
Improving Virtual Appliances through Virtual Layered File Systems

Shaya Potter Jason Nieh
Computer Science Department

Columbia University
{spotter, nieh}@cs.columbia.edu

Abstract
The problem of managing computers is growing in com-
plexity due to the increasing amount of physical and virtual
computers that one has to administer as well as the varying
roles that those computers fill. As each machine is effec-
tively fully independent, the amount of work an administra-
tor does scales linearly with the amount of machines. In or-
der to solve this problem, we introduce Strata, a system that
enables new ways of managing these many distinct instal-
lations. Strata enables many systems to be easily managed
by introducing a virtual layered file system that composes
individual software layers together into a single file system
view. By providing the ability to share layers between in-
stallations, Strata eases the creation of independent systems
and opens up new ways to use computers. We have imple-
mented Strata on Linux without requiring any application
or operating system kernel changes. Our measurements on
real world applications demonstrate that Strata imposes lit-
tle overhead.

1 Introduction

As computing systems become more complicated, the bur-
den they place on administrators tasked with their care in-
creases. Application service providers are beginning to be-
come common and the market for them is expected to grow
quickly. As they expand, their management load will in-
crease as they provide applications and services to many
clients around the globe.

One way administrators have tried to lower the adminis-
trative load is by leveraging virtual appliances. Virtual ap-
pliances attempt to solve two main problems. First, they at-
tempt to make provisioning of systems a simple task. Sec-
ond, they attempt to simplify the updating of provisioned
systems. Some virtual appliances, due to their architecture,
also solve an ancillary problem of enabling easy upgrade
rollbacks if it is determined that an upgrade breaks or de-
grades a user’s system.

Virtual appliances solve these problems by leveraging
virtual machines and the virtual disks they provide to pro-

vide template virtual machines that can be copied and used
by users. In order to enable a virtual appliance to be up-
graded, the virtual appliance creator will generally divide
the disk into two distinct areas. The first area, the shared
base System, can be viewed as the actual virtual appliance
and is completely controlled by the virtual appliance cre-
ator. Every user that makes use of this virtual appliance
shares this disk in what is effectively a read-only manner.
The second part, the personalizable Data area, on the other
hand, is completely controlled by the user. This area is
where all the user’s modifications to the file system will be
stored. In a traditional Unix system, one can view this as
the majority of the file system is System, while the home
directory tree is Data. By dividing the file system in this
manner, the virtual appliance creator can update the Sys-
tem area while preserving the contents of each user’s vir-
tual appliance’s Data area. By splitting the file system, one
can even downgrade to the system’s state as it existed at a
previous point in time as its fully independent from the data
of the user using this particular instantiation of the virtual
appliance.

However, virtual appliances suffer from a number of
problems. First, since they run within virtual machines,
they need a physical machine to host them and this physi-
cal machine needs to be maintained as well. Since virtual
appliances are based around virtual disk drives that can be
shared, this model can not easily be extended to physical
machines. Second, because virtual appliances are based on
a shared block device or file system, the upgrade process
does not easily scale when one has to support many dis-
tinct installations. Since each distinct virtual appliance will
have a distinct virtual system disk, each distinct virtual ap-
pliance disk must be upgraded independently. While ide-
ally an administrator would only support a single virtual
appliance, since users need access to different sets of ap-
plications, the administrator will end up having to support
a virtual appliance for each set of applications one’s users
need.

The fundamental problem with virtual appliances is that
they are based on the concept of a monolithic file system or

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


block device. What this means is that they view the storage
entity, be it a file system or a block device, as a set of data
at specific point in time. It is possible to create changes to
this entity, for instance, when one upgrades it or modifies
its files, without losing the previous state. However, the file
system is still a monolithic entity, just that one can access
the file system at different points in its time line, since the
previous state was not lost.

Strata therefore attempts to solve three main problems to
improve the ability of administrate large numbers of virtual
and physical systems. First, Strata enables systems to be
easily provisioned. Today, an administrator might rely on
only supporting a single image that can be provisioned on
any system by various methods. However, this restricts the
ability of an administrator to differentiate systems.

Second, Strata enables large numbers of systems to be
easily upgraded. Upgrading large numbers of systems can
become an orthogonal problem to provisioning systems.
If the system can not be modified, upgrading can simply
be a matter of modifying the master image. On the other
hand, most systems are modified in some ways, be they
simple configuration issues or additional software that is
installed. This differentiation can prevent easily upgrading
all instances that an administrator manages.

Finally, Strata enables piece meal rollback of a software
on a system. Strata requires this because just because an
administrator wants to upgrade a piece of software, due to
a new version being available or a security hole that has to
be fixed, it does not mean he wants to lose access to the
old version. For example, the administrator might want to
run the old version in parallel with the new version for test-
ing. The administrator might want to keep the old version
readily available if the new version fails. Similarly, since
new versions of software are not always 100% backwards
compatible, an administrator might want to keep the old
version around to provide users access to the version they
might need for specific tasks.

In order to solve this problem, we observe that a file sys-
tem can be viewed as individual files that are composed to-
gether into a single view. While some files will generally be
grouped together, because they are part of a software pack-
age, other files will not be, because they are part of different
versions of the same software package or because they are
totally unrelated. A third category is files that are not gen-
erally grouped together, but depend on each other. For ex-
ample, software packages can depends on system libraries
to run correctly. This simplified view of how package man-
agement systems work, is based on the premise that their
primary tasks are to ensure the dependencies a package re-
quires are met when one wants to install it, as well as ex-
tracting a set of files that belong together and placing them
on the file system. The file system ends up with a com-
posited view of the packages you install via the package
manager. However, package management has traditionally
viewed each machine as being distinct, which means, that

ô �

" 9P g

~�¬ÃÚñ�g¬�Ú

6ÚM�~ÚÃdÚÃ�g

{¬�ÚÃ�~©ÀÃÚ

×îÃ©�¬��{¬�ÚÃÚñ��~

6ÚM�~ÚÃdÚÃ�g��~

6ÚM�~ÚÃdÚÃ�P

6ÚM�~ÚÃdÚÃ�P��~
P ô g � " ô 9 �

Figure 1: Simple Example of File System Layers

if one needs to upgrade a system library, for instance, due
to a security hole, then the package manager must run on
each individual machine to install the updated package into
the file system.

Our solution is to view files that are generally grouped
together as a layer. Just like a traditional file system pro-
vides a view that can be viewed as a composite of indi-
vidual files, Strata’s file system provides a view that is a
composite of individual file system layers. Just like an in-
dividual software package might depend on other software
packages being available for it to work correctly, so to lay-
ers can explicitly depend on software provided by other
layers in order to work correctly.

By viewing a file system as a set of layers that can be
composed, we solve all of the problems described above.
First, by storing the layers on a file server, the layers are
readily available to large number of machines that want to
use them. Second, by utilizing layers, we enable easy pro-
visioning, due to the fact that layers are readily reusable
since each layer can be shared in a read-only manner. In
fact, in general use, each file system would be differenti-
ated by treating the software layers as read-only while pro-
viding it with its own private writable layer that would be
initially be blank. Finally, layers also enable us to solve
easing upgrades. Since each system only makes use of lay-
ers, all one have to do is create a new layer that serves as
the upgrade to replace the old layer. This enables each sys-
tem to easily pull in the upgraded software by just using
the new layer instead of the old layer. This also means that
upgrades do not remove old software since upgrades are
creations of new layers, not overwriting of old software as
is the traditional way of upgrading software. This enables
easy rollback of upgrades due to the fact that all one has to
do is replace the layer again.

Instead of creating virtual appliances, one creates a vir-
tual layered file system. Like a virtual appliance, virtual

2



layered file systems are able to share System state, in this
case they share system layers, while maintaining a separate
Data area. However, unlike virtual appliances, the Data
area does not have to be distinct from the System area, as
it is just another layer that is private to a specific virtual
layered file system instance.

Strata enables the creation of virtual layered file systems
as shown in Figure 1. Figure 1 describes a simplified use of
Strata’s layers, where there are two layers that provide dif-
ferent web servers, as well as a single layer that provides
the rest of the file system. In a real world example, the
shared base layer will actually be a set of layers, containing
various system libraries and applications in their respective
layers. Figure 1 demonstrates how Strata composes these
multiple layers together into a fully composed virtual lay-
ered file system that can be used by regular applications.

This paper describes how Strata enables new ways to
manage systems through the use of our virtual layer file
system. Section 2 describes Strata’s architecture. Section 3
describes the life cycle of a virtual layered file system. Sec-
tion 4 describes in depth how the virtual layered file system
can be used to solve many different types of problems. Sec-
tion 5 describes how a layered virtual layered file system is
implemented, while section 6 analyzes the performance im-
plications of using a virtual layered file system. Section 7
discusses related work. Finally, we present some conclud-
ing remarks.

2 Strata Architecture

Strata’s virtual layered file system provides the ability to
quickly provision services. Just like virtual appliances, vir-
tual layered file systems can be easily upgraded. Similarly,
while virtual appliances can deal with rollbacks in a min-
imal way, virtual layered file systems enable one to roll-
back a single layer independently, enabling users to mix
and match layers that fit their needs, not just rollback to a
point in time.

The virtual layered file system goes a step beyond vir-
tual appliances, since it can also be used to manage physi-
cal machines as well. While virtual appliances need a host
that is managed independently to run on. Some virtual ap-
pliances provide tools for managing the host, but one ends
up in a bifurcated world where one set of tools is used to
manage the host, while another is used to manage the vir-
tual appliances that are run on that host. Virtual layered file
systems provide a single way of doing both

Like virtual appliances, Strata enables server consolida-
tion by allowing multiple virtual layered file systems to be
in use on a single machine. Unlike virtual appliances, vir-
tual layered file systems do not restrict the type of environ-
ment one needs to use, but one can use virtual layered file
systems in whatever level of isolation one wants, be it a ch-
root environment, a virtual server environment, virtual ma-
chine or even a physical machine. This provides an admin-

istrator with greater control over one’s physical resources
due to not having to waste resources on high overhead so-
lutions when lower overhead ones are sufficient. By con-
solidating multiple machines into distinct virtual layered
file systems running on a single server, one improves man-
ageability by limiting the number of physical hardware and
the number of operating system instances an administrator
has to manage.

Traditionally, an administrator creates a monolithic file
system for each installation, such as by installing all the
software packages requires on each individual machine.
One way some systems enable administrators to improve
this situation is to take an existing installed system and cre-
ate independent clones. However, this results in each in-
dependent clone having to be upgraded separately when a
package is upgraded, for example, due to a security hole
being fixed. Virtual appliances improve the situation due
to each cloned appliance being able to pull in the updates
from the parent it was cloned from. However, one would
still have to upgrade each distinct virtual appliance inde-
pendently. Strata’s virtual layered file system changes the
model by creating virtual layered file systems composed
of shared software layers. Each software layer can con-
tain self contained applications, such as a web browser,
photo manipulation program, or system libraries. These
layers are analogous to software packages an administra-
tor installs into a traditional file system. Just like installing
multiple packages into a single file system composes the
packages files together, so too layers can be composed to-
gether based on the requirements of each machine. Unlike
traditional systems, since software layers can be shared, if
a program or library, such as the traditional C library, has
a security hole discovered, all an administrator has to do is
create a new layer that contains that fixed software and it
can be automatically pulled in by all the systems that use
the layer.

While independent virtual layered file systems can share
software layers in a read-only manner, they are made inde-
pendent by providing each virtual layered file system with
its own private read-write layer. This private layer provides
a place where any created or modified files are written. This
enables virtual layered file systems to be differentiated, as
any changes are private to it, as well as isolating the shared
software layers from any changes that occur. While the
same file can exist in multiple layers, only the top most
version of it will be visible. If the file is modified, it will
be written to the top most private layer of the virtual lay-
ered file system, concealing the copy that exists on the soft-
ware layer below. Therefore, if a software layer, which can
contain default versions of configuration files, is upgraded,
administrators do not have to worry about it overwriting
their configuration changes, as no files are overwritten and
their modified copy will conceal the version below. Al-
ternatively, if an administrator is happy with the default
configuration provided by the layer, one does not have to

3



change anything as it will be composed into the file system
correctly. This also enables administrators to easily iden-
tify the files that have changes in a specific virtual layered
file system, since all the changes will be isolated to the vir-
tual layered file system’s private layer.

Software layers are composed of three things, files, con-
figuration scripts and meta data. First, files are simply the
individual items in the layer that can be composed into a
larger virtual layered file system. There is no restriction on
the type of files, they can be regular files, symbolic links,
hard links or device nodes. Second, configuration scripts
are the scripts that have to be run when a layer is added or
removed from a virtual layered file system, to enable proper
integration of the layer. While many layers are just a col-
lection of files, other layers need to be integrated into the
system as a whole. For example, a layer that provides mp3
file playing capability would want to register itself with the
system’s MIME database to enable programs to launch it
automatically when they want to play the mp3 file. Simi-
larly, if the layer would ever be removed, the system should
remove it from the MIME database. Finally, a layer con-
tains meta data that defines its name, what version it is,
and most importantly dependency information. This de-
pendency information is important in order to ensure that
virtual layered file systems are composed correctly. Many
layers will depend on the presence of other layers, notably
system libraries, in order for them to work correctly. The
dependency meta data enables layers to depend on specific
layers, as well as specific versions of the layers.

A virtual layered file system is defined by which explicit
layers one wants within the file system view. These can
be either simple layer names, which imply the most recent
version of the layer, as well as being able to specify an ex-
plicit version to be used. These explicitly specified layers in
turn implicitly pull in the most recent version of any layer
that satisfies their dependencies. When a virtual layered
file system is upgraded, Strata checks for the most recent
version of all explicitly specified layers if a version was
not initially specified, as well as the most recent version of
layers that satisfy the dependency graph created by all the
layers. In this way, if a layer is upgraded, for instance, the
standard C library due to a security hole, the virtual layered
file system can be easily upgraded because Strata will no-
tice there is a newer version of the layer that belongs to the
file system and that it satisfies the dependency graph.

Strata provides two ways for an administrator to access
layers. First, an administrator can use a publicly managed
layer repository, much like one would use a publicly man-
aged package repository from a regular Linux distribution.
Instead of downloading and installing individual packages
into a traditional file system, the administrator simply mir-
rors the layers one wants to be available locally by down-
loading and extracting the individual layer archives one
wants into the personal layer store. Once layers are avail-
able within the personal layer store, they can be used to

form a virtual layered file system.
Strata also provides the ability for administrators to cre-

ate their own layers, for software that does not exist within
the publicly managed layer repositories. While the admin-
istrator could install the software into the private layer of
an existing virtual layered file system, it would not be avail-
able to any other virtual layered file system, and would have
to be installed manually on each one. Therefore, instead
of installing software into the current file system directly,
the administrator only adds a new blank layer into the cur-
rent file system. The administrator can then perform the
installation in a regular fashion and the new layer will con-
tain the newly installed software. By installing the software
into its own layer, the software is isolated from the rest of
the system. Once a layer is created, the administrator will
tag it with a name and a version. In order for layers to be
composed correctly, Strata also extracts the important meta
data from each layer, such as what libraries and programs
it provides and which ones it depends on.

In order for the layers to be available for in every in-
stance where they will be used, they can be stored on a
centrally managed file server. This provides reduced man-
agement, due to only needing one server to be managed
and backed up. As a single server could provide a bottle-
neck, especially in view that Strata is meant to scale and
support many individualized instances, the Strata file sys-
tem caches the layers locally on the machine they will be
used on. While file system writes will still have to propa-
gate to the server, for most applications where file system
reads dominate, such as web servers or a user’s desktop this
lessens the load on the server. In case of more extreme load,
a distributed or mirrored architecture can be used instead.

For example, to provide a web server, an administrator
would select the Apache layer to be composed into the vir-
tual layered file system. This layer only directly depends
on 8 other layers, such as providing the ability to identify
file mime types correctly as well as Perl that is needed by
the scripts it provides. However, these layers in turn pull
in a total of 40 layers. Strata determines all the layers that
are needed automatically, creates a private layer for this vir-
tual layered file system providing a total of 42 layers that
compose this virtual layered file system. An administrator
can create as many of these Apache virtual layered file sys-
tem as needed, and the only space that will be allocated is
to hold the private layer of each individual virtual layered
file system. If a bug is discovered in any of the layers, the
administrator simply extracts or creates a new layer that
fixes the bug and each virtual layered file system will be
upgraded the next time they are reconfigured.

3 Strata Life Cycle

Strata manages the life cycle of virtual layered file systems
by isolating distinct states the file system exists in. This
creates a state model that enables administrators to eas-

4



ô�"9�Pg~

�¬�ÃÚPÚ�ñg~ ���ñ6g~

Mñ6gd¬{6g~

ô�ñ�Úd�¬Úñd

Mñ6gd¬{6Úñd

©gÀ�ñ�Úd�¬Úñd

���ñ6Úñd

×ñ"��ñ6Úñd

���ñ6Úñd

Figure 2: The virtualized FS life cycle

ily understand what actions are supposed to occur at what
times. Figure 2 depicts Strata’s state model. Strata enables
the file system to exist in 4 distinct states, while also allow-
ing 5 types of state transitions.

The four states are:

• Provisioned: An administrator has selected which
software layers should be used by this virtual layered
file system, as well as allocated a private layer for use
by this file system

• Composed: The virtual layered file system’s layers
are fully composed and the file system is mounted and
accessible to the system. However, the layer config-
uration scripts have not run yet. This is analogous to
extracting a file archive into an existing file system.
This is an intermediate stage in configuring the file
system properly.

• Integrated: The virtual layered file system has run
all the layer configuration scripts, and is able to be
mounted and used by the system.

• Mounted: The virtual layered file system’s layers
have been integrated properly and composed together
on a mount point making the file system accessible
and fully usable

The five transitions are:

• Configure: An administrator selects which layers
should belong to a specific virtual layered file system.
For instance, if an administrator wants to run a mail
server, one would explicitly select a layer containing
a program such as Exim or Sendmail. This in turn
would automatically implicitly pull in the appropriate
layers that are needed in support of the specific mail
transfer agent.

• Reconfigure: If Strata detects that the administrator
of the virtual layered file system has changed the con-
figuration, for example, by adding or removing a layer
from the configuration, or that one of the explicit or
implicitly defined layers needs to be upgraded, the file
system will automatically reconfigure itself. This is
needed, because any time a layer is added or removed
from the virtual layered file system, the old layers will
have to be disintegrated from the virtual layered file
system, while the new layers will then be integrated.

• Integrating: Strata runs the installation and removal
scripts that belong to the layers that are being added
or removed from this virtual layered file system in-
stance. Strata is able to perform common actions, such
as running ldconfig to setup the appropriate shared
library symbolic links, automatically.

• Mounting: Strata composes the file system out of its
component layers and makes it available to the system
to be used for either integration purposes or regular
running purposes.

• Unmounting: Strata decomposes the virtual layered
file system into its requisite layers, and it is unavail-
able to be used. While the file system is in this state,
the system is guaranteed that the file system will not
be modified and is therefore able to get a consistent
backup if necessary.

If the traditional root file system of a machine is be-
ing replaced by a layered file system, Strata provides the
ability to manage these states directly without administra-
tor intervention. While an administrator can (re)configure
the explicit layers while the file system is on/off-line, once
the machine (re)boots, Strata will automatically determine
the full configuration by implicitly including the appropri-
ate layers. If this virtual layered file system has layers be-
ing added or removed from it, for instance, due to it being
a new file system or being reconfigured, it will compose
the file system in order for it to be integrated and finally
mount it. If it is already been integrated, it will automat-
ically mount it. Before Strata mounts an already existing
virtual layered file system, it will determine if any of its
component layers need to be upgraded and automatically
reconfigure it if necessary.

4 Examples Usages

We briefly describe four scenarios that illustrate how Strata
can be used to improve the ability of administrators to man-
age large numbers of systems. We first describe how one
would use Strata to manage virtual machines that contain
disparate applications. We then describe how one would
manage the physical machines these virtual machines run
on. Third, we also describe how an administrator can allow

5



his users to run different versions of an application. Fi-
nally, we describe how Strata can enable an administrator
to better handle machines compromised by an attacker.

4.1 Managing Multiple Virtual Machines
Administrators like to run many services on a single ma-
chine. By doing this, they are able to benefit from improved
machine utilization, but at the same time give each service
access to many resources they do not need to perform their
job. A classic example of this is e-mail delivery. E-mail
delivery services, such as Exim, are often run on the same
system as other Internet services to improve resource uti-
lization and simplify system administration through server
consolidation. However, services such as Exim have been
easily exploited by the fact that they have access to system
resources, such as a shell program, that they do not need to
perform their job. Similarly, an administrator might want to
run a web service, such as Apache. However, Apache itself
has also been exploited in the past [11] and has been com-
promised many times due to insecure web applications [18]
and misconfigured application frameworks, such as various
PHP exploits. [21].

In order to solve these problems, an administrator would
prefer to run each service in its own isolated virtual ma-
chine. Even if the service would be exploited, the attacker
would only have access to the resources of the virtual ma-
chine which can be limited to just what the service needs to
use. For example, Strata can run both Exim and Apache
within their own personal virtual machines that are re-
stricted to just the programs they need to execute. However,
by placing each service within its own virtual machine, one
can double the workload needed to maintain these services.
Since each virtual machine needs its own file system, if
a security hole in a shared file, such as the system C li-
brary, is discovered, the administrator has to upgrade each
virtual machine independently. As administrators deploy
more application and service specific virtual machines, this
increased load will increase linearly.

Strata enables an administrator to have the benefits of
deploying many virtual machines, while also not requiring
an ever increasing burden on system administrators. On a
simplistic level, Strata enables each virtual machine to have
a virtual layered file system that is composed of 3 sets of
layers. The first set of layers can contain all the files that
are shared between the two services, while the second set
of layers will be the files, such as those that belong to Exim
and Apache that differentiate each service from each other.
Finally, a third layer is provided to each independent vir-
tual layered file system that remains private to each virtual
layered file system instance, to enable the file system to be
writable. This enables multiple Exim and Apache virtual
layered file systems to exist in parallel as the third layer
will contain each file system’s personal modifications.

By splitting the file system into layers, sharable and pri-
vate, Strata enables administrators to easily upgrade all the

virtual machines they manage with a single upgrade action.
For instance, if a security hole in the libc system library
was discovered [4], all the administrator would have to do
is create a new layer that contains the security update. The
old layer is still accessible, but will not be chosen unless ex-
plicitly asked for. Once the virtual machines reboot them-
selves, they will automatically reconfigure their virtual lay-
ered file system using the updated layer.

4.2 Managing Multiple Physical Machines

While Strata enables one to manage myriad of virtual ma-
chines in an efficient manner, the virtual machines run on
a physical host that also has to be administrated. Physi-
cal machine administration suffers from some of the same
problems as virtual machine administration as well as intro-
duces some of its own. First, just like virtual machines have
a file system that has to be maintained by the administrator,
physical machine’s file system also has to be maintained.
When security updates are available, the physical machine
has to make use of them. Secondly, physical machines can
suffer hardware faults. If a hardware fault propagates into
the system, it can corrupt applications running within the
virtual machines. Similarly, some software updates, such
as newly installed kernels, can only take effect once the
physical machine has been rebooted. However, by reboot-
ing the machine, all the virtual machines on the host will be
rebooted as well, which will force all the virtual machines
to be shutdown as well, possibly causing them to lose their
computation state.

Strata enables us to solve these problems by leveraging
its ability to manage file systems and combining it with a
system, such as Zap [12], that provides the ability to check-
point, migrate and restart applications that are run within a
pod. Strata manages a physical machine’s file system in the
same manner that it manages the virtual machines it hosts.
First, it is able to manage the host machine’s file system
with layers, and second it is able to support multiple in-
dividual pods with their own layered file system. There-
fore, Strata provides the physical machine with a set of lay-
ers that contains the Strata software and its dependencies,
as well as a private customization layer for it to store the
machine specific data, such as logs and configuration files.
When Strata has to be upgraded, for instance due to a se-
curity hole or new features, Strata can simply reconfigure
itself to form its virtual layered file system with the new
layer that contains the updated software and its private cus-
tomization layer. Since all the applications are run within
pods, none of their state will be lost, since they can simply
be checkpointed and restarted.

Strata can also be combined with AutoPod [15] to mon-
itor the physical system for hardware faults. While the vir-
tual machines that run on the physical host do not have
hardware that can fault, they depend on the physical ma-
chine. Faults on the physical machine will propagate into

6



the virtual machines and corrupt execution within it. Au-
toPod therefore monitors the physical machine state, and
if it discovers imminent failures it can checkpoint the pods
that are running on it to ensure they do not lose state. It
can choose to migrate the pods to a new physical machine,
if one is available, so that they can continue running as if
nothing has happened. Since the Strata stores the file sys-
tem layers on a centrally available server, the file system
layers are composable on other machines. Even if there is
no machine to migrate too, once the problem is repaired,
the pods can be restarted exactly where they left off, caus-
ing no loss of computation to users.

4.3 Managing Multiple Software Versions
Software packages that are in used today are very compli-
cated, with varying types of configuration systems and nu-
merous options that can be set. These software packages
are generally part of a larger system of different software
packages that work together to form an even more com-
plicated system. However, these software systems have to
be maintained and upgraded. Many times a new version
of the software will be released that contains new features
that users want access to. Similarly, software has to be up-
graded many times due to bugs that can impact users, or
security holes that can impact the entire system.

A main problem administrators face in upgrading soft-
ware, is that they are moving their systems from a known
state, where they know that the software works, to an un-
known state. Even if an administrator has separate systems
to test out the new software on, many times the software
still breaks when placed in the real world. However, rolling
back the software to the previous version is not always easy,
as the older version might not be readily available, and the
upgrade overwrite the original version. Even if one has a
backup available, the administrator would have to extract
the upgraded software from the backup image which is a
time consuming and difficult task. While software pack-
ages improve this situation, many times a software package
depends on a specific set of dependencies that are no longer
available within the running system and therefore can not
be installed.

Strata improves this situation in three ways. First, Strata
enables administrators to easily provision test virtual ma-
chines. Second, if the upgrade happens and is shown to not
work in real life, Strata enables an easy rollback. Third,
even if the older package can not be installed into a current
system due to dependency conflicts, Strata enables quick
provisioning of a new system with the required dependen-
cies. Strata enables easy testing and rollback through its
virtual layered file system and use of layers. First, an ad-
ministrator would create a new layer with the upgraded
software. The administrator would then provision a new
virtual layered file system to use that layer instead of the
older software used in the original virtual machine. The
administrator could then run his tests against the upgraded

software in the new virtual machine. If the administrator
is satisfied with the results, he can then instruct the orig-
inal virtual machine to begin using the updated software
layer. However, if, during the course of real world use, it
is discovered that the upgraded software breaks, an admin-
istrator can easily rollback his virtual machine to the older
version by simply using the older layer. Since Strata never
throws away older software versions, rollbacks are simple.

A similar problem is faced by some users and adminis-
trators when software has to be upgraded due to new fea-
tures users want or security holes. Many times upgrades
software will be known to not be 100% backwards compat-
ible, but has to be upgraded anyways. Strata administra-
tors are able to provide their users with the new software
by default, while enabling their users to create other vir-
tual machines that contain the older software as well. For
example, while LATEX 2ε is mostly backwards compatible
with LATEX 2.09, it is not fully. Therefore, an administrator
can either choose to figure out how to have both versions
of LATEX installed in parallel or can go the much simpler
route of creating a LATEX 2.09 layer that can be used in a
small virtual machine for the few users who need to rebuild
old documents. This also enables users and administrators
to use software packages with known security holes in lim-
ited VMs that are isolated from other processes executing
on the same physical host.

4.4 Fixing Compromised Machines
Machines face attack on a continuous basis and while ad-
ministrator work to prevent the attacks from succeeding,
the attacks do succeed from time to time. One of the main
problems administrators face in dealing with a compro-
mised machines is that one does not always know what
the attacker modified. Therefore, the best course of action,
many times, is to completely reinstall the machine from
scratch. This results in two problems. First, reinstalling
a system from scratch can take a long time. Second, re-
installing a system from scratch can make one lose all the
data that belonged to the system. While an administrator
can backup the system before its reinstalled, this further
adds to he time it takes to restore the compromised system.

Strata changes this scenario in two fundamental ways.
First, by leveraging virtual layered file systems, it becomes
simple matter of recreating a fresh system. Since Strata
creates virtual layered file systems out of a set of shared
read-only layers composed together with a read-write layer,
even if an attacker is able to compromise the system, he can
not compromise the underlying data layers. In order to en-
sure this, the read-only nature of the shared layers is not
enforced locally, by the machine hosting the virtual lay-
ered file system, but by the remote server. By storing the
software layers on a remote distributed file system server
that enforces the read-only semantics of the share the lay-
ers are on, an attacker who breaks into a virtual machine
w/ a virtual layered file system will not be able to modify

7



the underlying shared system data that makes up the virtual
layered file system without breaking into the system that
stores the layers. An attacker will be able to compromise
this instance of the virtual layered file system, since when
he modifies files on it, they will be copied up to the private
read-write layer of the file system. However, this provides
three benefits. First, any change the attacker made will be
clearly visible by examining the private layer. Second, an
administrator can instantly clean the system by replacing
the compromised private layer with a fresh layer. Finally,
since cleaning the system does not require ridding oneself
of the compromised private layer, an administrator does not
have to waste time backing it up and can also make it avail-
able within the virtual layered file system as a regular direc-
tory without it being composed into the normal file system
view.

While quickly fixing compromised systems is useful,
this often results in throwing away the configuration
changes an administrator has made for that system. In all
the above cases, we described a single virtual layered file
system that contained multiple read-only layers that make
up the System and one read-write layer that contains the
Data areas. However, the Data area does not have to be
limited to a single layer. For instance, an administrator
can create a virtual layered file system as described above
that only has one read-write layer for the Data area. Any
configuration changes the administrator of the file system
makes, will be confined to this read-write layer. Gener-
ally, the configuration changes an administrator makes are
done up front and remain static for an extended period of
time. Therefore, one can also add another layer to the pri-
vate Data area. An administrator would first uses the virtual
layered file system as described above, with a single layer
for the private Data area, and make the appropriate config-
uration changes. When the administrator is satisfied with
the configuration changes, one adds a new private read-
write Data layer while making the current layer read-only,
resulting in the Data area being defined by two layers, one
read-only and one-read-write. This locks down the changes
the administrator made into the read-only layer, while still
enabling them to be modified in the future. If the changes
have to be blown away, due to fixing the virtual layered
file system due to the system being compromised or sim-
ply due to an administrator corrupting the configuration in
an attempt to modify it, one can simply revert back to the
locked down configuration due to it being kept on a read
only layer.

5 Strata Implementation

Strata’s FS work by leveraging and expanding upon union-
ing file systems. Unioning file systems allow the system
to join multiple distinct directories into a single directory
view. These directories are unioned by layering directories
on top of one another. For example, if one had 2 directo-

ries unioned together, one directory containing the file foo
and the other containing the file bar, the unioned directory
view would contain both files foo and bar. In order to
provide a consistent semantic, most union file systems only
allow one layer, namely the topmost to have files added to
it. At the same time, if one uses a file that already exists,
the unioning file system cause a user’s file system modifi-
cations to change the underlying file directly, in whatever
layer of the union it existed previously.

On the other hand, some union file system can also as-
sign properties to the directory layers, defining some layers
to be read only, while others can be read-write. This re-
sults in a model that borrows from copy-on-write (COW)
file systems, where a modifying a file on a lower read-only
layer will cause it to be copied to the topmost writable layer
in a COW fashion. For instance, in the above example, the
layer containing foo can be layered on top of a read only
layer containing bar. If in the course of usage file bar
get modified it will be copied to the top most layer, which
will now contain both files foo and bar, before the mod-
ification takes place. However, since the entire file has to
be copied, performance can suffer if this operation has to
occur often on large files.

This layering model also provides a semantic that di-
rectories located at higher layers in the stack can obscure
items at a lower level. Continuing the previous example,
both layers now contain the file bar, but only the top most
layer’s version of the file is visible. In order to provide a
consistent semantic, if a file is deleted, a “white out” mark
is also created on the top most layer to ensure that files ex-
isting on a lower layer are not revealed. To continue the
example, if the file bar were deleted, it would not allow
the bar on the lower layer to be revealed. The white out
mechanism also allows one to obscure files on the read only
lower layers, by just creating the obscuring white out file on
the topmost layer.

This union file system semantic provides a good base
for supporting Strata’s layering file system. Strata’s layer-
ing file system provides the ability for multiple independent
layers to be combined together into independent file system
views, such that a file system can be composed of multiple
software layers, as well as a private layer for each view.
Each view can then be treated like a regular file system in
that each can be actively modified state at same time since
each view’s modifications are confined to its personal layer.
To provide a simple example, imagine one has a directory
that one wants to branch into two distinct views. This im-
plies that processes operating in one view would be able to
modify the files, without the changes causing any effect in
the other view, and vice versa.

This model is implemented by Strata with the above
unioning file system semantic. By using the union file sys-
tem semantic described above and forcing all lower layers
to be read only and maintaining a single top most writable
layer, Strata can simply create two distinct views of the di-

8



rectory by creating 2 distinct file system view, where Strata
layers the common directory structure in each view with a
blank directory stacked on top of it. Since all modifications
will cause files to be copied to the top most directory, it en-
ables one to simply contain each views modifications into
its own space.

While most administrator will access layers through a
centrally managed layer repository, such as one is used
to using with packages, Strata provide the ability for ad-
ministrators to create their own layers. Creating a soft-
ware layer leverages the skills system administrators al-
ready have, namely the ability to install software. In or-
der to make it easier on system administrators, Strata lever-
ages the ability to use the regular tools they are used to
using, namely package management tools such as the De-
bian package management tools dpkg and apt. The gen-
eral way an administrator would install a set of software
packages is by simply telling the package manager to in-
stall those packages. Fundamentally, what these package
management tools do is ensure that the packages can be
installed, unpack the software packages and update its in-
ternal database with the fact that these packages were in-
stalled. Strata changes this in a single way. Instead of in-
stalling the software packages into a monolithic file system,
an administrator creates a new blank layer on top of the file
system, and then runs the package management tools. This
captures the software installation into the new layer which
can then be composed with other layers instead of being
just contained within a single file system.

In order for layers to be composed together and work
correctly, Strata has to provide functionality similar to a
package manager. Just like a package that a package man-
ager installs can depend on other software being available
on the machine, a software layer in Strata can depend on
software other layers contain. Strata is able to extract de-
pendencies in two ways. First, for software installed via a
package manager, it is able to extract the dependency infor-
mation provided by the packages. For example, packages
can depend on another package being installed or even a
specific version of that package. Packages can also pro-
vide virtual package names, as multiple software packages
might depend on specific functionality, such as a local mail
or web server, but does not care which software package
one uses to fulfill that functionality. Strata extracts this in-
formation and divides into three categories, packages, pro-
vides and depends. Packages are the individual packages
installed into a layer, Provides are the packages that are
provided plus the virtual packages that they might provide,
while Depends are the software packages that the packages
in the layer depend on. Strata also supports the ability to
create a software layer by hand, if an administrator would
build it from source code. In this case, Strata automates
the ability to extract certain dependencies, such as libraries
the processes will require to dynamically link, but cannot
automate hidden dependencies, such as services that might

be required, and would have to be specified by the admin-
istrator manually. Strata does not just provide simple pack-
age names, but enables the layer’s dependencies meta to be
versioned and for matching on only specific versions. In
specific, Strata provides 6 operators that can restrict which
versions will fulfill a dependency, namely 1) less than, 2)
less than or equal, 3) equal, 4) not equal, 5) greater than or
equal, 6) greater than. In fact, a layer can depend on the
same package with more than one restriction if it can be
only used with an internal subset of versions.

Strata resolves dependencies in a matter similar to how
modern Linux distributions resolve package dependency
and automatic installation of required packages. Strata has
knowledge of all the layers available to it and the interde-
pendencies between layers. Strata uses this information to
create a large directed dependency graph with two types of
nodes. The first type of node corresponds to each existing
layer, while the second type of node corresponds to dis-
tinct dependency information. If layer A depends on layer
B with version X, while layer B depends on layer B with
version Y, this will create two distinct dependency nodes.
Each existing layer has a set of directed edge to the de-
pendency nodes that correspond to its dependencies, while
each dependency node has directed edges to any layer that
fulfills the condition set by that dependency. The graph is
traversed to determine if the explicit layers can have their
dependencies filled, and then recursively over the depen-
dencies.

Strata’s architecture is designed to allow efficient scal-
ing and enable the layers to be used by many physical and
virtual machines. Strata accomplishes this by coupling a
network file system distribution approach with local caches
on each physical machine the layers will be used on. Strata
uses NFS to distribute the layers to many machines. NFS is
standardized and readily available on commodity machines
and well understood by system administrators. In addition,
Strata combines the NFS file system that stores the layers
with a persistent file system cache, namely it survives re-
boots, that enables Strata to treat many file system reads as
if they were local reads, instead of remote reads. The file
system cache is configurable in size, as well as storable on
portable media, which enables the cache to move between
computers if necessary.

In order for Strata to use the cache efficiently, the cache
is designed to only cache data on a page by page basis, as
that is the same size the underlying operating system will
read data from the file system. This enables two impor-
tant cache properties. First, Strata is able to cache files,
even if their total size would be larger than the cache itself.
Second, on an individual file level, Strata is able to cache
files that are larger than the cache itself. In order to pre-
vent temporary usage patterns from evicting important data
from the cache, Strata also supports the ability to pin data
into the cache. Data is removed from the cache when the
free spaces drop below an administrator configurable level,

9



based on the least recently used algorithm that takes into
account when the files storing the individual cache object’s
access time was updated by the kernel.

By using a cache, Strata lowers the load on the centrally
managed file server. However, depending on scalability,
Strata can overwhelm a single file server. Strata therefore
takes advantage of the fact that its software layers are static;
once they are created they are not modified directly, which
enables them to be easily mirrored across a set of machines
that can be used to scale as load increases. The problem
with this approach is that each Strata file system view can
have its own private layer that must be stored somewhere.
If its stored on a file server, it wont be available if it must
use a new file server until the layer is able to be copied to
it. In order to solve this problem, Strata allows the private
layer to be stored locally on the machine where that file sys-
tem view is being used. If the private layer is being stored
locally, existing backup solutions can be used to ensure that
recovery in case of disaster. On the flip side, this approach
prevents a virtual machine from being migrated to another
host. Therefore, Strata supports storing the private layer on
both the layer server, as well as locally depending on the
needs of the users.

5.1 Setting Up and Using Strata
To demonstrate how one sets up a layered file system and
makes use of Strata, we provide a step by step walk-through
on how one composes layers together into a file system,
as well as manually upgrades them when a new layer be-
comes available. While one would generally use a cen-
trally managed layer store and not have to create one’s own
layers, we demonstrate layer creation via conversion of a
Debian GNU/Linux packages into layers. We demonstrate
this by walking through how an administrator would setup
and use file systems layers for implementing our example
of multiple independent services of Apache instances with
their own independent file systems. Setting up layers is a
straightforward task and leverages many of the same skills
and experiences system administrators already have on a
standard Linux system.

While the majority of administrators would download
layers from a centrally managed repository, our prototype
Strata system enables an administrator to convert a Debian
GNU/Linux binary package into a self contained layer. De-
bian binary packages are generally composed of three dis-
tinct items. First, they are composed of files that would be
extracted into a given file system. Second, they are com-
posed of configuration files that belong within the file sys-
tem, but can be changed by the administrator and there-
fore should not always be overwritten. Finally, they are
composed of metadata. Strata takes the set of packages
one wants within the layer and extracts both the regular
and configuration files into a blank directory that will now
contain the layer. Then, Strata extracts the meta data from
the packages, including the package names and versions as

well as the dependency information. Finally, Strata insert
the meta data information into its own database so that the
layers can be used as part of a virtual layered file system.
All an administrator does is download the appropriate De-
bian binary packages and runs strata-create-layer
<packages> in order to create the layer. In order to cre-
ate a simple apache layer, an administrator would down-
load the apache binary packages one wants within the layer
into a blank directory and run strata-create-layer
*.deb. This takes all the apache binary packages one
downloaded to the current directory and makes a single
layer out of them. Once a layer is created it can be sim-
ply stored as a regular tar archive and copied between
systems. Strata provides strata-archive-layer
and strata-extract-layer commands that auto-
mate archiving and inserting layers into a new layer store.

Once an administrator has a layer store available to him,
all one has to do is make use of it to create new virtual
layered file systems. In a standard Debian GNU/Linux sys-
tem, an administrator would use the apt-get program
to install a package and all of its dependencies into an
existing file system. In Strata, An administrator can cre-
ate a virtual layered file system and add layers to it in
a similar manner. First an administrator creates the vir-
tual layered file system by running strata-create-fs
<name>. This creates the private read-write Data layer
for it. Then an administrator adds the appropriate layers
to it by calling strata-add-fs-layers <name>
<layer names>. The layers explicitly added with this
command are the explicit layers that belong to the file
system, while the layers that need to be used to pro-
vide all the requisite dependencies are the implicit lay-
ers. An administrator could also select specific versions of
a layer by specifying layer name-layer version.
To create a simple apache file system, we first cre-
ate the file system by running strata-create-fs
apache1.3. We then add the apache layer explicitly into
the file system by running strata-add-fs-layers
apache1.3 apache. This explicitly selects Apache,
and implicitly pulls in another 40 layers that are needed be-
cause of dependencies, including items such as the Berkley
DB library and Perl.

In order to demonstrate what occurs when a security hole
occurs, we show how an administrator would deal with a
real Debian security hole [5]. This security hole in Perl,
enables a user to exploit a race condition in a directory
tree being deleted by Perl’s File::Path::rmtree function. In
order to ensure that all systems are updated, an adminis-
trator would simply create a new layer containing the up-
date. Once the layer is available within the store, an ad-
ministrator can simply update it manually by running the
strata-update-fs <name> command. This com-
mand takes an unmounted file system and reconfigures it if
necessary. It does X items. First, it rebuilds a list of layers
that belong to this file system based on the explicit layers

10



0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

postmark

T
im

e 
(s

)
Ext3

Strata (Ext3)
NFS

Strata (NFS)

Figure 3: Postmark Overhead

assigned to it. Second, it compares this list against the list
of layers and their versions already in use. If they have
changed, Strata will remove and insert the appropriate lay-
ers from the existing file system. In our above Apache case,
since it depends on Perl, it could suffer from the above se-
curity hole. Therefore an administrator maintaining this
file system by hand would run strata-update-fs
apache1.3. This would determine that a new Perl layer
is available as it would have a higher version number, that
it satisfies all the dependencies and would integrate it into
the file system by removing the old layer and inserting the
new one.

6 Experimental Results

We have implemented Strata as a loadable kernel mod-
ule on the Linux 2.6.19 series kernel. Strata requires no
changes to the Linux kernel, as well as a user space sys-
tem status monitoring service. We present some experi-
mental results using our Linux prototype to quantify the
overhead of using Strata on various applications. Exper-
iments were conducted on an IBM BladeCenter contain-
ing 14 IBM HS20 eServer blades with dual 3.06 GHz Intel
Xeon CPUs and 2.5 GB RAM. The blades are intercon-
nected by a gigabit Ethernet switch. To measure the virtual-
ization cost of Strata’s virtual layered file system, we used
a range of micro benchmarks and real application work-
loads to measure the performance of our Linux Strata pro-
totype and compared the results against vanilla Linux sys-
tems. The blade’s local file system was formated with the
Ext3 file system, while it used the Network File System
(NFS) over a 100 megabit LAN connection to talk to the
remote file system. We tested Strata with its layers stored
on both the local and remote file systems.

The first benchmark we performed was postmark [9].
Postmark is a synthetic test that measures how the system
would behave if used as a mail server. Our postmark test
operated on files between 512 and 10K bytes with an initial
set of 20,000 and performed 200,000 transactions. Post-

0.0

50.0

100.0

150.0

200.0

250.0

300.0

Kernel Build

T
im

e 
(s

)

Ext3
Strata (Ext3)

NFS
Strata (NFS)

Figure 4: Kernel Build Overhead

mark is very intensive on a few specific file system op-
erations, such as lookup(), as it is constantly creating,
opening and removing files. As Figure 3 shows, while the
difference between layers stored locally and the local file
system is not minimal, the difference between the network
file system and the network stores layers is much greater.
Many file operations, such as lookup() require Strata
to read the contents of all the underlying layers that pro-
vide files for the directory its working on. Strata is much
quicker with a local file system due to the local file system
being able to provide the directory contents much more ef-
ficiently than the remote NFS server can. While Postmark
shows that Strata’s virtual layered file system is not the best
suited for workloads where files will be constantly created
and removed, such as the mail server it mimics, we do not
believe this is a major limitation. A user could still benefit
from Strata by using it as its intended and providing a local
vanilla file system to handle the workload of the constant
creating and removing files. In fact, this is how many sys-
tems are setup already, with separate /usr and /var file
systems. This allows /usr to remain relatively static, or
even read-only, while /var can by very dynamic.

In order to demonstrate that Postmark’s results are not
indicative of real application performance, we performed
two application benchmarks. The first benchmark was a
multi-threaded build of the Linux 2.6.19.1 kernel with up
to eight concurrent file compilations. Our second applica-
tion benchmark placed a load on the Apache web server
and measured the amount of connections that were com-
pleted per second. As can be seen from Figure 4, while
Strata imposes a slight overhead on the kernel build com-
pared to the underlying file system its using, it is relatively
negligible at under 5% in the worst case. On the other hand,
Figure 5 shows that when the http load [14] program is
used to fetch from a set of files averaging 1MB, it is able
to saturate a 1Gbps Ethernet connection in every circum-
stance, even when using the remote file system over a 100
megabit ethernet connection. This is partly due to the fact
that the machine running Apache in the different file sys-

11



0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

Apache

C
on

ne
ct

io
ns

/s
Ext3

Strata (Ext3)
NFS

Strata (NFS)

Figure 5: Apache Overhead

0.0

10.0

20.0

30.0

40.0

50.0

Read Throughput

M
B

/s

Ext3 (Cold)
Ext3 (Warm)

NFS (Cold)
NFS (Warm)

Strata (NFS) (Cold)
Strata (NFS) (Warm)

Figure 6: Read Throughput

tem environments was able to cache both the lookup()
information as well as the file data.

In order to demonstrate the direct throughput advantage
of caching, we measured how Strata impacts read and write
throughput for a 3 gigabyte file. The throughput tests were
measured by using the dd utility to write out a file of ze-
ros, as well as read in the same file in 4KB blocks. We
measured the throughput in multiple categories to quantify
the impact the different elements of the Strata file system
impact throughput performance. Figure 6 demonstrates
that while network file system performance is predictably
much worse than the local file system, when combined with
Strata’s local file system cache, performance approaches
the regular local file system. While our current Strata pro-
totype does not implement a write-back cache, and there-
fore cannot improve write performance Figure 7 demon-
strates that Strata’s layering does not impact performance
negatively either.

In order to show how Strata helps administrators man-
age updates, we quantify the updates that went into Debian
stable during 2005 and 2006. In 2005, Debian released 332
security updates, while in 2006, they released 345 updates.

0.0

10.0

20.0

30.0

40.0

50.0

Write Throughput

M
B

/s

Ext3
Strata (Ext3)

NFS
Strata (NFS)

Figure 7: Write Throughput

Of these 677 updates, 53 of them were updates to previ-
ously updated packages, with 50 of the packages needing a
second update, while 3 needed a third update. 389 individ-
ual packages had security holes that had to be fixed, with
280 only having one security hole that had to be fixed, 57
had two security holes, 26 had three, 16 packages had 4
security holes. 5 packages had 5, 3 packages had 6, while
2 packages had 7 fixes. Many of the packages with multi-
ple required fixes are common packages one finds on Linux
systems, such as squid and etheral with 7 security releases,
xine-lib which forms the basis of many media players with
6, Squirrelmail and MySQL with 5 each. This shows that
common applications that many people run will have to be
updated multiple times in a year and that administrators
need effective ways to manage these fixes.

In order to quantify how long it takes to setup Strata’s
virtual layered file system, we compared it against tradi-
tional methods. We created virtual layered file system con-
taining an Apache server made up 43 layers, while we use
the debootstrap and apt-get programs to provision a mini-
mal apache installation in a Debian GNU/Linux Environ-
ment. Finally, we measure how long it would take to un-
pack a tar archive of the same installation. Strata is able
to create the virtual layered file system containing Apache
in .1 seconds. Comparatively, untar was able to extract
a 194MB archive containing a full apache file system in
22 seconds, while debootsrap and apt-get took a
combined total of 121 seconds, where deboostrap took
106 seconds to install a base Debian installation, while the
apt-get took 15 seconds to download and install apache
and its dependencies. In both of these cases, these tools
downloaded from a local web server in order to minimize
the impact of network latencies.

7 Related Work

Strata bears a resemblance to file system versioning and
source code control systems. Operating systems such Tops-

12



20 OS [6] and VMS include native operating systems sup-
port for a versioning as a standard feature on their file sys-
tems. These OSs employ a copy on write semantic that
involves versioning a file each time a process changed it.
Other file systems, like VersionFS [10], ElephantFS [19]
and CVFS [22] have been created to provide a better inter-
face to the file system versioning metaphor.

Similarly, source code control systems, such as
SCCS [16] and CVS [8] enable users to record the state of
a file or set of files, while also enabling state to be branched
and reverted. The ability of source code control systems to
branch state bears a resemblance to Strata’s shared layers
being differentiated with a private layer. While the operat-
ing system, file system and source code control approaches
could enable a system administrator to rollback state f a
single machine if an upgrade occurred in error, they do not
allow an administrator to compose a file system out of dif-
ferent entities or manage large number of machines effi-
ciently.

Plan9’s concept of namespaces and the ability of admin-
istrators to modify namespaces at will also bears a resem-
blance to Strata’s use of layers. Plan9 viewed the entire
operating system’s set of resources as files, and therefore
depending on the resources one wanted a process to access,
one could provide processes with individualized names-
paces. Strata, on the other hand, is focused not on limit-
ing what a process can do, but on improving the ability of
administrators to manage large numbers of machines.

The most common way of provisioning machines today
is use of the package management system built into the op-
erating system one is using, on Linux this would generally
be Debian’s Package Manager (dpkg) [7] or the Red Hat
Package Manager (rpm) [17]. This approach closely mir-
rors Strata layering approach. While these systems work
with individual packages that have to be installed on indi-
vidual machines, each individual package is a set of files
that belong together. Strata’s layers are inspired by this
concept. Strata however improves on this concept by en-
abling the set of files to only be installed once. If one has
to manage a large number of machines via packages, en-
suring that each machine gets updated takes a significant
amount of time due to each machine having to be upgraded
individually.

Both The Collective [20] and Ventana [2] attempts to
solve a similar problem. The collective uses shared vir-
tual disks to improve the ability of system administra-
tors to manage large number of virtual machine instances.
Each virtual machine in the collective will generally have
2 disks, a system disk that is shared and a private per ma-
chine virtual disk that contains content specific to the user
or virtual machine. The collective combines these virtual
disks with an intelligent caching architecture that enables a
user to carry around a small cache device and have quick
read/write access to their content, even in cases of limited
access to the centralized servers that store the disks. Ven-

tana is similar to Strata, but instead of providing sharable
block devices, it provides sharable file systems. However,
unlike Strata, both the Collective and Ventana manage the
disks at either the block device level or the monolithic file
system level, providing the user’s with a single file system.
While in an ideal setting administrators might be able to
create one or very few shared images, in practice an ad-
ministrator will need many images, and therefore will suf-
fer from having to update each independent image. Strata
on the other hand just composes a virtual layered file sys-
tem together, so no matter how many virtual layered file
systems a system administrator needs to support.

MIT’s Project Athena [1] shares some similarities to
Strata, in its goal to manage large numbers of machines.
However, while its overall goals were much more broad,
such as its ability to handle heterogeneous hardware, while
providing users with a consistent environment no matter
what machine they were running. Like Strata, Athena was
centrally managed and distributed the majority of the soft-
ware machines would run via network file systems. This
enables an administrator to install software once and have it
available on all systems. However, unlike Strata, in Athena
all systems have to be consistent, and therefore does not let
users or administrator customize a particular system that
might be in use. While users can make use of some aspects
of Athena, such as applications stored on centrally man-
aged file systems, while still be managed independently,
such as on a user’s personal machine, this prevents that
machine from receiving many of the benefits of centralized
management.

Systems like Symantec’s Ghost [23] and Radmind [3] let
administrators centrally manage machines. Unlike Strata,
these systems have to be totally under the control of the
system administrators. While Ghost manages file system
images and is therefore limited in the ways that all file sys-
tem or block based schemes are, Radmind shares Strata’s
concept of having a set of layers that are placed one on top
of another. Unlike Strata, Radmind requires that the soft-
ware be installed on the host itself, which adds to the time
the machine is unavailable.

Strata is based on the union file system concept, but ex-
pands it use to managing large number of machines. While
unioning file systems have been used to union data to-
gether, they have not been used as a basis for managing
single or multiple machines. Strata makes use of a mod-
ified UnionFS file system [24] that provides the ability to
memory map files correctly, thereby enabling applications
that depend on correct memory map semantics to runs cor-
rectly, such as the startup scripts in Debian GNU/Linux.

8 Conclusion and Future Work

Strata’s virtual layered file system enables system adminis-
trators to manage the virtual and physical computers under
their control in interesting new ways. Virtual layered file

13



system provide for simple and quick provisioning of file
systems, while also providing the ability to upgrade and
rollback all the different file systems one manages easily.
Virtual layered file systems are not limited to virtual ma-
chines, but can be used in any environment one would make
use of a file system, be it a virtual machine, a virtual private
server, a simple chroot environment or even the physical
machine they are hosted on. We have implemented Strata
on Linux without requiring any operating system kernel
changes, and have demonstrated how virtual layered file
systems can be used in real life situations to improve the
ability of system administrators to perform their jobs. Our
measurements on real world applications demonstrate that
Strata imposes little overhead.

Strata raises a number of interesting follow-up research
questions. First, while our Strata prototype works on
generic file systems, such as Ext3 and NFS, what would
happen if the underlying backing store provided a better
feature set for Strata to perform its actions. Some file sys-
tems [13] provide the ability to perform COW operations at
the block level internally, for example, to support file sys-
tem snapshots. If this COW functionality could be exposed
to Strata, it could improve the ability of Strata to copy the
file in cases where it has to perform its own COW opera-
tions. Second, while Strata explores the benefits of layers
to provisioning and maintaining a file system, the question
can layers be used to branch a file system state into two
distinct entities and what benefits can that bring to the ad-
ministration and testing of systems.

References

[1] J. M. Arfman and P. Roden. Project athena: Supporting dis-
tributed computing at mit. IBM Systems Journal, 31(3), 1992.

[2] M. R. Ben Pfaff, Tal Garfinkel. Virtualization aware file sys-
tems: Getting beyond the limitations of virtual disks. In 3rd
Symposium of Networked Systems Design and Implementa-
tion (NSDI), May 2006.

[3] W. D. Craig and P. M. McNeal. Radmind: The integration of
filesystem integrity checking with filesystem management.
In Proceedings of the 17th Large Installation System Ad-
ministration (LISA 2003) Conference, pages 1–5, San Diego,
CA, October 2003. Usenix.

[4] Debian Security Team. Dsa-636-1 glibc – insecure temporary
files. http://www.debian.org/security/2005/
dsa-636, January 2005.

[5] Debian Security Team. Dsa-696-1 perl – design
flaw. http://www.debian.org/security/2005/
dsa-696, March 2005.

[6] Digital Equipment Corporation. Tops-20 user’s guide, Jan-
uary 1980.

[7] J. Fernandez-Sanguino. Debian gnu/linux faq - chapter 7
- the debian package management tools. http://www.
debian.org/doc/FAQ/ch-pkgtools.en.html.

[8] F. S. Foundation. CVS - Concurrent Versions System.
http://www.nongnu.org/cvs/.

[9] J. Katcher. PostMark: A New File System Benchmark. Tech-
nical Report TR3022, Network Appliance, Inc., 2001.

[10] K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and
E. Zadok. A Versatile and User-Oriented Versioning File
System. In Proceedings of the Third USENIX Conference
on File and Storage Technologies (FAST 2004), pages 115–
128, San Francisco, CA, March/April 2004. USENIX Asso-
ciation.

[11] M. Murphy. Apache 2.0.3.7 - 2.0.45 apt exploit. http:
//www.milw0rm.com/exploits/38, 2003 June.

[12] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The De-
sign and Implementation of Zap: A System for Migrating
Computing Environments. In Proceedings of the Fifth Sym-
posium on Operating Systems Design and Implementation
(OSDI 2002), Boston, MA, Dec. 2002.

[13] Z. Peterson and R. Burns. Ext3cow: A time-shifting file sys-
tem for regulatory compliance. ACM Transcations on Stor-
age, 1(2):190–212, 2005.

[14] J. Poskanzer. http://www.acme.com/software/
http load/.

[15] S. Potter and J. Nieh. Reducing downtime due to system
maintenance and upgrades. In Proceedings of the 19th Large
Installation System Administration Conference (LISA 2005),
pages 47–62, San Diego, CA, December 2005.

[16] M. J. Rochkind. The source code control system. IEEE
Transaction on Software Engineering, 1(4):364–370, De-
cember 1975.

[17] rpm.org - the rpm package manager. http://www.rpm.
org/.

[18] SANS Institute’s Internet Storm Center. Reports of bots ex-
ploiting pmwiki and tikiwiki. http://isc.sans.org/
diary.php?storyid=1672, September 2006.

[19] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch,
R. W. Carton, and J. Ofir. Deciding when to forget in the ele-
phant file system. In The 17th ACM Symposium on Operating
Systems Principles (SOSP), December 1999.

[20] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,
and M. Rosenblum. Optimizing the migration of virtual com-
puters. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, 2002.

[21] SecurityFocus. Php file upload global variable overwrite
vulnerability. http://www.securityfocus.com/
bid/15250, November 2006.

[22] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R.
Ganger. Metadata efficiency in a comprehensive versioning
file system. In 2nd USENIX Conference on File and Storage
Technologies, March 2003.

[23] Symantec Corporation. Symantec ghost solution suite.
http://www.symantec.com/enterprise/
products/overview.jsp?pcid=1025&pvid=
865 1.

[24] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P. Quigley,
E. Zadok, and M. N. Zubair. Versatility and unix semantics in
namespace unification. ACM Transactions on Storage (TOS),
2(1):1–32, February 2006.

14

http://www.debian.org/security/2005/dsa-636
http://www.debian.org/security/2005/dsa-636
http://www.debian.org/security/2005/dsa-696
http://www.debian.org/security/2005/dsa-696
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html
http://www.nongnu.org/cvs/
http://www.milw0rm.com/exploits/38
http://www.milw0rm.com/exploits/38
http://www.acme.com/software/http_load/
http://www.acme.com/software/http_load/
http://www.rpm.org/
http://www.rpm.org/
http://isc.sans.org/diary.php?storyid=1672
http://isc.sans.org/diary.php?storyid=1672
http://www.securityfocus.com/bid/15250
http://www.securityfocus.com/bid/15250
http://www.symantec.com/enterprise/products/overview.jsp?pcid=1025&pvid=865_1
http://www.symantec.com/enterprise/products/overview.jsp?pcid=1025&pvid=865_1
http://www.symantec.com/enterprise/products/overview.jsp?pcid=1025&pvid=865_1

	Introduction
	Strata Architecture
	Strata Life Cycle
	Examples Usages
	Managing Multiple Virtual Machines
	Managing Multiple Physical Machines
	Managing Multiple Software Versions
	Fixing Compromised Machines

	Strata Implementation
	Setting Up and Using Strata

	Experimental Results
	Related Work
	Conclusion and Future Work

