
MacShim: Compiling MATLAB to a Scheduling-Independent
Concurrent Language

Neesha Subramaniam, Ohan Oda, and Stephen A. Edwards∗

Department of Computer Science, Columbia University

Abstract

Nondeterminism is a central challenge in most concurrent
models of computation. That programmers must worry
about races and other timing-dependent behavior is a key
reason that parallel programming has not been widely
adopted. TheSHIM concurrent language, intended for hard-
ware/software codesign applications, avoids this problemby
providing deterministic (race-free) concurrency, but does not
support automatic parallelization of sequential algorithms.

In this paper, we present a compiler able to parallelize a
simple MATLAB -like language into concurrent SHIM pro-
cesses. From a user-provided partitioning of arrays to pro-
cesses, our compiler divides the program into coarse-grained
processes and schedules and synthesizes inter-process com-
munication. We demonstrate the effectiveness of our ap-
proach on some image-processing algorithms.

1 Introduction

In this paper, we present a compilation technique that trans-
lates embarrassingly parallel MATLAB -style code (we sup-
port only a small subset of the language) intoSHIM, a
model and programming language that provides scheduling-
independent concurrency, i.e., the input/output behaviorof
a SHIM process is independent of any nondeterministic
choices made by the scheduler. In particular, race conditions
simply cannot occur in the model.

While the general problem of translating nested loops
with affine array indices into fairly efficient parallel codeis
hardly new, our work is novel for two reasons: the deter-
ministic concurrent (SHIM) model we target and the coarse-
grained parallelism approach we take. Specifically, rather
than attempting to pipeline or parallelize instruction se-
quences in loops, we split the code of a loop nest operating
on arrays into a user-specified number of concurrent pro-
cesses, each of which contains a customized version of the
loop nest operating on a different part of the array. We do not
allow loop-carried dependencies, so our work is only appli-
cable to embarrassingly parallel algorithms. Nevertheless,
preliminary experimental results suggests that it is practical.

Our compiler, dubbed MacShim (“MATLAB converter for
SHIM”), takes a program written in a MATLAB -like syntax

∗Edwards and his group are supported by anNSF CAREERaward, gifts
from Intel and Altera, and grants from theSRCand New York State’sNYS-
TAR program.

MATLAB

Predefined # of processes

Slice 1 Slice 2 Slice N

MacAnalyzer

Data Range Table

CommGen

SHIM

Step 1.

Step 2.

Communication graph

Step 2 in detail

Communication
Generation

Process
Generation

Step 1 in detail

MATLAB

parser

AST tree

Range
Analyzer

Grid info

Data Range
Table

Figure 1: A graphical representation of the structure of our
MacShim compiler.

that consists of a series of nested loops performing regu-
lar array accesses (with no loop-carried dependencies) and
a user-specified partition of the arrays used in the program
to parallel processes and compiles it into a concurrentSHIM

program. Our main contributions are techniques for analyz-
ing the data dependencies and synthesizing the needed inter-
process communication.

The ultimate targets of our approach are multicore CPUs
and systems-on-a-chip. TheSHIM model assumes these
processors have local memories (i.e., not an arbitrary large
shared central memory) and some form of message-passing
communication. Programming such systems is known to be
difficult despite such standards as MPI and OpenMP. The
goal of SHIM is to provide a deterministic concurrent pro-
gramming environment that prevents many of the common
pitfalls of concurrent programming (e.g., nondeterministic
data races and deadlocks); the goal of this work is to provide
an even more convenient specification for certain types of
parallelizable (loops over arrays) algorithms.

1.1 Overview

Figure 1 depicts the structure of our compiler. Starting
from a MATLAB -like program and a specification of how
the arrays in the program should be distributed among
concurrently-running processes, the compiler first deter-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for y = 2:imageY1

for x = 2:imageX1

sumX = 0;

sumY = 0;

for i = 1:1

for j = 1:1

sumX = sumX + inputImage(x+j, y+i) * sobelX(j+2, i+2) / 8;

sumY = sumY + inputImage(x+j, y+i) * sobelY(j+2, i+2) / 8;

end;

end;

sobelImage(x, y) = sumX * sumX + sumY * sumY;

end;

end;

for y = 2:2:imageY

for x = 2:2:imageX

halfOut(x/2, y/2) = sobelImage(x, y);

end;

end;

Figure 2: MATLAB code for a Sobel-like operation followed
by a half-size operation

1

240
241

480

1 320 321 640

P0

P1

P2

P3

inputImage and sobelImage

1

120
121

240

1 160 161320

P0

P1

P2

P3

halfOut

Figure 3: A particular user-specified array partitions for the
example in Figure 2

mines, for each process, the regions of each array needed to
compute the data for which the process is responsible. This
information is summarized in a data range table; Section 4
describes this.

In the second step, the information from the first step is
used to synthesize the code for each process. This amounts
to copying the structure and modifying details such as array
indices and loop bounds. The other important component
of the generated code performs inter-process communica-
tion. Before the execution of each loop nest, the processes
exchange the parts of each array that are owned by other
processes. Section 5 describes the communication synthesis
procedure; Section 6 describes the code generation proce-
dure.

Figure 2 shows an example we will use to illustrate the
operation of our compiler. It consists of two loop nests with
simple dependencies. In the first, theinputImage array is
convolved with the 3×3 sobelX andsobelY arrays to produce
thesobelImage array. In the second, thesobelImage array is
decimated to produce thehalfOut array.

This basic example uses five arrays:inputImage, sobe-

inputImage[x+ j,y+ i]

sobelX[j +2, i+2] sobelY[j +2, i+2]

sumX sumY

sobelImage[x,y]

Figure 4: The data dependence graph for the first loop nest
in Figure 2

lImage, halfOut, sobelX and sobelY. We assume the first
three are fairly big arrays and should therefore be distributed
among two or more processes. Figure 3 shows a particu-
lar distribution for four processes. The twosobel arrays are
small; each process keeps its own local copy of them.

Each iteration of both loop nests are independent (a not-
uncommon feature in image processing algorithms) and are
therefore easy to partition among multiple processes. The
one challenge, and the one our compiler is most concerned
with, is the fact that small portions of theinputImage array
must be shared among multiple processes (i.e., the overlap
along boundaries since the loops are performing a pair of
convolutions). To address this, our compiler identifies such
data dependencies and synthesizes communication actions
that make the processes first exchange just enough of each
array to be able to perform each part of their computation in-
dependently. Identifying such dependencies and synthesiz-
ing the communication code they demand is the main focus
of our compiler.

In the remainder of the paper, after a review of related
work and theSHIM model that is our code generation target,
we discuss first the problem of inferring the ranges of each
array that are needed by each process (Section 4), then the al-
gorithm we use to synthesize the communication among pro-
cesses based on the results of the range inference algorithm
(Section 5), and finally the challenge of generating code for
each process (Section 6).

In Section 7, we present experimental results that shows
our technique can provide a modest speedup on a dual-
processor Pentium-III system withSHIM running on top of
POSIX thread, and finally discuss future work in Section 8.

2 Related Work

Although MATLAB has traditionally been executed by a
single-threaded interpreter, it has also been compiled. For
example, The MathWorks sells a compiler that translates
MATLAB into C code suitable for a single processor. Our
MacShim compiler tackles the harder problem of generating
code for multiple processors.

Others have attempted to either translate or interpret MAT-
LAB programs for parallel processors. DeRose and Padua’s
FALCON compiler [2, 3] translates MATLAB scripts into For-
tran 90 programs. Quinn et al.’s Otter [8] compiler translates
MATLAB programs into SPMD C programs with MPI calls.

2

process source(int32 &A) {

A = 17; // Send a sequence

A = 42; // to output A

A = 157;

A = 8;

}

process buffer(int32 &B, int32 A) {

for (;;) B = A; // Copy A to B

}

process sink(int32 B) {

for (;;) B; // Read and discard B

}

network main() {

sink(); // Run processes in parallel

buffer(); // port connections implicit

source(); // (done by name)

}

Figure 5: A simpleSHIM program for a one-place buffer.
The source writes four values; the buffer copies its input to
its output; and the sink always reads its input.

The RTExpress Parallel Libraries from Integrated Sensors
Inc. consist of parallel performance-tuned implementations
of over 200 MATLAB functions in C with MPI calls. Multi-
MATLAB [7] is a parallel MATLAB interpreter that, like our
work, targets multiprocessors and networks of machines us-
ing MPI, but uses a parallel algorithm libraries instead of try-
ing to analyze the parallelism of a MATLAB program.

The AccelFPGA compiler due to Banerjee et al. [1] trans-
lates MATLAB programs (signal-processing algorithms are
their main target) into register-transfer-level code thatcan be
synthesized onto field-programmable gate arrays. This ap-
proach seeks “instruction-level” parallelism, e.g., whentwo
arithmetic operations in a loop may be pipelined or executed
in parallel; by contrast, we partition the iterations of a loop
in to multiple tasks that are executed separately.

The Compaan compiler due to Kienhius et al. [6] is prob-
ably closest in spirit to our work. Like us, they target a de-
terministic concurrent model of computation (Kahn process
networks, a superset of theSHIM model that adds unbounded
buffers), but again, their focus is more on “instruction-level”
parallelism and their objective is mainly to pipeline signal
processing algorithms. Compaan accepts a subset of MAT-
LAB similar to ours, but richer because they allow certain
loop-carried dependencies; we only accept simpler compu-
tations.

3 The SHIM language

In the SHIM language [5, 4], a system consists of
concurrently-running sequential processes that communi-
cate exclusively through fixed, point-to-point communica-
tion channels with rendezvous. SHIM systems are described
with an imperative language with C-like syntax. Figure 5 is
an example. Each process has local variables; there are no
global variables. All processes execute concurrently.

Inter-process communication is synchronous: both sender

and receiver must agree on when data is transferred; one al-
ways waits for the other. A process’s arguments are input
and output channels. Each appearance of a channel name
becomes a write if it appears on the left of an assignment
and a read otherwise.

The topology of communication channels and the num-
ber of processes is fixed and each communication channel
connects one writing process to one reader. The communica-
tion structure of a system is therefore a directed graph whose
nodes are processes and whose arcs are channels. The graph
may contain cycles.

3.1 Syntax

A SHIM program (e.g., Figure 5) consists of three kinds of
declarations:structs,processs, andnetworks.

Structs. Struct declarations are C-like type declarations.
Current variable types inSHIM are Booleans, fixed-size
signed and unsigned integers, structs, and arrays. Booleans
are 1-bit unsigned integers. There are no pointer types.

struct s {

bool b; Boolean
int32 i; signed 32-bit integer (including sign bit)
uint16 t[24]; array of 24 unsigned 16-bit integers

};

Processes. A process declaration looks like a C function
declaration and contains imperative code that runs sequen-
tially. It is introduced by theprocess keyword followed by
the name of the process, the formal arguments of the process
between parentheses, and the body of the process delimited
with curly braces. E.g.,

process xor(int8 I, int8 J, int8 &O) { O = I^J; }

The formal arguments of a process are its ports. Mimick-
ing the syntax of C++ pass-by-reference parameters,SHIM

uses& to indicate an output port; all others are inputs. Here,
I andJ are input ports;O is an output.

The body of a process consists of C-like code that may
include if-else and switch-case-default conditionals,while
and for loops (includingbreak and continue), label and
goto statements, expressions (including assignments), block
statements and local variable declarations.

Expressions may mix local variable names and port names
freely. Atomic assignments between structs or arrays are
supported.

Networks. A network declaration, which instantiates a set
of processes or subnetworks, is introduced by thenetwork
keyword followed by the name, the formal arguments, and
the body of the network. The formal arguments are the ports
of the network. The body of a network consists in a list of
local channel declarations followed by a list of process and
network instances.

3

1: procedure analyzeRangeInference(output arrayo, dis-
tributionsDp[o], dependent inputsI[1],...,I[n])

2: Notation:R[v] is the range ofv
3: Determine the access regionR[o] from the indices of

o
4: for each of this output’sm processesp = P1, . . . ,Pm

do
5: if Rp[o] = R[o]∩Dp[o] is not emptythen
6: from Rp[o], find the ranges of variablesv1, ...,vk

one whicho depends
7: for eachdependent inputsi = I[1], ..., I[n] do
8: figure outi’s access rangeR[i]
9: if R[i] already existsthen

10: let R[i] = R[i]∪ the newly-computedR[i]

Figure 6: The range inference algorithm

network xor2(int8 I, int8 J, int8 K, int8 &O) {

int8 X;

xor(X/O);

xor(X/I, K/J);

}

Local channels connect one process (or subnetwork) in a
network to another process (or subnetwork) in the same net-
work. The types of ports connected through a channel must
match, i.e., an output port of typet may only be connected to
an input port of typet. Local channel declarations resemble
local variable declarations.

The ports of the network come from ports of processes
(or subnetworks) of the network that have no matching read-
ing or writing process within the network. Port declarations
for networks are no different from port declarations for pro-
cesses. Port and local channel declarations in networks may
be omitted as they are inferred by the compiler.

An instance resembles a function call. It consists of
the name of a process or network followed by a list of
actual arguments and a semicolon. The syntax for argu-
ments associates formal and actual ports by name instead
of position. For example, “xor(X/I, K/J);” instantiates
processxor with actual ports “(int8 X, int8 K, int8

&O)”, i.e., port nameX is substituted for nameI, nameK for
nameJ, whereas nameO is left unchanged.

4 Range Inference

The first interesting phase in our compiler, after the usual
parsing and static semantic analysis, is range inference (Fig-
ure 6), which determines what data each process needs to
execute each loop nest (e.g., the Sobel and half-size opera-
tions in Figure 2).

Some definitions: arange is a sequence of integers,
which we write with a colon, e.g.,−2:1 represents the set
{−2,−1,0,1}. We use ranges to model the values of loop
indices, although note that our ranges always include every
integer while loop indices often have a larger stride. Ranges
are actually shorthands for sets, and we will take intersec-
tions and unions of them. Note that ranges are closed under

these two operations.
A region of ann-dimensional array is a vector ofn ranges.

We write the ranges in a region as a comma-separated list of
ranges enclosed in brackets, e.g., ifa is a two-dimensional
array then[−1:2,0:3] is a range fora consisting ofa−1,0,
a0,0, . . . , a2,3. Note our regions are always rectangular and
solid. Like ranges, regions are sets that are closed under
intersection, but not under union. Instead, we take the least
upper bound when we need a union-like operation.

For each loop nest for each process, our procedure pro-
duces a range for each array with elements the process must
compute for the loop nest and the range of each array whose
elements are needed to compute this result.

4.1 Range Inference on the Example

Consider determining the range information for the first loop
nest in Figure 2 using our algorithm (Figure 6). Here, the
output arraysobelImage depends directly on two variables:
sumX andsumY, which in turn depend oninputImage, soelX,
sobelY, and themselves. Using a simple data flow analysis,
we produce the dependency graph of Figure 4, which we use
to determine which parts of which arrays are needed by each
process to execute the first loop nest.

Next, we compute the region of each output array (here,
justsobelImage) written by the loop nest, i.e., which calcula-
tions the processes are ultimately responsible for. From the
dependency graph, the output array expression issobelIm-
age[x,y] (we assume the index expressions are always linear
functions of loop indices and constants, here, justx andy).
We evaluate such expressions in a range domain in the ob-
vious way, i.e., using the minimum and maximum values of
each variable to obtain the minimum and maximum values
of a linear function of these variables.

Here, it is trivial. From the program text, we knowx
ranges over 2:639 andy ranges over 2:479 (imageX andim-
ageY are the constant values 640 and 480), so this loop nest
will compute the region[2:639,2:479] of the sobelImage
array.

Next, for each process, we compute the regions of input
arrays that it will need to compute the part of the output ar-
ray for which it is responsible. The first step is to intersect
the overall region of the output array computed by this loop
nest with the part of the output array for which the particular
processes is responsible.

Consider doing this for process P1 in Figure 3. The user
has said P1 is responsible forsobelImage[1:320,241:480].
Intersecting this with thesobelImage region this loop nest
will compute (i.e.,[2:639,2:479], computed earlier) gives
[2:320,241:479]. This is how the firstsobelImage row of
Table 1 is computed. Since this region is non-empty for this
process, our algorithm proceeds to determine the regions of
the other arrays this process will need to compute the output
array.

This final step walks backward through the data depen-
dency graph. From the range required at the output array,
our algorithm determines the ranges required of the input ar-

4

Table 1: Range information determined for the two loop nestsin Figure 2 by the algorithm in Figure 6 from the partitions in
Figure 3.

Array Regions required/produced for the first loop nest

P0 P1 P2 P3

sobelX [1:3,1:3] [1:3,1:3] [1:3,1:3] [1:3,1:3]
sobelY [1:3,1:3] [1:3,1:3] [1:3,1:3] [1:3,1:3]
inputImage [1:321,1:241] [1:321,240:480] [320:640,1:241] [320:640,240:480]

sobelImage [2:320], [2:240] [2:320,241:479] [321:639], [2:240] [321:639,241:479]

Regions for the second loop nest

sobelImage [2:320,2:240] [2:320,242:480] [322:640,2:240] [322:640,242:480]

halfOut [1:160,1:120] [1:160,121:240] [161:320,1:120] [161:320,121:240]

proceduregenerateCommunicationGraph()
for each loop nestdo

for eachprocessp do
for eachoutput arraya do

Start a new communication graph
for eachprocessp′ do

if p′ 6= p andp′ has part of arraya needed by
processp then

Add an arcp′ → p labeled with the region
needed fromp′

Figure 8: Deriving communication graphs from range tables

rays. Unlike the output range computation, this procedure
involves solving equations (because we are looking for the
inputs that produce a given output), but the equations are
easy to solve because we assume the index expressions are
linear.

For example, consider determining the region ofinputIm-
age required to evaluate the first loop nest in P1. Ear-
lier, we determined that P1 would compute the region
[2:320,241:479] of sobelImage. In the dependence graph
Figure 4, there are two equivalent paths frominputImage to
sobelImage. Along either, we find indexx in sobelImage
is determined by indexx+ j in inputImage. Since the target
indexx is so simple, the range calculation for the first dimen-
sion ofinputImage is simple: 2:320+−1:1 = 1:321. Sim-
ilarly for the second dimension, we have 241:479+−1:1=
240:480. Together, these produce the entry for theinputIm-
age row in the P1 column of Table 1.

5 Communication Synthesis and Scheduling

From the region tables, we look at what array regions a pro-
cess requires and compare them to what processes own the
data in these region to derive a communication graph such
as Figure 7 using the algorithm in Figure 8. In such a graph,
each node represents a process and each directed arc repre-
sents a region of an array that needs to be transferred along

procedurescheduleCommunication()
for each loop nestdo

Set remaining pairs to all communication pairs for
this loop nest
phase = 1
while there are remaining pairsdo

Clear the busy flag for each process
for each remaining pairdo

if both source and destination of the pair are not
busythen

Add it to the list of scheduled pairs for this
phase
Remove it from the list of remaining pairs
Mark the source and destination process as
busy

phase = phase + 1

Figure 9: Scheduling communication from the communica-
tion graphs

the arc. We produce a separate communication graph for
each loop nest.

The main check required to determine whether data must
be transferred, i.e., whether one process needs information
held by another, amounts to an intersection of regions.

To execute each loop nest, we need to perform a com-
munication for each arc in the communication graph. Such
graphs are often dense, meaning each process must perform
many communications, butSHIM semantics say that each
process may communicate with at most one other process
at a time, so the data transfers must be scheduled.

We schedule the required data transfers for each loop nest
into a sequence of phases using the heuristic algorithm in
Figure 9. In each phase, we attempt to perform as many
process-to-process communications as possible, subject to
the constraint that each process may communicate with at
most one other process in each phase. We use a greedy ap-

5

P0

P1

P2

P3
[321,241]

1

[321,240]
1

[321,240:480]

2

[321,1:240]

2

[321 :640
,241]

3

[1
:320

,241]

3

[320,240]
4

[320,241]

4 [320,241:480]

5

[320,1:240]

5

[321 :640
,240]

6

[1
:320

,240]

6

Figure 7: Communication Graph with scheduling informationfor the first loop nest for the inputImage array. Phase numbers
are in boxes.

P0

P1

P2

P3

IO

Figure 10: Structure of the synthesized processes for a four-
process partition. The IO process distributes inputs and re-
ceives results from the four numbered slave processes. Each
slave process contains a copy of the loop nests to be exe-
cuted; each is responsible for computing part of each array.

proach: we simply pick pairs of processes that need to com-
municate until no more can be selected in the current phase
(i.e., the source or destination of every remaining pair is al-
ready communicating in the phase). We repeat this selec-
tion process for as many phases as necessary to perform the
communication requested by every arc in the communica-
tion graph. Note that this algorithm ensures the number of
remaining communications decreases monotonically in each
phase, guaranteeing it will complete.

The labels on the arcs in Figure 7 indicate the phases in
which each communication takes place for the loop nest in
Figure 2. As can be seen, it is a fully connected graph that
requires six phases to complete.

6 Code Generation

The code generation stage generates code for computation
corresponding to the input MATLAB program and for inter-
process communication. Figure 10 shows a block diagram
of the structure of the generated system when there are four
computational processes. At the top is an IO process respon-
sible for reading the input image(s) and distributing them to
all the processes. At the end of computation, Process IO
receives array regions from the other processes, combines
them, and writes them out. Figure 12 shows our code gener-
ation algorithm that producesSHIM systems with this struc-
ture.

for (int y = 241 ; y <= 479 ; y = y + 1) {

for (int x = 2 ; x <= 320 ; x = x + 1) {

sumX = 0;

sumY = 0;

for (int i = 1 ; i <= 1 ; i = i + 1) {

for (int j = 1 ; j <= 1 ; j = j + 1) {

sumX = sumX + inputImage[x+j1][(y239)+i1] *
sobelX[j+21][i+21] / 8;

sumY = sumY + inputImage[x+j1][(y239)+i1] *
sobelY[j+21][i+21] / 8;

}

}

sobelImage[x1][(y240)1] = sumX * sumX + sumY * sumY;

}

}

Figure 11: SHIM code generated for the first loop nest in
Figure 2 for process P1 (Figure 3)

The communication channels connecting various pro-
cesses are of fixed size since we determined the size of each
array received and sent by each process. While computing
the range information in the input program, we identify the
type of each variable, whether it is an array, loop index, or
local variable. For each process, we declare all the local
variables. For the arrays, as we already have information
about their size in each process, we declare them and initial-
ize them using the data received from Process IO. Follow-
ing initialization, for each loop nest, communication codeis
followed by computation code. Generation of computation
code is a little tricky since array indices must be adjusted.
In particular, for each array index in a process, we subtract
the minimum index of each dimension of its region in the
process. The range of eachfor loop index is derived from its
range, computed in the range inference step (line 6 in Fig-
ure 6). If no constrained variable range was computed, the
original range is used. Finally, the computed data is sent
back to Process IO to be reassembled into the final result
arrays.

6.1 An Example

Figure 11 shows part of theSHIM code our compiler gen-
erates for one process from the first loop nest in Figure 2.

6

proceduregenerate()
call process(p) for each processp
ioprocess()
“instantiate each process”
“instantiate the IO process”

procedureprocess(p)
“write io variables, channel widths”
“initialize arrays, local variables”
for each input arraydo

“receive data from Process IO”
for each loop nestl do

communication(p, l)
body(p, l)

for eachoutput arraydo
“send data to process IO”

procedurecommunication(p, l)
for eachphasedo

if p sends data this phasethen
“copy the data to a small array”
“send the small array”

else if p receives this phasethen
“receive the data into local array”
“write it to the main array”

procedurebody(process_id, loop_nest)
walk the AST
for each root nodedo

print-SHIM-code(root-node)

procedure ioprocess()
for each input arraydo

read input array
split array into pieces according to user-provided partition
send each piece to its owning process

for eachoutput arraydo
receive data from each process
combine data into one array
write output array

Figure 12: TheSHIM code generation algorithm. Code in
quotes is output (generated).

This code is for the lower-left process when the arrays are
divided into 2×2 grids—the compiler generates three other
processes very much like this. A few basic observations: the
control structure of the generated code is the same as the
source, the ranges of thefor loops have been modified, and
the array index expressions have offsets not present in the
original code.

Such transformations are typical. Our range analysis
phase determines which parts of each array are owned and
therefore must be calculated by each process as well as all
the input data that is needed to calculate each part. This in-
formation is used to create “bloated” versions of each array
that is owned by a process that includes room for the infor-
mation from other processes. Each loop nest is then rewrit-
ten for each process such that the array indices are correct
for these bloated arrays.

A convenient side-effect of all this bookkeeping is that
MATLAB ’s indexed-from-one arrays are automatically dealt
with and converted toSHIM’s indexed-from-zero arrays.

Table 2: Experimental results for the example program

Example Number of Processes

1 2 4

time time speedup time speedup

One Processor (1.6 GHz Pentium M)

Sobel+Half 0.26s 0.27s 0.96× 0.28s 0.93×
Rotate 0.90s 1.1s 0.82× 1.2s 0.75×
Blend 0.70s 0.67s 1.04× 0.66s 1.04×

Two Processors (750 MHz Pentium III)

Sobel+Half 0.61s 0.37s 1.6× 0.37s 1.6×
Rotate 2.8s 2.5s 1.1× 2.6s 1.1×
Blend 1.7s 1.3s 1.3× 1.3s 1.3×

7 Experimental Results

We implemented the MacShim compiler in Java and used
it to generateSHIM code for a few little MATLAB pro-
grams, such as the example program in Figure 2, for one,
two, and four processes. We modified theSHIM compiler
to produce C code that uses thePOSIX threads (pthreads)
library for concurrency and inter-thread communication.
This is fairly inefficient: in particular, the generated code
uses memory-to-memory copies when transmitting arrays;
a more shared-memory-aware implementation would cer-
tainly improve upon this.

We chose pthreads because they are fairly portable and
provide a simple way to harness the power of multiprocessor
systems. We used the stock pthreads implementation under
Linux 2.6. No attempt was made to optimize the quality of
the C code generated from theSHIM code generated by our
compiler; this important issue is outside the scope of this
paper.

To evaluate the correctness of our approach, we simply
compared the output of theSHIM code generated with a
single process running some benchmarks on some images
with the output from multi-processSHIM code, which was
bitwise-identical.

To evaluate the effective speedup of the approach, we
compared the execution speed of code generated with one
process versus two and four on two platforms: a single-
processor Pentium M-based laptop (a baseline) and a dual-
processor Pentium III-based server. Each were running
Linux; the dual-processor system was using anSMP ker-
nel that automatically migrated processes across processors.
Neither of these are particularly high-performance systems;
they are intended to demonstrate the correctness and poten-
tial efficiency gains of our approach.

Table 2 reports the time it took to execute the kernels of
the three examples (Sobel+Half is the example in Figure 2

7

run on a 640×480 image,rotate turns a 2000×2000 image
ninety degrees; blend merges two 1500×1000 images using
a third image as an alpha channel). The times include some
communication overhead: the time to distribute the images
among the computation processes and to receive all the re-
sults plus all inter-process communication. They do not in-
clude any system I/O times (i.e., to read and write input and
input data). These are wall clock times gathered with the
Unix times command, which has 10 ms precision at best and
is affected by other processes running on the machine; the
experiments were conducted when the systems were lightly
loaded and the results presented here are averages—the raw
times differed in a few 10s of ms.

Not surprisingly, there is a penalty in splitting the code
into multiple processes on a single-processor system. This
is certainly due to the additional context-switching and com-
munication overhead on a single processor.

The dual-processor results illustrate the advantage of our
approach. Splitting the system into two processes produced
a 1.6× speedup on the Sobel example, which of course is
less than the ideal 2×, but is at least noticeably better. The
other two examples show a more modest speedup, but this
is because their execution time is dominated by communica-
tion. Rotate, in particular, does little more than move data
around, i.e., is much less computationally intensive than the
Sobel example. Blend is more computationally intensive,
but also uses three times as much data as the Sobel example,
so it too suffers from communication overhead.

The absolute execution times for these examples are poor.
In particular, the two-processor server is slower than the one-
processor laptop (even with a single process), but this is be-
cause the two processor system is two generations behind.
However, our goal in this work was a compilation technique
that would generate parallel code for theSHIM language; a
more efficient implementation of theSHIM semantics on par-
allel hardware is future work.

8 Conclusions and Future Work

We designed and implemented a compiler that translates
simple array operations coded in a MATLAB -like language
into theSHIM concurrent language. The compiler performs
three main operations: data range analysis from a simple
static analysis of the source code, communication analysis
from this analysis, andSHIM code generation that makes a
modified copy of the original code for each computation pro-
cess and adds code for inter-process communication code.

We make many simplifying assumptions about the input
code to make our task easier. In particular, we do not support
loop-carried dependencies, dynamically sized arrays, non-
affine array indices, and complex loop ranges. This is restric-
tive, but remains useful for a variety of image-processing al-
gorithms.

Much remains to be done. The quality of the C code gen-
erated fromSHIM will be improved. Work on improving the
speed of this code and in particular inter-process communi-
cation is ongoing. The obvious next step in our compiler

is to support more complicated input code, such as allow-
ing loop-carried dependencies. Despite these shortcomings,
we have shown that it is possible and realistic to compile
loop/array code into a coarse-grain parallelSHIM program.

References

[1] Prithviraj Banerjee, Malay Haldar, Anshuman Nayak,
Victor Kim, Vikram Saxena, Steven Parkes, Debabrata
Bagchi, Satrajit Pal, Nikhil Tripathi, David Zaretsky,
Robert Anderson, and Juan Ramon Uribe. Overview
of a compiler for synthesizing MATLAB programs onto
FPGAs. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 12(3):312–324, March 2004.

[2] Luiz De Rose, Kyle Gallivan, Efstratios Gallopoulos,
Bret A. Marsolf, and David A. Padua. FALCON: A
MATLAB interactive restructuring compiler. InPro-
ceedings of the Workshop on Languages and Compil-
ers for Parallel Computing (LCPC), volume 1033 of
Lecture Notes in Computer Science, pages 269–288,
Columbus, Ohio, August 1995.

[3] Luiz De Rose and David Padua. Techniques for the
translation of MATLAB programs into Fortran 90.ACM
Transactions on Programming Languages and Systems,
21(2):286–323, March 1999.

[4] Stephen A. Edwards and Olivier Tardieu. SHIM: A
deterministic model for heterogeneous embedded sys-
tems. InProceedings of the International Conference
on Embedded Software (Emsoft), pages 37–44, Jersey
City, New Jersey, September 2005.

[5] Stephen A. Edwards and Olivier Tardieu. SHIM: A
deterministic model for heterogeneous embedded sys-
tems.IEEE Transactions on Very Large Scale Integrated
(VLSI) Systems, 14(8):854–867, August 2006.

[6] Bart Kienhuis, Edwin Rijpkema, and Ed Deprettere.
Compaan: deriving process networks from Matlab for
embedded signal processing architectures. InProceed-
ings of the International Conference on Hardware Soft-
ware Codesign (CODES), pages 13–17, San Diego, Cal-
ifornia, May 2000.

[7] Vijay Menon and Anne E. Trefethen. MultiMATLAB:
integrating MATLAB with high-performance parallel
computing. InProceedings of the ACM/IEEE Confer-
ence on Supercomputing, pages 1–18, San Jose, CA,
November 1997.

[8] Michael J. Quinn, Alexey G. Malishevsky, and Na-
gajagadeswar Seelam. Otter: Bridging the gap be-
tween MATLAB and ScaLAPACK. InProceedings
of High Performance Distributed Computing (HPDC),
pages 114–121, Chicago, Illinois, July 1998.

8

