
Parameterizing Random Test Data According to
Equivalence Classes

Christian Murphy
Dept. of Computer Science

Columbia University
New York, NY

cmurphy@cs.columbia.edu

Gail Kaiser
Dept. of Computer Science

Columbia University
New York, NY

kaiser@cs.columbia.edu

Marta Arias
Center for Computational Learning

Systems
Columbia University

New York, NY
marta@ccls.columbia.edu

ABSTRACT
We are concerned with the problem of detecting bugs in machine
learning applications. In the absence of sufficient real-world data,
creating suitably large data sets for testing can be a difficult task.
Random testing is one solution, but may have limited
effectiveness in cases in which a reliable test oracle does not
exist, as is the case of the machine learning applications of
interest. To address this problem, we have developed an approach
to creating data sets called “parameterized random data
generation”. Our data generation framework allows us to isolate
or combine different equivalence classes as desired, and then
randomly generate large data sets using the properties of those
equivalence classes as parameters. This allows us to take
advantage of randomness but still have control over test case
selection at the system testing level. We present our findings from
using the approach to test two different machine learning ranking
applications.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification.
D.2.5 [Software Engineering]: Testing and Debugging.

General Terms
Reliability, Verification.

Keywords
Machine learning, Software testing, Random test data generation.

1. INTRODUCTION
During our investigation of the software testing of machine
learning (ML) applications, we immediately encountered the
problem of the availability of testing data. Real-world data sets
are not always accessible and, even in the cases when they are,
may not necessarily contain all the equivalence classes that proper
testing demands. Hand-generation of data is an option but is only

useful for small tests; however, these applications are used in the
real world on extremely large data sets. Random testing [5, 7]
could, of course, be an option in these situations, but is difficult
given that machine learning applications fall under the category
of “non-testable programs” [20]; that is, there is no reliable test
oracle to ensure that the output is correct for the given random
input. In fact, Hamlet [7] even points out that “Random testing
cannot be attempted without an effective oracle. A vast number of
test points are required, and they cannot be trivialized to make
things easier for a human oracle.” Thus pure random testing may
not be the best approach in these cases, either.

Our approach, then, has been to combine partition testing with
what we call “parameterized random test data generation”. In
order to obtain data sets that provide the different combinations of
equivalence classes, or the desired separation and isolation of
equivalence classes, it is necessary to automatically generate
random data sets, but parameterized to control the range and
characteristics of those random values. We present a hybrid
testing approach that couples the benefits of using randomness
with the necessary control over the properties of the testing data.

In this paper, we describe the manner in which we generate data
for testing ML applications that implement ranking algorithms (a
requirement of a real-world problem domain). We have developed
a tool that, given certain parameters, will create randomly-
generated data sets that are targeted at testing specific equivalence
classes. We show how we used randomness in the test data
generation to reveal bugs and inconsistencies in the ML
applications that could not otherwise have been shown by real-
world or hand-crafted data.

2. BACKGROUND
We are concerned with testing a decision support system that uses
ranking of susceptibility to failure of some large number of
electrical devices in a real-world industrial environment where
preventative maintenance can potentially be guided by such
susceptibility. Classification in the binary sense (“will fail” vs.
“will not fail”) is not sufficient because, after enough time, every
device will eventually fail. Instead, a ranking of the propensity of
failure with respect to all other devices is more useful. The
prototype application uses implementations of both the MartiRank
[12] and SVM [18] algorithms to produce rankings; the
dependability of the application has real-world industrial
implications, rather than just academic interest. We do not discuss
the full application further in this paper, see [6] for details.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

2.1 Data Sets in the Problem Domain
In general, data sets used in ML (both ranking and classification)
consist of a collection of examples, each of which has a number of
attribute values and a label. The examples can be thought of as
rows in a table, each of which represents one item from which to
learn (in our case, electrical devices). The attributes are the
columns of the table, and the label indicates how the example is
categorized; for us, it is an indication of how many times the
device failed in a given time period. In some phases of supervised
ML learning there is a label, and in some there is none; without
loss of generality, here we only discuss the former.

In previous work [14], we describe how we determined
equivalence classes and performed test case selection for
implementations of ML algorithms. The first part of our testing
approach was to consider the problem domain and try to
determine equivalence classes based on the properties of real-
world data sets. We particularly looked for traits that may not
have been considered by the algorithm designers, such as data set
size, and the potential ranges (or even the existence) of values.

The data sets of interest are very large, both in terms of the
number of attributes (hundreds) and the number of examples (tens
of thousands). The label could be any non-negative integer,
although it was typically a 0 (indicating that there was no device
failure) or 1 (indicating that there was), and rarely was higher
than 5 (indicating five failures over a given period of time).

Though much of the real-world data of interest indeed consists of
numerical values – including floating point decimals, dates and
integers – some of the data is instead alphanumeric. ML ranking
algorithms rely on sorting, and while in principle lexicographic
sorts could be employed, non-numerical sorts do not seem
intuitively appealing as ML predictors; for instance, it may not be
meaningful to think of a device manufactured by “General
Electric” as more or less than something made by
“Westinghouse” just because of their alphabetical ordering. To
solve this problem, the data sets use categorical data. Categorical
data refers to attributes in which there are K different distinct
values, but there is no sorting order that would be appropriate for
the ranking algorithm. In these cases, a given attribute with K
distinct values is expanded to K different attributes, each with two
possible values: a 1 if the example has the corresponding attribute
value, and a 0 if it does not. That is, amongst the K attributes,
each example should have exactly one 1 and K-1 0’s.

As would be expected in any large data set, many non-categorical
attributes had repeated values; however, in the real-world data,
many values were missing for various reasons, raising the issues
of breaking “ties” and handling unknowns during sorting.

2.2 Machine Learning Ranking Algorithms
We investigated two ranking algorithms. MartiRank [6] was
specifically designed with the device failure application in mind.
The algorithm looks for the combination of sorting and
segmenting the data to try to achieve the best “quality”. Our
testing concerned three implementations of the MartiRank
algorithm: the original, written in Perl; a C version, written to
improve performance (speed) and introduce some experimental
options to try to improve quality; and another implementation also
written in C, designed to minimize the costly overhead of
repeatedly sorting the attribute values. SVM [18] belongs to the

“linear classifier” family of ML algorithms that attempt to find a
(linear) hyperplane that separates examples from different classes.
The goal is to find the maximum margin (distance) between the
“support vectors”, which are the examples that lie closest to the
surface of the hyperplane. For our testing, we investigated an
implementation called SVM-Light [9].

2.3 Related Work
There has been much research into the generation of test data sets
[4, 10], though whereas much of the early work in random test
data generation [1, 8] started in the area of compilers, we are
looking at a way of creating parameterized random test data
specifically for ML algorithms.

Of course, even purely random test data is somehow
“parameterized”, but this generally refers to specifying the data
type or range of acceptable values. The term “parameterized
random testing” appears in circuit design literature [11] but refers
to parameterizing the distribution of input values, and does not
address parameterizing according to equivalence classes or
partitions, which we present here.

Wichmann [21] proposes something similar to our approach in his
recommendations to the British Computer Society Specialist
Group in Software Testing. He notes the role that randomization
can have even within the “limitations” of partition testing when it
comes to randomly selecting testing data for a given equivalence
class. However, his work in this area has only focused on
software components and not system-level testing.

Our work is also similar to that of Thénevod-Fosse et al. [17],
who labeled their approach “structural statistical testing” in that
random input are selected according to a given criteria,
particularly related to path selection. Our approach differs,
though, in that we are focused on the equivalence classes of the
input data for black-box system testing, and not for coverage
testing. Our work also differs from what they call “uniform
statistical testing” because although we do select random data
over an equal distribution, we parameterize it according to
equivalence classes.

Repositories of “reusable” ML real-world data sets have been
collected (e.g., the UCI Machine Learning Repository [15]) for
the purpose of comparing result quality, but not for testing in the
software engineering sense. Of course, from an ML perspective,
random test data is not generally as useful as real-world or hand-
crafted data in testing the predictive power of an algorithm
because it will not exhibit any trends, and therefore there is
nothing for the algorithm to learn; however, random data can be
used for testing the correctness of the results, if not the quality,
and for detecting bugs.

Lastly, Mayer et al. [13] have investigated the use of random
testing with applications that have no test oracle. However, their
work is focused on randomized software, which is different from
the case of the ML applications we investigate, which are
deterministic but, of course, the results cannot be known a priori.

3. DATA GENERATION FRAMEWORK
Although real-world data sets were available in abundance, we
required more control over the data so that we could ensure that
we addressed all equivalence classes. We thus created a tool that

randomly generates values and puts them in the data set according
to certain parameters. This allowed us to separately test different
equivalence classes and ultimately create a suite of regression
tests that addressed those classes, focusing on boundaries. The
parameters also include the number of examples, the number of
attributes, and the names of the output test data set files.

The data generation tool can be run with a flag that ensures that
no attribute values are repeated within the data set. This option
was motivated by the need to run simple tests in which all values
are different, so that sorting would necessarily be deterministic
(no “ties”). It works as follows: for M attributes and N examples,
generate a list of integers from 1 to M*N and then randomly
shuffle them. The numbers are then placed into the data set. If the
flag is not used, then each value in the data set is simply a random
integer between 1 and M*N; there is thus a possibility that
numbers may repeat, but originally this was not guaranteed.
However, we have modified the tool so that it can ensure at least
one set of repeating numbers. The tool currently only generates
integers but could easily be modified to generate floating point
numbers or dates, depending on the problem domain.

The utility is also given the percentage of “positive examples” to
include in the data set; positive examples have a label of 1 (in our
domain, indicating a device failure), and negative examples have
a label of 0 (non-failure). Similarly, a parameter specifies the
percentage of missing values. Our data generation framework has
been designed to guarantee that the number of failures and the
number of missing values come out to be the right number, even
though the values are randomly placed throughout the data set.

Parameters could be provided for generating categorical data
(with K distinct values expanded to K attributes as described
above). For creating categorical data, the input parameter to the
data generation utility is of the format (a1, a2, ..., aK-1, aK, b),
where a1 through aK represent the percentage distribution of those
values for the categorical attribute, and b is the percentage of
unknown values. The utility also allows for having multiple
categorical attributes, or for having none at all.

In addition to the data generation tool, we created a
complementary utility that randomly permutes the order of the
examples (rows) and attributes (columns) of the data set. We
expected (and later showed) that the order of the input data would
affect the resulting output, even though in theory it should not.

4. FINDINGS
It is important to note that, in the general case, without a reliable
test oracle, it is only possible to test for obvious and egregious
errors, such as core dumps and runtime errors, but it is not
possible to detect minor issues or even tell if the output is correct.
However, because we had three implementations of the
MartiRank algorithm, we were able to use them as “pseudo-
oracles” [3] for each other to see if we were getting the correct
output; this led to most of our more interesting findings. In the
case of SVM, though, for which we only tested one
implementation, we looked for consistency more than correctness.

4.1 Testing with repeating values
Since any ML ranking algorithm will use sorting, our test case
selection criteria led us to look at data sets with repeating values,
to see how the software would deal with ties that may come from

sorting examples with the same attribute values. In the real-world
data sets, attributes like voltage level and activation date involve
many repeating values.
Our initial testing with small hand-crafted data sets showed that
two of the MartiRank implementations were producing the same
results, but a third was not. We then used the parameterized
random data generation tool to automatically create larger data
sets with repeating attribute values, and confirmed our intuition
that the two implementations that agreed were using sorting
routines that were “stable” (i.e., they maintain the relative order
of the examples from the previous step when the values are the
same), whereas the other was using a faster sorting algorithm that
was not a stable sort (in particular producing a different order than
a stable sort in the case of “ties”). The MartiRank algorithm as
defined in [12] did not address the specific implementation issue
of which sorting approach to use, so different implementation
decisions led to different results. This does not matter with respect
to formal proofs, but does with respect to consistent testing.

4.2 Testing with sparse data sets
Our selection criteria then pointed us towards test data sets that
had missing values. We used the data generation framework to
create large, randomly-generated (but non-repeating) data sets,
this time with the percent of missing values as a parameter (0.5%,
1%, 5%, 10%, 20%, and 50%).
In these tests, all implementations were initially generating
different results, and there was no way to know which was
“correct” since the MartiRank algorithm does not dictate how to
handle missing values. Consulting with the ML researchers, we
decided that the sorting should be “stable” with respect to missing
values in that examples with a missing attribute value should
remain in the same position, with the other examples (with known
values) sorted “around” them. For instance, when the values “4 A
5 2 1 B C 3” are sorted in ascending order (with A, B and C being
the missing values), the result should be “1 A 2 3 4 B C 5”. Other
deterministic options for handling this case (such as putting all
missing values at the end) were considered, but this was deemed
to be most in the MartiRank spirit since it kept the examples with
missing values consistent with respect to any previous sort order.

4.3 Testing with categorical data
Because categorical data provides a combination of necessarily
repeating (all 0s or 1s) and sometimes missing values, we created
data sets with categorical attributes as part of our test data suite to
be used for regression testing. We used a data set that included
categorical data to discover that a bug had been introduced during
refactoring of the Perl implementation by the incorrect use of a
global variable in a crucial calculation. More importantly, though,
this bug did not surface when testing only with repeating values
or only with missing values; it was the data sets that combined
these two equivalence classes that allowed the bug to be revealed.

4.4 Testing effects of permuting input data
Among all our findings with respect to the SVM implementation
we tested, the most relevant one here is that randomly permuting
the order of the examples in the training data caused it to generate
different results. The practical implication is that the order in
which the data happens to be assembled can have an effect on the
final outcome. The SVM algorithm theoretically should produce
the same result (i.e., the same ranking) regardless of the input data

order; however, an ML researcher familiar with SVM-Light told
us that because it is inefficient to run the quadratic optimization
algorithm on the full data set all at once, the implementation
performs “chunking” whereby the optimization algorithm runs on
subsets of the data and then merges the results [16]. Numerical
methods and heuristics are used to quickly converge toward the
optimum. However, the optimum is not necessarily achieved, but
instead this process stops after some threshold of improvement.
This is one important area in which the implementation deviates
from the specification.

5. EVALUATION
The testing framework facilitated our work by aiding us in the
creation, execution and analysis of the test cases. By combining
parameterization and randomness, we gained the ability to control
the properties of very large data sets, which was critical for
limiting the scope of individual tests and for pinpointing specific
issues in how the code was handling different equivalence classes
and their boundaries. The data generation tool proved to be simple
and reliable, compared to alternative approaches we considered,
such as culling real-world data.
Additionally, the tool could be used for the testing of any ML
ranking algorithm, not just MartiRank and SVM; it could also
easily be used for supervised ML classification algorithms. The
data generator supports plug-replaceable modules for creating
data set files in whatever format is needed. Two such modules
are currently implemented, one for the MartiRank
implementations (csv files) and the other for SVM-Light (a
“sparse” attribute-value pair representation that enables more
compact representation of data sets with a high proportion of
missing values).

The framework does have some limitations. Ideally it should be
extended to generate arbitrarily large data sets with repeating,
missing and/or categorical data such that an arbitrary ML ranking
algorithm could definitively enable a “predictable” ranking, i.e.
where there is a clear-cut “correct” output. But this may be
impossible in the general case (we have noted in [14] that data
sets that yield predictable rankings in MartiRank do not
necessarily yield the same ranking in SVM). In addition, in order
to create test cases reminiscent of real-world data, the framework
should be extended to generate data sets that exhibit the same
correlations among attributes and between attributes and labels as
do real-world data, building upon [2] and [19].

6. ACKNOWLEDGMENTS
We would particularly like to thank David Waltz, Hila Becker,
Wei Chu, John Gallagher, Philip Gross, Bert Huang, David Lee,
Phil Long and Rocco Servedio for their assistance and
encouragement. Murphy and Kaiser are members of the
Programming Systems Lab, funded in part by NSF CNS-0627473,
CNS-0426623 and EIA-0202063, NIH 1 U54 CA121852-01A1,
and are also affiliated with the Center for Computational Learning
Systems (CCLS). Arias is fully supported by CCLS, with funding
in part by Consolidated Edison Company of New York.

7. REFERENCES
[1] D. Bird and C. Munoz, “Automatic generation of random

self-checking test cases”, IBM Systems Journal vol. 22 no. 3,
1983, 229-245.

[2] H. Christiansen and C.M. Dahmke, A Machine Learning
Approach to Test Data Generation, Roskilde University,
Roskilde, Denmark.

[3] M.D. Davis and E.J. Weyuker, “Pseudo-Oracles for Non-
Testable Programs”, ACM ’81 Conference, 1981, 254-257.

[4] R. A. DeMillo and A. J. Offutt, “Constraint-Based
Automated Test Data Generation”, IEEE Trans. on Soft. Eng.
vol 17, no. 9, 1991, 900-910.

[5] J. Duran and S. Ntafos, “An Evaluation of Random Testing”,
IEEE Trans. on Soft. Eng. vol 10, 1984, 438-444.

[6] P. Gross et al.,“Predicting Electricity Distribution Feeder
Failures Using Machine Learning Susceptibility Analysis”,
Proc. of the 18th Conference on Innovative Applications in
Artificial Intelligence, Boston MA, 2006.

[7] D. Hamlet, “Random Testing”, in Encyclopedia of Software
Engineering, Wiley, New York, 1994, 970-978.

[8] K.V. Hanford, “Automatic Generation of Test Cases”, IBM
Systems Journal vol. 9 no. 4, 1970, 242-257.

[9] T. Joachims, Making large-Scale SVM Learning Practical.
Advances in Kernel Methods - Support Vector Learning, B.
Schölkopf, C. Burges and A. Smola (ed.), MIT-Press, 1999.

[10] B. Korel, “Automated Software Test Data Generation”, IEEE
Trans. on Soft. Eng. vol.16 no.8, August 1990, 870-879.

[11] K.J. Lieberherr, “Parameterized Random Testing”, Proc. of
the 21st Design Automation Conference, 1984.

[12] P. Long and R. Servedio, “Martingale Boosting”, Eighteenth
Annual Conference on Computational Learning Theory,
Bertinoro, Italy, 2005, 79-94.

[13] J. Mayer, R. Guderlei, “Test Oracles Using Statistical
Methods”, Proc. of the First International Workshop on
Software Quality, 2004, 179-189.

[14] C. Murphy, G. Kaiser, M. Arias, “An Approach to Quality
Assurance of Machine Learning Applications”, to appear in
Proc. of SEKE 2007, Boston, July 2007.

[15] D.J. Newman, S. Hettich, C.L. Blake and C.J. Merz, UCI
Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html],
University of California, Department of Information and
Computer Science, Irvine CA, 1998.

[16] R. Servedio, personal communication, 2006.
[17] P. Thévenod-Fosse, H. Waeselynck and Y. Crouzet, “An

Experimental Study on Software Structural Testing:
Deterministic Versus Random Input Generation”, Proc. Of
the Twenty-First International Symposium on Fault-Tolerant
Computing, Montreal, June 1991, 410- 417.

[18] V.N. Vapnik, The Nature of Statistical Learning Theory.
Springer, 1995.

[19] E. Walton, Data Generation for Machine Learning
Techniques, University of Bristol, 2001.

[20] E.J. Weyuker, “On Testing Non-Testable Programs”,
Computer Journal vol.25 no.4, November 1982, 465-470.

[21] B.A. Wichmann, "Some Remarks About Random Testing",
[http://www.npl.co.uk/scientific_software/publications/valid
ation/random_testing.pdf

