
The PBS Policy: Some Properties and Their Proofs

Hanhua Feng Vishal Misra Dan Rubenstein

Department of Computer Science Department of Electric Engineering

Columbia University Columbia University

March 20, 2007

Abstract

In this report we analyze a configurable blind scheduler containing a continuous, tunable
parameter [2]. After the definition of this policy, we prove the property of no surprising inter-
ruption, the property of no permanent starvation, and two theorems about monotonicity of this
policy.

1 The PBS Policy: an Introduction

We consider a system with a single work-conserving server where tasks are sequentially numbered
by the order of their arrival times. In other words, i < j always implies that task i arrives no later
than task j. At every time t, for each task i in the system, we compute its priority value by:

Pi(t) =
ti(t)

[xi(t)]α
, (1)

where ti(t) is the sojourn time of task i (elapsed time since its arrival), xi(t) is the attained service
time thus far, and the exponent α is a tunable parameter between 0 and +∞. The priority-based
blind scheduling (PBS) policy schedules a random task among the tasks with the maximal priority
value.

We present two important properties [2] without proofs.

Theorem 1.1 (basic fairness). Under PBS, if i > k, xi(t) ≤ xk(t) for any time t such that both
tasks are in the system.

Theorem 1.2 (hospitality). Under PBS with α > 0, if i > k, then Pi(t) ≥ Pk(t) for any time t
such that both tasks are in the system.

2 Properties of the PBS policy

In this section, we prove two properties of the PBS policy. We say that a task is scheduled at time
t if it receives service during interval [t, t + ε] for any ε > 0. The processor share that the task
receives at time t is defined to be the limit of the ratio between its received service and the elapsed
time, namely ε, during this interval, as the elapsed time ε → 0. Mathematically, the processor

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

share of task i at time t is defined to be the right-derivative of xi(t) at t, denoted by x′
i(t). Clearly,

if x′
i(t) > 0, task i must be scheduled at time t.
Note that two scheduled tasks, i and j, must have the same priority value, i.e.,

ti(t)

[xi(t)]
α =

tk(t)

[xk(t)]
α (2)

Equivalently, we have
log ti(t) − α log xi(t) = log tk(t) − α log xk(t). (3)

2.1 No surprising interruption for α ≥ 1

The first property states that, for the PBS policy with α ≥ 1, all scheduled tasks remain scheduled
unless they complete, during any period in which no new tasks arrive at the system.

Property 2.1 (No surprising interruption). Under the PBS policy with α ≥ 1, if x′
i(t) > 0 and no

tasks arrive in the interval [t, t0], then either xi(t0) = Xi or x′
i(t0) > 0.

Proof. Taking the derivative on (3), we get

x′
i(t)

xi(t)
−

x′
k(t)

xk(t)
=

1

α

(

1

ti(t)
−

1

tk(t)

)

, (4)

noting that ti(t) and tk(t) are linear functions of t. The right-hand side of (4) is positive for α > 0
if task i is younger than task k. Then we get

x′
i(t)

xi(t)
>

x′
k(t)

xk(t)
. (5)

Taking the derivative on (4) again, we obtain (omitting variable t for short)

x′′
i

xi

−
x′′

k

xk

=
1

α

(

1

ti
−

1

tk

)[(

x′
i

xi

+
x′

k

xk

)

−

(

1

ti
+

1

tk

)]

. (6)

From (4), we get
x′

k

xk

+
x′

i

xi

=
2x′

i

xi

−
1

α

(

1

ti
−

1

tk

)

≥ −
1

α

(

1

ti
−

1

tk

)

,

and then (6) becomes

x′′
i

xi

−
x′′

k

xk

≥
1

α

(

1

ti
−

1

tk

)[(

1

α
− 1

)

1

tk
−

(

1

α
+ 1

)

1

ti

]

.

For ti(t) < tk(t) so that i > k, the right-hand-side of the preceding inequality is negative if α ≥ 1.
In other words,

x′′
i (t)

xi(t)
<

x′′
k(t)

xk(t)
for α ≥ 1.

Therefore, if x′′
k(t) ≤ 0, we must have x′′

i (t) < 0 for every younger task i. Suppose task k = minK(t)
is the oldest scheduled task where K(t) is the set of all scheduled tasks. Then x′′

k(t) ≤ 0 implies
∑

i∈K(t) x′′
i (t) < 0 if |K(t)| ≥ 2. This implication, however, contradicts the work-conserving principle

(i.e.,
∑

i∈K(t) x′
i(t) = 1 and therefore

∑

i∈K(t) x′′
i (t) = 0). Hence we must have x′′

k(t) > 0 for oldest
scheduled task i, meaning that, for α ≥ 1, at any point of time the oldest scheduled task gains more
and more processor share and therefore remains to be scheduled, and consequently all younger tasks
also keep being scheduled by Theorem 1.2 (hospitality). Hence, for α ≥ 1 at any time, a scheduled
task can only be interrupted by the future arrivals, not those already in the system.

2

2.2 No permanent starvation

The second property states that no task will experience permanent starvation under the PBS policy
with 0 < α < ∞ if the total number of tasks at any time is bounded.

Property 2.2 (No permanent starvation). For a system where the number of tasks is bounded,
every task finishes in finite time under the PBS policy if either

(i) 0 < α ≤ 1, or

(ii) 1 < α < ∞ and there is a lower bound for every task.

Proof. Suppose task j is the earliest starved task; it will remain in the system for ever. Since xj(t)
is bounded, xj(t)/tj(t), the fraction of processor time obtained by task j, must go towards to zero
as t → ∞.

For case (i), consider a later-arrived task k. By Theorem 1.1, xj(t) ≥ xk(t) and therefore
[xj(t)]

1−α ≥ [xk(t)]
1−α. On the other hand, by Theorem 1.2, [xj(t)]

α/tj(t) ≥ [xk(t)]
α/tk(t). Multi-

plying these two inequalities we get xj(t)/tj(t) ≥ xk(t)/tk(t) for every later-arrived task k. Hence,
if task j is starved and takes less and less processor share, so are all other tasks. This scenario is
not possible for a system with a finite number of tasks.

For case (ii), let y be the lower bound of task sizes. Since the priority value of task j goes to
infinity, the priority value of every later-arrived task k on its departure, i.e., tk(τ

d
k)/[xk(τ

d
k)]α where

τd
k is the departure time of task k, also goes to infinity on its departure time. Since xk(τ

d
k) ≥ y, we

get xk(τ
d
k)/tk(τ

d
k) ≤ [xk(τ

d
k)]α/[tk(τ

d
k)yα−1] goes to zero for every task k. This scenario is again not

possible for a system with a finite number of tasks.
We finally note that the lower bound of task sizes for case (ii) is indeed necessary; we can

construct a series of tasks with decreasing sizes so as to starve a longer task.

3 The Monotonicity of the PBS policy

3.1 The deterministic case

We need to define a few quantities before showing theorems about monotonicity of the PBS policy.
We denote by ν(t) the total number of tasks arriving before or on time t. Quantity S(t, k) is the
total attained service time by the first k tasks at time t:

S(t, k) :=
k
∑

i=1

xi(t), 0 < k ≤ ν(t),

which can be split into two portions by a threshold ξ, 0 ≤ ξ ≤ ∞, for the attained service time of
every task. The first portion is to count only attained service of first ξ seconds of the first k tasks,
and the second one is to count only attained service beyond the first ξ seconds, i.e.,

S−

ξ (t, k) :=
k
∑

i=1

[xi(t) ∧ ξ], S+
ξ (t, k) :=

k
∑

i=1

[xi(t) − ξ]+,

where z+ := z ∨ 0 and we use ∧ and ∨ to denote minimum and maximum, respectively. For the
case that k = ν(t), we use shorthand notations

S+
ξ (t) := S+

ξ (t, ν(t)) and S−

ξ (t) := S−

ξ (t, ν(t))

3

as S(t) is a shorthand notation of S(t, ν(t)).
The following theorem states that the total attained service beyond ξ of the first k tasks is

greater for a smaller α:

Theorem 3.1. Consider two policies P1 := PBS(α1) and P2 := PBS(α2). If 0 < α1 ≤ α2 < ∞,
then S+

ξ (t, k)P1 ≥ S+
ξ (t, k)P2, for any t ≥ 0, ξ ∈ [0,∞] and k = 1, 2, . . . , ν(t).

Before proving this theorem, we need the following lemma, which states that, if some scheduler
task receives more service with a larger α, all younger tasks must also receive more service with
this larger α.

Lemma 3.2. Consider two policies P1 := PBS(α1) and P2 := PBS(α2), with 0 < α1 ≤ α2 < ∞.
Suppose at least one task in the first k tasks is scheduled at time t by P2, and suppose xk(t)

P1 <
xk(t)

P2. Then, xi(t)
P1 ≤ xi(t)

P2 for all i > k.

Proof of Lemma 3.2. For every task i, consider two cases at time t:
(i) The task i has finished its service under P2, i.e., xi(t)

P2 = Xi. Clearly we have xi(t)
P1 ≤

xi(t)
P2 and we are done.

(ii) The task i has not finished its service under P2. Because there is an older scheduled task
under P2, by Theorem 1.1 (basic fairness), the task i must also be scheduled under P2.

Now we consider two sub-cases of case (ii) at time t:
(iia) The task k has not finished the service under P2. Then, tasks k and i must both be

scheduled, i.e., they have the same priority value:

ti(t)

[xi(t)P2]α2
=

tk(t)

[xk(t)P2]α2
.

(iib) The task k has already left the system under P2. Let τ be its departure time. Let task j
be that older task scheduled at time t. Note that j < k < i. Then, at time τ , we have

tj(τ)

[xj(τ)P2]α2
≤

tk(τ)

[xk(τ)P2]α2
=

tk(τ)
[

XP2

k

]α2
, (7)

because task k is scheduled at time τ . Then, the following shows that a finished younger task,
namely k, should have a higher priority value than the scheduled older task j, not only at the
departure time of the former, but also at any later time:

tk(t)

[xk(t)P2]α2
=

tk(τ)

[xk(τ)P2]α2
+

t − τ

[xk(τ)P2]α2
[xk(t) = xk(τ)]

≥
tj(τ)

[xj(τ)P2]α2
+

t − τ

[xk(τ)P2]α2
[by (7)]

≥
tj(τ)

[xj(t)P2]α2
+

t − τ

[xj(t)P2]α2
[Basic fairness]

=
tj(t)

[xj(t)P2]α2
=

ti(τ)

[xi(t)P2]α2
. [i, j both scheduled at t]

In short, for both cases (iia) and (iib), we have

ti(t)

[xi(t)P2]α2
≤

tk(t)

[xk(t)P2]α2
. (8)

4

Now consider tasks under P1. The task k must not have finished its service at time t, by the
premise of the lemma, although it may or may not be scheduled under P1. If the younger task i is
finished under P1, it should have a priority value higher than scheduled task k (for the same reason
as above); if it is not finished, by Theorem 1.2 (hospitality), it must also be scheduled, and has the
same priority as task k. In either case,

ti(t)

[xi(t)P1]α1
≥

tk(t)

[xk(t)P1]α1
. (9)

Note that the sojourn time tj(t) is policy invariant. Then we have (the variable t are omitted at
some places

xi(t)
P1 =

(

xP1

i

)

α1

α2

(

xP1

i

)1−
α1

α2

≤

(

ti
tk

)
1

α2
(

xP1

k

)

α1

α2

(

xP1

i

)1−
α1

α2 [by (9)]

≤

(

xP2

i

xP2

k

)

(

xP1

k

)

α1

α2

(

xP1

i

)1−
α1

α2 [by (8)]

= xP2

i

(

xP1

i

xP1

k

)1−
α1

α2

(

xP1

k

xP2

k

)

< xi(t)
P2 .

Note that for the last inequality, we need (i) that xk(t)
P1 < xk(t)

P2 by the lemma premise, (ii) that
xi(t)

P1 ≤ xk(t)
P1 by Theorem 1.1 (basic fairness) since task k has not finished under P1, and (iii)

that 1 − α1/α2 ≥ 0.

Proof of Theorem 3.1. Again we prove it by contradiction. Let us hypothesize that Theorem 3.1
does not hold and let k be the smallest integer such that

S+
ξ (t, k)P1 < S+

ξ (t, k)P2 , (10)

for some t. Since S+
ξ (t, k) is continuous with respect to t, we can assume S+

ξ (t, k)P2 is also strictly

increasing at time t because S+
ξ (t, k)P1 is non-decreasing, using the same argument as in the proof

of Theorem 1.1. Therefore, there must be at least one scheduled task in the first k ones, and all
younger tasks still in the system must also be scheduled at time t, by Theorem 1.2 (hospitality).

By the contradictory hypothesis of this proof we have

S+
ξ (t, k − 1)P1 ≥ S+

ξ (t, k − 1)P2 , (11)

and the difference between (10) and (11) shows

(

xk(t)
P1 − ξ

)+
<
(

xk(t)
P2 − ξ

)+
,

or equivalently,
xk(t)

P2 > xk(t)
P1 ∨ ξ. (12)

Then by Theorem 1.1 (basic fairness), for all j ≤ k, either (i) we have xj(t)
P2 ≥ xk(t)

P2 > ξ or (ii)
the older task j has finished the service under P2, i.e., xj(t)

P2 = Xj . For case (i), xj(t)
P1 ∧ ξ ≤

5

ξ = xj(t)
P2 ∧ ξ, and for case (ii), xj(t)

P1 ∧ ξ ≤ Xj ∧ ξ = xj(t)
P2 ∧ ξ. Thus, in either case, we have

xj(t)
P1 ∧ ξ ≤ xj(t)

P2 ∧ ξ. Summing up, we get

S−

ξ (t, k)P1 ≤ S−

ξ (t, k)P2 (13)

As stated earlier (above (11)), at time t, under policy P2, there must be at least one scheduled
task in the first k tasks. By Lemma 3.2, we get from (12) that, for all i > k,

xi(t)
P1 ≤ xi(t)

P2 .

With (10), (13) and the preceding inequality, we finally get

S(t)P1 =

ν(t)
∑

i=k+1

xi(t)
P1 + S−

ξ (t, k)P1 + S+
ξ (t, k)P1

<

ν(t)
∑

i=k+1

xi(t)
P2 + S−

ξ (t, k)P2 + S+
ξ (t, k)P2 = S(t)P2 ,

which violates the work-conserving principle. Hence (10) is not possible, and the proof is complete.

3.2 The stochastic case

We now consider a G/GI/1 queue with an arrival rate denoted by λ. Task sizes are independent,
identically distributed random variable, whose cumulative distribution function and probability
density function are denoted by F (·) and f(·), respectively. We denote by random variable T the
response time of a task, and by Tx the response time conditioned on its size x.

The following theorem states that the mean response time of the PBS policy is monotonic with
respect to α with IHR and DHR task-size distributions in a G/GI/1 queue. A random variable is
IHR (DHR) distributed if its hazard rate f(x)/[1 − F (x)] is increasing (decreasing).

Theorem 3.3. Consider two policies P1 := PBS(α1) and P2 := PBS(α2). If 0 < α1 ≤ α2 < ∞,
then in a G/GI/1 queue, ETP1 ≥ ETP2 with DHR task-size distributions, and ETP1 ≤ ETP2 with
IHR task-size distributions.

We need the following Lemma to prove Theorem 3.3.

Lemma 3.4. 1 Let P (x) and Q(x) be increasing (i.e., non-decreasing) functions, and g(x) be a
non-negative function. If

∫ ξ

0
g(x)dP (x) ≤

∫ ξ

0
g(x)dQ(x)

for every ξ ∈ [0,∞], then

∫

∞

0
g(x)h(x)dP (x) ≤

∫

∞

0
g(x)h(x)dQ(x)

1This Lemma is more general than those in [1] because P (x) and Q(x) can be non-continuous (cf. Lemma 1 in
Appendix of [1]). The integral is, however, well-defined in measure theory (P (·) and Q(·) can be considered as two
different measures on the real line). And yet, the proof is much simpler.

6

for a decreasing function h(x). If

∫

∞

ξ

g(x)dP (x) ≤

∫

∞

ξ

g(x)dQ(x)

for every ξ ∈ [0,∞], then

∫

∞

ξ

g1(x)h(x)dP (x) ≤

∫

∞

ξ

g2(x)h(x)dQ(x)

for an increasing function h(x).

Proof. For the first claim in the lemma, with decreasing function h(x), we let H(x) = h(0) − h(x)
and therefore h(x) = [H(∞) − H(x)] + h(∞) =

∫

∞

x
dH(y) + h(∞). Then we get

∫

∞

0
g(x)h(x)dP (x)

= h(∞)

∫

∞

0
g(x)dP (x) +

∫

∞

x=0
g(x)

∫

∞

y=x

dH(y)dP (x)

= h(∞)

∫

∞

0
g(x)dP (x) +

∫

∞

y=0

∫ y

x=0
g(x)dP (x)dH(y)

Therefore, if we change P (x) to Q(x), the preceding quantity gets greater if g(x) ≥ 0, since dH(y)
is non-negative.

For the second claim in the lemma, with increasing function h(x), we get

∫

∞

0
g(x)h(x)dP (x)

= h(0)

∫

∞

0
g(x)dP (x) +

∫

∞

x=0
g(x)

∫ x

y=0
dh(y)dP (x)

= h(0)

∫

∞

0
g(x)dP (x) +

∫

∞

y=0

∫

∞

x=y

g(x)dP (x)dh(y)

Therefore, if we change P (x) to Q(x), it becomes greater if g(x) ≥ 0, since dh(y) is non-negative.

Proof of Theorem 3.3. It is important to know that the blind policies do not know the future service
of a task (i.e., its remaining service), and therefore, the response time of a task of size x, namely
Tx, is statistical equivalent to the sojourn time of a task of size greater than x at the time when its
attained service time is x. For the same reason, ETx is an increasing function of x.

Define

U−

ξ (t) =

ν(t)
∑

i=1

[(ξ ∧ Xi) − xi(t)]
+ =

ν(t)
∑

i=1

(ξ ∧ Xi)

− S−

ξ (t),

and

U+
ξ (t) =

ν(t)
∑

i=1

[Xi − (ξ ∨ xi(t))]
+ =

ν(t)
∑

i=1

(ξ ∨ Xi)

− S+
ξ (t),

7

and let U−

ξ and U+
ξ be the corresponding random variables, respectively. Note that departed tasks

contribute zero to either U−

ξ or U+
ξ . The physical meaning of U−

ξ (U+
ξ) is the total remaining

service time of all tasks, counting only the portion in the first ξ seconds (after the first ξ seconds)
of service. We also have

U := U−
∞ = U+

0 = U−

ξ + U+
ξ

for any ξ. Note that U stands for the total remaining time, which is also policy invariant.
If 0 < α1 ≤ α2 < ∞, S−

ξ (t)P1 ≤ S−

ξ (t)P2 holds for every sample path, we have then U−

ξ (t)P1 ≥

U−

ξ (t)P2 , noting that
[

∑ν(t)
i=1 (ξ ∧ Xi)

]

is policy invariant. Taking the expectation, we get

E

(

U−

ξ

)P1

≥ E

(

U−

ξ

)P2

.

We have the following equation from Eq. (6) in [1]: (It in fact holds for G/GI/1 queues because
it uses only Little’s Law and the task-size distribution information.)

EU−

ξ = λ

∫ ξ

x=0
ETx[1 − F (x)]dx = λ

∫ ξ

x=0

1 − F (x)

f(x)
ETxdF (x),

and since U = U−

ξ + U+
ξ , we obtain

EU+
ξ = λ

∫

∞

ξ

ETx[1 − F (x)]dx = λ

∫

∞

x=ξ

1 − F (x)

f(x)
ETxdF (x).

Letting dP (x) = ETP1

x dF (x), dQ(x) = ETP2

x dF (x), g(x) = 1, and h(x) = [1 − F (x)]/f(x) in
Lemma 3.4, we obtain

ETP1 =

∫

∞

0
ETP1

x dF (x) ≥

∫

∞

0
ETP2

x dF (x) = ETP2

for DHR distributions where h(x) is increasing, and swap dP (x) and dQ(x) we obtain

ETP1 =

∫

∞

0
ETP1

x dF (x) ≤

∫

∞

0
ETP2

x dF (x) = ETP2

for IHR distributions where h(x) is decreasing.

References

[1] S. Aalto, U. Ayesta, and E. Nyberg-Oksanen. Two-level processor-sharing scheduling disciplines:
Mean delay analysis. In Proc. ACM SIGMETRICS ’04, pages 97–105, 2004.

[2] H. Feng, V. Misra, and D. Rubenstein. PBS: A unified priority-based scheduler. In Proc. ACM
SIGMETRICS ’07, 2007.

8

