
Except for formatting, this report is identical to the paper published in IEEE Journal on Selected Areas in Communications, Volume 23, Number 12, December 2005. It was
retroactively submitted as a Columbia Computer Science technical report on May 10, 2007 and is assigned a technical report number and date reflecting its original publication
date.

A Control Theory Foundation for Self-Managing
Computing Systems

Yixin Diao, Member, IEEE, Joseph L. Hellerstein, Senior Member, IEEE, Sujay Parekh, Student Member, IEEE,
Rean Griffith, Gail E. Kaiser, Senior Member, IEEE, and Dan Phung

Abstract—The high cost of operating large computing instal-
lations has motivated a broad interest in reducing the need for
human intervention by making systems self-managing. This
paper explores the extent to which control theory can provide an
architectural and analytic foundation for building self-managing
systems. Control theory provides a rich set of methodologies for
building automated self-diagnosis and self-repairing systems with
properties such as stability, short settling times, and accurate
regulation. However, there are challenges in applying control
theory to computing systems, such as developing effective resource
models, handling sensor delays, and addressing lead times in
effector actions. We propose a deployable testbed for autonomic
computing (DTAC) that we believe will reduce the barriers to
addressing research problems in applying control theory to com-
puting systems. The initial DTAC architecture is described along
with several problems that it can be used to investigate.

Index Terms—Actuator, closed loop control, dynamics, resource
management, sensor, testbed.

I. INTRODUCTION

THE HIGH COST of ownership of computing systems
has resulted in a number of industry initiatives to reduce

the burden of operations and management. Examples include
IBM’s Autonomic Computing, HP’s Adaptive Infrastructure,
and Microsoft’s Dynamic Systems Initiative. All of these ef-
forts seek to reduce operations costs by increased automation,
ideally to have systems be self-managing without any human
intervention (since operator error has been identified as a major
source of system failures [1]). While the concept of automated
operations has existed for two decades (e.g., [2]) as a way to
adapt to changing workloads, failures, and (more recently)
attacks, the scope of automation remains limited. We believe
this is in part due to the absence of a fundamental understanding
of how automated actions affect system behavior, especially,
system stability. Other disciplines such as mechanical, elec-
trical, and aeronautical engineering make use of control theory
to design feedback systems. This paper uses control theory as a
way to identify a number of requirements for and challenges in
building self-managing systems.

Manuscript received June 30, 2005; revised July 20, 2005. The work of the
Programming Systems Laboratory is supported in part by the National Science
Foundation under Grant CNS-0426623, Grant CCR-0203876, and Grant EIA-
0202063, and in part by Microsoft Research.

Y. Diao, J. L. Hellerstein, and S. Parekh are with the IBM Thomas J. Watson
Research Center, Hawthorne, NY 10532 USA (e-mail: diao@us.ibm.com;
hellers@us.ibm.com; sujay@us.ibm.com).

R. Griffith, G. E. Kaiser, and D. Phung are with the Computer Science
Department, Columbia University, New York, NY 10027-7003 USA (e-mail:
rg2023@cs.columbia.edu; kaiser@cs.columbia.edu; phung@cs.columbia.edu).

Fig. 1. Architecture for autonomic computing.

The IBM autonomic computing architecture [3] provides a
framework in which to build self-managing systems. We use this
architecture since it is broadly consistent with other approaches
that have been developed (e.g., [4]). Fig. 1 depicts the compo-
nents and key interactions for a single autonomic manager and a
single resource. The resource (sometimes called a managed re-
source) is what is being made more self-managing. This could
be a single system (or even an application within a system), or it
may be a collection of many logically related systems. Sensors
provide a way to obtain measurement data from resources, and
effectors provide a means to change the behavior of the resource.
Autonomic managers read sensor data and manipulate effectors
to make resources more self-managing. The autonomic manager
contains components for monitoring, analysis, planning, and ex-
ecution. Common to all of these is knowledge of the computing
environment, service level agreements, and other related consid-
erations. The monitoring component filters and correlates sensor
data. The analysis component processes these refined data to do
forecasting and problem determination, among other activities.
Planning constructs workflows that specify a partial order of ac-
tions to accomplish a goal specified by the analysis component.
The execute component controls the execution of such work-
flows and provides coordination if there are multiple concurrent
workflows. (The term “execute” may be broadened to “enact-
ment” to include manual actions as well.)

In essence, the autonomic computing architecture provides a
blue print for developing feedback control loops for self-man-
aging systems. This observation suggests that control theory

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

might provide guidance as to the structure of and requirements
for autonomic managers.

Many researchers have applied control theory to computing
systems. In data networks, there has been considerable interest
in applying control theory to problems of flow control, such as
[5] who develops the concept of a rate allocating server that
regulates the flow of packets through queues. Others have ap-
plied control theory to short-term rate variations in transmission
control protocol (TCP) (e.g., [6]) and some have considered
stochastic control [7]. More recently, there have been detailed
models of TCP developed in continuous time (using fluid flow
approximations) that have produced interesting insights into
the operation of buffer management schemes in routers (see [8]
and [9]). Control theory has also been applied to middleware
to provide service differentiation and regulation of resource
utilizations, as well as optimization of service level objectives.
Examples of service differentiation include enforcing relative
delays [10], preferential caching of data [11], and limiting
the impact of administrative utilities on production work [12].
Examples of regulating resource utilizations include a mixture
of queueing and control theory used to regulate Apache HTTP
Server [13], regulation of the IBM Lotus Domino Server
[14], and multiple-input–multiple-output (MIMO) control of
Apache HTTP Server (e.g., simultaneous regulation of CPU
and memory resources) [15]. Examples of optimizing service
level objectives include minimizing response times of the
Apache Web Server [16] and balancing the load to optimize
database memory management [17].

The foregoing illustrates the value of using control theory to
construct self-managing systems as first described in [18]. Here,
we go beyond our earlier work by including a case study of ap-
plying control theory to an IBM software product, and we in-
clude more details on a deployable testbed for research in the
application of control theory to autonomic computing. Specif-
ically, Section II seeks to educate systems oriented computer
science researchers and practitioners on the concepts and tech-
niques needed to apply control theory to computing systems.
Section III presents a case study of applying control theory to
an IBM database management product. Section IV proposes a
deployable testbed for autonomic computing (DTAC) that is in-
tended to foster research that addresses the challenges identified.
Our conclusions are contained in Section V.

II. CONTROL THEORETIC FRAMEWORK

This section relates control theory to self-managing systems.

A. Components of a Control System

Over the last 60 years, control theory has developed a fairly
simple reference architecture. This architecture is about manip-
ulating a target system to achieve a desired objective. The com-
ponent that manipulates the target system is the controller. In
terms of Fig. 1, the target system is a resource, the controller is
an autonomic manager, and the objective is part of the policy
knowledge.

The essential elements of feedback control system are de-
picted in Fig. 2. These elements are the following.

Fig. 2. Block diagram of a feedback control system. The reference input is the
desired value of the system’s measured output. The controller adjusts the setting
of control input to the target system so that its measured output is equal to the
reference input. The transducer represents effects such as units conversions and
delays.

• Target system, which is the computing system to be
controlled.

• Control input, which is a parameter that affects the be-
havior of the target system and can be adjusted dynam-
ically (such as the MaxClients parameter in Apache
HTTP Server).

• Measured output, which is a measurable characteristic of
the target system such as CPU utilization and response
time.

• Disturbance input, which is any change that affects the
way in which the control input influences the measured
output of the target system (e.g., running a virus scan or a
backup).

• Noise input, which is any effect that changes the measured
output produced by the target system. This is also called
sensor noise or measurement noise.

• Reference input, which is the desired value of the mea-
sured output (or transformations of them), such as CPU
utilization should be 66%. Sometimes, the reference input
is referred to as desired output or the setpoint.

• Transducer, which transforms the measured output so
that it can be compared with the reference input (e.g.,
smoothing stochastics of the output).

• Control error, which is the difference between the refer-
ence input and the measured output (which may include
noise and/or may pass through a transducer).

• Controller, which determines the setting of the control
input needed to achieve the reference input. The controller
computes values of the control input based on current and
past values of control error.

The foregoing is best understood in the context of a specific
system. Consider a cluster of Apache Web Servers. The admin-
istrator may want these systems to run at no greater than 66%
utilization so that if any one of them fails, the other two can
immediately absorb the entire load. Here, the measured output
is CPU utilization. The control input is the maximum number
of connections that the server permits as specified by the Max-
Clients parameter. This parameter can be manipulated to ad-
just CPU utilization. Examples of disturbances are changes in
arrival rates and shifts in the type of requests (e.g., from static
to dynamic pages).

While the autonomic computing and control systems archi-
tectures are very similar, there are some important differences,
mostly in emphasis. Autonomic computing focuses on the spec-
ification and construction of components that interoperate well
for management tasks. For example, the autonomic computing
architecture focuses on sensors and effectors since there are spe-
cific interfaces that must be developed.

In contrast, the emphasis in control theory is on analyzing
and/or developing components and algorithms such that the re-
sulting system achieves the control objectives. For example,
control theory provides design techniques for determining the
values of parameters in commonly used control algorithms so
that the resulting control system is stable and settles quickly in
response to disturbances.

B. Objectives and Properties of Control Systems

Controllers are designed for some intended purpose. We refer
to this purpose as the control objective. The most common ob-
jectives are the following.

• Regulation: Ensure that the measured output is equal
to (or near) the reference input. For example, the uti-
lization of a web server should be maintained at 66%.
The focus here is on changes to the reference input such
as changing the target utilization from 66% to 75% if
a fourth server becomes available. Another example is
service differentiation.

• Disturbance rejection: Ensure that disturbances acting on
the system do not significantly affect the measured output.
For example, when a backup or virus scan is run on a web
server, the overall utilization of the system is maintained
at 66%. This differs from regulation control in that we
focus on changes to the disturbance input, not to the ref-
erence input.

• Optimization: Obtain the “best” value of the measured
output, such as optimizing the setting of MaxClients in
Apache HTTP Server so as to minimize response times.

We have found several properties of feedback control systems
to be of interest in computing systems. A control system is stable
if for any bounded input, the output is also bounded. Since no
real world system produces an unbounded output, in practice,
unstable systems produce large oscillations, especially limit cy-
cles that alternate between extreme values of metrics. A con-
trol system is accurate if the measured output converges (or be-
comes sufficiently close) to the reference input, such as ensuring
that throughput is maximized without exceeding response time
constraints. A control system has short settling times if it con-
verges quickly to its steady-state value, which is often important
if there are time-varying workloads. Finally, overshoot is an im-
portant consideration in control systems if there are threshold
effects such as buffer overflows.

One appeal of control theory is that it provides a framework to
analyze and design closed loop systems based on the properties
of stability, accuracy, settling time, and overshoot. We refer to
these as the SASO properties.

To elaborate on the SASO properties, we consider what con-
stitutes a stable system. For computing systems, we want the
output of feedback control to converge, although it may not be

Fig. 3. Example of an unstable feedback control system for the Apache HTTP
Server. The instability results from having an improperly designed controller.

constant due to the stochastic nature of the system. To refine this
further, computing systems have operating regions (i.e., combi-
nations of workloads and configuration settings) in which they
perform acceptably and other operating regions in which they do
not. Thus, in general, we refer to the stability of a system within
an operating region. Clearly, if a system is not stable, its utility
is severely limited. In particular, unstable systems have large
response times and/or low throughputs, characteristics that can
make the system unusable.

Fig. 3 displays an instability in an Apache HTTP Server that
employs an improperly designed controller. The horizontal axis
is time, and the vertical axis is CPU utilization (which ranges be-
tween 0 and 1). The solid line is the reference input for CPU uti-
lization, and the line with markers is the measured value. During
the first 300 s, the system operates without feedback control.
When the controller is turned on, a reference input of 0.5 is used.
At this point, the system begins to oscillate and the amplitude of
the oscillations increases. This is a result of a controller design
that overreacts to the stochastics in the CPU utilization measure-
ment. Note that the amplitude of the oscillations is constrained
by the range of the CPU utilization metric.

If the feedback system is stable, then it makes sense to con-
sider the remaining SASO properties—accuracy, settling time,
and overshoot. The vertical lines in Fig. 4 plot the measured
output of a stable feedback system. Initially, the (normalized)
reference input is 0. At time 0, the reference input is changed
to its steady value . The system responds and its mea-
sured output eventually converges to , as indicated by
the heavy dashed line. The steady-state error is 1, where

. The settling time of the system is the time
from the change in input to when the measured output is suffi-
ciently close to its new steady-state value (typically, within 2%).
In the figure, . The maximum overshoot is the (nor-
malized) maximum amount by which the measured output ex-
ceeds its steady-state value. In the figure, the maximum value of
the output is 3.95 and so , or .

The properties of feedback systems are used in two ways.
The first relates to the analysis. Here, we are interested in de-
termining if the system is stable as well as measuring and/or es-
timating its steady-state error, settling time, and maximum over-
shoot. The second is in the design of feedback systems. Here, the
properties are design goals. That is, we construct the feedback
system to have the desired values of steady-state error, settling
times, and maximum overshoot. More details on applying con-
trol theory to computing systems can be found in [19].

Fig. 4. Response of a stable system to a step change in the reference input. At time 0, the reference input changes from 0 to 2. The system reaches steady-state
when its output always lie between the light weight dashed lines. Depicted are the steady-state error (e), settling time (k), and maximum overshoot (M).

Fig. 5. Architecture of the DTAC.

C. Control Analysis and Design

This subsection uses a running example to outline an ap-
proach to control analysis and design for self-managing systems
with SASO properties.

We consider the IBM Lotus Domino Server. To ensure effi-
cient and reliable operation, administrators of this system often
regulate the number of remote procedure calls (RPCs) in the
server, a quantity that we denote by RIS. RIS roughly corre-
sponds to the number of active users (those with requests out-
standing at the server). Regulation is accomplished by using
the MaxUsers tuning parameter that controls the number of
connected users. The correspondence between MaxUsers and
RIS changes over time, which means that MaxUsers must be
updated almost continuously to achieve the control objective.
Clearly, it is desirable to have a controller that automatically
determines the value of MaxUsers based on the objective for
RIS.

Our starting point is to model how MaxUsers affects RIS.
The input to this model is MaxUsers, and the output is RIS.
We use to denote the th value of the former and to
denote the th value of the latter. (Actually, and are
offsets from a desired operating point.) An e-mail access and
update workload was applied to a IBM Lotus Domino Server
running product level software in order to obtain training and
test data. In all cases, values are averaged over a 1 min interval.
We construct the following simple autoregressive model using
least squares regression:

(1)

Fig. 6(a) displays the values of (solid line) and the corre-
sponding (“x”s). From Fig. 6(b), we see that the model fits
these data quite well in that there is a close correspondence be-
tween observed RIS and predicted RIS.

To better facilitate control analysis, (1) is put into the form
of a transfer function. A transfer function describes how inputs
such as MaxUsers are transformed into outputs such as RIS. A
transfer function is represented as a transform, a mathematical
construct that provides a compact specification of time-varying
functions in terms of the time shift operator . The transfer func-
tion of (1) is

(2)

The transfer function of a system tells us about its steady-
state output and its settling times. We do this by computing the
steady-state gain of the transfer function, which is the value of
the transfer function when . For example, (2), the steady-
state gain is 0.82. This means that RIS will be (0.82)MaxUsers
at steady-state.

The poles of the transfer function provide a way to estimate
the settling time of the system. The poles are the values of for
which the denominator is 0. For example, in (2), there is one
pole, which is 0.43. The effect of this pole on settling time is
clear if we solve the recurrence in (1). The result has the fac-
tors . Thus, if the absolute value of the pole
is greater than one, the system is unstable, and the closer the
pole is to 0, the shorter the settling time. A pole that is negative
(or imaginary) indicates an oscillatory response. In general, for
a transfer function whose largest pole is , its settling time is

Fig. 6. Data and model evaluation for the IBM Lotus Domino Server. (a) Data used in system identification. (b) Model evaluation.

Fig. 7. Block diagram for integral control of the IBM Lotus Domino Server.

approximately [19]. Thus, the settling time for (2) is
approximately 5 time units.

Fig. 7 contains a block diagram of a control system that au-
tomatically adjusts MaxUsers to regulate the measured value
of RIS. Note that the target system consists of two blocks—the
notes server and the notes sensor. These blocks correspond to a
resource and its sensor in the autonomic computing architecture.
The notes sensor is modeled separately because it introduces de-
lays and affects the accuracy of the measured output. Each block
contains a transfer function that describes that component’s be-
havior. The controller has a transfer function with the variable

. The purpose of control design is to select to ensure the
SASO properties. This is done by finding the transfer function
from the reference input to the measured output

(3)

By setting to different values, we obtain different poles. For
example, if in (3), the largest pole is very close to 1,
which results in a long settling time. However, if , the
largest pole is approximately 0.8, which greatly reduces settling
times. These effects are clear in Fig. 8. More details can be found
in [14].

As illustrated in this section, control theory provides rigorous
analysis and design techniques for building self-managing sys-
tems. Both the response to system dynamics (e.g., transient
behavior or sensor delay) and robustness to uncertainties (e.g.,
workload variations or measurement noise) can be studied
analytically. Besides the classical control theory used in this
section, different formal control methods such as state space
optimal control, model reference adaptive control, gain sched-
uling, and stochastic control can either be deployed directly
or used as a source of inspiration in building the analysis and
planning components.

Fig. 8. Transient response of the control system in Fig. 7. (a) Has a pole close
to 1 and so it converges slowly. (b) Has a much smaller (but still positive) pole,
and so converges quickly.

III. CASE STUDY

This section gives a case study of applying control theory to
computing systems. The results of this work have been incorpo-
rated into an IBM database management product. More details
can be found in [12].

Fig. 9 demonstrates the dramatic performance degradation
from running a database backup utility while emulated clients
are running a transaction-oriented workload against that data-
base. The throughput of the system without this backup utility
(i.e., workload only) averages 15 transactions per second (tps).
When the backup utility is started at s, the throughput
drops to between 25%–50% of the original level, and a corre-
sponding increase is seen in the response time. Note also that
with the utility running, throughput increases with time (indi-
cating that the resource demands of the utility decrease). Thus,
enforcing policies for administrative utilities faces the challenge
of dealing with such dynamics.

What kinds of policies should be used to regulate administra-
tive utilities? Based on our understanding of the requirements of

Fig. 9. Performance degradation due to running utilities. Plots show time-series data of throughput and response time measured at the client, averaged over a 60 s
interval.

database administrators, we believe that policies should be ex-
pressed in terms of degradation of production work. A specific
instance of such a policy is

Administrative Utility Performance Policy:

.
In these policies, the administrator thinks in terms of “degra-

dation units” that are normalized in a way that is fairly indepen-
dent of the specific performance metric (e.g., response time and
transaction rate). It is implicit that the utilities should complete
as early as possible within this constraint, i.e., the system should
not be unnecessarily idle.

There are two challenges with enforcing such policies.

Challenge 1: Provide a mechanism for controlling the
performance degradation from utilities.
We use the term throttling to refer to limiting the execution of

utilities in some way so as to reduce their performance impact.
One example of a possible throttling mechanism is priority, such
as nice values in Unix systems (although this turns out to be a
poor choice, as discussed later).

Challenge 2: Translate from degradation units (speci-
fied in the policy) to throttling units (understood by the
mechanism).
Such translation is essential so that administrators can work

in terms of their policies, not the details of the managed system.
Unfortunately, accomplishing this translation is complicated by
the need to distinguish between performance degradation of the
production work caused by contention with the administrative
utilities and changes in the production work itself (e.g., due to
time-of-day variations).

We begin by addressing the first challenge. One approach is
to use operating system (OS) priorities, an existing capability
provided by all modern OSs. Throttling could be achieved by
making the utility threads less preferred than threads doing pro-
duction work. In principle, such a scheme is appealing in that it
does not require modifications to the utilities. However, it does
require that the utility executes in a separate dispatchable unit
(process/thread) to which the OS assigns priorities. Also, a pri-
ority-based scheme requires that access to all resources be based
on the same priorities. Unfortunately, the priority mechanisms
used in most variants of Unix and Windows only affect CPU

Fig. 10. High-level utility structure and sleep point insertion. (a) Inserting
point. (b) implementation.

scheduling. Such an approach has little impact on administra-
tive utilities that are I/O bound (e.g., backup).

Our approach is to use self-imposed sleep . relies on
another OS service: a sleep system call which is parameterized
by a time interval. Most modern OSes provide some version of
a sleep system call that makes the process or thread not schedu-
lable for the specified interval. Fig. 10 describes a throttling API
that uses this sleep service.

We address the second challenge by using a feedback control
system to translate degradation units (specified in the policy)
into throttling units. This should be done in a manner that not
only achieves the administrative target of “ performance
degradation” but also adapts quickly to changes in the resource
requirements of utilities and/or production work.

The overall operation of our proposed automated throttling
system is illustrated in Fig. 11. Administrators specify the
degradation limit, which corresponds to the in the policy de-
scribed above. The main component is the ,

Fig. 11. Throttling system operation.

which determines the throttling levels (i.e., sleep fraction) for
the utilities based on the degradation limit as well as perfor-
mance metrics from the target system.

The sensor in Fig. 11 estimates the performance degradation
due to utilities. This is done by first estimating the metric’s base-
line, which is the value of the metric if there were no utilities
running. The baseline value is compared with the most recent
performance feedback to calculate the current degradation (as a
fraction)

Note that the baseline estimator changes over time due to the
dynamics of workloads and other factors.

Given the current degradation level, the
must calculate throttling levels for the utilities. Because of the
relatively straightforward effects of sleepTime on perfor-
mance, we use a standard proportional-integral (PI) controller
from linear control theory [20] to drive this error quantity to
zero, thereby enforcing the throttling policy. A PI control struc-
ture is proven to be very stable and robust and is guaranteed to
eliminate any error in steady-state. It is used in nearly 90% of
all controller applications in the real world. A new throttling
value at time is computed as follows:

(4)

and are chosen to ensure the SASO properties.
To evaluate our control system, we first show in Fig. 12(a)

that the throttling system follows the policy limit in the case
of a steady workload generated by 25 emulated users with the
introduction of a BACKUP job at time 600. For comparison,
the workload performance as well as the effect of an unthrot-
tled utility (from Fig. 9) are also shown. While the average
throughput without the BACKUP running is 15.1 tps, the
throughput with a throttled BACKUP is 9.4 tps—a degradation
of 38%, which is close to the desired 30%. Note how the
throttling system compensates for the decreasing resource de-
mands of the utility by lowering the sleep fraction [Fig. 12(c)],
resulting in a throughput profile that is more parallel to the
no-utility case.

To highlight the adaptive nature of this system, we consider a
scenario where there is a surge in the number of users accessing
the database system while the BACKUP utility is executing. We
start with a nominal workload consisting of ten emulated users,
and start the utility at 300 s. At time 1500 s, an additional 15
users are added (thus, resulting in a total of 25 users). Fig. 12(b)
shows the raw performance data for the surge, with the no-utility
case (in the same scenario) shown for reference. We see that the
throttling system adapts when the workload increases, reaching

a new throttling level within 600 s. For this case, the presurge av-
erage throughputs are 13.1 (workload only) and 8.37 (throttled
BACKUP)—a degradation of 36%. Analogously, the postsurge
degradation is 19%. Note that the sleep fraction used (and the
resultant throughput) toward the latter half of the run is similar
to the value seen for the steady-workload case, indicating that
the models learned by the are similar.

IV. DEPLOYABLE TESTBED FOR AUTONOMIC COMPUTING

(DTAC)

Some of the challenges of building self-managing systems
relate to developing appropriate control techniques. Other chal-
lenges relate to engineering the software components that sup-
port the requirements of control systems, such as the devel-
opment of appropriate sensors and effectors. Unfortunately, to
evaluate efforts in either area, a complete system must be de-
veloped, a fact that hinders progress since researchers prefer to
focus on their area of expertise. For example, it took months to
develop the system in Section III.

The foregoing has motivated our interest in DTAC, a deploy-
able testbed for autonomic computing. DTAC is intended to be
a complete end-to-end system with pluggable components so
as to facilitate research in various aspects of autonomic com-
puting. For example, researchers focusing on control algorithms
need only modify these components, but they would still have
an end-to-end system to evaluate their algorithms. Similarly,
researchers primarily interested in sensors and effectors could
replace these elements and take advantage of existing control
algorithms.

The target system in DTAC is a multitiered e-commerce
system because of its widespread use in industry and the
availability of open source software. Fig. 5 displays our initial
architecture for DTAC. There are four layers in the architecture,
all of which are intended to be pluggable. The test harness
provides the overall experimental environment, including the
generation of synthetic workload, and a suite of tools for
analyzing experimental results. The operation of the testbed is
as follows: 1) the test harness creates a request that is sent to
an HTTP server; 2) HTTP servers process requests, forwarding
to an application server those requests that require extensive
processing; and 3) application servers forward to a database
server those requests that require data intensive operations. To
satisfy scaling requirements, one or more tier of the e-com-
merce system may contain server clusters with appropriate load
balancing.

In terms of the autonomic computing architecture [3], the
e-commerce system is a set of resources. These resources have
a variety of sensors for accessing measurements and effectors
for controlling their behavior. For example, effectors of interest
in the Apache HTTP Server include the KeepAlive timeout
and the maximum number of clients. Key effectors for the data-
base server might be the size of memory pools for sorts and
joins. Further, there may be aggregations of sensors and effec-
tors due to the hierarchical of resources since such a structure
may well imply a hierarchy of managers of these resources.
For example, the e-commerce system may provide statistics on
end-to-end response times and its main effector may be based

Fig. 12. Effect of throttling a utility under a steady workload and a workload surge with a 30% impact policy. x axis is time. The throughput data shown is
computed over 1 min intervals, sleep fraction is set every 20 s. (a) and (b) Throughput. (c) and (d) Throttling.

on traffic shaping, a control that affects arrival rates at all tiers
in the e-commerce system.

The variety of different sensors and effectors motivates the
need for manageability middleware that virtualizes these dif-
ferences and provides commonly used functions. In terms of
the autonomic computing architecture, this corresponds to the
monitoring and execution components in the autonomic man-
ager. Examples of manageability middleware include Kines-
thetics Extreme [4], IBM’s autonomic computing toolkit [21],
and Controlware [22]. We expect that the manageability middle-
ware will incorporate common functions, such as filtering events
and maintaining state. However, virtualizing this layer of man-
agement requires a standard way to describe resources, events,
and other artifacts produced by target systems.

The controller layer is primarily responsible for making de-
cisions and taking actions (although this layer may incorporate
elements of analysis as well). This is the primary layer for doing
policy interpretation and enforcement.

Finally, the test harness operates the experimental environ-
ment, including the control of experimental runs, workload gen-
eration, data collection, and reporting. Workload generation is
of particular concern since it has a dramatic effect on the exper-
imental results. We advocate the use of industry standard work-
loads, such as those developed by the Transaction Processing
Council (TPC) and the Standard Performance Evaluation Cor-
poration (SPEC).

We emphasize that Fig. 5 depicts the layers in our testbed,
not necessarily component instances. For example, there may be
separate instances of manageability middleware for each server,

along with their own controller, and there may be separate in-
stances of manageability middleware and controllers for each
server cluster.

Our goal is to develop an easily deployable package that in-
stantiates the above architecture in a way that researchers can
readily substitute their components and run experiments to eval-
uate their technologies. For the e-commerce system, we plan to
use the Apache HTTP Server, the Tomcat application server, and
the MySQL database server. All are publically available, both
the executables and the source. Also, they are widely used in
production systems.

Going a step further, we anticipate that a DTAC stack will
be needed on each resource to be managed in the e-commerce
system. Fig. 13 depicts at a high level the layers in this stack, be-
ginning with the lowest level—level 0, which are the resources
(applications) to be managed.

Layer 1 are the touchpoints. There is a set of touchpoints as-
sociated with every resource to be managed. Touchpoints make
up level 1 and perform the duties of sensors and effectors for the
resource of interest, they encapsulate resource specific strategies
for interacting with the resource.

Layer 2 contains the resource models that specify “inter-
esting” facets and attributes of a resource. These facets include
considerations for performance, configuration, and operating
environment.

Layer 3 consists of the resource analyzers. Resource ana-
lyzers provide filtering, control analysis, root cause analysis,
forecasting, proactive management, and other higher level

Fig. 13. Software stack needed by managed elements to run DTAC.

functions by using technologies such as inference engines, data
mining, and correlation algorithms.

The layers in the DTAC stack have associated interfaces as
well. These are the following:

• ITouchpoint—the interface implemented by elements per-
forming the duties of sensors and effectors;

• IResourceModel—the interface implemented by ele-
ments that aggregate data of interest about a resource;

• IAnalyzer—the interface implemented by elements that
refines the resource model and makes decisions over it

We are in the early stages of discussion of the choice of
manageability middleware and controller to distribute with the
testbed. The intent is to use something simple. For example,
the controller distributed with the testbed might be a classical
MIMO controller (e.g., [15]) that manipulates configuration
parameters in all three tiers. More generally, there are two main
requirements for components in the testbed package. First,
the component should be sufficient to conduct experiments on
unrelated components. Second, components distributed with
the testbed should illustrate the use of the APIs required for
component pluggability.

The details of the test harness are still under consideration.
However, the workload driver will likely be the TPC Web work-
load (TPC-W) [23] since there is a publically available software
driver.

V. CONCLUSION

This paper takes the position that control theory can provide
an architectural and analytic foundation for building self-man-
aging systems. Indeed, we show that there is a correspondence
between the elements of the IBM autonomic computing archi-
tecture and the elements in control systems. There remain con-
siderable challenges in applying control theory to computing
systems, such as developing reliable resource models, handling
sensor delays, addressing lead times in effector actions, and
benchmarking. To engage the research community in addressing
these challenges, we are developing a DTAC. DTAC is intended
to be a reference environment in which to study practical con-
trol issues for computing systems, such as: the choice of sen-
sors and effectors, the choice of control techniques to ensure

end-to-end service level objectives, and ways to better automate
provisioning in distributed systems.

REFERENCES

[1] A. Fox and D. Patterson, “Self-repairing computers,” Sci. Amer., pp.
54–61, May 2003.

[2] K. Milliken, A. Cruise, R. Ennis, A. Finkel, J. Hellerstein, D. Loeb, D.
Klein, M. Masullo, H. V. Woerkom, and N. Waite, “Yes/mvs and the
autonomation of operations for large computer complexes,” IBM Syst.
J., vol. 25, no. 2, pp. 159–180, 1986.

[3] IBM-Corporation. An architectural blueprint for autonomic computing.
[Online]. Available: http://www-03.ibm.com/autonomic/pdfs/ACwp-
Final.pdf

[4] G. Kaiser, J. Parekh, P. Gross, and G. Valetto, “Kinesthetics extreme:
An external infrastructure for monitoring distributed legacy systems,” in
Proc. 5th Annu. Int. Active Middleware Workshop, 2003, pp. 22–30.

[5] S. Keshav, “A control-theoretic approach to flow control,” in Proc. ACM
SIGCOMM, Sep. 1991, pp. 3–15.

[6] K. Li, M. H. Shor, J. Walpole, C. Pu, and D. C. Steere, “Modeling the
effect of short-term rate variations on TCP-friendly congestion control
behavior,” in Proc. Amer. Control Conf., 2001, pp. 3006–3012.

[7] E. Altman, T. Basar, and R. Srikant, “Congestion control as a sto-
chastic control problem with action delays,” Automatica, vol. 35, pp.
1936–1950, 1999.

[8] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “On designing
improved controllers for AQM routers supporting TCP flows,” in Proc.
IEEE INFOCOM, Anchorage, AK, Apr. 2001, pp. 1726–1734.

[9] , “A control theoretic analysis of RED,” in Proc. IEEE INFOCOM,
Anchorage, AK, Apr. 2001, pp. 1510–1519.

[10] T. F. Abdelzaher and N. Bhatti, “Adaptive content delivery for Web
server QoS,” Comput. Netw., vol. 31, pp. 1563–1577, 1999.

[11] Y. Lu, A. Saxena, and T. F. Abdelzaher, “Differentiated caching services:
A control-theoretic approach,” in Proc. Int. Conf. Distrib. Comput. Syst.,
Apr. 2001, pp. 615–654.

[12] S. Parekh, K. Rose, J. L. Hellerstein, S. Lightstone, M. Huras, and V.
Chang, “Managing the performance impact of administrative utilities,”
in Proc. IFIP Conf. Distrib. Syst. Oper. Manage., 2003, pp. 130–142.

[13] L. Sha, X. Liu, Y. Lu, and T. Abdelzaher, “Queueing model based net-
work server performance control,” in Proc. IEEE Real-Time Syst. Symp.,
Dec. 2002, pp. 81–90.

[14] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, J. Bigus, and T. S.
Jayram, “Using control theory to acheive service level objectives in per-
formance management,” Real-Time Syst. J., vol. 23, pp. 127–141, 2002.

[15] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. Tilbury, “Using
MIMO feedback control to enforce policies for interrelated metrics with
application to the Apache Web server,” IEEE/IFIP Netw. Oper. Manage.,
pp. 219–234, Apr. 2002.

[16] Y. Diao, J. L. Hellerstein, and S. Parekh, “Optimizing quality of service
using fuzzy control,” Distrib. Syst. Oper. Manage., pp. 42–53, 2002.

[17] Y. Diao, J. L. Hellerstein, A. Storm, M. Surendra, S. Lightstone, S.
Parekh, and C. Garcia-Arellano, “Using MIMO linear control for load
balancing in computing systems,” in Proc. Amer. Control Conf., Jun.
2004, pp. 2045–2050.

[18] Y. Diao, J. L. Hellerstein, G. Kaiser, S. Parekh, and D. Phung, “Self-
managing systems: A control theory foundation,” Eng. Autonomic Syst.,
pp. 441–448, Apr. 2005.

[19] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Con-
trol of Computing Systems.. New York: Wiley, 2004.

[20] K. Ogata, Modern Control Engineering, 3rd ed. Englewood Cliffs, NJ:
Prentice-Hall, 1997.

[21] IBM. (2004) Autonomic computing toolkit. Tech. Rep. [Online]. Avail-
able: http://www-106.ibm.com/developerworks/autonomic/probdet.
html

[22] R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic, “Controlware: A
middleware architecture for feedback control of software performance,”
in Proc. Int. Conf. Distrib. Comput. Syst., 2002, pp. 301–310.

[23] TPC. (2004) (TPC) Web. Transaction Processing Council, Tech. Rep.
[Online]. Available: http://www.tpc.org/tpcw

Yixin Diao (M’01) received the Ph.D. degree in
electrical engineering from Ohio State University,
Columbus, in 2000.

He is a Research Staff Member at the IBM Thomas
J. Watson Research Center, Hawthorne, NY. He
has published more than 30 papers and coauthored
Feedback Control of Computing Systems (New York:
Wiley, 2004). His research interests include systems
management automation, adaptive control of dy-
namic systems, autonomic resource allocation, and
modeling and optimization of distributed systems.

Dr. Diao is the recipient of several awards, including the 2002 Best Paper
Award at the IEEE sponsored Network Operations and Management Conference
and the 2002–2005 IFAC Theory Paper Prize in Engineering Applications of
Artificial Intelligence.

Joseph L. Hellerstein (M’93–SM’98) received the
Ph.D. degree in computer science from the University
of California, Los Angeles.

He is a Research Staff Member and Manager of
the Adaptive Systems Department, IBM Thomas
J. Watson Research Center, Hawthorne, NY, and
an Adjunct Professor at Columbia University, New
York. He has authored or coauthored approximately
100 peer reviewed articles, an Addison-Wesley book
on expert systems, and a book entitled Feedback
Control of Computing Systems (New York, Wiley,

2004). His research has addressed various aspects of service quality in com-
puting systems, including predictive detection, automated diagnosis, expert
systems, and the application of control theory to computing systems.

Sujay Parekh (S’05) received the M.S. degree in
computer science from the University of Wash-
ington, Seattle.

He is an Advisory Software Engineer at the IBM
Thomas J. Watson Research Center, Hawthorne, NY.
He is a coauthor of Feedback Control of Computing
Systems (New York, Wiley, 2004). He has pub-
lished several papers and contributed to autonomic
features for IBM software. His research interests
center around automating both simple and complex
computing systems, and have included work in AI

planning, machine learning, computer architecture, scheduling algorithms, and
control systems.

Rean Griffith received the B.Sc. degree in computer
science and management from the University of the
West Indies, Barbados, in 2000 and the M.Sc. degree
in computer science from Columbia University, New
York, in 2003. Currently, he is working towards the
Ph.D. degree in the Programming Systems Labora-
tory (PSL), Columbia University.

His research interests include adaptive systems,
self-healing systems, and system manageability.

Gail E. Kaiser (M’85–SM’90) received the Sc.B. de-
gree from the Massachusetts Institute of Technology,
Cambridge, in 1979, and the M.S. and Ph.D. degrees
from Carnegie Mellon University, Pittsburgh, PA, in
1980 and 1985, respectively.

She is a Professor of Computer Science and the
Director of the Programming Systems Laboratory,
Computer Science Department, Columbia Uni-
versity, New York. She has consulted or worked
summers for courseware authoring, software process
and networking startups, several defense contractors,

the Software Engineering Institute, Bell Laboratories, IBM, Siemens, Sun, and
Telcordia. Her laboratory has been funded by the Defense Advanced Research
Projects Agency (DARPA), National Science Foundation (NSF), Office of
Naval Research (ONR), National Aeronautics and Space Administration
(NASA), NYS Science and Technology Foundation, and numerous companies.
She served on the Committee of Examiners for the Educational Testing Ser-
vice’s Computer Science Advanced Test (the GRE CS test) for three years, and
has chaired her department’s doctoral program since 1997. She has published
over 100 refereed papers in a range of software areas. Her research interests
include self-managing systems (autonomic computing), publish/subscribe
event systems, security, Web technologies, collaborative work, information
management, distributed systems, and software development environments and
tools.

Dr. Kaiser was named an NSF Presidential Young Investigator in Software
Engineering and Software Systems in 1988. She served on the Editorial Board of
IEEE Internet Computing for many years, and was a founding Associate Editor
of ACM Transactions on Software Engineering. She Chaired an ACM SIGSOFT
Symposium on Foundations of Software Engineering, Vice Chaired three of the
IEEE International Conference on Distributed Computing Systems, and serves
frequently on conference program committees.

Dan Phung received the B.S. degree in molec-
ular biology from the University of New Mexico,
Albuquerque, in 2001 and the M.S. degree from
Columbia University, New York, in 2004. Currently,
he is working towards the Ph.D. degree at Columbia
University.

He has conducted research and published on a
diverse range of topics such as human brain imaging,
genomic mutations, and distributed software sys-
tems. His current research interests pertain to the
management, dynamic resource allocation, and

informed scheduling of high-performance systems.

	toc
	A Control Theory Foundation for Self-Managing Computing Systems
	Yixin Diao, Member, IEEE, Joseph L. Hellerstein, Senior Member,
	I. I NTRODUCTION

	Fig.€1. Architecture for autonomic computing.
	II. C ONTROL T HEORETIC F RAMEWORK
	A. Components of a Control System

	Fig.€2. Block diagram of a feedback control system. The referenc
	B. Objectives and Properties of Control Systems

	Fig.€3. Example of an unstable feedback control system for the A
	Fig.€4. Response of a stable system to a step change in the refe
	Fig.€5. Architecture of the DTAC.
	C. Control Analysis and Design

	Fig.€6. Data and model evaluation for the IBM Lotus Domino Serve
	Fig.€7. Block diagram for integral control of the IBM Lotus Domi
	Fig.€8. Transient response of the control system in Fig.€7 . (a)
	III. C ASE S TUDY

	Fig.€9. Performance degradation due to running utilities. Plots
	Fig.€10. High-level utility structure and sleep point insertion.
	Fig.€11. Throttling system operation.
	IV. D EPLOYABLE T ESTBED FOR A UTONOMIC C OMPUTING (DTAC)

	Fig.€12. Effect of throttling a utility under a steady workload
	Fig.€13. Software stack needed by managed elements to run DTAC.
	V. C ONCLUSION
	A. Fox and D. Patterson, Self-repairing computers, Sci. Amer., p
	K. Milliken, A. Cruise, R. Ennis, A. Finkel, J. Hellerstein, D.
	IBM-Corporation . An architectural blueprint for autonomic compu
	G. Kaiser, J. Parekh, P. Gross, and G. Valetto, Kinesthetics ext
	S. Keshav, A control-theoretic approach to flow control, in Proc
	K. Li, M. H. Shor, J. Walpole, C. Pu, and D. C. Steere, Modeling
	E. Altman, T. Basar, and R. Srikant, Congestion control as a sto
	C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, On designing
	T. F. Abdelzaher and N. Bhatti, Adaptive content delivery for We
	Y. Lu, A. Saxena, and T. F. Abdelzaher, Differentiated caching s
	S. Parekh, K. Rose, J. L. Hellerstein, S. Lightstone, M. Huras,
	L. Sha, X. Liu, Y. Lu, and T. Abdelzaher, Queueing model based n
	S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, J. Bigus, and
	Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. Tilbury
	Y. Diao, J. L. Hellerstein, and S. Parekh, Optimizing quality of
	Y. Diao, J. L. Hellerstein, A. Storm, M. Surendra, S. Lightstone
	Y. Diao, J. L. Hellerstein, G. Kaiser, S. Parekh, and D. Phung,
	J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedba
	K. Ogata, Modern Control Engineering, 3rd ed. Englewood Cliffs,
	IBM . (2004) Autonomic computing toolkit . Tech. Rep. [Online] .
	R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic, Controlw
	TPC . (2004) (TPC) Web . Transaction Processing Council, Tech. R

