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ABSTRACT 
We are concerned with the problem of detecting bugs in machine 
learning applications. In the absence of sufficient real-world data, 
creating suitably large data sets for testing can be a difficult task. 
Random testing is one solution, but may have limited 
effectiveness in cases in which a reliable test oracle does not 
exist, as is the case of the machine learning applications of 
interest. To address this problem, we have developed an approach 
to creating data sets called “parameterized random data 
generation”. Our data generation framework allows us to isolate 
or combine different equivalence classes as desired, and then 
randomly generate large data sets using the properties of those 
equivalence classes as parameters. This allows us to take 
advantage of randomness but still have control over test case 
selection at the system testing level. We present our findings from 
using the approach to test two different machine learning ranking 
applications.  

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification. 
D.2.5 [Software Engineering]: Testing and Debugging.  

General Terms 
Reliability, Verification. 

Keywords 
Machine learning, Software testing, Random test data generation. 

1. INTRODUCTION 
During our investigation of the software testing of machine 
learning (ML) applications, we immediately encountered the 
problem of the availability of testing data. Real-world data sets 
are not always accessible and, even in the cases when they are, 
may not necessarily contain all the equivalence classes that proper 
testing demands. Hand-generation of data is an option but is only 

useful for small tests; however, these applications are used in the 
real world on extremely large data sets. Random testing [5, 7] 
could, of course, be an option in these situations, but is difficult 
given that machine learning applications fall under the category 
of “non-testable programs” [20]; that is, there is no reliable test 
oracle to ensure that the output is correct for the given random 
input. In fact, Hamlet [7] even points out that “Random testing 
cannot be attempted without an effective oracle. A vast number of 
test points are required, and they cannot be trivialized to make 
things easier for a human oracle.” Thus pure random testing may 
not be the best approach in these cases, either. 

Our approach, then, has been to combine partition testing with 
what we call “parameterized random test data generation”. In 
order to obtain data sets that provide the different combinations of 
equivalence classes, or the desired separation and isolation of 
equivalence classes, it is necessary to automatically generate 
random data sets, but parameterized to control the range and 
characteristics of those random values. We present a hybrid 
testing approach that couples the benefits of using randomness 
with the necessary control over the properties of the testing data. 

In this paper, we describe the manner in which we generate data 
for testing ML applications that implement ranking algorithms (a 
requirement of a real-world problem domain). We have developed 
a tool that, given certain parameters, will create randomly-
generated data sets that are targeted at testing specific equivalence 
classes. We show how we used randomness in the test data 
generation to reveal bugs and inconsistencies in the ML 
applications that could not otherwise have been shown by real-
world or hand-crafted data.  

2. BACKGROUND 
We are concerned with testing a decision support system that uses 
ranking of susceptibility to failure of some large number of 
electrical devices in a real-world industrial environment where 
preventative maintenance can potentially be guided by such 
susceptibility. Classification in the binary sense (“will fail” vs. 
“will not fail”) is not sufficient because, after enough time, every 
device will eventually fail. Instead, a ranking of the propensity of 
failure with respect to all other devices is more useful. The 
prototype application uses implementations of both the MartiRank 
[12] and SVM [18] algorithms to produce rankings; the 
dependability of the application has real-world industrial 
implications, rather than just academic interest. We do not discuss 
the full application further in this paper, see [6] for details.  
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2.1 Data Sets in the Problem Domain 
In general, data sets used in ML (both ranking and classification) 
consist of a collection of examples, each of which has a number of 
attribute values and a label. The examples can be thought of as 
rows in a table, each of which represents one item from which to 
learn (in our case, electrical devices). The attributes are the 
columns of the table, and the label indicates how the example is 
categorized; for us, it is an indication of how many times the 
device failed in a given time period. In some phases of supervised 
ML learning there is a label, and in some there is none; without 
loss of generality, here we only discuss the former. 

In previous work [14], we describe how we determined 
equivalence classes and performed test case selection for 
implementations of ML algorithms. The first part of our testing 
approach was to consider the problem domain and try to 
determine equivalence classes based on the properties of real-
world data sets. We particularly looked for traits that may not 
have been considered by the algorithm designers, such as data set 
size, and the potential ranges (or even the existence) of values.  

The data sets of interest are very large, both in terms of the 
number of attributes (hundreds) and the number of examples (tens 
of thousands). The label could be any non-negative integer, 
although it was typically a 0 (indicating that there was no device 
failure) or 1 (indicating that there was), and rarely was higher 
than 5 (indicating five failures over a given period of time).  

Though much of the real-world data of interest indeed consists of 
numerical values – including floating point decimals, dates and 
integers – some of the data is instead alphanumeric. ML ranking 
algorithms rely on sorting, and while in principle lexicographic 
sorts could be employed, non-numerical sorts do not seem 
intuitively appealing as ML predictors; for instance, it may not be 
meaningful to think of a device manufactured by “General 
Electric” as more or less than something made by 
“Westinghouse” just because of their alphabetical ordering. To 
solve this problem, the data sets use categorical data. Categorical 
data refers to attributes in which there are K different distinct 
values, but there is no sorting order that would be appropriate for 
the ranking algorithm. In these cases, a given attribute with K 
distinct values is expanded to K different attributes, each with two 
possible values: a 1 if the example has the corresponding attribute 
value, and a 0 if it does not. That is, amongst the K attributes, 
each example should have exactly one 1 and K-1 0’s.  

As would be expected in any large data set, many non-categorical 
attributes had repeated values; however, in the real-world data, 
many values were missing for various reasons, raising the issues 
of breaking “ties” and handling unknowns during sorting.  

2.2 Machine Learning Ranking Algorithms 
We investigated two ranking algorithms. MartiRank [6] was 
specifically designed with the device failure application in mind. 
The algorithm looks for the combination of sorting and 
segmenting the data to try to achieve the best “quality”. Our 
testing concerned three implementations of the MartiRank 
algorithm: the original, written in Perl; a C version, written to 
improve performance (speed) and introduce some experimental 
options to try to improve quality; and another implementation also 
written in C, designed to minimize the costly overhead of 
repeatedly sorting the attribute values. SVM [18] belongs to the 

“linear classifier” family of ML algorithms that attempt to find a 
(linear) hyperplane that separates examples from different classes. 
The goal is to find the maximum margin (distance) between the 
“support vectors”, which are the examples that lie closest to the 
surface of the hyperplane. For our testing, we investigated an 
implementation called SVM-Light [9]. 

2.3 Related Work 
There has been much research into the generation of test data sets 
[4, 10], though whereas much of the early work in random test 
data generation [1, 8] started in the area of compilers, we are 
looking at a way of creating parameterized random test data 
specifically for ML algorithms. 

Of course, even purely random test data is somehow 
“parameterized”, but this generally refers to specifying the data 
type or range of acceptable values. The term “parameterized 
random testing” appears in circuit design literature [11] but refers 
to parameterizing the distribution of input values, and does not 
address parameterizing according to equivalence classes or 
partitions, which we present here.  

Wichmann [21] proposes something similar to our approach in his 
recommendations to the British Computer Society Specialist 
Group in Software Testing. He notes the role that randomization 
can have even within the “limitations” of partition testing when it 
comes to randomly selecting testing data for a given equivalence 
class. However, his work in this area has only focused on 
software components and not system-level testing. 

Our work is also similar to that of Thénevod-Fosse et al. [17], 
who labeled their approach “structural statistical testing” in that 
random input are selected according to a given criteria, 
particularly related to path selection. Our approach differs, 
though, in that we are focused on the equivalence classes of the 
input data for black-box system testing, and not for coverage 
testing. Our work also differs from what they call “uniform 
statistical testing” because although we do select random data 
over an equal distribution, we parameterize it according to 
equivalence classes. 

Repositories of “reusable” ML real-world data sets have been 
collected (e.g., the UCI Machine Learning Repository [15]) for 
the purpose of comparing result quality, but not for testing in the 
software engineering sense. Of course, from an ML perspective, 
random test data is not generally as useful as real-world or hand-
crafted data in testing the predictive power of an algorithm 
because it will not exhibit any trends, and therefore there is 
nothing for the algorithm to learn; however, random data can be 
used for testing the correctness of the results, if not the quality, 
and for detecting bugs.  

Lastly, Mayer et al. [13] have investigated the use of random 
testing with applications that have no test oracle. However, their 
work is focused on randomized software, which is different from 
the case of the ML applications we investigate, which are 
deterministic but, of course, the results cannot be known a priori. 

3. DATA GENERATION FRAMEWORK 
Although real-world data sets were available in abundance, we 
required more control over the data so that we could ensure that 
we addressed all equivalence classes. We thus created a tool that 



randomly generates values and puts them in the data set according 
to certain parameters. This allowed us to separately test different 
equivalence classes and ultimately create a suite of regression 
tests that addressed those classes, focusing on boundaries. The 
parameters also include the number of examples, the number of 
attributes, and the names of the output test data set files. 

The data generation tool can be run with a flag that ensures that 
no attribute values are repeated within the data set. This option 
was motivated by the need to run simple tests in which all values 
are different, so that sorting would necessarily be deterministic 
(no “ties”). It works as follows: for M attributes and N examples, 
generate a list of integers from 1 to M*N and then randomly 
shuffle them. The numbers are then placed into the data set. If the 
flag is not used, then each value in the data set is simply a random 
integer between 1 and M*N; there is thus a possibility that 
numbers may repeat, but originally this was not guaranteed. 
However, we have modified the tool so that it can ensure at least 
one set of repeating numbers. The tool currently only generates 
integers but could easily be modified to generate floating point 
numbers or dates, depending on the problem domain. 

The utility is also given the percentage of “positive examples” to 
include in the data set; positive examples have a label of 1 (in our 
domain, indicating a device failure), and negative examples have 
a label of 0 (non-failure). Similarly, a parameter specifies the 
percentage of missing values. Our data generation framework has 
been designed to guarantee that the number of failures and the 
number of missing values come out to be the right number, even 
though the values are randomly placed throughout the data set. 

Parameters could be provided for generating categorical data 
(with K distinct values expanded to K attributes as described 
above). For creating categorical data, the input parameter to the 
data generation utility is of the format (a1, a2, ..., aK-1, aK, b), 
where a1 through aK represent the percentage distribution of those 
values for the categorical attribute, and b is the percentage of 
unknown values. The utility also allows for having multiple 
categorical attributes, or for having none at all. 

In addition to the data generation tool, we created a 
complementary utility that randomly permutes the order of the 
examples (rows) and attributes (columns) of the data set. We 
expected (and later showed) that the order of the input data would 
affect the resulting output, even though in theory it should not. 

4. FINDINGS 
It is important to note that, in the general case, without a reliable 
test oracle, it is only possible to test for obvious and egregious 
errors, such as core dumps and runtime errors, but it is not 
possible to detect minor issues or even tell if the output is correct. 
However, because we had three implementations of the 
MartiRank algorithm, we were able to use them as “pseudo-
oracles” [3] for each other to see if we were getting the correct 
output; this led to most of our more interesting findings. In the 
case of SVM, though, for which we only tested one 
implementation, we looked for consistency more than correctness.  

4.1 Testing with repeating values 
Since any ML ranking algorithm will use sorting, our test case 
selection criteria led us to look at data sets with repeating values, 
to see how the software would deal with ties that may come from 

sorting examples with the same attribute values. In the real-world 
data sets, attributes like voltage level and activation date involve 
many repeating values.  
Our initial testing with small hand-crafted data sets showed that 
two of the MartiRank implementations were producing the same 
results, but a third was not. We then used the parameterized 
random data generation tool to automatically create larger data 
sets with repeating attribute values, and confirmed our intuition 
that the two implementations that agreed were using sorting 
routines that were “stable” (i.e., they maintain the relative order 
of the examples from the previous step when the values are the 
same), whereas the other was using a faster sorting algorithm that 
was not a stable sort (in particular producing a different order than 
a stable sort in the case of “ties”). The MartiRank algorithm as 
defined in [12] did not address the specific implementation issue 
of which sorting approach to use, so different implementation 
decisions led to different results. This does not matter with respect 
to formal proofs, but does with respect to consistent testing.  

4.2 Testing with sparse data sets 
Our selection criteria then pointed us towards test data sets that 
had missing values. We used the data generation framework to 
create large, randomly-generated (but non-repeating) data sets, 
this time with the percent of missing values as a parameter (0.5%, 
1%, 5%, 10%, 20%, and 50%).  
In these tests, all implementations were initially generating 
different results, and there was no way to know which was 
“correct” since the MartiRank algorithm does not dictate how to 
handle missing values. Consulting with the ML researchers, we 
decided that the sorting should be “stable” with respect to missing 
values in that examples with a missing attribute value should 
remain in the same position, with the other examples (with known 
values) sorted “around” them. For instance, when the values “4 A 
5 2 1 B C 3” are sorted in ascending order (with A, B and C being 
the missing values), the result should be “1 A 2 3 4 B C 5”. Other 
deterministic options for handling this case (such as putting all 
missing values at the end) were considered, but this was deemed 
to be most in the MartiRank spirit since it kept the examples with 
missing values consistent with respect to any previous sort order. 

4.3 Testing with categorical data 
Because categorical data provides a combination of necessarily 
repeating (all 0s or 1s) and sometimes missing values, we created 
data sets with categorical attributes as part of our test data suite to 
be used for regression testing. We used a data set that included 
categorical data to discover that a bug had been introduced during 
refactoring of the Perl implementation by the incorrect use of a 
global variable in a crucial calculation. More importantly, though, 
this bug did not surface when testing only with repeating values 
or only with missing values; it was the data sets that combined 
these two equivalence classes that allowed the bug to be revealed. 

4.4 Testing effects of permuting input data 
Among all our findings with respect to the SVM implementation 
we tested, the most relevant one here is that randomly permuting 
the order of the examples in the training data caused it to generate 
different results. The practical implication is that the order in 
which the data happens to be assembled can have an effect on the 
final outcome. The SVM algorithm theoretically should produce 
the same result (i.e., the same ranking) regardless of the input data 



order; however, an ML researcher familiar with SVM-Light told 
us that because it is inefficient to run the quadratic optimization 
algorithm on the full data set all at once, the implementation 
performs “chunking” whereby the optimization algorithm runs on 
subsets of the data and then merges the results [16]. Numerical 
methods and heuristics are used to quickly converge toward the 
optimum. However, the optimum is not necessarily achieved, but 
instead this process stops after some threshold of improvement. 
This is one important area in which the implementation deviates 
from the specification.  

5. EVALUATION 
The testing framework facilitated our work by aiding us in the 
creation, execution and analysis of the test cases. By combining 
parameterization and randomness, we gained the ability to control 
the properties of very large data sets, which was critical for 
limiting the scope of individual tests and for pinpointing specific 
issues in how the code was handling different equivalence classes 
and their boundaries. The data generation tool proved to be simple 
and reliable, compared to alternative approaches we considered, 
such as culling real-world data. 
Additionally, the tool could be used for the testing of any ML 
ranking algorithm, not just MartiRank and SVM; it could also 
easily be used for supervised ML classification algorithms. The 
data generator supports plug-replaceable modules for creating 
data set files in whatever format is needed.  Two such modules 
are currently implemented, one for the MartiRank 
implementations (csv files) and the other for SVM-Light (a 
“sparse” attribute-value pair representation that enables more 
compact representation of data sets with a high proportion of 
missing values). 

The framework does have some limitations. Ideally it should be 
extended to generate arbitrarily large data sets with repeating, 
missing and/or categorical data such that an arbitrary ML ranking 
algorithm could definitively enable a “predictable” ranking, i.e. 
where there is a clear-cut “correct” output. But this may be 
impossible in the general case (we have noted in [14] that data 
sets that yield predictable rankings in MartiRank do not 
necessarily yield the same ranking in SVM). In addition, in order 
to create test cases reminiscent of real-world data, the framework 
should be extended to generate data sets that exhibit the same 
correlations among attributes and between attributes and labels as 
do real-world data, building upon [2] and [19]. 
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