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A Precomputed Polynomial Representation for
Interactive BRDF Editing with Global Illumination
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Figure 1: We simulate an interior design session in which we edit the BRDFs of the couch and floor. The couch’s red fabric in (a)
is loaded from measured data, and edited to a more specular green material in (b). The floor is re-textured and made very glossy in
(b). The reflections of objects in the near-mirror floor, and color bleeding from the couch to the staircase can be seen here as well as in
closeups in Fig. 10. The scene is lit only from the large windows, using the top half of an exterior environment map (campus). We can
see in the comparisons to direct lighting (far right) that most of the room’s lighting is a result of indirect illumination.

Abstract

The ability to interactively edit BRDFs in their final place-
ment within a computer graphics scene is vital to making
informed choices for material properties. We significantly ex-
tend previous work on BRDF editing for static scenes (with
fixed lighting and view), by developing a precomputed poly-
nomial representation that enables interactive BRDF editing
with global illumination. Unlike previous precomputation-
based rendering techniques, the image is not linear in the
BRDF when considering interreflections. We introduce a
framework for precomputing a multi-bounce tensor of poly-
nomial coefficients, that encapsulates the nonlinear nature of
the task. Significant reductions in complexity are achieved
by leveraging the low-frequency nature of indirect light. We
use a high-quality representation for the BRDFs at the first
bounce from the eye, and lower-frequency (often diffuse) ver-
sions for further bounces. This approximation correctly cap-
tures the general global illumination in a scene, including
color-bleeding, near-field object reflections, and even caus-
tics. We adapt Monte Carlo path tracing for precomput-
ing the tensor of coefficients for BRDF basis functions. At
runtime, the high-dimensional tensors can be reduced to a
simple dot product at each pixel for rendering. We present
a number of examples of editing BRDFs in complex scenes,
with interactive feedback rendered with global illumination.

1 Introduction

Recent advances in real-time rendering have improved the
ability of designers to interactively specify lighting and ma-
terials in computer graphics scenes. While relighting sys-
tems have long provided feedback with global illumination
in complex scenes [Dorsey et al. 1995], BRDF editing has
been limited to simplified settings such as point lights.

Recently, Ben-Artzi et al. [2006] have introduced the abil-
ity to edit BRDFs under natural illumination, albeit only
with direct lighting. This is a significant limitation since in-
direct illumination and glossy reflection are essential to the
realism of today’s renderers, and are often critical to cor-
rectly perceive and choose material properties.

In this paper, we develop a precomputation-based method
for interactive BRDF editing with global illumination (see
results in Fig. 1). The main challenge arises from the fact
that final scene radiance (an image) is not even linear in the
objects’ BRDFs. It is well known that albedo, or more gen-

erally a BRDF, has a non-linear effect because it multiplies
the light at each bounce. We develop a higher-order repre-
sentation of the image as a function of the scene’s BRDFs.
We precompute a tensor at each pixel, fixing the lighting and
view for a static scene, but leaving the BRDFs unspecified
until runtime, when they can be edited.

Our first contribution, in Sec. 3, is a general theoretical
framework for BRDF editing, based on a bilinear formula-
tion of the reflection operator, that extends the linear oper-
ator formulation of rendering [Arvo et al. 1994]. We show
how the precomputed matrix of previous methods must be
extended to a multi-bounce tensor of polynomial coefficients.

The full multi-bounce tensor is a complete representation
of the image as a function of scene BRDFs, but is compu-
tationally too expensive to treat in full generality. We con-
sider frequency characteristics, developing a tractable ap-
proximation that preserves most important perceptual ef-
fects (Sec. 4). Specifically, the first bounce from the eye usu-
ally uses the full BRDF, to capture glossy reflections, while
subsequent bounces use a lower-frequency approximation to
capture overall shading effects. Within this general frame-
work, we show two possibilities—where further bounces (up
to the fourth-bounce) are treated as purely diffuse (Figs. 1, 6
and 9), and where additionally, the second bounce from the
eye uses a lower-frequency approximation to achieve accu-
rate indirect reflections in glossy surfaces (Fig. 4), or even
intricate effects like caustics (Fig. 11).

For precomputation (Sec. 5.1), we show how Monte Carlo
path tracing can be extended to precompute the multi-
bounce tensors needed. For rendering (Sec. 5.2), since only
one object’s BRDF is edited at a time, we show that the
tensor can be reduced to a few vector dot products at each
pixel, whose coefficients can be computed in a very fast run-
time preprocess. Our results show a variety of BRDF edits,
with interactive feedback rendered with global illumination.

2 Previous Work
Precomputed Radiance Transfer (PRT): We build
on PRT ideas for static scenes [Sloan et al. 2002; Ng et al.
2003]. While those methods focus on lighting design with
fixed BRDFs, we focus on BRDF editing, with fixed lighting.
We are inspired by a body of recent work that underscores
the importance of interreflections in relighting [Hasan et al.
2006; Wang et al. 2006; Kontkanen et al. 2006]. All these
approaches exploit the linearity of relighting with respect to
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light intensity, even when global illumination is taken into
account. In contrast, BRDF editing is fundamentally non-
linear when global illumination is considered.

Most previous PRT methods precompute a linear light
transport vector at each image location, taking advantage
of the linearity of light. We extend this concept to a general
tensor of coefficients for a high-dimensional polynomial. The
idea of going from linear to quadratic or cubic precomputed
models has also begun to be explored in physical simula-
tion [Barbic and James 2005] but in the context of differen-
tial equations and model dimensionality reduction. In the
context of real-time rendering, [Sun and Mukherjee 2006]
precompute with a larger product of functions, leading to
an N-part multiplication at runtime. Each function is still
precomputed independently, and the runtime calculations
are still linear in any of the individual functions.

While some PRT methods allow for all-frequency effects
and view changes [Wang et al. 2006], BRDF editing can-
not take advantage of such factorization-based approaches,
since the BRDF lobe at a pixel is defined over both the di-
mensions of lighting (ωi) and view (ωo) simultaneously, and
also depends on the surface normal. Therefore, we fix the
lighting, view, and geometry, but could in principle allow a
small number of pre-defined views or lighting conditions to
be updated simultaneously (as in [Ben-Artzi et al. 2006]).
Global Illumination: Our precomputation method is
inspired by offline global illumination algorithms, such as
Monte Carlo path tracing [Kajiya 1986]. We have also been
able to adapt finite element radiosity [Cohen and Wallace
1993], although we found meshing and complexity issues dif-
ficult to deal with for our complex scenes, and do not discuss
it further. Global illumination techniques usually require
the BRDF to be fixed, and use it for importance sampling
or hierarchy construction—we develop extensions that are
independent of the BRDF, and allow real-time editing. In
effect, we precompute a symbolic representation of the im-
age, which can be evaluated at runtime with polynomials in
the user-specified BRDF values, to obtain the final intensity.

Séquin and Smyrl [1989] also precomputes a symbolic rep-
resentation of the final image for recursive ray tracing—but
not full global illumination. Phong shading can be evalu-
ated at runtime, allowing later changes to surface parame-
ters, while reflected and refracted contributions are handled
with pointers to sub-expressions. In contrast, we seek to
simulate complex lighting and full global illumination, with
many possible illumination paths. Therefore, we cannot af-
ford to store or sum all subexpressions. Instead, we show
that the final symbolic expression is a polynomial and only
precompute its coefficients. We also allow editing of general
parametric and measured BRDFs.
BRDF Representations and Editing: Recent work
in BRDF editing has begun to allow edits while rendering
important visual effects such as environment maps [Colbert
et al. 2006] and general complex lighting with cast shad-
ows [Ben-Artzi et al. 2006]. However, they are limited to
direct lighting, which neglects many aspects of appearance
in realistic settings with global illumination. We utilize ex-
isting BRDF representations, giving the user the ability to
edit them interactively in a scene, with complex lighting,
shadows and interreflections. Our method supports analytic
models like Blinn-Phong or Cook-Torrance, measured half-
angle distributions [Ashikhmin et al. 2000; Ngan et al. 2005],
and variants of data-driven factored or curve-based mod-
els [McCool et al. 2001; Lawrence et al. 2006]. We allow
users to either edit values corresponding to parameters in
standard analytic BRDFs, or 1D curves for measured data.

3 General Theoretical Framework
This section introduces a general theoretical framework for
BRDF editing with global illumination, independent of any
specific implementation. It builds on the geometric and re-
flection operators introduced by Arvo et al. [1994] and shows

B(x,ωo) Outgoing radiance (image)
E(x,ωo) Emissive radiance of light sources
L(x, ωi) Local incident radiance
R(x,ωi, ωo) BRDFs of all points in the scene
T N(x, ωo) Precomputed multi-bounce tensor
ρm(ωi, ωo) BRDF of object m
bm
j (ωi, ωo) Basis function j for the BRDF of object m

Hm(x) Spatial weight map or texture for object m
G Linear geometric operator

G : B(x,ωo) �→ L(y, ωi)
(GB)(x, ω) ≡ B(x′(x, ω),−ω)

K(R) Reflection operator (equation 2)
cm
j BRDF coefficients (equation 4)

dm Equivalent albedo of object m (appendix B)
dz Product of albedos dm

�Xi Light path with contribution f( �Xi)
F i

jn Tensor coefficient after freezing BRDFs
J Number of BRDF bases (usually 64 or 128)
M Number of objects (M ∼ 5)
W Total basis functions (W = JM ∼ 500)
Z Number of terms for diffuse dz (Z ∼ 64)

Table 1: Table of Notation
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Figure 2: Schematic of the rendering equation. Outgoing radi-
ance from all surfaces in the scene (left) is converted by the G
operator into a local incident radiance field at each location (mid-
dle), which is then reflected via the bilinear reflection operator K,
that takes as input both the incident lighting and the BRDF.

how BRDF editing can be formulated in terms of a new bi-
linear reflection operator K. The operator notation is com-
pact, and alleviates the need for complex integrals in the
equations. In Sec. 4, we discuss our approximations within
this framework, that make the computation tractable.

3.1 Basic Framework using the bilinear K operator

The rendering equation [Kajiya 1986] can be written as a
linear operator equation [Arvo et al. 1994]. We build on this
foundation and write the rendering equation as:

B = E + K(R)GB, (1)

where B(x,ωo) is the outgoing surface radiance, E(x,ωo) is
the emission and G is the linear geometric operator that
converts the outgoing radiance from distant surfaces to a
local incident radiance field as in [Arvo et al. 1994]. Figure 2
shows a schematic, and Table 1 summarizes notation.

Arvo et al. [1994] define K as a linear reflection operator
on the local incident radiance field L. In our first departure
from previous representations, we make explicit K’s depen-
dence on the BRDFs R of scene objects. We write K as a
bilinear operator that takes an additional input R(x,ωi, ωo)
which describes the BRDF at each point in the scene and is
the kernel of integration in K,

K : L(x, ωi), R(x, ωi, ωo) �→ B(x,ωo)

(K(R) L)(x,ωo) ≡
∫

Ω2π

R(x,ωi, ωo)L(x,ωi) cos θidωi. (2)

Note that K is bilinear, or linear with respect to both
inputs—incident lighting L, and the BRDFs of objects in
the scene R. That is, for scalars a and b,

K(aR1 + bR2)L = aK(R1)L + bK(R2)L

K(R) (aL1 + bL2) = aK(R)L1 + bK(R) L2. (3)
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Figure 3: The final value of each pixel is a polynomial in the BRDF coefficients. Here we show an example with 2 surfaces and two
basis BRDFs shown in yellow (diffuse and specular). Note that the BRDFs we use in practice are different. The combinatorics of
multivariate polynomial coefficients make a tensor notation particularly useful.

We now seek to relate R (and hence K) to editable BRDFs
of individual objects. We assume there are M objects in the
scene, and for now that each object has a single BRDF. Let
object m have1 BRDF ρm. We assume the BRDF can be
represented as a linear combination of functions over the
domain (ωi, ωo),

ρm(ωi, ωo) =

J∑
j=1

cm
j bm

j (ωi, ωo). (4)

The BRDF basis functions b could be spherical harmonics,
wavelets or any other linear basis. We follow previous BRDF
editing methods [Ben-Artzi et al. 2006; Lawrence et al. 2006],
that have used box functions over a suitable 1D parameter-
ization such as the half-angle, as described in Appendix A.
They have shown that a 1D parameterization is appropri-
ate for most BRDF edits, as well as being compatible with
parametric edits of most common BRDF models.

Our goal is to use these basis BRDFs to create a method
that allows us to alter the kernel of integration in the K
operator by specifying different weights cm

j . We first need
to use the bm

j s to describe R over all surfaces. In order to
encode per-object BRDFs, we define a surface mask Hm(x)
that is 1 if x is on object m, and 0 otherwise.2

R(x,ωi, ωo) =
M∑

m=1

Hmρm =
M∑

m=1

Hm(x)
J∑

j=1

cm
j bm

j (ωi, ωo) (5)

The super/subscripts in the above equation implicitly define
basis functions for the full spatially varying R,

R =
M∑

m=1

J∑
j=1

cm
j Rm

j ; Rm
j (x,ωi, ωo) =Hm(x)bm

j (ωi, ωo). (6)

For simplicity, we will often use a single index w (or u or v)
to refer to the double script m

j , with w ∈ [1, W ] : W = MJ .

3.2 Polynomial Representation for Multi-Bounce

The solution of equation 1 can be expressed as the expansion

B = E + K(R)GE + K(R)GK(R)GE + . . . (7)

where each term N has an intuitive interpretation, as corre-
sponding to N bounces of light from source(s) to viewer.

All current relighting methods rely on the linearity of B
with respect to E. Previous BRDF editing methods also
take advantage of the linearity of the 1-bounce term in B
(i.e., K(R)GE) with respect to K (and hence with respect
to R), requiring them to render using only direct lighting.

However, this linearity no longer applies for BRDF edit-
ing with global illumination because the operator K(R) is
applied multiple times. Even for 2-bounce reflections, the
system becomes quadratic, and must be represented with
a quadratic multivariable polynomial in the cws. The N-
bounce solution is an order N polynomial. We now show

1We use superscripts to denote some property of the function,
and parentheses for explicitly raising to a power, so ρ2 is the
second in a series, whereas (ρ)2 is ρ squared.

2H can also take on non-binary values to encode spatial weight
maps for combining BRDFs [Lensch et al. 2001; Lawrence et al.
2006], and/or for describing textures.

how to extend the general PRT approach to these polyno-
mial equations. We start by considering 2-bounce reflection,

B2 = K(R)GK(R)GE (8)

= K(
∑

u

cuRu)GK(
∑

v

cvRv)GE (9)

=
∑

u

cu

(
K(Ru)G

∑
v

cv

(
K(Rv)GE

))
(10)

=
∑

u

∑
v

cucvK(Ru)GK(Rv)GE. (11)

The bilinear nature of K is crucial here. We use the linearity
of K with respect to the BRDF to get equation 10, and
the linearity of K and G with respect to radiance to get
equation 11.

For BRDF editing, the coefficients (cu and cv) become
the variables of our computation. The fixed quantities for
precomputation are the basis BRDF distributions (Ru and
Rv), that depend only on the parameterizations of the vari-
ous BRDFs. G and E are also known, defined by the geom-
etry and lighting of the scene, respectively. We precompute
a 2-bounce transport function T 2

uv and calculate B2 as

T 2
uv = K(Ru)GK(Rv)GE

B2 =
∑

u

∑
v

T 2
uvcucv . (12)

Most generally, T 2
uv and B2 are defined over all spatial

locations and view directions. In practice, since we fix the
view, T 2

uv(x, ωo(x)) is an order 2 tensor (that is, a matrix for
2-bounce reflection) at each pixel. B2(x, ωo(x)) at each pixel
is a quadratic polynomial in the variables c, with coefficients
given by T 2. When evaluated, it becomes the radiance func-
tion for the scene due to light that has reflected off exactly
2 surfaces. More explicitly,

B2 = T11(c1)
2+T12c1c2+. . . Tuvcucv +. . . TWW (cW )2. (13)

Figure 3 illustrates such polynomials for paths of length
1 and 2. All 1- and 2-term combinations of the BRDFs are
possible, including repetitions of the same basis function,
as in T11(c

1
1)

2, since concave objects can reflect onto them-
selves. Following the same logic, the N-bounce energy is

BN =
∑
wN

∑
wN−1

. . .
∑
w1

T N
wN wN−1...w1cwN cwN−1 . . . cw1 , (14)

where T N is an order N tensor for each pixel, whose size
varies with the number of objects and BRDF basis func-
tions per object. We are evaluating a multi-variable, de-
gree N polynomial where each w runs over all W values (all
basis functions). The variables of this polynomial are the
unknown scalar c’s. The coefficients are stored in T N ,

T N
wN wN−1···w1= K(RwN

)GK(RwN−1
)G...K(Rw1

)GE. (15)

Finally, we construct the image to be displayed by adding
the contributions from the different path-lengths:

B = E + B1 + B2 + . . . + BN , (16)

where we cut off the expansion in equation 7 to N +1 terms.
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a) b) c) d) e) f)

PBRT two bounces 128x8 bases 128x8 16x8 128x1 Direct 
Figure 4: An evaluation of the accuracy of different two-bounce decreasing-frequency BRDF series, precomputed and rendered in our
editing system. (a) Full resolution BRDFs rendered offline in PBRT—hence a series of (∞,∞) (b) A (128, 8) series (c) (128, 8) (d)
(16, 8) (e) (128, 1) or diffuse for second bounce from the eye (f) Direct lighting only (Ben-Artzi et al. 06). We see that a very low-
frequency second-bounce BRDF approximation (128, 8) in (b) and (c) is essentially exact. Moreover, even a diffuse second bounce
approximation (128, 1) in (e) provides the correct shiny material perception of the tray and indirect reflections of tray and teapot. By
contrast, direct lighting shows only a black shadow of the teapot on the shiny tray, and the spout and handle do not reflect in the teapot.
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Figure 5: Rate of growth for the precomputed data-structure, T
with and without taking symmetry into account. Left: The base
of the exponential growth is effectively reduced due to symmetry
(smaller slope). Right: The slope of both growth rates is the same;
symmetry offers only a constant offset, corresponding to a scale
factor (90 here) for the same asymptotic behavior.

4 Managing Complexity

Section 3 has presented a theoretical framework that is fully
general. However, we need to manage complexity in order to
develop a tractable algorithm. In particular, the number of
terms in equation 14 is (W )N . Recall that W is already JM ,
the number of basis BRDFs times the number of objects. For
typical values of M (5) and J (64-128), (so W ∼ 500) the
computational and storage cost for all but the first bounce
become prohibitive. In this section, we derive efficient and
perceptually accurate approximations.

Some efficiency is obtained by taking advantage of sym-
metry in the terms of our polynomial. Referring back to
equations 12 and 13, we note that T12 and T21 both get mul-
tiplied by c1c2. We can therefore define T̃ by summing all T
entries which differ by only a permutation of indices. It can
be shown that the number of terms now grows as

(
N+W−1

N

)
which is slower than (W )N (Fig. 5(left)). We can therefore
consider a larger number of bounces—in practice, we use up
to N = 4 bounces, which we find sufficient for convergence.

However, as Fig. 5(right) shows, symmetry only reduces
the complexity by a constant factor for growth with respect
to W . While this factor is about 90 for the case of N = 4
shown, the O((W )4) behavior has not been reduced.

4.1 Low-Frequency BRDF approximations

To deal with the explosion in the number of bases for R,
we make the important observation that equation 15 does
not require us to use the same set of BRDFs R for every
occurrence of K(R) . We can define a hierarchy of BRDFs3

for each object, using less bases to represent the BRDF when
considering light-surface interactions that are not directly

3This hierarchy is never directly exposed to the user. The user
simply edits BRDFs in the usual way, by adjusting parameters or
editing high-resolution 1D curves. The system automatically fil-
ters these to lower-frequency versions where needed, or computes
diffuse equivalents as described in appendix B.

visible to the viewer. For any bounce n on object m,

ρm
n (ωi, ωo) =

Jn∑
j=1

cm
j bm

j (ωi, ωo)

J = JN ≥ . . . ≥ Jn ≥ . . . ≥ J1 ≥ 1, (17)

where cm
j and bm

j correspond to the appropriate hierarchy
(and are not the same for different ρn.) This creates lower-
frequency BRDF approximations, motivated by the often-
discussed low-frequency nature of indirect lighting and by
experiments by [Nayar et al. 2006] and theoretical work that
shows that, at each bounce, the BRDFs act as a low-pass fil-
ter [Ramamoorthi and Hanrahan 2001; Durand et al. 2005].

We now denote the distribution of BRDFs R with a su-
perscript indicating the number of bases used per object,

BN=K(RJN)GK(RJN−1)G...K(RJn)G...K(RJ1)GE. (18)

When equations 14 and 15 use the corresponding hierarchy
of R’s, the subscripts are modified to run over a smaller
domain such that wn ∈ [1, MJn]; MJn = Wn. Specifically,

T N
(m

N
j
N

)···(mnjn)···(m1j1)(x, ωo) = (19)

K(RJN
mN jN

)G . . .K(RJn
mnjn

)G . . .K(RJ1
m1j1

)GE,

where the subscripts wn = (mnjn) explicitly denote the ob-
ject mn and BRDF basis function jn. This is the most gen-
eral form of the multi-bounce tensor T N .

A variety of decreasing-frequency BRDF series within our
editing system are illustrated in Fig. 4. The scene is lit by an
environment map and modeled after a figure in [Ben-Artzi
et al. 2006]. For clarity in the comparisons, we use only two
bounces, and show series (J2, J1) ≡ (128, 8); (16, 8); (128, 1).
Figure 4f shows direct lighting only, as in [Ben-Artzi et al.
2006]—this omits important effects for the perception of ma-
terials and shininess, like the reflection of the teapot in the
shiny tray (a black shadow results instead), or the reflec-
tion of the spout in the teapot. Figure 4a is ground truth,
rendered offline (with two bounces) in PBRT [Pharr and
Humphreys 2004].

Figure 4 underscores that further bounces can be repre-
sented with very low-frequency BRDFs. The ground truth
in (a) is essentially identical to the (128, 8) BRDF series in
(b) and (c), that uses only 8 BRDF bases for the second
bounce. In fact, our direct material perception primarily re-
sponds to the glossy tray reflecting nearby objects like the
teapot. Therefore, even the purely diffuse approximation
for further bounces from the eye (128, 1) in (e) is usually
adequate. In that case, the teapot appears diffuse in the
reflection in (e), but this approximation is only for objects
seen indirectly through reflections, and not easily noticeable.

Often, our choices are dictated by available computational
resources. For a given complexity J2J1 = 128, two possible
options are (16, 8) in (d) and (128, 1) in (e). Both images are
quite accurate, and can be edited within our system. They
make different tradeoffs. The glossy reflection of the teapot
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Our Method : real-time
a)

c)

b)

d)
PBRT : offline (2 hours per frame)

(20 fps)

Figure 6: BRDF edits in Cornell Box. We edit the color of the
small box, and also make the back wall shinier, all while rendering
interactively with four bounces of global illumination. Notice the
correct color bleeding in the scene, and correct glossy reflections
of the scene in the back wall of (b). We compare our results to
offline ground truth with PBRT in (c) and (d).

in the tray is slightly more accurate in (16, 8) because of a
better BRDF approximation for the second bounce. How-
ever, the first bounce is represented at lower frequency than
(128, 1)—for example, direct reflections on the teapot are
somewhat less sharp; this can become more noticeable for
measured BRDFs and very shiny materials.

The observations from Fig. 4 indicate that using a dif-
fuse equivalent for further bounces is a reasonable and effi-
cient approximation, and we use it for some of our examples
(Sec. 4.2). For more complex effects like caustics, we explore
instead a series where the second bounce from the viewer
uses a low-frequency approximation (Sec. 4.3).

4.2 Diffuse approximation for further bounces

In the limit, JN−1 = 1, and we approximate each object’s
BRDF using a single basis function that is a diffuse lobe,
scaled by the “equivalent albedo” of the BRDF. See ap-
pendix B for a derivation of the equivalent albedo, dm. We
usually use four bounces (J, 1, 1, 1) (with typically J=64).

BN ≈ K(RJ)GK(R1)G...K(R1)GE (20)

T N
(j)(mN−1)···(m1) = K(RJ

j )GK(R1
mN−1

)G . . .K(R1
m1

)GE,

where we have simplified the index pairs (mnjn) in the gen-
eral tensor of equation 19 as follows. We drop the mN sub-
script in the first index pair, since only one object, mN (x),
is visible through a pixel. We also drop the jn subscripts for
further bounces, since there is only one basis BRDF when
using R1. Thus, we also simply use ‘j’ instead of ‘jN ’ for
the bounce closest to the eye.

This approximation fully treats the first bounce from
the viewer, including glossy reflections of the nearby scene.
Bounces further from the viewer (and hence reflections of
objects not seen directly) are treated as diffuse. The com-
plexity at each pixel reduces from O((W )N) to O(J(M)N ).
We will later see how this reduces further to O(J) for ren-
dering, since we edit only one object or material at a time.

direct lighting onlyglossy direct + diffuse indirect

a) b)

Figure 7: Qualitative errors in simpler approximations. Com-
pare (a) and (b) to Fig. 6b. (b) is the direct lighting approxima-
tion of Ben-Artzi et al., which fails to capture many important
global illumination effects. (a) is a sum of (b) and diffuse indirect
lighting, capturing some global effects but providing an inconsis-
tent material perception for glossy objects like the back wall.

Evaluation: Figures 6a and 6b are produced with our
system. In (a), all surfaces are diffuse, while in (b) we edit
the back wall to make it a glossy material, and change the
color of the inner box to yellow. It is clear our method
enables perception of material appearance, because objects
correctly reflect other nearby objects (see the glossy inter-
reflections of the room in the back wall in (b)), while also
accurately preserving global effects like color bleeding onto
the large inner box. We compare to ground truth using
offline path tracing with PBRT in Figs. 6c and 6d, which
confirms the accuracy of the approximation.

By contrast, Fig. 7b shows the direct lighting approxima-
tion of [Ben-Artzi et al. 2006] for the configuration in Fig. 6b.
Not only is it missing a lot of energy, but it also lacks the
reflections of the room in the back wall, which makes it dif-
ficult to assess the desired glossiness while editing.

Note that our method treats the first bounce from the
eye with the full BRDF to get glossy reflections of nearby
objects,

B ≈ E + K(RJ)GE + K(RJ)G

N∑
N=2

(
K(R1)G

)N−1
E.

Figure 7a compares to an alternative coarser approximation
we originally tried using our framework. This simply adds a
diffuse indirect solution to the full direct lighting result. It
is essentially a series (1, 1, 1, 1) for the indirect illumination,
and therefore the most efficient technique,

B ≈ E + K(RJ)GE + K(R1)G
N∑

N=2

(
K(R1)G

)N−1
E,

where the main difference is that K(R1) is used instead
of K(RJ) for the leftmost operator of the multiple-bounce
terms. Figure 7a is clearly better than direct lighting only—
some global illumination is usually better than none.

However, a comparison with Fig. 6b shows that while fur-
ther bounces can be approximated as diffuse, the first bounce
from the eye does need the full high-frequency BRDF. Un-
like our method, Fig. 7a gives an inconsistent material ap-
pearance of the back wall, that may be difficult to interpret
while editing. While the direct reflection of the light source
is glossy, the indirect reflections of the room appear diffuse.

4.3 Slower Decay of BRDF Series

Treating later bounces as diffuse works well in most scenes
(see Figs. 1, 4e, 6 and 9). However, in some configurations
like concave curved reflectors, higher frequency indirect ef-
fects like caustics are visually important [Durand et al. 2005].

To handle such challenging situations, we need to reduce
the BRDF frequencies more slowly, using more (8-16) ba-
sis functions for the second bounce from the eye. (Cases
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where even the third or higher bounces away from the eye
need to be high-frequency are quite rare, though our general
framework does not preclude taking them into account.) We
compensate for the extra memory cost either by reducing the
number of bases for the first bounce (Fig. 4d) or by using
fewer bounces (Fig. 11 has only two bounces).

We have already seen an example of using 8 BRDF basis
functions for the second bounce in Fig. 4(b-d), that gives a
more accurate reflection of the teapot in the shiny tray. In
practice, our editing system also includes diffuse approxima-
tions for the third and fourth bounces to augment the series
in Fig. 4 (see table 2). An even more challenging example is
Fig. 11, that involves caustic effects. In this case, we use 16
BRDF basis functions for the second bounce, with a BRDF
series of the form (J, J/4) ≡ (64, 16).

5 Implementation

We now describe our implementation, starting with our pre-
computation method (Sec. 5.1), followed by the rendering al-
gorithm (Sec. 5.2), and some practical extensions (Sec. 5.3).

5.1 Monte Carlo Precomputation

We need to precompute the tensors defined by equation 19 at
each pixel. The important special case for diffuse approxima-
tion in further bounces is given by equation 20. Recall that
the K operators involve integrals over the hemisphere, which
means that each T N (x) requires nested (high-dimensional)
integrals over ray paths. This is similar to traditional global
illumination. We adapt Monte Carlo path tracing [Kajiya
1986] for precomputation because of its flexibility, ease of
implementation and negligible memory overhead.

Each value in the different tensors can be seen as a sep-
arate integral over the space of paths. However, it is easier
and more similar to traditional path tracing to sample path
space for all integrals at the same time. We generate random
paths, and for each path update the appropriate tensor inte-
grals. We must modify three basic aspects of the path tracer.
First, we cannot generate rays by sampling the BRDF (since
it is unknown). Second, we must add each path’s contri-
bution to the correct tensor element, as opposed to simply
contributing to the final pixel radiance. Third, we must
compute the contribution of each path using basis BRDFs.

Consider a given path �X from a point on a light source (�)
to the eye (e), that passes through points xN , xN−1, . . . , x1

on objects mN , mN−1, . . . , m1, as illustrated in Fig. 8.

Sampling path space: According to Monte Carlo theory,
any random sampling can be used to generate new directions
when building up the path. We follow standard path tracing
and generate rays recursively from the eye. We sample the
light source at each bounce to generate all path lengths.

Path tracers usually importance sample the BRDF to se-
lect a new direction at each intersection. Unfortunately, we
have no knowledge of the final BRDF. We cannot sample ac-
cording to the basis BRDFs either because they will be com-
bined with arbitrary weights at runtime. The simplest ap-
proach would be to sample the cosine-weighted hemisphere
uniformly, but this would yield high variance when sharp
specular lobes are used. Instead, we take advantage of the
general form of typical BRDFs and sample according to a
mixture of 70% diffuse, and 30% high-gloss (Blinn exponent
of 200). This places more importance on specular directions
and enables low-noise results for the full range of glossy to
near-mirror BRDFs in a practical editing session.

Tensor update: For each random path, we need to ac-
cumulate a contribution to the appropriate tensor element.
In effect, we are computing coefficients in a symbolic poly-
nomial representation of the basis BRDFs (in the spirit of
symbolic rendering by [Séquin and Smyrl 1989]). In our
case, we have chosen bases that do not overlap, and there-
fore a given path requires updating exactly one tensor ele-
ment. The j index in equation 20 is determined by the ba-

x1

x2

x3

x4
�

e

A

B

C

D

E a
b
c

N(x2)

cos(θin)

Figure 8: Consider a path �X from the light (�) to the eye (e).
The light hits objects B, C, D, B before reaching the eye. At
the final bounce (x4), the view direction defines how the basis
functions of B’s BRDF divide the incoming light directions. Of
the three bases (a, b, and c), the configuration of the last bounce
places it in c. Therefore, this path contributes to T 4

Bc,D,C,B.

sis function that contains the configuration of incoming and
outgoing directions at the last intersection point (in Fig. 8
this is x4). The outgoing direction for the bounce to the
eye (x4 − e) partitions the space of incoming directions into
bands corresponding to our different box-basis functions (a,
b, and c in Fig. 8). In the example, band c contains the in-
coming path direction, which determines j. More generally,
we would choose the j for which bj(ωi, ωo) is non-zero. In
the case of the diffuse approximation for further bounces, we
only care about the objects containing the further bounces
(the indices mN−1...m1 in equation 20). In Fig. 8, these are
DCB. The more slowly decaying BRDF series with multiple
specular bounces would use a similar band selection for the
second bounce from the eye, as for the first.

Tensor values involve a standard Monte Carlo sum,

T N
wN wN−1...w1(x) =

1

Q

∑
i

f( �Xi)

p( �Xi)
, (21)

where Q is the number of paths through pixel x, and the sum

runs only over paths �Xi that correspond to the specific sub-

scripts (bands and objects) in T N . f( �Xi) is the contribution

of �Xi, and p( �Xi) is the probability of generating it.

Path Contribution: In standard path tracing, the path

contribution f( �Xi) is the direct visible lighting at x1, mul-
tiplied by the product of BRDFs (corresponding to K) and
cosine terms at each intersection (the visibility in G is al-
ready considered when creating valid paths). In our case,
we must instead multiply by the appropriate basis BRDFs.

For the first bounce from the eye, we use

b̃j(e, xN , xN−1) = b
mN (xN )
j (ωi, ωo) cos θi, (22)

where ωi(xN , xN−1) and θi(xN , xN−1) depend on the di-
rection of the incident ray, and ωo(e, xN ) on the outgoing
view direction. For the slowly decaying series, a very similar
form can be used for the second bounce from the eye, simply
considering a lower-frequency b̃j(xN , xN−1, xN−2). For the
other bounces, we use the single diffuse basis:

D(xn, xn−1) =
1

π
cos(θi(xn, xn−1)). (23)

Finally, f( �X) is a product of the terms at each bounce. For
the diffuse approximation for further bounces, this is

f( �X) = b̃
mN (xN )
j (ωi, ωo)D(xN−1, xN−2) . . . D(x1, �)E(�). (24)

Optimizations: Our precomputation is essentially the
same complexity as rendering a single image with MCPT.
Moreover, many standard path tracing optimizations can
still be applied. For example, we have adapted irradiance
caching [Ward et al. 1988]—instead of generating paths that
terminate at the light source, we find the direct lighting at
the last surface point x1. We cache the irradiance in a pre-
process that samples visibility on a grid within each triangle.

6
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5.2 Rendering in Real Time

We now focus on the runtime rendering computation for
each pixel. For compactness of notation, this subsection
will deal primarily with the diffuse approximation for further
bounces, but more slowly decaying series use very similar
methods, and are discussed briefly at the end.

To simplify notation, we denote the tensor as T N
jz (x),

where the single “super-index” z is a short-hand for writ-
ing out mN−1...m1 in equation 20 (viewed as an index,
z ∈ [1, Z = (M)N−1]). Similarly, we also denote the product

of diffuse equivalents dm of each object by dz,

z ≡ {mN−1, · · · , mn, · · · , m1}
dz ≡ dmN−1dmN−2 · · · dmn · · · dm2dm1 . (25)

Note that z represents a list of indices, while dz is a single
number, corresponding to the product of the albedos dm.

Finally, we can adapt equation 14 for rendering,

BN(x) =

J∑
j=1

Z∑
z=1

T N
jz (x) cjdz. (26)

During the edit, the user specifies the BRDF coefficients cj

(either directly by editing a curve, or implicitly by editing
a parametric model). The diffuse equivalents d (and hence

dz) are then computed as described in appendix B. Finding

the cj and dz occurs once per frame for the whole image.
Using the precomputed T N

jz (x), the double summation in
equation 26 must now be evaluated at each pixel.

Object Freezing: Equation 26 requires O(JZ) opera-
tions per pixel. On modern hardware, this is fast, but still
not real-time (requiring a couple of seconds per update). To
reduce complexity, we observe that a user edits the BRDF of
only one object at a time. We use a run-time precomputation
that performs the bulk of the calculations in Equation 26 by
temporarily “freezing” the BRDFs of the remaining objects.

Recall that dz represents a multi-variable polynomial in
the d’s of the objects in the scene. For example, if we have
z = {1, 3, 2, 1, 5, 3}, dz = (d1)

2d2(d3)
2d5. However, if all but

one of the d’s are fixed, this becomes just a single-variable
polynomial in the unfrozen d of the object being edited. For
example, if all but object 1 are “frozen”, we can define a con-
stant A = d2(d3)

2d5, so that dz becomes a simple quadratic

polynomial, dz = A · (d1)
2 in only the edited variable d1.

To implement this scheme more formally, we need a helper
function n(z, i) that tells us how many times a given edited
object i appears in z. In the above example, n(z, i) = 2

(for i = 1) that tells us dz is a quadratic polynomial in di

alone. We can also define the constant A more formally as
A = dz/(di)

n. Finally, we compute at run-time a new tensor
of coefficients at each pixel, where each row represents a
single-variable polynomial in di,

F i
jn(x) =

∑
N

∑
z

{
n(z, i) 	= n : 0

n(z, i) = n : T N
jz (x) dz

(di)
n

(27)

Our real-time rendering step is now a direct evaluation of

B(x) =
N−1∑
n=0

(di)
n

J∑
j=1

cjF
i
jn(x). (28)

For each power (di)
n, we simply evaluate a dot-product cjFj ,

essentially as in a standard linear PRT formulation.
The computation in equation 27 requires O(JZ) opera-

tions per pixel, comparable to simply evaluating equation 26
directly once. This requires a short (usually 5-10 seconds)
mode switch each time the user begins editing a different
object. The real-time rendering in equation 28 is now O(J)

(the number of bounces N is a small constant, usually four.)

Two further optimizations are possible. In a practical
editing session, the coefficients cj change slowly from frame
to frame, especially if we transform into a wavelet represen-
tation. This temporal coherence can be directly exploited
using the incremental wavelet rendering method described
in [Ben-Artzi et al. 2006]. Finally, if we are rendering a pixel
of an object that is not being edited, the cj do not change at
all. (Note however, that the object’s appearance will still be
affected because of global illumination.) This makes it pos-
sible to further precompute V i

n =
∑

j F i
jncj , reducing the

cost to evaluating a simple polynomial in di.

Slower Decaying Series: We briefly describe the gen-
eralization to more slowly decaying series, as in Sec. 4.3.
The general rendering operation of Equation 26 is now best
described as a triple-summation, since we are dealing with
three distinct representations of R: RJN , RJN−1 , and R1.

BN (x) =

JN∑
j=1

MJN−1∑
w=1

Z∑
z=1

T N
jwz(x) cj ĉwdz, (29)

with ĉw denoting the lower-frequency BRDF coefficients for
the second bounce (JN−1 bases on each of the M objects).

Object freezing is a bit more difficult, theoretically re-
quiring the creation of a three-dimensional F i

jkn, where

j ∈ [1, JN ], k ∈ [1, JN−1], n ∈ [0, N−2]. In practice, we
think of the j as one dimension, and k′ ≡ kn as the other.

5.3 Extensions

We briefly describe two important practical extensions.

Objects with Fixed BRDFs: Large scenes can con-
tain many small objects that cause an exponential increase
in memory requirements. Such scenes usually do not require
editing the BRDFs of all objects. When designing the ma-
terials in a room, one typically does not want to change the
BRDFs of small “placeholder” objects like books or toys.
We extend our algorithm by implementing the ability to fix
the BRDFs of certain objects at precomputation. Note that
their shading is still updated, based on global illumination
from other surfaces. This should also not be confused with
run-time object freezing above, which occurs temporarily
during an editing session.

In precomputation, instead of using diffuse equivalents
D or BRDF bases b̃, we must use the full known BRDF
ρm(ωi, ωo) cos θi for reflections from fixed object m. Ren-
dering is unchanged for editable objects, since there are no
new BRDF bases. For the fixed object, we still use T N

z (x)
and multiply by the diffuse albedos of editable objects. How-
ever, the BRDF bases (and index j) need not be considered.
In Fig. 1, the table and its legs have fixed BRDFs.

Spatial Weight Maps: So far, we have focused on
BRDF effects. Spatial variation can be handled with tex-
tures to modulate the BRDF over an object’s surface. If we
do not seek to edit them, the textures can be directly incor-
porated into the BRDF basis functions (as the multiplicative
Hm(x) terms in equation 5). Finally, while we have dis-
cussed a single BRDF per object for clarity, our framework
and implementation can handle multiple co-located BRDFs
for each object. If we also seek to modify the spatial blend-
ing of BRDFs, as we do for the floor in Fig. 1, we can simply
modulate the directly viewed surfaces in image-space by the
multiplicative spatial blending weights (weight maps) or tex-
ture. For global illumination, we are concerned only with the
low-frequency behavior of the weight maps or textures, and
we modulate the diffuse equivalent albedos by the average
value of the weight map for each BRDF layer.

7
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a) b)

c)

Figure 9: a) original, b) closeup after anisotropic edit of vase in
(a), c) closeup after fresnel effect strongly increased for (b).

6 Results
Section 6.1 briefly discusses the types of edits performed on
the scenes in Figs. 1, 4, 6, 9 and 11, and the global illu-
mination effects involved. Then, Sec. 6.2 gives performance
results for precomputation time and memory usage, while
Sec. 6.3 discusses rendering frame rates.

6.1 Editing and Visual effects
Cornell Box: Figure 6 shows the Cornell box, where we
edit the parameters of a Blinn-Phong and diffuse reflectance
model. In going from (a) to (b), we make the back wall
glossy with correct interreflections of the nearby scene, and
change the color of the inner box, demonstrating accurate
color bleeding. Note that even the simple color adjustment
was not possible interactively with global illumination in pre-
vious methods.∗

Teatray: Figure 4 shows a teatray scene. The teapot
has a Cook-Torrance BRDF with specular and diffuse com-
ponents, and the handles and tray a Blinn-Phong model.
While only a single set of BRDFs for the objects is shown
in Fig. 4 for brevity, we can freely edit the teapot, tray and
handles in real-time, using any of the BRDF series shown in
the figure (extended to three or four bounces).

Vase: Figure 9 shows a variety of flexible BRDFs possible
within our system. The flowers are diffuse, while the stems
are a diffuse+specular BRDF to enable a glossy coating. The
table has diffuse and specular BRDFs, with the diffuse shown
textured in Fig. 9. The vase uses a diffuse and a specular
layer. The specular BRDF is an Ashikhmin-Shirley BRDF
with fixed exponent of 225, but adjustable ratio to adjust
the direction and amount of anisotropy (see Appendix A).
A second specular layer allows for edits to the Fresnel term.
Appendix A describes how to enable Fresnel control for any
BRDF via a second additive layer.†

Room: Figure 1 shows one potential application of our
system to design interiors. In this case, indirect light is crit-
ical, since a large part of the scene, like the back wall and
much of the couch, would be black with direct lighting only.
Most of the indirect illumination is low-frequency, so we use
our diffuse approximation for further bounces. We only use
three bounces, with a BRDF series (64, 1, 1), since we found
that the fourth bounce contributed relatively little to the
qualitative appearance of the scene.

This is a complex scene with 8 objects (6 editable), envi-
ronment lighting from the windows, and a variety of materi-
als including measured reflectance and textures, which can
all be edited. Our system renders interactive feedback with
global illumination, enabling the user to correctly perceive
and edit materials to design the interior of the room.

∗Since the Cornell Box was designed for verifiable comparison
to PBRT, it was precomputed with the floor and back wall using
Blinn-Phong with 64 bands, while the other objects use 2 bands
to represent a pure diffuse BRDF with editable albedo.

†The glossy layers of the stems and table use 64 bands. The
Ashikhmin-Shirley layers of the vase use 256 bands. All diffuse
layers use 2 bands.

Figure 10: Closeups for Fig. 1. Note the color bleeding of the
couch onto the stairs. Note also the glossy reflection of the couch
in the shiny floor on the right, which is a third-bounce effect (since
the bottom of the couch is lit only by indirect lighting).

The effects of global illumination are clearly seen in the
closeup views of Fig. 10, where the couch color bleeds onto
the stairs. Notice also the glossy reflection of the green couch
in the highly shiny floor on the right. The lower portion
of the couch is lit only by indirect illumination, so this is
actually a glossy reflection of indirect light, and needs at
least 3 bounces to simulate properly.‡

Ring: Figure 11 shows how our system can be used even
to choose materials to create the desired complex global il-
lumination effects like caustics. In this case, we use a slower
series decay (64, 16) that includes two specular bounces, to
obtain accurate indirect specular reflections. Our system in-
teractively updates both the caustics on the floor from the
ring, and the reflection of the floor in the ring accurately, as
the BRDFs are edited. Note that the sharpness of the caus-
tics and indirect reflections are maintained even though the
second bounce BRDF is still quite low frequency. Without
our system, it would be quite difficult to interactively se-
lect the glossiness of the plane and ring, to explore possible
appearances of the caustics.

6.2 Precomputation Times and Memory Usage

Table 2 describes precomputation times and memory usage.
The rows show the scenes (including multiple BRDF series
for the teatray). The image resolutions were chosen pri-
marily to fit the resolution of the accompanying video—the
teatrays were computed at lower resolution for faster test-
ing and comparison to PBRT renders (which took hours to
generate low-noise still images at these resolutions).

Precomputation Time: The precomputation time (on
an Intel Xeon 3.2GHz 64 bit machine) ranges from one to
several hours, depending linearly on the number of path trac-
ing samples used, and also varying with the number of point
lights to sample the environment. Interestingly, these wall
clock times are about as fast (and sometimes faster than) for
standard PBRT to render a single (uneditable) image of the
scene— this is because the complexity of our precomputa-
tion is essentially the same as rendering a single image with
path tracing. Thus, our precomputation times, while large,
are comparable to those for high quality global illumination
image synthesis methods.

‡Different objects in the room were computed with different
BRDF parameterizations and resolutions. The couch and floor
have 64 bands for specular BRDFs. The floor also has a diffuse
layer with 2 bands. The stairs and sills use 16 bands for glossy
BRDFs. The walls and ceiling have only a diffuse BRDF with 2
bands, allowing color and intensity edits, but not glossy.
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low gloss
ring:

high gloss

diffuse
ground plane:

high glosslow gloss

medium gloss

Figure 11: To obtain accurate indirect reflections, we enable second bounce glossy reflections. We show results with an implementation
that uses J = 64 for the first bounce from the eye and J = 16 for the second. With this approximation, we can not only get caustics on
the floor from the ring, but also see the reflection of the floor in the ring accurately, as shown in the rightmost image.

       scene specifications precomputation storage per path-length (MB) rendering

name resolution M BRDF series samples lights time(h:m) 1 2 3 4 total freeze fps 

Cornell box 450×450 6 64,1,1,1* 12K 81/81 5:58 17 104 365 975 1461 10s 22 
Vase 512×512 4 64,1,1,1† 4K 10K/400 5:29 65 262 637 — 964 8s 19 
Room 640×480 6 64,1,1‡ 8K 14K/800 9:25 27 165 563 — 755 7s 20 

128,1,1,1 1:07 13 37 75 125 250 3s 25 
16,8,1,1 1:42 2 37 113 333 485 3s 16 Teatrays 320×240 3 

128,8,1 

10K 10K/2K 

2:10 13 301 853 — 896 15s 5 
Ring 400×400 2 64,16 4K 4K/400 6:15 20 607 — — 627 16s 6 

Table 2: Precomputation time, storage of precomputed data structures, and rendering time for each of our scenes. The scene specification
includes image resolution, number of objects (M), and the BRDF series. Precomputation lists the number of samples per pixel for path
tracing, and the number of point lights used to sample the environment for direct/indirect lighting (we usually use fewer samples for
indirect illumination). Storage is shown separately (in MB) for each path-length, or number of bounces. Rendering time indicates the
time for “object freezing” when selecting a single object to edit, and for real-time rendering.

Memory Usage: The memory usage grows for each
bounce, since there are more polynomial terms in T N (as
shown in Fig. 5 (left)). The growth is relatively slow, be-
ing a factor of about 3 for higher bounces. Nevertheless,
the highest (usually fourth) bounce requires more than half
the total memory. This is an interesting direction for future
work, since it is usually the darkest and most amenable to
compression. However, in our experiments with direct quan-
tization and wavelet compression, we were not easily able to
find a scheme that was free of image artifacts. The problem
is different from compression for relighting, since we visualize
the BRDF and image directly, making artifacts more appar-
ent. We instead simply drop zero values, and use RGBE
compression. At the end, our total precomputed data struc-
tures are in the range of several hundred MB. While this is
large, it is comparable, for instance, to all-frequency relight-
ing approaches on similar resolution images.

Note that the storage sizes shown in Table 2 are larger
than the theoretical runtime memory requirements. Due to
our object freezing step, only the smaller F i

jn in equation 27
needs to be in main memory. We can avoid preloading all of
the data at the cost of higher object-switch times.

In comparing the different BRDF series for the teatray,
(128, 8, 1) requires the most memory, because of the extra
factor of 8 for second bounce BRDF bases (as opposed to
(16, 8, 1, 1) and (128, 1, 1, 1)). To keep memory consumption
reasonable, we limit to 3 bounces rather than 4 as with the
other series. These numbers are comparable to the ring, that
also uses 16 bases in the second bounce. (We similarly limit
the number of bounces in the ring to two (64, 16)).

6.3 Rendering Speed

For simplicity, we pursue a purely software implementation,
although the simple dot-product form of equation 28 indi-
cates that GPU implementations, similar to those recently
developed for relighting should also be applicable.

As can be seen in the video and the last column of ta-
ble 2, our software method achieves frame rates of 15-25fps

on most scenes. The time for “object-freezing” when we
switch from one object to another for editing is about 5-10
seconds, and isn’t disruptive to typical editing sessions, as
seen in the video. The rendering and mode switch times are
somewhat larger when there are more BRDF bases for the
second bounce (one teatray example and ring), on account
of the additional complexity. However, they are still inter-
active, and our video demonstrates interactive editing of the
ring scene. In summary, our results and video for the first
time show practical real-time BRDF editing, as interactive
feedback is rendered with global illumination.

7 Conclusions and Future Work

This paper has described a complete theoretical analysis and
practical implementation of a real-time rendering method,
which enables interactive editing of BRDFs with global illu-
mination effects. We expect significant applications to de-
sign in computer graphics, where the artist can now inter-
actively specify material properties in the final scene, with
complex lighting, shadows and interreflections.

In the process, we develop a new precomputation-based
framework, that can handle nonlinear effects involving mul-
tivariable polynomials for multiple bounces. Our contribu-
tions include a general theoretical framework for expressing
global illumination as a precomputation-based interactive
rendering process based on reflection and geometric oper-
ators, an analysis of computational complexity to develop
tractable approximations, and effective precomputation and
rendering methods and extensions. It is likely that many of
these insights could be used in other contexts, like PRT for
relighting, or even offline global illumination.

More generally, we have proposed a new and efficient
method for symbolically rendering an image. Instead of accu-
mulating each path into the color of a single pixel, that path
is effectively stored in symbolic form, including the product
of all BRDF terms encountered along it. Paths involving
the same BRDF terms are accumulated into the appropri-
ate tensor coefficient. This symbolic approach is likely to
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have broad applications in other domains where we seek to
interactively edit or explore the space of material parame-
ters, such as animation, simulation and geometric modeling.
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Appendix A: BRDF Basis Functions
Our framework is general for any choice of linear BRDF basis
functions, but benefits from those tailored to the natural space
in which material edits occur. In practice, we use the 1D-
reparameterized box basis functions of [Ben-Artzi et al. 2006],

ρ(ωi, ωo) = ρq(ωi, ωo)f(γ) ; f =
J∑
j

cjbj(γ(ωi, ωo)), (30)

where f is the 1D editable factor, and ρq is the quotient BRDF
that captures more complex, but uneditable behavior like nor-
malization constants and the GAF . f can be set directly by the
user by editing a 1D curve, or computed by the system based on
the user setting parameters of analytic BRDFs. The form above
involves an appropriate 1D parameterization γ of the BRDF’s 4D
domain. Some examples of γ are: θhalf , θdiff , θin, and θout.

Some BRDFs have two factors, such as Cook Torrance with γ =
θhalf to control specular behavior, and γ = θdiff to control the
Fresnel effect. We only use a single factor for practical reasons, to
keep memory requirements manageable. However, we show below
that many of the important “two-curve” edits can be achieved
with a single factor, by careful use of the quotient BRDF.

The Fresnel effect is the most common use of the θdiff
factor. If we use the Schlick [1994] approximation, a BRDF that
includes a Fresnel term (e.g. Cook-Torrance) becomes

ρ = ρqf(θh)(F + (1 − F )(1 − cos θd)5). (31)

F is a function of the wavelength (color channel) and index of
refraction only. This allows us to define ρ as the sum of two
BRDFs, each with just one editable factor but different ρq ,

ρ = ρqf1 + ρq2f2 ; f1 = Ff(θh)

ρq2 = (1 − cos θd)5ρq ; f2 = (1 − F )f(θh) (32)

At runtime, F is evaluated based on the user’s choice of index of
refraction, and f1 and f2 are set via the user interface. The two
BRDFs are computed and summed (just as a specular and diffuse
layer would be summed) to yield an accurate composite.

Anisotropy is the result of an elongated highlight. As pre-
sented in [Ben-Artzi et al. 2006], two factors can be used to ad-
just the width of the highlight along the tangent and binormal
directions. If we know the overall specularity of the material, we
can separate the Ashikhmin-Shirley BRDF into a quotient that
captures the width of the highlight, and a 1D factor that controls
the ratio of the elongation in the two perpendicular directions:

ρAS = ρq(cos θh)nu cos φh(cos θh)(rnu) sin φh ; r ≡ nv/nu

(33)
ρAS = ρqu(ωi, ωo)(γr(ωh, ωo))r (34)

γr = (cos θh)nu sin φh ; ρqu = ρq(cos θh)nu cos φh (35)

A similar single-factor form can be obtained if the amount and
direction of anisotropy (r) is known, and only the width of the
highlight needs to be adjusted.

Appendix B: Equivalent Albedo
We choose the equivalent albedo to match the average BRDF
value, or more exactly, the output power for a uniform incident
radiance field. This also corresponds formally to choosing the best
perturbed K operator, as in [Arvo et al. 1994]. In other words,

d =
1

π

∫ ∫
ρ(ωi, ωo) cos θi cos θo dωidωo (36)

=
1

π

∑
j

cj

∫ ∫
ρq(ωi, ωo)bj(γ(ωi, ωo)) cos θi cos θo dωi, dωo.

The term in the integral now depends only on known quantities—
the quotient BRDFs and the basis functions, and can therefore be
evaluated by dense Monte Carlo sampling (this needs to be done
only once for a given parameterization, not even for each scene).
Call this ej . Finally, at run-time, we simply need to compute

d =
1

π

∑
j

cjej , (37)

with the predetermined ej and the dynamically chosen cj .
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