
A Common Protocol for Implementing Various DHT Algorithms

Salman Baset Henning Schulzrinne Eunsoo Shim

Department of Computer Science Panasonic Princeton Laboratory
Columbia University Two Research Way, 3rd Floor
New York, NY 10027 Princeton, NJ 08540

{salman,hgs}@cs.columbia.edu eunsoo@research.panasonic.com

Abstract

This document defines DHT-independent and DHT-dependent features of DHT algorithms
and presents a comparison of Chord, Pastry and Kademlia. It then describes key DHT oper-
ations and their information requirements.

1 Introduction

Over the last few years a number of distributed hash table (DHT) algorithms [1, 2, 3, 4, 5]
have been proposed. These DHTs are based on the idea of consistent hashing [6] and they
share a fundamental function, namely routing a message to a node responsible for an identifier
(key) in O(log2bN) steps using a certain routing metric where N is the number of nodes in
the system and b is the base of the logarithm. Identifiers can be pictured to be arranged in a
circle in Chord [1], Kademlia [4] and Pastry [2] and a routing metric determines if the message
can traverse only in one direction ([anti-]clockwise) or both directions on the identifier circle.
However, independent of the routing metric and despite the fact that the author of these DHT
algorithms have given different names to the routing messages and tables, the basic routing
concept of O(log2N) operations is the same across DHTs.

In this paper, we want to understand if it is possible to exploit the commonalities in
the DHT algorithms such as Chord [1], Pastry [2], Tapestry [3] and Kademlia [4] to define a
protocol by which any of these algorithms can be implemented. We have chosen Chord, Pastry
and Kademlia because either they have been extensively studied (Chord and Pastry) or they
have been used in a well-deployed application (Kademlia in eDonkey [7]). We envision that
the protocol should not contain any algorithm-specific details and possibly have an extension
mechanism to incorporate an algorithm-specific feature. The goal is to minimize the possibility
of extensions that may unnecessarily complicate the protocol.

We first define the terminology and metrics used in our comparison of DHTs in section 2
and 3 and then give a brief description of Chord, Pastry and Kademlia in section 4. The authors
of these algorithms have proposed a number of heuristics to improve the lookup speed and
performance such as proximity neighbor selection (PNS) [2] which should not be considered
part of the core algorithm. We carefully separate DHT-independent heuristics from DHT-
specific details and try to expose the commonality in these algorithms in section 5. Using
this commonality, we then define algorithm-independent functions such as join, leave, keep-
alive, insert and lookup and discuss protocol semantics and information requirements for these
functions in section 6.

1

2 Terminology

Some of the terminology has been borrowed from the P2P terminology draft [8].

P2PSIP Overlay Peer (or Peer). A P2PSIP peer is a node participating in a P2PSIP
overlay that provides storage and routing services to other nodes in the P2P overlay and
is capable of performing operations such as joining and leaving the overlay and routing
requests within the overlay. We use the term node and peer interchangeably.

P2PSIP Client (or Client). A P2PSIP client is a node participating in a P2PSIP overlay
that provides neither routing nor route storage and retrieval functions to that P2PSIP
Overlay.

Key A key is an information that uniquely identifies a datum stored in the P2PSIP overlay.
A key refers to Peer-IDs and datum keys. In the DHT approach, this is a numeric value
in the hash space.

P2PSIP Peer-ID or ID. A Peer-ID is an information (key) that uniquely identifies a peer
within a given P2PSIP overlay.

Routing table. A routing table is used by a node to map a key to a peer responsible for
that key. It contains a list of online peers and their IDs. Each row of the routing table
can be thought of as having an ID (thereafter called row-ID) which is from the same
key space as the peer-ID. The row-ID i is exponentially closer to the node-ID than the
row-ID (i + 1) and is computed by applying a DHT-algorithm specific function. The
ith row can only store the IP address of one or peers whose peer-ID lie between ith and
(i+1)th row-IDs. Simplistically, the number of entries in the routing table is logarithmic
to the number of nodes in the DHT network.
A Chord peer computes its ith row-ID by performing the following modulo arithmetic:

(Peer-ID + 2i−1) % 2M where M is the key length and i is between 1 and M.

A Pastry peer with a base b computes its ith routing table key using the following
function:

prefix(M − i) where M is the length of the key.

Each row in the routing table of a Pastry peer contains 2b − 1 entries that whose ID
match the peer-ID in (M − i) digits but the (M − i) + 1th digit has one of the 2b − 1
possible values other than the (M − i) + 1th digit present in the peer-ID.

Routing table row interval (or Row-ID Interval). The routing table row interval for
row i is defined as the number of keys that lie between row-ID i and row-ID i + 1
according to a DHT-algorithm specific function.

3 Description of DHT Specific Metrics

Below, we give an explanation of metrics which we believe are significant in our comparison
of DHTs.

3.1 Distance Function

Any peer which receives a query for a key k must forward it to a peer whose ID is ‘closer’ to k
than its own ID. This rule guarantees that the query eventually arrives at the peer responsible
for the key. The closeness does not represent the way a routing table is filled but rather how
a node in the routing table is selected to route the query towards its destination. Closeness is
defined as follows in Chord, Pastry and Kademlia [9]:

2

Chord. Numeric difference between two keys. Specifically, for two keys a and b:
(b− a) mod 2M where M is the length of the key produced by a hash function.

Pastry. Inverse of the number of common prefix-bits between two keys.

Kademlia. Bit-wise exclusive-or (XOR) of the two keys. Specifically for two keys a and b:
a⊕ b

Pastry uses numerical difference when prefix-matching does not match any additional bits
and the peers which are closer by prefix-matching metric may not be closer by the numerical
difference metric.

3.2 Routing Table Rigidity

There are two ways in which a peer can select a node for its ith routing table row. It can either
select a node for row i such that the peer-ID of the node is immediately before or after (in the
DHT sense) the row-ID i among all online nodes or it can select a node whose ID lies within
the ith row-ID interval (see terminology section for a definition of row-ID interval). For its ith

row, and amongst all online nodes, Chord selects a node with a peer-ID which is immediately
after row-ID i while Pastry and Kademlia can pickup any node having an ID that lies within
the ith row-ID interval. The effect of this is that Pastry and Kademlia have more flexibility in
selecting peers for their routing table while Chord has a rather strict criteria. It is possible to
loosen the selection criteria in Chord by selecting any node in the interval without violating
the log2N bound.

Moreover, in Chord, a lookup query will never overshoot the key, i.e., it will never be sent
to a node whose ID is greater than the key being queried. Since Pastry and Kademlia can
pickup any node in the interval, a lookup query can possibly overshoot the key. Figure 3.2
shows how a peer having the same ID selects routing table entries in Chord, Kademlia and
Pastry.

3.3 Learning from Lookup Queries

The mechanism for selecting a node for a routing table row directly impacts whether a peer
can update its routing table from a lookup query it receives. If, for its ith routing table row,
a peer always selects a node amongst all online nodes whose ID is immediately before or after
the row-ID i, then the number of such peers is only one. However, choosing any peer whose
ID lies within the ith row-ID interval provides more flexibility as the number of candidate
nodes increase from one to the number of online peers in the interval. A node which intends
to update its routing table from the lookup queries it receives has a better chance of doing so.

3.4 Sequential vs Parallel Lookups

If a querying node’s routing table row contains IP address of two or more DHT nodes, then
it may send a lookup query to all of them. The reason any node will send parallel lookup
queries is because the routing table peers may not have been refreshed for sometime and thus
may not be online. If all nodes in a DHT frequently refresh their routing table, then there
may not be a need to send parallel queries even in a reasonably high churn environment. A
node can reduce the number of parallel queries it sends by by reducing the interval between
periodic keep-alives to ensure the liveness of its routing table entries. Thus, there is a tradeoff
between sending keep-alives to routing table peers, and sending parallel lookup queries.

3

8
01000

11
01011

19
10011

30
11110

21
10101

9
01001

10
01010

12
01100

16
10000

31
11111

14
01100

8
01000

11
01011

19
10011

30
11110

21
10101

9
01001

10
01010

12
01100

16
10000

31
11111

14
01100

10
01010

1
00001

3
00011

1
00001

3
00011

0 – 7
00000-
00111

Chord

Pastry and
Kademlia

24
11000

Candidate for
routing table row

Node
Routing table interval

ID’s wrap
around after
this.

Chord routing table for node 8
Row-ID Candidate nodes

9 10
10 10
12 14
16 19
24 30

Pastry routing table for node 8 (01000)
Row-ID Candidate nodes

9 (0100X) 10
10 (010XX) 10
12 (01XXX) 14
0 (0XXXX) 1, 3
16 (XXXX) 19, 21, 31

Figure 1: The figure shows the candidate routing table nodes for a peer with an ID 8 in Chord, Kademlia
and Pastry. The bold and underlined bits show the number of prefix bits matching with the node ID. The
’X’ in the Pastry routing table represent the first digit in which the row-ID differs from the peer-ID. All
digits following this digit are also labeled as ’X’.

3.5 Iterative vs Recursive Lookups

In an iterative lookup, the querying peer sends a query to a node in its routing table which
replies with the IP address of the next hop if it is not responsible for the key. The querying
peer then sends the query to this node. In a recursive lookup, the querying peer sends a query
to a node in its routing table, which after receiving the lookup query applies the appropriate
DHT metric to determine the next hop peer, and forwards the query to this peer without
replying to the querying peer. Once the node responsible for the key is found, it sends a
message directly to the querying peer instead of sending it back to the peer which forwarded
the query. Rhea [10] explains the differences between iterative vs recursive lookups.

The recursive lookup can possibly cause a mis-configured or misbehaving node to start a
flood of queries in a DHT. On the other hand, recursive lookup as described above can provide
lower latencies than iterative lookup since the node responsible for the key sends the key/value
pair directly to the querying peer instead of the peer which forwarded this query. This can
cause security issues as the querying peer now has to process responses from peers to whom

4

Table 1: DHT independent details
Key-length Recursive/

Iterative
Sequential/
Parallel

Routing table
name

Neighbor
Nodes

Chord 160 Both Sequential Finger table Successor list
Pastry 128 Recursive Sequential Routing table Leaf-set
Kademlia 160 Iterative Parallel Routing table None

Table 2: DHT specific details
Routing Data
Structure

Routing table row
selection

Symmetric Learning Overshooting

Chord Skip-list Immediately suc-
ceed the interval

No No No

Pastry Tree-like Any node in the
interval

Yes Yes Yes

Kademlia Tree-like Any node in the
interval

Yes Yes Maybe

it never sent a request.

4 Chord, Pastry and Kademlia

In this section, we try to expose commonalities in Chord, Pastry and Kademlia. These algo-
rithms are based on the idea of consistent hashing [6], i.e., keys are mapped onto nodes by a
hash function that can be resolved by any node in the system via queries to other nodes and
the arrival or departure of a node does not require all keys to be rehashed. We start by com-
paring DHT independent details of these algorithms as defined by their authors in Table 1 and
then algorithm-specific details in Table 2 and then give a brief description of Chord, Pastry
and Kademlia.

4.1 Chord

The identifiers or keys in Chord can be pictured to be arranged on a circle. Each node in
Chord maintains two data structures, a successor list which is the list of peers immediately
succeeding the node key and a finger table. A finger table is a routing table which contains
the IP address of peers halfway around the ID space from the node, a quarter-of-the-way,
an eighth-of-the-way and so forth in a data structure that resembles a skiplist [11]. A node
forwards a query for a key k to a node in its finger (routing) table with the highest ID not
exceeding k. The skiplist structure ensures that a key can be found in O(log2N) steps where
N is the number of nodes in the system. This structure can be extended to use a logarithm
base higher than two.

To join a Chord ring, a node contacts any peer in the Chord network and requests it to
lookup its ID. It then inserts itself at the appropriate position in the Chord network. The
predecessors of the newly joined node must update their successor lists. The newly joined
node should also update its finger table. Successor list is the only requirement for correctness
while finger table is used to speedup the lookups.

5

To guard against node failures, Chord sends keep-alives to its successors and finger table
entries and continuously repairs them. The routing table size is log2N . For an arbitrary
logarithm base b, the routing table size is log2bN × (2b − 1).

Chord suggests two ways for key/data replication. In the first method, an application
replicates data by storing it under two different Chord keys derived from the data’s key.
Alternatively, a Chord node can replicate key/value pair on each of its r successors.

4.2 Pastry

Like Chord, the identifiers or keys in Pastry can be pictured to be arranged on a circle; however,
the routing is done in a tree-based (prefix-matching) fashion. Each node in Pastry contains
two data structures, a leaf-set and a routing table. The leaf-set L contains |L|/2 closest nodes
with numerically smaller identifiers than the node n and |L|/2 closest nodes with numerically
larger identifiers than n and is conceptually similar to Chord successor list [9]. The routing
table contains the IP address of nodes with no prefix match, b bits prefix match, 2b prefix
match and so on where b is 1, 2, 3,...,M (M is the length of the key returned by the hash
function). The maximum size of the routing table is log2bN x 2b where N is the number of
nodes in the system. At each step, a node n tries to route the message to a node that has a
longest sharing prefix than the node n with the sought key. If there is no such node, the node
n routes the message to a node whose shared prefix is at least as long as n and whose ID is
numerically closer to the key. The expected number of hops is at most dlog2bNe.

To join the Pastry network, a node contacts any node in the Pastry network and builds
routing tables and leaf sets by obtaining information from the nodes along the path from
bootstrapping node and the node closest in ID space to itself. When a node gracefully leaves the
network, the leaf-sets of its neighbors are immediately updated. The routing table information
is corrected only on demand.

The routing table of a Pastry node is initialized such that amongst all candidate nodes
for a row i sharing a common prefix pi with the peer-ID, select a node which has the least
network latency. This technique is commonly known as proximity neighbor selection (PNS).
Pastry performs recursive lookups. However, PNS and recursive lookups are orthogonal to the
Pastry operation.

Pastry replicates data by storing the key/value pair on k nodes with the numerically closest
nodeIds to a key [2]. This method is conceptually similar to Chord’s replication of key/value
pairs on its r successors.

4.3 Kademlia

Like Chord and Pastry, the identifiers in Kademlia can be pictured to be arranged on a circle;
however the routing is done in a tree-based (prefix-matching) fashion. Each node in Kademlia
contains a routing table. Kademlia contains only one data structure i.e. the routing table.
Unlike Chord and Pastry, there are no successor lists or leaf sets. Rather, the first entry in
the routing table serves as the immediate neighbor.

Kademlia uses XOR metric to compute the distance between two identifiers, i.e. d(x, y) =
x ⊕ y. XOR metric is non-Euclidean and it offers the triangle property: d(x, y) + d(y, z) ≥
d(x, z). Essentially, XOR metric is a prefix matching algorithm which tries to route a message
to a node with the longest matching prefix and the smallest XOR value for non-prefix bits.

Kademlia maintains up to k entries for a routing table row and allows parallel lookups to
all nodes in a row. However, this is not really a Kademlia specific feature and other DHT
algorithms can implement it by maintaining multiple entries for the same routing table row.
A Chord node with a base higher than two contains more than one entry per row.

6

Table 3: DHT specific RPC

Keep-alive Lookup Store Join Updating
routing
table

Updating
neighbor nodes

Chord fix fingers() find successor() N/A join() fix fingers() stabilize()
Pastry N/A route(msg,key) N/A Side-

effect of
lookups

On demand N/A

Kademlia PING FIND NODE,
FIND VALUE,
lookup

STORE N/A N/A N/A

The routing table size is O(log2N). The lookup speed can be increased by considering IDs
b bits at a time instead of one bit at a time which implies increasing the routing table size.
By increasing the routing table size to 2blog2bN × k entries, the number of lookup hops can
be reduced to log2bN .

Kademlia replicates data by finding k closest nodes to a key and storing the key/value pair
on them. The Kademlia paper suggests a value of 20 for k.

5 DHT Commonalities

Table 1 and table 2 list the DHT-independent and DHT-specific aspects of Chord, Pastry and
Kademlia. From the above discussion, we deduce following commonalities between Chord,
Pastry and Kademlia.

• The time to detect whether a routing entry node has failed is independent of the DHT
algorithm being used.

• The flexibility in selecting a node for a routing table row impacts whether a routing table
may be updated with information from passing lookup queries.

• Lookup can be performed either iteratively or recursively. Lookup messages can be
forwarded either sequentially or parallel.

• It is possible to define replication strategies independent of the underling DHT algo-
rithms.

• The choice of hash function and the length of the key are independent of the routing
algorithm.

• Each peer has knowledge about some neighbor nodes.

6 DHT Protocol Operations and their Semantics

In this section, we define and describe DHT operations and information requirements for each
operation. But first, we give a brief description of related work.

7

6.1 Related Work

Dabek et al. [12] defined a key-based API (KBR) which can be used to implement a DHT-
level API. They define a RPC void route(key(K), msg (M), nodehandle (hint)) which
forwards a message, M, towards the root of the key K. The optional hint specifies a node that
should be used as a first hop in routing the message. The put() and get() DHT operations
may be implemented as follows:

• route(key,[PUT,value,S],NULL) The put operation routes a PUT message contain-
ing value and the local node’s handle, S, to the root of the key.

• route(key,[GET,S],NULL) The get operation routes a GET message to the root of the
key which returns the value and its own handle in a single hop using route(NULL,[value,R],S).

To replicate a newly received key (k) r times, the peer issues a local RPC replicaSet(S,r)
and sends a copy of the key to each returned node. The operation implicitly makes the root
of the key and not the publisher responsible for replication.

Singh and Schulzrinne [13] defined a XML-RPC based API for DHTs. Their approach is
based on OpenDHT [14] and they define a data interface with and without authentication,
which allows inserting, retrieving and removing data on a DHT (put, get), and a service
interface, which allows a node to join a DHT for a service and another node to lookup for a
service node (join, lookup, leave).

We define six DHT operations (API) namely join, leave, insert (put), lookup (get), remove,
keep-alive and replicate which a node (peer) participating in a DHT may initiate. A node
(client) which does not participate in a DHT network requests a peer in the DHT network to
perform these operations on its behalf and thus client-to-peer API is independent of the DHT
algorithm being used. The peer-to-peer API can also be independent of the DHT algorithm
being used because determination of the next hop is done locally at a peer by applying an
algorithm-specific metric.

6.2 Join

A node initiates a join operation to a peer already in the DHT to insert itself in the DHT net-
work. The mechanism to discover a peer already in the DHT is independent of any particular
DHT being used. The joining node and its neighbors must update their neighbors accordingly.

A joining node may want to build its routing table by getting a full or partial copy of its
neighbors or any appropriate node’s routing table. It will also need to obtain key/value pairs
it will be responsible for.

A join operation initiated by a P2PSIP client does not change the geometry of the DHT
network. The operation is conceptually similar to insert(put).

Following is the list of information that will be exchanged between the newly joining node
and existing peers.

• [s]1 An overlay ID.
• [s] Peer-ID of the joining node.
• [s] Contact information or IP address of the joining node.
• [s] Indication whether this peer should be inserted in the p2p network thereby changing

the geometry or merely stored on an existing peer. This field accommodates overlay
peers and clients as defined in [8].

• [r]2 Full or partial routing table of an existing node(s).
• [r] List of immediate neighbors.

1[s]: a peer sends this information
2[r]: a peer receives this information perhaps in response to the message it sent

8

6.3 Leave

A node initiates a leave operation to gracefully inform its neighbors about its departure. The
neighbors must update their neighbor pointers and take over the keys the leaving node is
responsible for.

• [s] The departing node’s key.

• [s] List of key/value pairs to be transferred.

• [r] Acknowledgement that the node has been removed from the DHT.

6.4 Insert (put)

A node (overlay client or peer) initiates an insert operation to a peer already in the DHT to
insert a key/value pair. The insertion involves locating the node responsible for key using the
lookup operation and then inserting either a reference to the key/value pair publisher or the
key/value pair itself. The insert operation is different from the join operation in the sense
that it does not change the DHT geometry. The insert operation can also be used to update
the value for an already inserted key.

• [s] Key for the object(value) to be inserted.

• [s] Data item for the key (or value). A sender may choose to only send the value of the
key in the insert operation after the node responsible for the key has been discovered.

• [s] A flag indicating whether the lookup should be performed recursively or iteratively.

• [s] Publisher of the key. Multiple publishers can publish data under the same key and a
node storing a key/value pair uses this field to differentiate among the publishers.

• [s] Key/value lifetime. The time until an online peer must keep the key/value pair. The
publisher of the key/value pair must refresh it before the expiration of this time.

6.5 Lookup (get)

A node initiates a lookup operation to retrieve a key/value pair from the DHT network.
It locally applies DHT routing metric (Chord, Pastry or Kademlia) on its routing table to
determine the peer to which it should route the message. The peer responsible for the key/value
pair (root of the key) sends it directly back to the querying node. The value can be an IP
address, a file or a complex record.

The lookup message can be routed sequentially or in parallel. The lookup message can
also be routed iteratively or recursively. A node routing a recursive query may add its own
key and IP address information in the lookup message before forwarding it to the next hop.

Following is the list of information exchanged between the querier, forwarding peers and
the peer holding the key/value pair.

• [s] Key to lookup.

• [s] A flag indicating whether the lookup should be performed recursively or iteratively.

• [s] Publisher of the key. A non-empty value means that a node is interested in the value
inserted by a certain publisher.

• [a]3 Forwarding peer’s key and IP address. A node in the path of a lookup query may
add its own ID and IP address to the lookup query before recursively forwarding it. This
information can be used by the querying peer to possibly update its routing tables.

3[a]: a peer appends information to the message passing through it

9

• [r] Data item for the key or an indication that key cannot be found. If the lookup is
iterative, this value also indicates whether the lookup is complete or whether the node
should send the query to the next-hop peer returned in this message.

6.6 Remove

Even though each stored key/value pair has an associated lifetime and thus will expire unless
refreshed by the publishing node in time, sometimes the publishing node may want to remove
the key/value pair from the DHT before lifetime expiration. In this case, the publishing node
initiates the remove operation.

• [s] Publishing node’s key.

• [s] Key for the key/value pair to be removed.

• [r] Acknowledgment that the key has been removed.

6.7 Keep-alive

A peer initiates a keep-alive operation to send keep-alive message to its neighbors and routing
table entries. The two immediate neighbors do not need to send a periodic keep-alive message
to each other. The peers can use various heuristics for keep-alive timer such as randomly
sending a keep-alive within an interval.

If a neighbor fails, a peer has to immediately find a new neighbor to ensure lookup cor-
rectness. If a routing entry fails, a node may choose to repair it immediately or defer till a
lookup request arrives.

• [s] Sending node’s key.

• [s] Keep-alive timer expiration.

6.8 Replicate

In order to ensure that a key is not lost when the node goes offline, a node must replicate the
keys it is responsible for. Heuristics such as replicate to the next k nodes can be applied for
this purpose.

A node may also need to replicate its keys when its neighbors are updated.

• [s] List of key/value pairs

7 Conclusion

In this paper, we have defined DHT-independent and DHT-dependent features of various DHT
algorithms and presented a comparison of Chord, Pastry and Kademlia. We then described
DHT operations and their information requirements. We are working on designing a simple
protocol to implement these operations.

8 Acknowledgements

This draft reflects discussions with Kundan Singh.

10

References

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and
H. Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for internet applica-
tions,” IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 17–32, 2003.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems,” in Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware 2001), Heidelberg, Germany,
November 2001.

[3] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz,
“Tapestry: A resilient global-scale overlay for service deployment,” IEEE Journal on
Selected Areas in Communications, vol. 22, no. 1, pp. 41–53, Jan. 2004.

[4] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information system based
on the xor metric,” in IPTPS’01: Revised Papers from the First International Workshop
on Peer-to-Peer Systems. London, UK: Springer-Verlag, 2002, pp. 53–65.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A scalable content-
addressable network,” in SIGCOMM ’01: Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for computer communications. New
York, NY, USA: ACM Press, 2001, pp. 161–172.

[6] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin, “Consistent
hashing and random trees: distributed caching protocols for relieving hot spots on the
world wide web,” in STOC ’97: Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing. New York, NY, USA: ACM Press, 1997, pp. 654–663.

[7] “eDonkey. http://www.edonkey.com/.”

[8] D. Willis, D. Bryan, P. Matthews, and E. Shim, “Concepts and terminology for peer-to-
peer SIP,” Internet Draft, June 2006, work in progress.

[9] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Looking up data
in p2p systems,” Communications of the ACM, vol. 46, no. 2, pp. 43–48, 2003.

[10] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a DHT,” in
Proceedings of the 2004 USENIX Annual Technical Conference (USENIX ’04), Boston,
Massachusetts, June 2004.

[11] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees,” in Workshop on
Algorithms and Data Structures, 1989, pp. 437–449.

[12] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards a common api
for structured peer-to-peer overlays,” in Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS03), Berkeley, CA, 2003.

[13] K. Singh and H. Schulzrinne, “Data format and interface to an external peer-to-peer
network for SIP location service,” Internet Draft, May 2006, work in progress.

[14] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica, and
H. Yu, “Opendht: a public dht service and its uses,” in SIGCOMM ’05: Proceedings of the
2005 conference on Applications, technologies, architectures, and protocols for computer
communications. New York, NY, USA: ACM Press, 2005, pp. 73–84.

11

