standard proxies for liquidity. This observations suggests that direct stochastic mod-

eling of CDS spread returns is more effective than trying to explain spread movements in terms of

other economic variables. This is the approach we adopt here: we propose, in the second part of

this chapter, a heavy-tailed multivariate time series model for the dynamics of CDS spreads which

reflects the observed empirical properties of CDS spreads yet is easy to estimate and use. We

compare our model with previously proposed –random walk and affine jump-diffusion– models and

show that the model adequately predicts the distribution of losses for a variety of CDS portfolios

with long and short positions, making it a useful tool for the risk management of CDS portfolios.

In this chapter, we undertake a systematic study of univariate and multivariate properties of

CDS spread returns in (Section 4.2). Based on these observations, we propose a multivariate time

series model which is suitable for measuring and managing the risk of CDS portfolios. Below is a

summary of the main contributions of our study.

• The study of statistical properties of CDS spreads for CDX index constituents in the period

2005-09 reveals that:
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– CDS spread returns can be modeled as stationary processes with positive autocorrela-

tions, positive serial correlations in extreme values, conditional heteroscedasticity and

two-sided heavy tails.

– Large co-movements are observed in the CDS spread series, indicating the presence of

heavy-tailed common factors; these large co-movements are not necessarily linked to

credit events.

– Correlations across obligors of CDS spread returns increase substantially in 2007-09.

– Principal component analysis suggests that the main contribution to the variance of CDS

spread returns comes from idiosyncratic jumps.

– Credit events do not necessarily lead to large upward moves in the CDS spreads.

• Section 4.3 shows that commonly used affine jump-diffusion models [41, 49] are not able

to match the observed serial dependence properties and the two-sided heavy-tailed distri-

butions of CDS spread returns and tend to overestimate the probability of having (large)

co-movements in the CDS spreads.

• In section 4.4, we propose a heavy-tailed multivariate time series model for CDS spread

returns and show that this model is able to reproduce the observed statistical properties of

CDS spread returns as well as their dependence structures adequately. We also propose a

quasi maximum likelihood estimation method for the model.

• In section 4.5, we show that the heavy-tailed multivariate model compares favorable to the

affine jump-diffusion model [41] and a random walk model [91]: it provides more accurate

prediction for the loss quantiles of a wide variety of CDS portfolios, in 2005-07 and also during

the market turmoil of late 2008.
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4.1 Data

We consider daily observations of the 5-year CDS par spreads (or CDS spreads for simplicity) from

4 April 2005 to 17 July 2009, where the reference obligors belong to Markit CDX North America

Investment Grade Series 12 portfolio (CDX.NA.IG.12). CDS with other maturities such as 1, 3,

7, and 10 years are sometimes available but less liquidly traded. Table 4.2 shows the distribution

of the obligors in terms of industrial sectors, credit ratings and number of available observations.

There are a total of 125 obligors in the CDX.NA.IG.12 portfolio which can be divided into eight

industrial sectors as defined by Markit. The largest sector is the consumer cyclical sector which

contains 29 obligors and the smallest is the materials sector which contains 6 obligors. As of 5

December 2009, all obligors are investment grade except for the CIT Group Inc whose S&P long-

term local currency issuer rating is equal to D. Indeed, CIT Group Inc has been removed from

CDX.NA.IG.12 on 3 November 2009 due to default.

Our sample covers the period before and during the subprime crisis. For each obligor whose

data are available for the full sample period, it contains a total of 1109 daily observations. The

data set spans the period 2005-2009 and spans a reasonably long period to provide a meaningful

basis for the statistical analysis of CDS spreads

The CDS spread (log-)return over a time interval ∆t (equal to 1 or 5 days) is defined as

rt = ln(st/st−∆t)

where st is the CDS spread observed at time t. Figure 4.1 shows the CDS spreads and the daily

spread returns of Conoco Philips. The behavior of the CDS spreads can be clearly divided into

two regimes: before and after the onset of the subprime crisis in 2007. In particular, the CDS

spreads are substantially larger and more volatile after 2007. Therefore, our analysis will focus on

two sample periods:

1. Pre-subprime period (2005-07): 4 April 2005 to 30 June 2007
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Sector No. of obligors
Financial 23
Materials 6

Consumer Stable 13
Utilities 8
Energy 8

Industrial 21
Consumer Cyclical 29

Communications and Technology 17

S&P rating as of 5-Dec-2009 No. of obligors
AA- to AA+ 5

A- to A+ 42
BBB- to BBB+ 73

BB- to BB+ 4
D 1

Available no. of sample days No. of obligors
> 1000 115

800 - 1000 3
500 - 800 6
300 - 500 1

Table 4.2: Distribution of obligors in terms of sectors, Standard and Poor’s credit ratings and number of
available daily observations.

2. Subprime crisis (2007-09): 1 July 2007 to 17 July 2009

We consider obligors whose available CDS history exceeds 50 days, which leaves us with 121 obligors

for analysis for 2005-2007. In the 2007-09 period, all obligors have more than 50 sample days.

Table 4.3 and 4.4 show the summary statistics of the CDS spreads and the spread returns

respectively. We choose to present one obligor in each sector to demonstrate our observations. The

summary statistics confirm our earlier observations that the CDS spreads and spread returns are

significantly more volatile in 2007-09. For instance, the daily standard deviation of spread returns

of MetLife in 2007-09 is twice its value in 2005-07. One interesting observation is that, the sample

skewness of spread returns in 2007-09 is generally smaller and closer to 0. Moreover, although the

spread returns appear to be leptokurtic in both periods, the sample kurtosis is generally smaller in

2007-09.



Chapter 4. Statistical modeling of credit default swap portfolios 116

Jan05 Jan06 Jan07 Jan08 Jan09
0

50

100

150
5Y CDS spreads: Conoco Philipos

bp
s

Jan05 Jan06 Jan07 Jan08 Jan09
−40

−20

0

20

40
Daily spread returns: Conoco Philipos

%

Figure 4.1: 5-year CDS spreads (left) and daily spread returns (right) of Conoco Philips.

Obligor Period Conoco Eastman First HP JC Penny MetLife Motorola Pfizer
Phillips Chemical Energy

Rating A BBB BBB A BB A- BB+ AA
Sector Energy Materials Utilities Com Tech C. Cyclical Financial Industrial C. Stable

2005-09 38.02 65.79 63.97 34.71 156.04 151.12 137.84 25.52
Mean (bps) 2005-07 20.16 49.46 37.34 21.39 69.02 20.86 30.41 7.13

2007-09 57.17 83.32 92.54 49.01 249.40 290.88 253.10 45.26
2005-09 26.79 35.40 40.77 22.42 140.06 229.35 159.10 28.97

Stdev (bps) 2005-07 5.19 7.59 12.41 10.11 33.05 7.11 9.03 2.76
2007-09 27.37 44.09 41.28 23.19 150.53 266.99 163.47 31.29
2005-09 1.46 2.05 1.23 1.31 1.69 1.75 1.40 1.71

Skewness 2005-07 -0.34 0.28 -0.42 0.84 1.64 -0.03 0.51 0.53
2007-09 0.77 1.04 0.54 0.86 1.00 0.72 0.53 0.90
2005-09 4.38 6.65 3.96 4.80 5.38 4.86 4.13 5.26

Kurtosis 2005-07 2.39 2.20 2.05 3.66 5.65 1.65 2.62 1.58
2007-09 2.69 3.06 2.75 3.68 3.24 2.21 2.76 3.07
2005-09 131.27 227.02 206.60 134.80 701.04 989.99 682.17 127.27

Max (bps) 2005-07 33.77 70.75 65.80 57.18 222.00 34.58 53.69 12.33
2007-09 131.27 227.02 206.60 134.80 701.04 989.99 682.17 127.27
2005-09 9.23 32.56 12.51 7.75 35.95 10.68 14.14 3.80

Min (bps) 2005-07 9.23 35.74 12.51 7.75 35.95 10.68 14.14 3.80
2007-09 17.95 32.56 23.16 13.55 53.30 14.04 33.87 6.52

Table 4.3: Summary statistics of 5-year CDS spreads (daily observations).
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Obligor Period Conoco Eastman First HP JC Penny MetLife Motorola Pfizer
Phillips Chemical Energy

2005-09 0.08 0.04 0.08 0.04 0.00 0.27 0.16 0.13
Mean (%) 2005-07 -0.02 -0.01 -0.14 -0.14 -0.24 -0.10 -0.03 -0.11

2007-09 0.19 0.10 0.32 0.23 0.26 0.67 0.36 0.39
2005-09 3.70 4.14 3.75 3.83 4.43 4.86 4.27 3.88

Stdev (%) 2005-07 2.72 2.87 2.39 2.84 3.52 2.03 3.62 3.63
2007-09 4.52 5.17 4.79 4.65 5.23 6.65 4.86 4.11
2005-09 0.16 1.28 1.24 0.13 0.91 0.66 1.76 1.35

Skewness 2005-07 1.22 1.96 1.78 0.44 3.04 0.40 3.04 0.34
2007-09 -0.15 0.98 0.88 -0.04 0.08 0.36 1.07 2.06
2005-09 10.08 17.81 13.46 9.04 17.55 16.36 21.58 12.41

Kurtosis 2005-07 11.05 16.16 17.71 9.01 51.69 7.14 24.78 8.75
2007-09 7.87 13.54 9.18 7.26 7.60 9.50 18.45 14.15
2005-09 21.32 43.89 28.29 21.01 44.08 42.15 41.55 31.23

Max (%) 2005-07 19.00 25.58 20.73 15.14 44.08 10.86 32.17 22.04
2007-09 21.32 43.89 28.29 21.01 28.36 42.15 41.55 31.23
2005-09 -27.32 -20.54 -21.27 -22.94 -26.72 -32.28 -33.51 -18.75

Min (%) 2005-07 -11.65 -8.74 -9.72 -16.27 -20.49 -8.43 -14.62 -18.75
2007-09 -27.32 -20.54 -21.27 -22.94 -26.72 -32.28 -33.51 -13.05

Table 4.4: Summary statistics of daily spread returns.

4.2 Stylized properties of CDS spreads

4.2.1 Stationarity and unit root tests

Property 4.1 (Stationarity of CDS spread returns). CDS spread returns appear to be stationary,

whereas CDS spreads themselves are not.

We consider three tests for stationarity: (1) Augmented Dickey-Fuller (ADF) test [40, 59], (2)

Phillips-Perron (PP) test [87] and (3) Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test [66].

For ADF test and PP test, the null hypothesis assumes the time series has a unit root. KPSS test

is an inverse of the PP test in which the null hypothesis assumes that the time series does not have

a unit root. From Table 4.5, we observe that the spread returns of almost all obligors reject the

null hypothesis of ADF and PP tests and cannot reject the null hypothesis of KPSS test. On the

other hand, CDS spread series of only a small number of obligors can reject the null hypothesis

of ADF and PP and cannot reject the null hypothesis of KPSS. This suggests that our statistical

analysis should focus on CDS spread returns which appear to be stationary.
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CDS spreads
Tests and decisions 1-day 5-day

2005-07 2007-09 2005-07 2007-09

Reject Hadf
0 45 52 35 24

Reject Hpp
0 48 43 45 46

Cannot reject Hkpss
0 5 1 32 16

Total number of obligors 121 125 118 125

CDS spread log returns
Tests and decisions 1-day 5-day

2005-07 2007-09 2005-07 2007-09
ADF: Reject H0 121 125 115 125

Philips-Perron: Reject H0 121 125 118 125
KPSS: Cannot reject H0 121 118 117 125
Total number of obligors 121 125 118 125

Table 4.5: Number of obligors that reject the null hypothesis of Augmented Dickey-Fuller (ADF) test,
reject the null hypothesis of Phillips-Peron (PP) test and cannot reject the null hypothesis of Kwiatkowski,
Phillips, Schmidt and Shin (KPSS) test at 95% confidence level for (1) CDS spreads and (2) spread returns
time series. CDS spreads and spread returns are observed at 1- and 5-day time interval.

4.2.2 Linear serial dependence

Property 4.2 (Autocorrelation). CDS spread returns exhibit positive autocorrelations at 1 to 3

days, especially during the crisis period 2007-09. The autocorrelations diminish when the observa-

tion interval increases.

Linear autocorrelations of asset returns are often insignificant except for very small intraday time

scales [22]. However, Figure 4.2 shows that daily spread returns exhibit positive autocorrelation

for small time lags. Illiquidity may be one cause for the presence of positive autocorrelations.

Table 4.6 shows that the positive autocorrelations appear to diminish when the observation

interval increases. In particular, while we can reject the null hypothesis of Ljung-Box test for

all daily spread return series, we can no longer reject the test in many cases for 5-day and 10-

day spread returns at 95% level. Our result is further supported by Figure 4.3 which shows the

number of obligors that have significant autocorrelation coefficients at different time lags. Partial

autocorrelations also exhibit similar features but they will not be shown this chapter.
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Figure 4.2: Sample autocorrelation function of daily spread returns in 2005-07 and 2007-09. Obligors:
Conoco Philips, Eastman Chemical and First Energy . The 95% confidence interval bounds are computed
under the hypothesis that the time series is a sequence of i.i.d. random variables.

Obs ACF (lags) Ljung-Box test
(day) 1 2 3 4 5 10 Q(5) Q(10) Q(20)

2005-07

Conoco 1 0.09 0.16 0.04 0.03 0.05 0.07 22.30 (0.00) 26.40 (0.00) 31.49 (0.05)
Philips 5 -0.08 0.19 -0.12 0.06 -0.10 0.02 8.42 (0.13) 10.56 (0.39) 26.16 (0.16)

10 0.13 -0.11 0.01 -0.07 -0.04 -0.21 2.22 (0.82) 19.46 (0.03) 27.10 (0.13)
Eastman 1 0.23 0.07 -0.06 -0.13 -0.16 0.12 61.46 (0.00) 91.31 (0.00) 129.26 (0.00)
Chemical 5 -0.36 0.28 -0.20 -0.01 -0.06 0.02 29.53 (0.00) 31.65 (0.00) 47.80 (0.00)

10 0.00 -0.16 -0.11 -0.06 0.05 0.21 2.76 (0.74) 12.18 (0.27) 21.41 (0.37)
First 1 0.11 0.12 0.11 0.06 0.07 -0.06 27.09 (0.00) 43.90 (0.00) 60.84 (0.00)

Energy 5 0.41 0.04 -0.15 -0.16 -0.15 0.17 28.50 (0.00) 44.06 (0.00) 66.17 (0.00)
10 0.14 -0.23 -0.30 -0.18 0.21 -0.13 15.25 (0.01) 25.81 (0.00) 32.18 (0.04)

2007-09

Conoco 1 0.20 0.11 0.04 0.07 0.06 0.03 33.61 (0.00) 37.86 (0.00) 46.65 (0.00)
Philips 5 0.19 -0.11 -0.07 0.04 -0.03 -0.08 6.00 (0.31) 8.89 (0.54) 24.45 (0.22)

10 -0.11 0.02 0.00 -0.08 -0.15 -0.19 2.40 (0.79) 12.22 (0.27) 23.82 (0.25)
Eastman 1 0.23 0.07 -0.01 -0.05 -0.04 0.07 33.71 (0.00) 39.24 (0.00) 46.57 (0.00)
Chemical 5 0.09 0.00 -0.06 -0.05 0.04 -0.10 1.58 (0.90) 5.58 (0.85) 15.22 (0.76)

10 -0.08 -0.05 0.14 0.03 -0.13 0.02 2.63 (0.76) 6.65 (0.76) 12.88 (0.88)
First 1 0.24 0.13 0.07 0.01 -0.03 0.03 43.39 (0.00) 52.37 (0.00) 63.66 (0.00)

Energy 5 0.03 -0.09 0.20 -0.11 -0.16 -0.05 9.64 (0.09) 15.34 (0.12) 21.83 (0.35)
10 0.00 -0.01 -0.09 -0.15 -0.16 -0.10 3.30 (0.65) 7.25 (0.70) 21.30 (0.38)

Table 4.6: Autocorrelation coefficients of 1, 5 and 10-day spread returns. Ljung-Box test statistics and
p-values (in brackets) for 5, 10 and 20 lags.
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Figure 4.3: Number of obligors whose spread returns have statistically significant positive and negative
autocorrelations at each lag at 95% confidence level. The critical values for statistical testing is computed
under the hypothesis that the time series is a sequence of i.i.d. random variables.

4.2.3 Heavy tails

As early as the 1960s, Mandelbrot [22, 78] pointed out the insufficiency of the normal distribution

for modeling the marginal distribution of asset returns and their heavy-tailed character. We observe

similar features in CDS spreads:

Property 4.3 (Heavy-tailed distribution). CDS spread returns appear to have two-sided heavy

tails. In 2005-07, daily spread returns have heavier right tails which have tail indices in the range

of 2 ∼ 4, and lighter left tails which have tail indices in the range of 3 ∼ 6. In 2007-09, CDS spread

daily return tails are symmetric and have tail indices in the range of 3 ∼ 6.

The heavy-tailed character of CDS spread returns can be clearly seen from the quantile plots in

Figure 4.4 and the Hill estimators [61] for the tail indices in Figure 4.5. Since both left and right tails

appear to be heavier than those implied by the normal distribution, models which only allow upward

jumps, such as affine-jump diffusion models [41] and non-Gaussian Ornstein-Uhlenbeck models with
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positive jumps [17] may not be sufficient to explain the two-sided heavy-tailed distribution.

We observe that almost all obligors have tail indices are larger than 2, which suggests that

the spread returns have finite variances. Hypothesis testing on tail indices is complicated by the

fact that spread returns are autocorrelated: we will perform a more detailed analysis below for

conditional spread returns.
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Figure 4.4: Quantile plots of 1-day spread returns of Conoco Philips vs normal distribution.
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Figure 4.5: Hill estimators for the tail indices of CDS spread daily returns. The number observations for
estimation is equal to 2.5% of the sample size.

4.2.4 Nonlinear serial dependence

Property 4.4 (Volatility clustering in CDS spreads). Daily spread returns exhibit volatility cluster-

ing and conditional heteroscedasticity. In particular, absolute values of CDS spread returns exhibit

significant positive autocorrelation.

This effect, illustrated in Figure 4.6 and Figure 4.7, is a quantitative signature of volatility

clustering: large price variations are more likely to be followed by large price variations.
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Figure 4.6: Sample autocorrelation function of daily absolute spread returns in 2005-07 and 2007-09. Oblig-
ors: Conoco Philips, Eastman Chemical and First Energy . The 95% confidence interval bounds are computed
under the hypothesis that the time series is a sequence of i.i.d. random variables.

We further investigate this property by performing the White test [96] on the CDS spread

returns. For the daily spread returns, most of the obligors, 83 out of 121 in 2005-07 and 75 out of

125 in 2007-09, reject the null hypothesis that the residual variance is constant at 95% confidence

level. On the other hand, for 5-day spread returns, only a relatively small number of obligors, 50

out of 118 in 2005-07 and 20 out of 125 in 2007-09, reject the null hypothesis.

This property is traditionally modeled using ARMA-GARCH models [13, 47]. Thus, we estimate

an ARMA-GARCH model with i.i.d. Student-t innovations for 1-day and 5-day spread returns by

using maximum likelihood. Orders of the models are chosen based on Akaike information criterion

(AIC). For the daily spread returns, most obligors, 105 out of 121 in 2005-07 and 119 out of 125

in 2007-09, have at last one statistically significant GARCH coefficients at 95% level. On the

other hand, for the 5-day spread returns, there are 74 out of 118 obligors in 2005-07 and 36 out

of 125 obligors in 2007-09 have statistically significant GARCH coefficients at 95% level, which is

significantly less than the case for the daily spread returns.

4.2.5 Absence of correlation between spread returns and changes in spread

volatility

Property 4.5. No significant correlation is observed between spread return and moves in (realized)

volatility of spreads.
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Figure 4.7: Number of obligors whose absolute spread returns have statistically significant positive and
negative autocorrelations at each lag at 95% confidence level. The critical values for statistical testing is
computed under the hypothesis that the time series is a sequence of i.i.d. random variables.

Figure 4.8 shows that, for Conoco Philips, there is no significant linear relationship between

the daily returns of the 20-day realized spread volatility and the CDS spread daily returns. Then

for each obligor, we regress the realized volatility returns with different rolling windows against

the spread returns and check whether the regression models have positive slopes. Table 4.7 shows

that, for short rolling windows, only less than half of the obligors give positive slopes in the OLS

regression at 95% confidence level. Although more obligors give positive slopes when the rolling

window gets larger, Table 4.8 shows that the relationship between returns of the realized volatilities

and the CDS spread returns is not linear, as the R2 of the OLS regression is extremely small.

This property shows that asymmetric conditional volatility model such as GJR model [56] is

not necessary for modeling the CDS spreads.
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Figure 4.8: Daily spread returns vs 20-day realized volatility returns of Conoco Philips.

Period Slope Realized volatilities
rolling window (in days)
5 10 20 50

2005-07 Positive 49 62 73 80
Negative 11 9 12 13

2007-09 Positive 32 52 67 81
Negative 1 4 7 9

Table 4.7: Number of obligors that appear to have positive or negative slopes at 95% confidence level in
the regression of realized volatility daily returns against CDS spread daily returns. Realized volatilities are
computing using 5, 10, 20, 50-day rolling windows.

Period Realized volatilities
rolling window (in days)
5 10 20 50

2005-07 0.016 0.031 0.043 0.062
2007-09 0.007 0.013 0.021 0.033

Table 4.8: Average R2, across all sample obligors, of the OLS regression of realized volatility daily returns
against CDS spread daily returns.

4.2.6 Heavy-tailed conditional distributions

Heavy tails in unconditional distributions of spread returns can be due to the conditional het-

eroskedasticity observed above. So it is natural to investigate whether heavy tails persist after we

correct for this heteroskedasticity. We estimate an ARMA-GARCH model as described in section

4.2.4 and study the resulting standardized residuals, the conditional spread returns.

Property 4.6 (Heavy-tailed conditional distribution). Even after accounting for heteroskedasticity
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and volatility clustering using an ARMA-GARCH model, the conditional distribution (of residuals)

exhibits heavy tails. In 2005-07, conditional spread returns have heavier right tails with tail indices

in the range of 2 ∼ 4 and lighter left tails with tail indices in the range of 3 ∼ 6. In 2007-09,

conditional spread return tails are symmetric with tail indices in the range of 3 ∼ 5. We cannot

reject the null hypothesis that the conditional spread returns have tail indices larger than or equal

to 2, which suggests that conditional spread returns have finite variance.

Although the heavy tails of the spread returns are partly contributed from conditional het-

eroscedasticity, quantile plots in Figure 4.9 and the Hill estimators for tail indices in Figure 4.10

show that the conditional spread returns also exhibit heavy tails. We estimate the confidence

intervals for the tail indices using the asymptotic normality of the Hill estimators under i.i.d. as-

sumptions for conditional spread returns [57]. From Figure 4.11, we observe that almost none of

the confidence intervals contains the value 1, and most intervals contain values larger than or equal

to 2. This suggests that the conditional spread returns have finite variances.
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Figure 4.9: Quantile plots of Conoco Philips conditional spread returns vs normal distribution.

4.2.7 Positive serial dependence in extreme values

Property 4.7. Extreme CDS spread returns exhibit positive serial dependence, especially for large

upward movements and small time lags at 1 or 2 days.

Given the presence of heavy tails, it is interesting to see whether extreme moves in CDS spreads

are isolated occurrences or whether they exhibit any serial dependence. In order to examine the
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Figure 4.10: Hill estimators for the tail indices of conditional spread returns from ARMA-GARCH models
fitted to daily spread returns. The number observations for estimation is equal to 2.5% of the sample size.
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Figure 4.11: Number of obligors whose 95% confidence interval for the Hill estimator contains α. Data
series: conditional spread returns from ARMA-GARCH models.

serial dependence of extreme values, Davis and Mikosch [36] introduce the extremogram, in the

framework of multivariate regularly varying processes (see Resnick [89] for definitions).

Let (Xt)t=0,1,... be a (strictly) stationary and regularly varying process with tail index α. Con-

sider a sequence of “high quantiles” am → ∞ as m → ∞ such that the probability that an

observation exceeds am is of order 1/m: P (|X0| > am) ∼ m−1. Davis and Mikosch [36] define the

(right tail) extremogram (ρ+(k), k ≥ 1) of X as, in the case P (X0 > am) > 0, as

ρ+(k) = lim
m→∞

P (Xk > am|X0 > am) = lim
m→∞

P (X0 > am,Xk > am)

P (X0 > am)

ρ+(k) ∈ [0, 1] behaves intuitively as a “tail autocorrelation” function: a large positive value of ρ+(k)

indicates serial dependence in the large values X. Similarly, the left tail extremogram (ρ−(k), k ≥ 1)

is defined as

ρ−(k) = lim
m→∞

P (Xk < −am|X0 < −am) = lim
m→∞

P (X0 < −am,Xk < −am)

P (X0 < −am)
.
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These extremograms may be estimated by their empirical counterparts:

ρ̂+(h) =

∑n−h
t=1 1Xt>am,Xt+h>am∑n

t=1 1Xt>am

, ρ̂−(h) =

∑n−h
t=1 1Xt<−am,Xt+h<−am∑n

t=1 1Xt<−am

, (4.1)

where n is the number of samples, and (am) is chosen such that P (|X0| > am) ∼ m−1, m → ∞

and m/n = o(1). (4.1) are called the empirical extremograms.

We choose the threshold am to be the 95% (resp. 5%) quantile for the right (resp. left) tail

extremograms. We construct the confidence bound in the empirical extremogram via a bootstrap

method: we randomly permute the time series and compute an empirical extremogram for each

shuffled sample. At each lag, we use the 95% percentile across the simulated empirical extremogram

values to be the 95% confidence bound. We refer readers to [37] for details on computing the

confidence bound by using bootstrap method.

Figure 4.12 shows the empirical extremograms (4.1) for the daily spread return of Eastman

Chemical. The empirical extremogram appears to be significantly larger than the 95% confidence

bounds for 1 day. As shown by Davis and Mikosch [36], this may come from the autocorrelation

and conditional heteroscedasticity, which we have observed in section 4.2.2 and section 4.2.4.

Davis and Mikosch [36] also show that, under certain conditions, the empirical extremogram

(4.1) follows a multivariate normal distribution asymptotically:

√
n/m

[
ρ̂+(i) − ρ+(i)

]
i=1,...,h

d−→ N(0, FΣF ′),

where F and Σ are matrices which depend on the law of (Xt). We refer readers to [36] for details

of this central limit theorem. Using this asymptotic normality, we construct confidence intervals

for the empirical extremograms. Figure 4.13 shows the number of obligors whose 95% confidence

intervals do not contain zero, i.e. the corresponding empirical extremogram value is significantly

positive. In both periods, more than half of the obligors appear to be serially dependent for large

upward movements at small lags (1 and 2 days). On the other hand, serial dependence of large

downward movements is not as common.
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Figure 4.12: Empirical extremograms for daily spread returns of Eastman Chemical in 2005-07 (top) and
2007-09 (bottom). For the left tail estimates (resp. right tail estimates), threshold am is equal to 5%
(resp. 95%) quantile of the sample. Blue solid line is the 95% confidence bound constructed from randomly
permuted data series. Blue dotted line is equal to 5%, which is the theoretical value for an independent
series.
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Figure 4.13: Number of obligors in which the 95% confidence intervals for the empirical extremograms do
not contain zero. The confidence intervals are computed from asymptotic normality.
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4.2.8 Co-movements in CDS spreads

Study of co-movements in CDS spreads provides strong evidence for dependence across obligors of

CDS spread returns. Small co-movements may be studies using Pearson correlation coefficients,

while large co-movements tend to display different dependence patterns and are better characterized

using tail dependence coefficients[36, 89].

Property 4.8. Cross-obligor correlations of CDS spread returns increase substantially from the

range of 0.0 ∼ 0.2 in 2005-07 to the range of 0.3 ∼ 0.5 in 2007-09. Correlations are similar within

each industrial sector and rating category.

To display patterns observed in the correlation coefficients, we plot all the sample correlation

coefficients in Figure 4.14 for each sample period. The cross-obligor correlations of spread returns

have increased substantially during the subprime crisis. This suggests that after the series of

bankruptcies and economic crisis since 2007, investors expect the shifting in credit quality, which

can be represented by the changes of the CDS spreads to be more correlated across obligors.

If two obligors belong to the same group, e.g. rating category and industrial sector, it is common

to expect that they are subjected to similar risk factors. Therefore, we may expect a higher

correlation in spread returns between two obligors in the same group than two obligors in different

groups. However, we do not observe this in Figure 4.15 and 4.16. This implies that a factor model

for CDS spreads with rating or industry specific factors may not be necessary.
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Figure 4.14: Jitter plot of cross-obligor correlations of daily spread returns.
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Figure 4.15: Jitter plots of cross-obligor correlations coefficients in different rating categories of daily spread
returns.
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Figure 4.16: Jitter plots of cross-obligor correlations in different industrial sectors of daily spread returns. F:
Financial, M: Materials, CS: Consumer Stable, U: Utilities, E: Energy, I: Industrial, CC: Consumer Cyclical,
CT: Communication and Technology.

Property 4.9. CDS spreads appear to have large co-movements. Upward co-movements are com-

mon in both 2005-07 and 2007-09, while downward co-movements are more common in 2007-09

than in 2005-07.

In order to study whether the CDS spreads have large co-movements, we consider the conditional

right tail probability P (rj
t > qj|ri

t > qi) where (ri
t, r

j
t ) are the spread returns for obligor i and j

at time t and (qi, qj) are some large constants. Similarly, we can consider the conditional left tail

probability to study downward common jumps. We say the CDS spreads of obligor i and j are

asymptotically independent if this probability is close to 0.

In Figure 4.17, we compute the natural estimators for the conditional left and right tail proba-
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bilities

p̂− =

∑
t 1

ri
t<hi,rj

t <hj∑
t 1ri

t<hi

, p̂+ =

∑
t 1

ri
t>qi,rj

t >qj∑
t 1ri

t>qi

(4.2)

where hi and qi are chosen to be the 5% and 95% quantile of obligor i’s daily spread returns

respectively. Observe that for many cases, the conditional probabilities are significantly different

from the independence case, especially in 2007-09.

In order to perform a more robust inference on the large co-movements, we follow Coles, Hef-

fernan and Tawn [19] and study the right tail dependence measure

χ = lim
u→∞

2 ln(P (U j > u))

ln(P (U i > u,U j > u))
− 1 (4.3)

where U i is the Fréchet transformation of the spread return for obligor i. Values of χ > 0, χ = 0

and χ < 0 correspond respectively to when the spread returns of the two obligors are positively

associated in extremes, independent and negatively associated respectively. Under a broad set of

conditions [72, 73] the following estimator of χ

χ̂ = 2/α̂ − 1

is consistent, where α̂ is the Hill estimator for the random variable Z = min(U i, U j). A similar

analysis can be performed for the left tail dependence measure (see [62, Ch 7.2.]).

At 95% confidence level, we find that about 73% of the obligor pairs reject the hypothesis that

χ = 0 for large upward co-movements in both 2005-07 and 2007-09. On the other hand, 92% of the

obligor pairs reject that χ = 0 for large downward co-movements in 2007-09 and there is 38% in

2005-07. This shows strong evidence that CDS spreads exhibit large co-movements, especially for

upward jumps. On the other hand, downward co-movements are more common in the subprime

crisis period. Note that the results on testing large co-movements for the conditional spread returns

from ARMA-GARCH models are similar and we will not further discuss in this section.
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Figure 4.17: Estimators, p̂− and p̂+, for the conditional probability of having a large CDS spread move
in an obligor given that there is a large CDS spread move in other obligor. Each point represents the
conditional tail probability for a pair of obligors. Blue dotted lines at 5% level represents the estimator value
for independent series.

4.2.9 Principal component analysis

Principal component analysis (PCA) provides insights into the co-movements of CDS spreads.

Property 4.10.

• The first principal component represents parallel moves in the CDS spreads and accounts for

12% (resp. 40%) of the daily variance of CDS spreads in 2005-07 (resp. 2007-09).

• The main contribution to the variance comes from large idiosyncratic moves (“jumps”).

Table 4.9 shows the CDS spread return variance explained by the principal component factors.

Notice that a relatively large number of factors is needed to explain substantial amount of the vari-

ance. This suggests that the main contribution of the variance comes from idiosyncratic variation,

especially in 2005-07. In fact, these observations also hold for conditional spread returns, which

are shown in Table 4.10.

Since our modeling approach in section 4.4 will involve specification of the condition spread

returns, we will focus on it (instead of the unconditional one) in the remaining of this section.

Nevertheless, we find that the conclusion drawn from the conditional spread return is very similar

to the unconditional one. From Figure 4.18 and 4.19 we observe that the first factor loadings are all
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positive and the magnitudes are similar across the obligors. This shows that the main driver of the

underlying risk is roughly equal to an equally weighted CDS portfolio which can be approximated

by the credit indices such as CDX. Figure 4.18 shows some obvious spikes in the factor time series

especially in 2005-07. While the spikes are mostly from the second and higher order factors, it

suggests that some extreme moves are due to idiosyncratic risk.

Period No. of Principal Components
1 2 3 4 5 25 80 90

2005-07 % Explained 12.1% 5.3% 4.3% 3.8% 3.0% 1.1% 0.3% 0.2%
% Cumulative 12.1% 17.4% 21.7% 25.5% 28.5% 61.3% 93.8% 96.3%

2007-09 % Explained 40.1% 3.6% 2.7% 2.3% 2.0% 0.7% 0.2% 0.2%
% Cumulative 40.1% 43.7% 46.5% 48.8% 50.7% 71.1% 93.7% 95.8%

Table 4.9: Percentage of variance that can be explained by the principal components. 112 obligors in 2005-07
period and 123 obligors in 2007-09 period. Data series: unconditional CDS spread daily returns.

Period Principal Component
1 2 3 4 5 25 80 90

2005-07 % Explained 12.1% 3.2% 2.9% 2.6% 2.1% 1.1% 0.4% 0.3%
% Cumulative 12.1% 15.2% 18.2% 20.7% 22.8% 52.4% 90.9% 94.5%

2007-09 % Explained 37.3% 2.6% 1.8% 1.7% 1.6% 0.8% 0.3% 0.2%
% Cumulative 37.3% 39.9% 41.8% 43.4% 45.0% 65.3% 92.0% 94.6%

Table 4.10: Percentage of variance that can be explained by the principal components. 112 obligors in
2005-07 period and 123 obligors in 2007-09 period. Data series: conditional spread daily returns from
ARMA-GARCH models.

Property 4.11 (PC factor distribution). PC factors appear to have heavy tails with tail indices

are in the range of 2 ∼ 5 for the first few factors and increase to the range of 4 ∼ 10 for the

last few factors. The distribution of the first four PC factors are well represented by a Student-t

distribution.

Figure 4.20 shows the tail indices for the PC factors. In both periods, we observe that the

95% confidence intervals of all tail index estimators contain values equal to or larger than 2, which

implies that the PC factors have finite variances.

According to the Bayesian information criteria (BIC) shown in Table 4.11, Student t distri-

bution appears to be the best fit for the first few factors in both periods. On the other hand,
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Figure 4.18: The first four principal component factors.
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Figure 4.19: Loadings of the first three principal component factors.

normal distribution provides the worst fit while the first few factors appear to have heavy-tailed

distributions.

Property 4.12 (Large moves in the first principal component). Jumps in the first principal com-

ponent are not only related to credit events, but also related to other market information such as

changes in interest rates and economic outlook.

We investigate the causes of jumps in the first PC factor, which sequentially cause large co-

movements in the CDS spreads. In particular, we look at the financial market on the day when the

first PC factor exhibits large moves. Table 4.12 and 4.13 show the headlines of New York Times

when the first PC factor has its largest and smallest moves. From the descriptions of the market
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Figure 4.20: Hill estimators for the tail indices of the PC factors. The number observations for estimation
is equal to 2.5% of the sample size.

PC factor Normal Student t Double Exp NIG Stable

2005-07
1 1498 1359* 1369 1359* 1372
2 2225 1390 1499 1431 1388*
3 1839 1350* 1418 1374 1356
4 1740 1300* 1338 1316 1311
5 1559 1370* 1399 1381 1379

2007-09
1 1523 1495* 1512 1501 1506
2 1497 1449* 1453 1452 1466
3 1501 1461* 1477 1465 1476
4 1518 1417* 1430 1425 1425
5 1463 1366* 1370 1370 1380

Table 4.11: BIC of the PC factors fitted to (1) normal, (2) Student t, (3) double exponential, (4) normal
inverse Gaussian and (5) stable distribution. Lowest BIC among the distributions is indicated by *.

conditions, we observe that the large moves are related to, not only credit events, such as Lehman

bankruptcy on 15 September 2008 and the collapse of two Bear Stearns hedge funds on 20 June

2007, but also other market information, such as changes in interest rates on 18 March 2008 and

economic outlook on 15 April 2005 and 15 October 2008.

While some of the previous works have focused on jumps in the CDS spreads when credit events

occur [48], our results show that it is not sufficient to explain the common jumps in the CDS

spreads. Moreover, as we will show in section 4.2.10, the first PC factor does not exhibit large

movements during some of the important credit events such as Federal bailout of Fannie Mae and

Freddie Mac and bankruptcy of General Motors. This leads to the question whether CDS spreads

will in fact have significant movements during credit events, which will be further explored in the
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next section.

Period PC factor 1 Date New York Times headlines

2005-07 5.96 15-Apr-05 “Stocks plunge to lowest point since election. I.B.M. earning a
factor. Market slump continues amid uncertainty over economy’s
growth.”

5.09 20-Jun-07 “Bear Stearns staves off collapse of two hedge funds. Several
lenders pull back from a larger liquidation, for now.”

4.36 20-Jun-06 “Timber becomes tool in effort to cut estate tax.”
2007-09 4.45 15-Sep-08 “Bids to halt financial crisis reshape landscape of Wall Street:

Merrill is sold; Failing to find buyer, Lehman set to file for
bankruptcy.”

3.62 26-Jul-07 “Global stock markets tumble amid deepening credit fears.”
3.52 15-Oct-08 “After big rally, grim outlook still looms on profits and jobs.”

Table 4.12: The three largest values of the first principal component factor (common factor) in 2005-07 and
2007-09.

Period PC factor 1 Date New York Times headlines

2005-07 -2.49 21-Mar-07 “Fed weighs words about its next move. (The central bank left the
overnight Federal funds rate at 5.25 percent, a level unchanged
since last June.)”

-2.30 26-Apr-06 “Second thoughts in Congress on oil tax breaks. New political
pressure over record profits as gas prices soar.”

-2.27 28-Nov-05 “U.S. Declines a chance to criticize Yuan policy.”
2007-09 -4.53 18-Mar-08 “Fed trims rates sharply, sending the markets up. Cut 3/4 of a

point is less than expected signs of split on policy at Central
Bank.”

-3.33 24-Mar-08 “JP Morgan in negotiations to raise Bear Stearns bid. Price per
share would quintuple to $10 to appease firm’s shareholders.”

-3.24 6-Jan-09 “Automakers fear a new normal of low sales. As prices rise, some
see $2 gas.”

Table 4.13: The three smallest values of the first principal component factor (common factor) in 2005-07
and 2007-09.

4.2.10 Spread movements during credit events

Property 4.13. CDS spreads do not necessarily experience upward jumps during credit events.

We study the spread returns during the credit events in 2008-09 shown in Table 4.14. On each

event dates, we study two versions of “normalized” spread returns in Figure 4.21:
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• Unconditional normalization: Daily spread returns normalized by the sample standard devi-

ation computed from the data in 2007-09.

• Conditional normalization: Conditional spread returns from ARMA-GARCH fitted to the

daily spread returns in 2007-09.

Notice that the patterns between the unconditional normalized spread returns and the conditional

spread returns are similar during all credit events. On 15 September 2008 (Lehman bankruptcy) and

29 September 2008 (sale of Wachovia banking operations to Citigroup), most CDS spreads increase

substantially. On the other hand, on 8 September 2008 (Federal bailout of Fannie Mae and Freddie

Mac) and 1 July 2009 (General motors bankruptcy), most CDS spreads decrease substantially. In

general, we have no evidence that the CDS spreads will move in a particular direction during the

credit events. Our observations are consistent with Cont and Kan [26] who study index tranche

spreads on credit event dates and find no strong evidence that the index tranche spreads must have

upward jumps during credit events.

One explanation of the absence of large changes in the CDS spreads during credit events is that

the market has already anticipated the events which no longer appear as “shocks” to the investors.

Indeed, Guo, Jarrow and Lin [58] distinguish the recorded default date which is defined as the

actual announcement date of default, from the economic default date which is defined as the first

date when the market prices the firms debt as if it has defaulted. An interesting topic will be on

examining the changes of CDS spreads during the economic default dates vs the recorded default

dates and we will leave it for future research.
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Date Event CDX.NA.IG PC factor 1

14-Jan-08 BoA agreed to purchase Countrywide Financial - 0.15
17-Mar-08 JPMorgan agreed to purchase Bear Stearns - 0.39
1-Jul-08 BoA acquired Countrywide Financial - 0.80
8-Sep-08 Federal takeover of Fannie Mae and Freddie Mac S1-10 -2.15
15-Sep-08 Lehman Brothers filed for bankruptcy - 4.45
17-Sep-08 Federal bailout of AIG - -0.69
26-Sep-08 Washington Mutual filed for bankruptcy S1-10 0.26
29-Sep-08 Wachovia sold banking operations to Citigroup - 0.86
3-Oct-08 Wells Fargo agreed to purchase Wachovia - -0.98
8-Dec-08 Tribune Company filed for bankruptcy S6 -1.59
31-Mar-09 Idearc Inc filed for bankrupcty S1-7 -0.35
29-May-09 Visteon Corporation filed for bankruptcy S1 -1.14
1-Jun-09 General Motors filed for bankruptcy - -2.21
7-Jul-09 LEAR Corporation filed for bankruptcy S4 0.19

Table 4.14: Highlights of credit events in 2008-09. From left to right: the event date or the next business day
after the event; description of the events; the CDX.NA.IG series that the obligors belong to; first principal
component factor values.
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Figure 4.21: Jitter plots of daily spread returns normalized by the unconditional sample standard deviations
(top) and the conditional daily spread returns from ARMA-GARCH models (bottom) during the credit
events in Table 4.14. Each point represents the spread return/conditional spread return of an obligor on the
corresponding event date.
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4.3 Comparison with affine jump-diffusion models

Affine jump-diffusion models [41, 83] are reduced-form models for default risk in which the default

time of an obligor i is modeled as a random time with intensity

λi
t = Xi

t + aiX0
t (4.4)

where (Xk
t ), k = 0, i are independent affine jump-diffusion processes whose dynamics under a pricing

measure Q is given by

dXk
t = (κk

0 + κk,Q
1 Xk

t )dt + σk
√
Xk

t dW
k,Q
t + dJk

t (4.5)

where (W k,Q
t ) is a standard Brownian motion and (Jk

t ) is a compound poisson process with jump

intensity ℓk,Q and jump sizes are exponentially distributed with mean µk,Q under a risk-neutral

pricing measure Q. Choosing an affine risk premium as in [49], the risk-neutral intensity under the

real-world statistical measure P is given by

Under P : dXk
t = (κk

0 + κk,P
1 Xk

t )dt + σk
√
Xk

t dW
k,P
t + dJk

t . (4.6)

where (W k,P
t ) is a standard Brownian motion under P and (Jk

t ) is now a compound Poisson process

with jump intensity ℓk,P and jump sizes are exponentially distributed with mean µk,P under P.

This model has been widely used in the literature such as pricing and hedging credit derivatives

[41, 83, 45, 49, 17, 10], modeling default correlations [41, 83], portfolio selection [55] and counter-

party risk modeling [34]. The main advantage of this model is having a closed-form expression for

the default probability (see Appendix 4.6 and [68]). However, no work has been done to justify the

use of affine jump-diffusion model in terms of the empirical properties of CDS spreads.

4.3.1 A simulation study

We simulate time series of 5-year CDS spreads under the affine jump-diffusion model and study

their statistical properties. We use parameters estimated by Feldhütter [49] for CDX.NA.IG.6 CDS
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and CDO tranche spreads from 30 March 2006 to 30 September 2006 using a Markov Chain Monte

Carlo method (MCMC). Parameters for (X0
t ) are equal to

(κ0
0, κ

0,Q
1 , σ0, ℓ0,Q, µ0,Q, κ0,P

1 , ℓ0,P, µ0,P)

= (1.59 × 10−5, 0.46, 3.66 × 10−2, 3.18 × 10−3, 1.23, 0.44, 3.37 × 10−3, 0.0023)

and parameters for (Xi
t) are equal to

κi,Q
1 = κ0,Q

1 , κi,P
1 = κ0,P

1 , σi =
√
aiσ0, µi,Q = µ0,Q, µi,P = µ0,P,

w =
aiκ0

0

aiκ0
0 + κi

0

=
ℓ0,Q

ℓ0,Q + ℓi,Q
=

ℓ0,P

ℓ0,P + ℓi,P
= 0.9742,

and ai is equal to the CDS spread of obligor i on 30 March 2006 divided by the average CDS

spreads among all obligors on the same day2. For each CDX.NA.IG.6 obligor, we simulate 1000

daily observations of 5-year CDS spreads. Appendix 4.7 describes our simulation method based on

Euler scheme.

Figure 4.22 shows a simulated time series of 5-year CDS spread and the corresponding daily

spread returns. As we can see, there is an upward jump in the spread return on about day 610

which is contributed by the Poisson jump component in the default intensity (4.4).
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Figure 4.22: Simulated time series of CDS spreads and daily spread returns from the affine jump-diffusion
model.

2Each parameter is set to be the median of the estimated distribution by MCMC in [49].
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4.3.2 Absence of serial dependence

Figure 4.23 and 4.24 show no significant serial correlations in the simulated spread returns. This

illustrates that the simple “volatility term”, σ
√
Xi

t , in the affine jump-diffusion process (4.6) is

insufficient to produce the volatility clustering feature observed in the empirical data. For extreme

values, the affine jump-diffusion model also underestimates the dependence where the extremograms

are less than 0.1 at all lags comparing to the empirical values of 0.1 ∼ 0.3 in Figure 4.12.
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Figure 4.23: Sample autocorrelation function for simulated daily spread returns and absolute spread returns
from the affine jump-diffusion model.
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Figure 4.24: Empirical extremograms for simulated daily spread returns from the affine jump-diffusion
model. For the left tail estimates (resp. right tail estimates), threshold am is equal to 5% (resp. 95%)
quantile of the sample. Blue line is the 95% confidence bound constructed from randomly permuted data
series. Blue dotted line is equal to 5%, which is the theoretical value for an independent series.

4.3.3 Distributional properties of CDS spread returns

Quantile plots in Figure 4.25 show that distribution of the simulated spread returns appear to

be very close to the normal distribution except for occasional outliers in the right tail, resulting
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from upward jumps, as observed in Figure 4.22. More generally, we observe that the right tail

indices are similar to the empirical observations which are in the range of 3 ∼ 5. However, the

model substantially underestimates the left tail: left tail indices appear to be in the range of 5 ∼ 7.

This shows that the AJD model does not produce the type of two-sided heavy-tailed distributions

observed for spread returns, and underestimates the left tails of these returns.
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Figure 4.25: Quantile plots (left) and Hill estimators for the tail indices (right) of simulated CDS spread
return from the affine jump-diffusion model.

4.3.4 Co-movements in CDS spread returns

Figure 4.26 shows that the affine jump-diffusion model, which is estimated by a MCMC method [49],

significantly overestimates the probability of having co-movements in the CDS spreads. Comparing

to the empirical observations in Figure 4.14 and Figure 4.17, the cross-obligor correlations and the

probabilities of large co-movements are substantially higher than those from the historical data.

4.3.5 Principal components of CDS spread moves

Table 4.15 shows that the first PC factor of the simulated spread returns explains more than 93%

of the variance, which is significantly larger than the empirical case.
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Figure 4.26: Left: Jitter plot of cross-obligor correlations. Right: Estimators, p̂− and p̂+, for the conditional
probability of having a large CDS spread move in an obligor given that there is a large CDS spread moves
in other obligor. Each point represents the conditional tail probability between two obligors. Blue dotted
lines at 5% level represents the estimator value for independent series. Data: Simulated spread returns from
the affine jump-diffusion model.

No. of Principal Components
1 2 3 4 5

% Explained 93.0% 7.0% 0.0% 0.0% 0.0%
% Cumulative 93.0% 100.0% 100.0% 100.0% 100.0%

Table 4.15: Percentage of variance that can be explained by the principal components. Data: simulated
CDS speards based on affine jump-diffusion model.

4.3.6 Goodness-of-fit vs statistical properties

In the previous studies of the affine models, Feldhütter [49], Azizpour, Giesecke and Kim [6] conclude

that the models fit well to the CDS and CDO tranche spread time series in which the errors between

model and market spreads are sufficiently small. However, our simulations, using parameters

estimated by Feldhütter [49], show that the goodness-of-fit does not necessarily imply the ability

to reproduce the stylized properties.

Indeed, our results show that models can pass goodness-of-fit tests while having statistical

properties which are qualitatively different from the data. In section 4.5, we will show that models

which cannot capture the important stylized properties can lead to worse performance than other

realistic models when they are applied to the risk management of CDS portfolios.
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4.4 A heavy-tailed multivariate time series model for CDS spreads

When computing Value-at-Risk (VaR) for credit portfolios and initial margin for trading accounts,

one needs a model for the loss distribution of credit derivatives. Based on the empirical properties

observed in section 4.2, we propose a statistical model for CDS spreads.

4.4.1 A heavy-tailed multivariate AR-GARCH model

Our objective is to build a multivariate time series model for CDS spread returns, which satisfies

the following properties, observed in section 4.2:

• Positive autocorrelations at small lags

• Volatility clustering and conditional heteroscedasticity

• Two-sided heavy-tailed distributions for both unconditional and conditional spread returns

• Heterogeneity of the tail indices for spread returns

• Large co-movements

• A heavy-tailed common factor that drives the parallel shift of CDS spreads

In order to capture positive autocorrelations and conditional heteroscedasticity, we model CDS

spread returns as AR(1)-GARCH(1,1) processes where the spread return of, say obligor i, follows

ri
t = Ci + φiri

t−1 + ǫit, (4.7)

ǫit = σi
tZ

i
t (4.8)

for t = 0,∆t, 2∆t, ... where (Zi
t) is an i.i.d. sequence and σi

t is the conditional volatility which

follows

(σi
t)

2 = Ki +Gi(σi
t−1)

2 +Ai(ǫit−1)
2 (4.9)
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where Ki > 0, Gi ≥ 0, Ai ≥ 0, Gi + Ai < 1. We then assume the heavy-tailed conditional spread

returns follow

Zi
t = aiV 0

t + biV i
t (4.10)

where (V 0
t ) and (V 1

t , ..., V
n
t ) are i.i.d. sequences which follow a Student tν0 distribution and a

multivariate Student t distribution with degree of freedom ν1 = νi for all i respectively. In this

case, Zi
t , i = 1, ..., n, share the same degree of freedom equal to min(ν0, ν1). Although this model

restricts to the case of homogeneous tail index for conditional spread returns, the simple correlation

structure allows efficient simulation to estimate the CDS portfolio loss distribution.

In the rest of this chapter, we call this model the MAG (Multivariate AR-GARCH) model.

4.4.2 Parameter estimation

The MAG model can be estimated by maximum likelihood, but this approach has two main prob-

lems. First, if we maximize the joint likelihood function by considering all CDS time series si-

multaneously, we need to solve a high dimensional optimization problem which is not necessarily

well-posed. Second, if an additional CDS time series is added to the data set, we need to repeat

the maximum likelihood estimation again.

In order to overcome these problems, we consider a quasi maximum likelihood estimation which

allows to break down the estimation into smaller optimization problems for each univariate se-

ries. Furthermore, we use CDX.NA.IG on-the-run index as our common risk factor (V 0
t ). This

is consistent with our earlier analysis in section 4.2.9 that the first principal component factor is

approximately an equally weighted CDS portfolio. The full estimation procedure is as follows:

1. For each obligor i, Zi
t is assumed to have a Student t distribution. For each CDS spread

series, we estimate the AR(1)-GARCH(1,1) coefficients in (4.7)-(4.9) together with the degree

of freedom by maximizing the likelihood function. Let (Ẑi
t) be the standardized residuals for

obligor i.
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2. An AR(1)-GARCH(1,1) model with Student t distributed noise is fitted to the CDX.NA.IG

index returns by maximum likelihood. The degree of freedom, ν0, of the noise is estimated

together with the AR-GARCH coefficients. Let (V̂ 0
t ) be the standardized residuals for the

CDX.NA.IG index.

3. For each obligor i, (Ẑi
t) is regressed against (V̂ 0

t ) by ordinary least squares (OLS) method

with zero intercept coefficient. The estimator for ai is set to be the slope coefficient of the

regression. Let (Ŷ i
t ) be the residuals from the OLS regression.

4. Assume that (Ŷ i
t ) are i.i.d. samples of a scaled Student t distribution with degree of freedom

ν̃i. ν̃i is estimated by maximum likelihood.

5. Degree of freedom for the idiosyncratic risk factor V i
t is set to be νi = 1

n

∑n
j=1 ν̃

j for all

i. Estimator for bi is set to be b̂i =

√
var(Ŷ i)(νi − 2)/νi and estimator for V i

t is equal to

V̂ i
t = Ŷ i

t /b̂
i.

6. The correlation parameters for the multivariate t distribution of (V 1
t , ..., V

n
t ) is estimated by

ρ̂i,j = sin
(π

2
τ̂i,j

)
, (4.11)

where τ̂i,j, i, j = 1, ..., n are the Kendall tau correlation coefficients of (V̂ i
t , V̂

j
t ).

In step 1, we assume that Zi
t is a Student t variable instead of a weighted sum of two Student

t variables. This allows us to consider each time series separately and reduce the high dimensional

problem into several one dimensional problems. This approach leads to a quasi maximum likeli-

hood estimation for the AR-GARCH coefficients but not an exact maximum likelihood estimation.

Indeed, Newey and Steigerwald [86] show that estimators from quasi maximum likelihood estima-

tion are consistent if either the conditional mean is identically zero, or the assumed and true error

PDFs are symmetric about zero. Mathematical verification of consistency is beyond the scope of

this chapter. Instead, we will backtest our model in section 4.5. We refer readers to chapter 5 of

[62] for more details on quasi maximum likelihood.
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In step 2, we consider the standardized residuals of the credit index returns from a AR(1)-

GARCH(1,1) model as the common risk factor observations (V̂ 0
t ). The reason is that we want to

filter the positive autocorrelations and conditional heteroscedasticity in the index returns. It is not

surprising that the credit index, which is an equally weighted portfolio of CDS, also exhibits similar

stylized properties as in the constituent CDS series. Nevertheless, we will not further illustrate the

stylized properties of the credit index.

Klüppelberg and Kuhn [64] show that the correlation estimator (4.11) is consistent and asymp-

totically normal. However, it does not guarantee that the resulting correlation matrix is positive

definite. In those cases, we adjust the correlation matrix by using the eigenvalue shifting method

proposed by Rousseeuw and Molenberghs [90]. In particular, we replace the negative eigenvalues

of the correlation matrix by a small positive constant. Then, we scale the new matrix so that the

diagonal values are equal to 1. We refer readers to [90] for details of this algorithm.

Figure 4.27 shows the confidence intervals for the degree of freedom of each OLS residual series

(Ŷ i
t ), and the estimator for ν1, which is the average degree of freedom. Estimator for ν1 appears

to be roughly equal to the intersection of the confidence intervals.

Table 4.16 shows the estimated model parameters for three selected obligors. We observe that

the degree of freedom for the common factor (index) is larger than the one for the idiosyncratic

factors in both sample periods.
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Figure 4.27: Upper and lower bounds of the 95% confidence intervals for the degree of freedom estimators
of V i

t . Black dotted line represents the average of the degree of freedom estimators across obligors.
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C φ K G A a b ν0 νi

2005-07

Conoco Philips 0.00 -0.02 0.00 0.73 0.23 0.08 0.44 3.39 2.68
(0.00) (0.04) (0.00) (0.08) (0.11) (0.02) - (0.51) -

Eastman Chemical 0.00 0.14 0.00 0.67 0.29 0.13 0.43 3.39 2.68
(0.00) (0.04) (0.00) (0.08) (0.14) (0.02) - (0.51) -

First Energy 0.00 0.04 0.00 0.86 0.14 0.07 0.49 3.39 2.68
(0.00) (0.04) (0.00) (0.03) (0.04) (0.03) - (0.51) -

2007-09

Conoco Philips 0.00 0.16 0.00 0.89 0.11 0.21 0.47 5.74 3.22
(0.00) (0.04) (0.00) (0.05) (0.07) (0.03) - (1.11) -

Eastman Chemical 0.00 0.19 0.00 0.81 0.15 0.38 0.49 5.74 3.22
(0.00) (0.04) (0.00) (0.06) (0.06) (0.03) - (1.11) -

First Energy 0.00 0.21 0.00 0.64 0.36 0.30 0.53 5.74 3.22
(0.00) (0.04) (0.00) (0.08) (0.14) (0.03) - (1.11) -

Table 4.16: Estimated parameters for the MAG model. Values in brackets are standard errors of the
estimators.

4.4.3 Reproducing stylized properties of CDS spreads

The model estimated as above is observed to have the right qualitative properties in the sense that

it matches well the stylized properties of CDS spreads listed in section 4.2.

We consider model parameters estimated from the 2007-09 sample and simulate CDS time series

by using the MAG model. We illustrate univariate properties by using parameters of Eastman

Chemical that are shown in Table 4.16. Figure 4.28, 4.29 and 4.30 show the autocorrelation

functions, empirical extremograms, quantile plots and the tail indices3 of the CDS spread returns

simulated from the MAG model.

Unlikely the affine jump-diffusion model, the MAG model is able to reproduce the observed

stylized properties: the simulated CDS spread returns exhibit positive serial dependence in spread

returns, absolute spread returns and extreme spread returns, and they appear to have two-sided

heavy-tailed distributions with tail indices in the range of 2 ∼ 6. Moreover, Figure 4.31 shows that

the MAG model also reproduces realistic empirical probability of having co-movements in the CDS

spreads.

3We also compute tail indices numerically by solving an integral equation for GARCH(1,1) model (see [38, 81]).
The results are similar to the simulation study and they will not be shown in this chapter.
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Figure 4.28: Sample autocorrelation function for simulated daily spread returns and absolute spread returns
from the heavy-tailed multivariate AR-GARCH model (MAG).
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Figure 4.29: Empirical extremograms for simulated daily spread returns from the heavy-tailed multivariate
AR-GARCH model (MAG). For the left tail estimates (resp. right tail estimates), threshold am is equal to
5% (resp. 95%) quantile of the sample. Blue line is the 95% confidence bound constructed from randomly
permuted data series. Blue dotted line is equal to 5%, which is the theoretical value for an independent
series.

4.5 Application: estimating loss distributions for CDS portfolios

Computation of the loss distributions, especially loss quantiles, for CDS portfolios is important in

practice since it underlies risk measurement and the determination of margin requirements for the

clearing of CDS contracts by central counterparties [24]. In this section, we use our heavy-tailed

multivariate AR-GARCH model (MAG model) to estimate the loss quantiles for CDS portfolios,

and compare its empirical performance with two other models.

We consider various examples of CDS portfolios with different long/short positions of various

sizes. On each trading day, we estimate the 1% quantile for the daily loss, which corresponds the

99% 1-day Value-at-Risk (VaR), and compare these quantile levels to the realized daily loss across

the sample. These VaR levels are not computed using a Gaussian model, which, as noted above,
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Figure 4.30: Quantile plots (left) and Hill estimators for the tail indices (right) of simulated CDS spread
return from the heavy-tailed multivariate AR-GARCH model (MAG).
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Figure 4.31: Left: Jitter plot of cross-obligor correlations. Right: Estimators, p̂− and p̂+, for the conditional
probability of having a large CDS spread move in an obligor given that there is a large move in the CDS
spread of another obligor. Each point represents the conditional tail probability for a pair of obligors. Blue
dotted lines at 5% level represents the estimator value for independent series. Data: Simulated spread
returns from the heavy-tailed multivariate AR-GARCH model.

is not appropriate for modeling variations in CDS spreads, but using the heavy-tailed multifactor

model described in section 4.4. If the model provides a good forecast of the quantiles of the loss

distribution, then the realized loss will exceed the 99% VaR approximately 1% of the time. The

proportion and timing of these exceedances allow to formally measure the accuracy of the model

in predicting the tails of the portfolio loss distribution and to compare with other models.

4.5.1 Models for CDS portfolios

We compare three models in our empirical study: the affine jump-diffusion model [41], a random

walk model proposed by Saita [91] and the MAG model that we proposed in section 4.4.
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4.5.1.1 Affine jump-diffusion model

In section 4.3, we have shown that the affine jump-diffusion model is not able to reproduce the

desired stylized properties, even though Feldhütter [49] and Azizpour et al [6] show that this model

provides a good fit to the CDS and CDO data. We further examine this model by backtesting its

performance on estimating the loss distributions for different CDS portfolios.

We estimate the model parameters by using a maximum likelihood method and principal com-

ponent decomposition on the CDS spreads as follows:

1. We project daily changes of CDS spreads onto principal component factors.

2. We set the common risk factor values of the model equal to the first principal component

factor values, and estimate the parameters describing the common risk factor by maximum

likelihood method.

3. For each obligor, we estimate both statistical and risk-neutral parameters of the idiosyncratic

risk factors from CDS spreads by maximum likelihood method.

4. We estimate risk-neutral parameters of the common risk factor by maximum likelihood

method.

Details of the above procedure are given in Appendix 4.8. Using these model parameters, we

estimate VaR by Monte Carlo simulation (see Appendix 4.7).

4.5.1.2 Random walk model

Saita [91] suggests that simple CDS spread returns follows a random walk

si
t+∆t − si

t

si
t

= σZ(i)

√
∆t
(
αM

Z(i)N
M
t + αZ

Z(i)N
Z(i)
t +

√
1 − (αZ

Z(i))
2 + (αM

Z(i))
2N i

t

)

for t = 0,∆t, 2∆t, ... where Z(i) is obligor i’s sector, (NM
t , N

Z(i)
t , N i

t ) are the market, sector and

idiosyncratic factors which are independent among themselves as well as serially independent,
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(αM
Z(i), α

Z
Z(i)) are the factor loadings. For each time t, the factors are assumed to have zero means

and unit variances. Obligors in the same sector are assumed to share the same spread volatility

and factor loadings.

The spread return volatilities are estimated by

σ̂Z(i) =

√√√√ 1

nZ

∑

t,i

(
∆si

t

si
t

√
∆t

)2

where nZ is the number of terms in the summation which is over all data points in time and for all

issuers that belong to sector Z. We estimate the loadings (αM
Z(i), α

Z
Z(i)) by OLS regression across

all obligors.

In this model, the distribution of spread returns is not directly specified. Instead, Saita [91]

computes VaR as follows. Consider a CDS portfolio with notional values w = (w1, ..., wn). Let

Spread01i
t be the sensitivity of CDS i value with respect to 1 bp change in Si

t, Ω be the estimated

correlation matrix of the simple spread returns, and Σ be the diagonal matrix with diagonal element

Σi,i equal to the estimated volatility of the simple spread returns for obligor i. We define R01i
t =

wi S
i
t Spread01

i
t with R01t = (R011

t , ..., R01n
t ). Then, the portfolio volatility (standard deviation

of daily portfolio P&L) is equal to

σw =

√
∆t R01t Σ Ω Σ R01T

t .

Then 99% VaR for portfolio w is set to

V aR = β σw,

where β is a scaling parameter. We estimate β as in [91]:

1. Select a type of CDS portfolio, e.g. equally weighted with n CDS in protection seller’s

positions.

2. Randomly create 100 portfolios of the selected type.
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3. Compute the historical P&L and model-implied volatility for each portfolios.

4. For a given β, compute the historical exceedance ratio for this portfolio type:

1

100

100∑

k=1

Number of days where loss of portfolio k is larger than βσwk

Total number of days
, (4.12)

where σwk
is the model-implied volatility of portfolio k.

5. If the historical exceedance ratio (4.12) is larger than 1%, we increase β. Similarly, if (4.12)

is smaller than 1%, we decrease β.

6. Repeat step 4 – 5 until (4.12) is equal to 1%.

We repeat the estimation procedure of the scaling parameter β for each portfolio type.

4.5.1.3 Heavy-tailed multivariate AR-GARCH model

In section 4.4, we propose a heavy-tailed multivariate AR-GARCH model for the CDS spread

returns. Since this model is built upon the observed stylized properties, it will be interesting to see

whether it can also provide a good estimation for CDS portfolio loss distribution.

4.5.2 Backtesting

We evaluate the performance of the models in predicting loss quantiles for 9 types of CDS portfolios:

• Short-only: selling protection on 100, 40 or 10 obligors

• Long-only: buying protection on 100, 40 or 10 obligors

• Long-short: buying protection on 50, 20 or 5 obligors and selling protection on 50, 20 or 5

obligors

For each portfolio type, we consider 100 randomly chosen combinations of obligors and each position

has the same notional value. Thus, we evaluate 900 CDS portfolios in total. In each sample period,
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we start our evaluation on the 250th trading day so that we have sufficient amount of data for

model calibration. This gives 324 and 285 evaluation days in 2005-07 and 2007-09 respectively.

4.5.2.1 Exceedance probabilities

Table 4.17 shows the percentage of days on which the portfolio loss exceeds the VaR estimates. In

both 2005-07 and 2007-09, the affine jump diffusion model estimated using MCMC significantly

overestimates the downside risk for short-only and long-short portfolios: there are no trading days

that have losses exceed the VaR estimates for all short-only portfolios in 2005-07 and for almost

all long-short portfolios in both periods. Moreover, the affine jump-diffusion model significantly

underestimates the downside risk for the long-only portfolios. These observations are the results

of upward jumps in the default intensity (4.6) in which the estimated jump sizes and frequencies

appear to overestimate the potential losses for the short-only and long-short portfolios.

In 2005-07, the MAG model provide the best loss quantile prediction with exceedance probabil-

ities almost equal to 1%, but the random walk model appears to overestimate the downside risk for

all portfolio types. On average, the random walk model gives only 0.4% of the trading days that

have losses exceed the VaR estimates, comparing to 1.0% given by the MAG model. In 2007-09,

the MAG model still provides a good prediction of loss quantiles, especially for the long-short port-

folios. However, the random walk model underestimates the downside risk of all portfolio types

and gives, 2.6% of exceedances, compared to 1.0% for the MAG model.

In the Kupiec test [65], the exceedance probability for a portfolio is significantly different from

1% at 95% level if the number of exceedances is smaller than 1 or larger than 7 for the 2005-07

period which has 324 evaluation days, and small than 1 or larger than 6 for the 2007-09 period

which has 285 evaluation days. Thus, the confidence interval for the number of exceedances are

[1, 7] and [1, 6] respectively for 2005-07 and 2007-09.

Table 4.18 shows that the MAG model gives the fewest number of portfolios (11.3% and 2.4% in

2005-07 and 2007-09 respectively) whose number of exceedances is outside the Kupiec confidence
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interval. The random walk model performs better than the the affine jump diffusion model in

2005-07, but the two models are comparable in 2007-09. Overall, we observe that the MAG model

provides better loss quantile prediction than the two other models.

2005-07 2007-09
AJD RW MAG AJD RW MAG

Short 100 0.0% 0.0% 1.3% 1.2% 3.2% 0.6%
Short 40 0.0% 0.2% 1.7% 0.3% 3.2% 0.7%
Short 10 0.0% 0.5% 1.8% 0.1% 3.1% 1.0%
Long 100 15.5% 0.2% 0.2% 3.1% 1.7% 1.3%
Long 40 2.2% 0.3% 0.4% 1.3% 2.0% 1.2%
Long 10 1.7% 0.3% 0.6% 0.4% 2.0% 1.1%

Long 50 Short 50 0.0% 0.8% 0.9% 0.0% 3.1% 1.1%
Long 20 Short 20 0.0% 0.7% 1.0% 0.0% 2.8% 1.0%
Long 5 Short 5 0.1% 0.7% 1.2% 0.1% 2.6% 1.0%

Average 2.2% 0.4% 1.0% 0.7% 2.6% 1.0%

Table 4.17: Empirical exceedance probabilities: percentage of trading days which have losses larger than the
99% VaR. Portfolio type: protection sellers (short), protection buyers (long). Models: affine jump-diffusion
model (AJD), random walk model (RW), heavy-tailed multivariate AR-GARCH model (MAG).

2005-07 2007-09
AJD RW MAG AJD RW MAG

Short 100 100.0% 100.0% 0.0% 1.0% 100.0% 0.0%
Short 40 100.0% 52.0% 5.0% 46.0% 99.0% 0.0%
Short 10 89.0% 17.0% 22.0% 84.0% 92.0% 1.0%
Long 100 100.0% 22.0% 23.0% 93.0% 2.0% 0.0%
Long 40 40.0% 36.0% 27.0% 11.0% 27.0% 0.0%
Long 10 49.0% 43.0% 13.0% 68.0% 31.0% 4.0%

Long 50 Short 50 100.0% 7.0% 1.0% 100.0% 81.0% 2.0%
Long 20 Short 20 100.0% 14.0% 1.0% 97.0% 70.0% 7.0%
Long 5 Short 5 77.0% 21.0% 10.0% 85.0% 59.0% 8.0%

Average 83.9% 34.7% 11.3% 65.0% 62.3% 2.4%

Table 4.18: Test for accuracy of loss quantile estimation: percentage of portfolios that have less than 1 or
more than 7 (resp. less than 1 or more than 6) exceedances in 2005-07 (resp. 2007-09), i.e. which reject
the null hypothesis that the exceedance probability is equal to 1% under the Kupiec test at 95% confidence
level.

4.5.2.2 Clustering of exceedances

Figure 4.32 and 4.33 show, at each date, the total number of portfolios whose losses exceeded the

VaR estimates. We group the portfolios into three categories: short-only, long-only and long-short.
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Each category contains 300 different portfolios.

In 2005-07, exceedances of all portfolio types appear to be evenly distributed in time under both

the random walk model and the MAG model. On the other hand, exceedances of the long-only

portfolios cluster in the second half of 2007 under the affine jump-diffusion model. This is due to

the fact that the CDS spread return distributions implied by the affine jump-diffusion model skew

significantly to the right because of the upward jump components.

In 2007-09, exceedances of the short-only portfolios cluster in late 2008 under the random walk

model. This period begins with the bankruptcy of Lehman Brothers, then followed by a series

of market shocks lead to upward jumps in the CDS spreads. From Figure 4.34, we can see that

the random walk model is slow in reacting to those market shocks. On the other hand, the MAG

model appears to adjust quickly to the volatile market in the late 2008 and the number of short-only

portfolios that have losses exceed the VaR estimates reduces quickly after Lehman’s bankruptcy.

In order to further examine whether exceedances are serially correlated, we perform a Ljung-Box

test on the exceedance sequence (1{Lt>V aRt}) for each portfolio where Lt is the portfolio loss at

time t and V aRt is the VaR estimate. As suggested by Berkowitz, Christoffersen and Pelletier

[7], we carry out the test for the first five lags. Table 4.19 shows that the MAG model gives

very few portfolios that have autocorrelated exceedances (4.6% and 7.2% in 2005-07 and 2007-09

respectively). On the other hand, the random walk model and the affine jump-diffusion model give

a significantly larger number of portfolios that have autocorrelated exceedances, with 52.6% and

13.9% respectively in 2007-09. This confirms our earlier observations from Figure 4.32 and 4.33.
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Figure 4.32: CDX.NA.IG on-the-run index and number of portfolios that have losses exceed 99% VaR in
2005-07. Portfolio types: protection sellers only (short), protection buyers only (long); half protection sellers
half protection buyers (long-short).
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Figure 4.33: CDX.NA.IG on-the-run index and number of portfolios that have losses exceed 99% VaR in
2007-09. Portfolio types: protection sellers only (short), protection buyers only (long); half protection sellers
half protection buyers (long-short).
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Figure 4.34: Daily P&L of a short-only, a long-only and a long-short portfolio, and the corresponding 99%
VaR computed by the affine jump-diffusion model (AJD), the random walk model (RW) and the heavy-tailed
multivariate AR-GARCH model (MAG) in 2008. Values are expressed as percentages of the total portfolio
notional value.

2005-07 2007-09
AJD RW MAG AJD RW MAG

Short 100 0.0% 0.0% 0.0% 81.0% 100.0% 0.0%
Short 40 0.0% 3.0% 1.0% 18.0% 100.0% 1.0%
Short 10 2.0% 13.0% 11.0% 4.0% 98.0% 24.0%
Long 100 100.0% 0.0% 0.0% 6.0% 0.0% 0.0%
Long 40 60.0% 3.0% 2.0% 3.0% 1.0% 0.0%
Long 10 46.0% 2.0% 9.0% 13.0% 8.0% 5.0%

Long 50 Short 50 0.0% 21.0% 2.0% 0.0% 60.0% 11.0%
Long 20 Short 20 0.0% 17.0% 5.0% 0.0% 57.0% 15.0%
Long 5 Short 5 6.0% 18.0% 11.0% 0.0% 49.0% 9.0%

Average 23.8% 8.6% 4.6% 13.9% 52.6% 7.2%

Table 4.19: Test for autocorrelated exceedances: percentage of portfolios which reject the null hypothesis
that the exceedance sequence (1{Lt>V aRt}) is serially uncorrelated, by using the Ljung-Box test at 95%
confidence level.

4.5.2.3 Expected shortfall

Expected shortfall (ES) is defined as the expected loss given that the loss is larger than a given

quantile (VaR). The average relative shortfall deviation (Table 4.20)

1

N

∑

t:Lt>V aRt

Lt − ESt

ESt
, (4.13)

where Lt is the portfolio loss at time t, V aRt is the 99% VaR estimates, ESt is the 99% expected

shortfall estimates, and N is the number of trading days where the loss is larger than the VaR

estimate of the previous day, measures how much the realized loss deviates from the expected
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shortfall. If the model provides a good estimate for the loss distribution, we expect the shortfall

deviation (4.13) to be close to zero.

In 2005-07, the random walk model gives the smallest (in absolute value) relative shortfall

deviation on average at -1.7%. On the other hand, the MAG model overestimates the expected

shortfall for all portfolio types with an average relative shortfall deviation of -17.2%. This shows

that the MAG model is more on the safe side in terms of loss prediction during exceedances.

In 2007-09, the random walk model significantly underestimates expected shortfall where the

relative shortfall deviation increases to 21.5%. This means that extreme losses appear to be more

severe than anticipated by the random walk model. In this period, the MAG model give the best

expected shortfall estimates with shortfall deviations equal to 2.2% on average.

In order to examine whether the sample expected shortfall is statistically different from the

model expected shortfall, we follow McNeil, Frey and Embrechts [79] and assume that the loss

process follows

Lt = µt + σtZt,

where µt and σt are measurable at time t − 1, and (Zt) is an i.i.d. sequence. Then, we define

expected shortfall residual by

Rt =
Lt − ESt

σt
1Lt>V aRt , (4.14)

where (Rt) is an i.i.d. sequence with zero mean. For each portfolio, we test whether the expected

shortfall residual (4.14) has zero mean by computing the confidence intervals based on the bootstrap

method [46, 79]. In order to have sufficient number of samples to obtain meaningful results4, we

combine the observations in the two sample periods. We omit those time series that has none or

only one exceedance.

Table 4.21 shows that, on average, the MAG model gives the fewest number of portfolios (41.6%)

4For each sample period with roughly 300 evaluation days, the typical number of nonzero expected shortfall
residual observations is only 3, if the exceedance probability is 1%.
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that can reject the hypothesis that the expected shortfall residual has zero mean, comparing to

47.9% of the affine jump-diffusion model and 45.2% of the random walk model.

2005-07 2007-09
AJD RW MAG AJD RW MAG

Short 100 - - -18.6% -1.9% 27.4% 28.1%
Short 40 - -13.1% -21.8% -6.0% 28.8% 21.3%
Short 10 -13.2% -5.7% -15.9% 17.6% 28.4% 7.1%
Long 100 -14.0% -7.6% -25.8% 29.3% 14.2% -15.0%
Long 40 -10.6% 4.2% -15.8% 6.7% 12.0% -12.7%
Long 10 39.8% 0.8% -13.3% 19.2% 10.2% -8.3%

Long 50 Short 50 - -0.8% -20.1% - 24.7% -1.3%
Long 20 Short 20 - 3.9% -15.2% -24.8% 27.2% 1.6%
Long 5 Short 5 31.1% 4.4% -7.9% 48.1% 20.6% -1.2%

Average 6.6% -1.7% -17.2% 11.0% 21.5% 2.2%

Table 4.20: Average relative shortfall deviation (4.13) for CDS portfolios.

AJD RW MAG

Short 100 19.6% 100.0% 0.0%
Short 40 41.7% 73.0% 18.0%
Short 10 50.0% 56.0% 24.0%
Long 100 98.0% 8.0% 100.0%
Long 40 28.0% 32.0% 87.8%
Long 10 59.7% 25.0% 50.0%

Long 50 Short 50 - 36.0% 41.0%
Long 20 Short 20 - 47.0% 22.2%
Long 5 Short 5 38.5% 30.0% 31.0%

Average 47.9% 45.2% 41.6%

Table 4.21: Test for accuracy of expected shortfall estimation: percentage of portfolios which reject the null
hypothesis that expected shortfall residual (4.14) has zero mean at 95% confidence level. Data: 2005-09.

4.6 Moment generating function for affine jump diffusion process

Consider an affine jump diffusion process

dXt = (κ0 + κ1Xt)dt+ σ
√
XtdWt + dJt

where (Wt) is a standard Brownian motion and (Jt) is a compound Poisson process with intensity

ℓ and exponential jump size with mean µ under a risk-neutral measure Q. The moment generating
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function of the cumulative affine jump-diffusion process is equal to

EQ

[
exp

(
q

∫ t+T

t
Xudu

) ∣∣∣Ft

]
= exp (α(q, T ) + β(q, T )Xt)

where

α(q, T ) =
2κ0

σ2
ln

[
2γe(γ−κ1)T/2

2γ + (γ − κ1)(eγT − 1)

]
− 2qℓµ

γ + κ1 + 2qµ
T

− 2ℓµ

σ2 + 2µκ1 + 2qµ2
ln

[
1 +

[γ − κ1 − 2qµ](eγT − 1)

2γ

]
,

β(q, T ) =
2q(eγT − 1)

2γ + (γ − κ1)(eγT − 1)
,

γ =
√
κ2

1 − 2qσ2,

for q <
κ2
1

2σ2 .

Let τ i be the random default time of an obligor i whose default intensity follows (4.4). Then,

the survival probability under the affine jump-diffusion model is equal to

Q(τ i > T |Gt) = 1τ i>tE
Q
[
e−

R T

t
λi

udu|Ft

]

= 1τ i>tE
Q
[
e−

R T

t
Xi

udu|Ft

]
EQ
[
e−ai

R T

t
X0

udu|Ft

]

= 1τ i>t exp
(
αi(−1, T ) + α0(−ai, T ) + βi(−1, T )Xi

t + β0(−ai, T )X0
t

)

where (Ft) is the filtration generated by (W k,Q
t ) and (Jk

t ) for k = 0, i and (Gt) is the filtration

generating by all risk factors including the default time process, i.e. Gt = Ft
∨Ht where (Ht) is

the filtration generated by the default indicator process (1τ i>t).

4.7 CDS spread simulation under affine jump-diffusion model

Let τ i be the random default time of an obligor i. Assume that recovery rate Ri is deterministic.

Given τ i > t, the fair CDS spread at time t is defined as

Si
t =

(1 −Ri)
∑M

k=1B(t, Tk)Q(Tk−1 < τ i ≤ Tk|Gt)∑M
k=1(Tk − Tk−1)B(t, Tk)Q(τ i > Tk|Gt)

(4.15)
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where T1, ..., TM are the payment dates and Gt represents all the available market information up

to time t. In this case, modeling the dynamic of the CDS spread is equivalent to modeling the

dynamic of the conditional survival probabilities Q(τ i > T |Gt).

Let ΘQ
i = (κi

0, κ
i,Q
1 , σi, ℓi,Q, µi,Q, ai) and ΘP

i = (κi
0, κ

i,P
1 , σi, ℓi,P, µi,P), ΘQ

i,j = (ΘQ
i ,Θ

Q
j ), ΘP

i,j =

(ΘP
i ,Θ

P
j ). From (4.15), we know that the CDS spreads under the affine jump-diffusion model can

be written as

Si
t = Sajd(ΘQ

0,i; t,X
0
t ,X

i
t) (4.16)

where

Sajd(ΘQ
0,i; t, x

0, xi) =
D(ΘQ

0,i; t, x
0, xi)

P (ΘQ
0,i; t, x

0, xi)
,

D(ΘQ
0,i; t, x

0, xi) = (1 −R)

M∑

k=1

B(t, Tk)
[
F̄ (ΘQ

0,i; t, Tk−1, x
0, xi) − F̄ (ΘQ

0,i; t, Tk, x
0, xi)

]
,

P (ΘQ
0,i; t, x

0, xi) =

M∑

k=1

(Tk − Tk−1)B(t, Tk)F̄ (ΘQ
0,i; t, Tk, x

0, xi),

F̄ (ΘQ
0,i; t, T, x

0, xi) = eα
i(−1,T−t)+α0(−ai,T−t)+βi(−1,T−t)xi+β0(−ai,T−t)x0

for x0, xi ≥ 0. Notice that the dynamic of the CDS spread process (Si
t) is governed by the dynamic

of the affine jump-diffusion processes (X0
t ) and (Xi

t).

Recall that (Xk
t ) follows (4.6) under P. By time discretization, we write

Under P : Xk
(j+1)∆t = Xk

j∆t + (κk
0 + κk,P

1 Xk
j∆t)∆t+ σk

√
Xk

j∆t∆W
k,P
j + ∆Jk

j (4.17)

where ∆t is the discretization step which is set to be 1 day, (∆W k,P
j )j=1,...,J are i.i.d. N(0,

√
∆t

2
)

normal random variables and (∆Jk
j )j=1,...,J are i.i.d. random variables where ∆Jk

j = 0 with prob-

ability 1 − ℓk,P∆t and ∆Jk
j is exponentially distributed with mean µk,P with probability ℓk,P∆t.

Note that the dynamic of (Xk
j∆t)j=1,...,J depends on the parameters ΘP

k.

We can simulate time series of CDS spreads for n obligors under the affine jump-diffusion models

as follows:
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1. Simulate time series (Xk
j∆t)j=1,...,J for k = 0, ..., n from (4.17).

2. For each time step j, compute CDS spread from (4.16).

4.8 Estimation of the affine jump-diffusion model from CDS spread

time series

In this section, we describe a method based on principal component analysis for estimating the

parameters of the affine jump-diffusion model from time series of CDS spreads. THe method

involves the following steps:

1. Decompose daily changes of CDS spreads into principal component factors.

2. Set (x0
j∆t)j=0,...,J equal to the first principal component factor values and estimate ΘP

0 by

maximum likelihood method.

3. For each obligor i, estimate (ΘQ
i ,Θ

P
i ) to the CDS spreads with the given values of (x0

j∆t)j=0,...,J

and (Θ̂P
0 , κ

0,Q
1 , ℓ0,Q, µ0,Q) by maximum likelihood method.

4. Calibrate (κ0,Q
1 , ℓ0,Q, µ0,Q) by maximum likelihood method with given values of (x0

j∆t)j=0,...,J ,

Θ̂P
0 and (Θ̂Q

i , Θ̂
P
i ), i = 1, ..., n.

5. Repeat Step 3-4 until convergence.

Step 1: Decomposition of daily changes of CDS spreads

By the first order approximation of the Taylor series expansion, the pricing function (4.16) can be

approximated by

Sajd(ΘQ
0,i; t, x

0, xi) ≈ Sajd(ΘQ
0,i; t, 0, 0) + ∂x0Sajd(ΘQ

0,i; t, 0, 0)x
0 + ∂xiSajd(ΘQ

0,i; t, 0, 0)x
i (4.18)
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where the partial derivatives have the closed-form expression:

∂x0Sajd(ΘQ; t, x0, xi) =
∂x0D(ΘQ

0,i; t, x
0, xi)

P (ΘQ
0,i; t, x

0, xi)
− Sajd(ΘQ

0,i; t, x
0, xi)

∂x0P (ΘQ
0,i; t, x

0, xi)

P (ΘQ
0,i; t, x

0, xi)
,(4.19)

∂x0D(ΘQ
0,i; t, x

0, xi) = (1 −R)
M∑

k=1

B(t, Tk)
[
β(−ai, Tk−1 − t)F̄ (ΘQ

0,i; t, Tk−1, x
0, xi)

−β(−ai, Tk − t)F̄ (ΘQ
0,i; t, Tk, x

0, xi)
]
, (4.20)

∂x0P (ΘQ
0,i; t, x

0, xi) =
M∑

k=1

(Tk − Tk−1)B(t, Tk)β(−ai, Tk − t)F̄ (ΘQ
0,i; t, Tk, x

0, xi), (4.21)

and we have a similar expression for ∂xiSajd(ΘQ; t, x0, xi) by replacing ai in (4.20) and (4.21) by 1.

Using this linear approximation, the change in CDS spreads under the affine jump-diffusion

model is equal to

∆Si
t ≈ ∂x0Sajd(ΘQ

0,i; t, 0, 0)∆X0
t + ∂xiSajd(ΘQ

0,i; t, 0, 0)∆Xi
t (4.22)

where ∆ is the difference operator with ∆Si
t = Si

t − Si
t−∆t.

There are three advantages of this approximation. First, this approximation is linear in the

values of x0 and xi which will become handy when we want to decompose the CDS spreads into

different linear factors. Second, the approximation is also strictly increasing in the variables x0 and

xi, which preserves the property of the exact function. Finally, the minimum possible CDS spread

under this approximation is the same as the one computed under the exact function.

However, this approximation also shows the problem of under-determination of the state vari-

ables x0 and xi: at each time t, we have n + 1 state variables to be determined, (x0
t , x

1
t , ..., x

n
t ),

but we only observe n market variables, CDS spreads (s1t , ..., s
n
t ). Because of the monotonicity and

continuity of (4.16), a small increase in x0
t can be compensated by a small decrease in (x1

t , ..., x
n
t )

and give the same CDS spreads before the changes. One solution is to consider additional CDS

spreads with different maturities. However, CDS with maturities other than 5 years are not very

liquid which gives poor estimation of the parameters. We solve this problem by decomposing the

CDS spreads into different factors using the principal component method.
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Consider the data matrix containing the daily changes in the CDS spreads of all obligors. Using

an eigenvector decomposition we obtain

∆si
j∆t = ci1F

1
j∆t +

n∑

k=2

cikF
k
j∆t

where cik is the factor loading of obligor i to factor k and F k
t is the kth principal component

factor value at time t. By comparing to (4.22), we identify the common risk factor in the affine

jump-diffusion model (∆x0
j∆t)j=1,...,J with the first principal component

∂x0Sajd(ΘQ
0,i; t, 0, 0) = ci1, (4.23)

∆x0
j∆t = F 1

j∆t for j = 1, ..., J. (4.24)

Step 2: Maximum likelihood estimation of ΘP
0

Assume that x0
0 is given. From (4.24), we obtain the observations of (x0

j∆t)j=1,...,J . Recall that

(X0
t ) follows (4.6) under P. By time discretization, we have (4.17). For a time step where there is

no jump, i.e. ∆J0
j = 0, X0

(j+1)∆t is normally distributed given the value of X0
j∆t. If there is a jump,

X0
(j+1)∆t is equal to the sum of a normal and an exponential random variable given the value of

X0
j∆t. Therefore, the density of X0

(j+1)∆t given X0
j∆t = xj is equal to

f(xj+1|ΘP
0 , xj) = (1 − ℓ0,P∆t)

1

σ0
√
xj∆t

φ

(
xj+1 − xj − (κ0

0 + κ0,P
1 xj)∆t

σ0
√
xj∆t

)

+
ℓ0,P∆t

µ0,P
exp

(
xj + (κ0

0 + κ0,P
1 xj)∆t

µ0,P
+
xj∆t(σ

0)2

2(µ0,P)2
− xj+1

µ0,P

)

×Φ

(
xj+1 − xj − (κ0

0 + κ0,P
1 xj)∆t− xj∆t(σ

0)2/µ0,P

√
xj∆tσ0

)
(4.25)

where φ(.) and Φ(.) are the density and cumulative distribution function of standard normal distri-

bution respectively. Using this density function, we obtain estimators for x0
0 and ΘP

0 by maximizing

the log-likelihood function:

max
ΘP

0

L0(x0
0,Θ

P
0)
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where

L0(x0
0,Θ

P
0) =

J∑

j=1

ln f(x0
j∆t|ΘP

0 , x
0
(j−1)∆t)

is the log-likelihood function.

Step 3: Maximum likelihood estimation of ΘP
i and ΘQ

i

Consider the time series (si
j∆t)j=0,...,J of CDS spreads for obligor i. From Steps 1 and 2, we obtain

a time series of risk factor values (x0
j∆t)j=0,...,J and a parameter estimate Θ̂P

0 . Assume that we also

know the parameters (κ0,Q
1 , ℓ0,Q, µ0,Q). Then we estimate (ΘP

i ,Θ
Q
i ) as follows.

As in Step 2, we discretize the process (Xi
t) under P and compute the transition density (4.25)

for (Xi
j∆t). From (4.18), we can write the log-likelihood function as for (x0

j∆t) in Step 2. In addition,

we account for the constraint (4.23) by adding a penalty term in the likelihood function:

Li(ΘP
i ,Θ

Q
i , Θ̂

P
0 , κ

0,Q
1 , ℓ0,Q, µ0,Q, w) =

J∑

j=1

ln f(xi
j∆t|ΘP

i , Θ̂
P
0 ,Θ

Q
0,i, x

i
(j−1)∆t, x

0
(j−1)∆t)

− ln ∂xiSajd(ΘQ
0,i; t, 0, 0)

−w|1 − ∂x0Sajd(ΘQ
0,i; t, 0, 0)/c

i
1 | (4.26)

where f(.|.) is the transition density (4.25), w is the weight on the penalty with respect to (4.23)

which will be set to 105 and

xi
t =

(
si
t − Sajd(ΘQ

0,i; t, 0, 0) − ∂x0Sajd(ΘQ
0,i; t, 0, 0)x

0
t

)
/∂xiSajd(ΘQ

0,i; t, 0, 0).

Then, we obtain the estimates for (ΘP
i ,Θ

Q
i ) by solving

max
ΘP

i ,ΘQ
i

Li(ΘP
i ,Θ

Q
i , Θ̂

P
0 , κ

0,Q
1 , ℓ0,Q, µ0,Q, w).

We repeat this estimation for each obligor and obtain parameter estimates (Θ̂P
i , Θ̂

Q
i ) for i = 1, ..., n.

Step 4: Maximum likelihood estimation of (κ0,Q
1 , ℓ0,Q, µ0,Q)
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After obtaining Θ̂P
0 and (Θ̂P

i , Θ̂
Q
i ) for i = 1, ..., n, we estimate the remaining parameters (κ0,Q

1 , ℓ0,Q, µ0,Q)

which govern the Q-dynamic of (X0
t ) by maximizing the likelihood function

max
κ0,Q
1 ,ℓ0,Q,µ0,Q

n∑

i=1

Li(Θ̂P
i , Θ̂

Q
i , Θ̂

P
0 , κ

0,Q
1 , ℓ0,Q, µ0,Q, 0)

where Li(.) is the log-likelihood function (4.26). We set the penalty weight w = 0 to allow larger

degree of freedom for the optimal solution.

Step 5: Iteration

In the final step, we iterate Step 3-4 until the solution converges. We find that it usually takes two

to three iterations for convergence of the parameters within errors of 10−6.
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