
Service Composition in a Global Service Discovery
System

Knarig Arabshian, Christian Dickmann and Henning Schulzrinne
Department of Computer Science,

Columbia University,
New York NY 10027, USA

knarig@cs.columbia.edu,mail@christian-dickmann.de,hgs@cs.columbia.edu

Abstract—GloServ is a global service discovery system which
aggregates information about different types of services in a
globally distributed network. GloServ classifies services in an
ontology and maps knowledge obtained by the ontology onto
a scalable hierarchical peer-to-peer network. Since services are
described in greater detail, due to the ontology representation,
queries are matched semantically. In this paper, we describe
an enhancement to the GloServ querying mechanism which
allows GloServ servers to process and issue subqueries between
servers of different classes. Thus, information about different
service classes may be queried for in a single query, creating
an extensible platform for service composition. The results are
then aggregated and presented to the user such that services
which share an attribute are categorized together. We have built
and evaluated a location-based web service discovery prototype
which demonstrates the flexibility of service composition in
GloServ and discuss the design and evaluation of this system.
Keywords: service discovery, ontologies, OWL, CAN, peer-to-
peer, web service composition

I. I NTRODUCTION

As more services become available and context-aware ap-
plications and ubiquitous computing becomes commonplace,
service discovery in a wider area network is necessary and net-
work scaling becomes an issue. The proliferation of services
also creates the problem of performing more sophisticated
query matching such as giving one the option of searching for
exact and similar matches to a query or allowing one to query
for a combination of different services in a single search. Addi-
tionally, services may be dynamic in nature which requires the
service discovery system to handle frequent service updates.
Currently, service discovery systems do not scale well and are
limited to local area networks. They also use simple attribute-
value pair matching in order to discover services, which limits
the results only to exact matches.

In order to address these problems, we have developed
GloServ [7], a global service discovery system, which uses the
Web Ontology Language Description Logic (OWL DL) [3] to
classify services in an ontology and map knowledge obtained
by the ontology onto a hierarchical peer-to-peer network. It
operates in wide as well as local area networks and supports
a large range of services that are aggregated and classified in
ontologies. A partial list of these services include events-based,
physical location-based, communication, e-commerce or web
services. Organizing services in an ontology and searching

within that ontology allows searching for general categories
of services and then specializing to specific services.

These attributes make GloServ a very good candidate for
context-aware applications. Such context-aware applications
need to have access to both ubiquitous as well as pervasive
information, thus revealing the need for a globally scalable
system. The underlying peer-to-peer architecture provides an
efficient system for global distribution of services that may
also be dynamic in nature. We envision all types of services
to be handled within GloServ, including those that need real-
time service description updates. For example, restaurants may
want to update their available seating every 15 minutes during
peak hours. Hence, a peer-to-peer system provides an efficient
means of performing frequent writes in addition to reads.

Furthermore, GloServ aggregates all types of services into
one system. Since the high-level service classes are organized
in an ontology, adding a new service class into the system
simply reduces to adding a class to the ontology and deploying
the servers necessary for handling the given service class. The
network is then automatically generated via the information
within the ontology. This attribute of GloServ provides great
deal of generality and ease of construction of services within
the network, allowing third parties who want to add their
service class to GloServ the ability to do so by submitting an
ontology for the service class and deploying a pool of servers.
Ontologies for a given service class will be designed by experts
within that domain. Since these ontologies represent high-level
service classes, all services within a given class will share
common attributes. For example, the restaurant service class
shares the location, cuisine and price range attribute across the
globe. However, if service providers need to specify further
information, we have extended GloServ so that key words can
be inserted within the ontology and a combination of text and
ontology querying can be done [8].

The main contribution of this paper is describing an en-
hancement to GloServ which allows different types of services
to be queried for in a single search. Service composition
involves, especially for web services, involves consolidating
multiple services into a single composite service. Currently
service composition is done by issuing multiple queries to
various entities. In order to compose several services in one
query, systems exist which handle a limited set of closely
related service classes. For example, when searching for travel

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

services, sites such as Expedia or Priceline provide flight, hotel
and car rental information in one query. However, if one wants
to search for classes that are indirectly related to travel, such
as restaurants or theatres in the cities they are traveling to, this
is not as easy to accomplish automatically in one query.

We have enhanced GloServ to support subquerying between
its servers in order to allow services which share common
properties to be composed into a single query. With this
enhancement, fairly complicated queries can be issued in a
single search. An example using location-based services would
be searching for a Chinese restaurant in the Upper West Side
neighborhood of New York City which also has a nearby
theatre playing an action movie. The results will show all
Chinese restaurants and their corresponding movie theatres.
If one wants to broaden the search to include similar results
such as similar restaurants to Chinese, reasoning using the
ontology produces results for Korean and Japanese restaurants
as well since these are all categorized under Asian cuisine.
Another example would be querying for a service and its
annotations. For example, many users like to read and give
feedback pertaining to services they will use or have used.
This review system can be deemed as anAnnotationservice
class which has any number of different rating services such as
Zagat for restaurants, Better Business Bureau for businesses,
or regular user reviews. Given this type of service composition,
one can search for any service which has a particular rating
and give feedback for this service as well. Thus, a search can
be issued for an Italian restaurant in New York which has been
rated excellent by Zagat and by regular users.

Below, we describe the subquerying mechanism in detail
and discuss the results of our initial prototype for location-
based services. Section II gives background information on
ontologies and the GloServ system. The design of the sub-
querying mechanism is found in Section III. Sections IV
and V discusses the implementation and evaluation of the
prototype system. Related work is discussed in Section VI
and we conclude in Section VII.

II. BACKGROUND

A. Ontologies

An ontology is defined as a formal, explicit specification of a
shared conceptualization [11]. A conceptualization refers to an
abstract model of how people think about things in the world.
The concepts and relationships are given explicit names and
definitions. These are formalized into a specification which is
encoded in a logic-based language. Ontologies are meant to
be shared across different applications and communities.

An ontology specification includes a number of classes
which represent various concepts, similar to how object orien-
tation or the entity-relation model consider classes. Classes
have object or datatype properties which can be restricted
using existential or universal quantifiers. Classes contain in-
stances or individuals which represent actual data. Description
logic ontologies, such as OWL DL, allow class relationships to
be inferred based on established relationships within the ontol-

ogy. Relationships can also be established between classes via
logical connectives such as intersection, union, or complement.

The motivation behind using ontologies for service discov-
ery rather than using simple attribute-value representations of
data, such as in traditional databases is mainly due to the
reasoning power behind ontologies. An example of a query
which can be done using an ontology which is difficult to do
using an SQL query would be something like: “Given a service
class, find exact and similar matches to my query”. Service
search is evolving to cater to particular users and their context
and thus reasoning capabilities such as these are essential for
performing context-aware searches. SQL also does not support
abstract data types, thus making it difficult to determine if
a certain property value belongs in a number of different
classes or types. Finally, ontologies can be shared, re-used
and changed flexibly. For example, when new relationships are
established within the ontology because of ontology migration
or the addition of new classes, determining new relationships
within the ontology simply reduces to running a reasoner on
the ontology in order to reclassify the classes.

The main drawback to using an ontology is that classifi-
cation is expensive. As ontologies grow large and especially
when instances of classes are stored in the ontology, reasoning
becomes a bottleneck. We tackle this problem by storing
instances in a database back-end instead of the ontology
itself and using only class relationships for determining which
classes a query belongs in. This speeds up the classification
process considerably. Also, a positive side-effect of the dis-
tributed architecture of GloServ allows each server to handle
an ontology for one service class. Thus, the size of the
ontology always remains manageable for classification.

B. GloServ

We give an overview of GloServ’s design in this section
but encourage the reader to refer to [7] and [6] for greater
detail. The remaining sections of this paper concentrate on the
subquerying enhancements made to GloServ which improves
upon service composition.

One of the main components of GloServ is the service
classification ontology. Although there are many ways to engi-
neer ontologies, we have adopted the modularization approach
specified in [14] and [17]. Modularizing ontologies into
separate domains allows ontologies to be re-used, maintained
and to evolve with flexibility. Modularization is achieved by
putting general classes within an ontology in a pure hierarchy
where siblings are disjoint from each other. This creates
a primitive skeleton. Hence, service instances will only be
classified within one of the branches. At the lower levels of
the ontology, classes may have relationships with other classes
and a pure hierarchy is not maintained. The upper hierarchical
ontology which defines high-level services is mapped onto a
hierarchical network and the low-level ontologies are mapped
to a peer-to-peer network.

Another component of GloServ is the back-end hybrid hi-
erarchical peer-to-peer service discovery network. A GloServ
server (GloServer) in the hierarchical network represents a

3

high-level service class within the pure hierarchy of the ontol-
ogy, described above. The high-level network works similar to
DNS except that the network exploits the knowledge obtained
by the service classification ontology to establish the hierarchy
and route the messages to the correct peer-to-peer network.
A benefit of this design is that since the high-level service
classes are disjoint, a query will be routed to one of the
hierarchical branches, reducing the number of hops a query
needs to propagate through.

The lower levels of the network architecture are organized
in a peer-to-peer Content Addressable Network (CAN) and
also represent the class relationships within the ontology. We
describe a novel mapping algorithm in [7] that combines the
benefits of OWL DL and CAN to map content of service
instances to nodes in a peer-to-peer network. Although there
are other types of structured peer-to-peer networks such as
Pastry [18] and Chord [19], we have elected to use CAN
because it is easily constructed given a service ontology. Or-
ganizing similar classes within a peer-to-peer network causes
them to lie in closer proximity to each other within the
network which makes the similarity searches defined above
faster. Thus, in order to achieve load distribution, fast query
and update processing time, while maintaining reliability, we
have elected to use a hierarchical peer-to-peer network as the
underlying service discovery architecture.

GloServers maintain three types of information: a service
classification ontology, a thesaurus ontology and, if part of
a peer-to-peer network, a CAN lookup table. The high-level
service classification ontology is not prone to frequent changes
and thus can be distributed and cached across the GloServ
hierarchical network. Each high-level service will have a set
of properties that are inherited by all of its children. As
the subclasses are constructed, the properties become specific
to the particular service type. The thesaurus ontology maps
synonymous terms of each service to the actual service term
within the system. Figure 1 gives an overview of how servers
are found in GloServ. Services are represented as instances

BostonRestaurantNYCRestaurant

RestaurantTravel

Service

CommunicationMedical

1)Query for "cafe" comes in

ontology

Network
P2P

AmericanNYCRestaurant
FineDiningNYCRestaurant

that is known.
closest high−level server
4)Send the query to the

3)Lookup the domain
of the equivalent server

in the primitive skeleton
or closely related server

AmericanNYCRestaurant

Service

BostonRestaurant

SFRestaurant

ItalianNYCRestaurant

ChineseNYCRestaurant

NYCRestaurant

Restaurant Medical Communication

diner cafe bar coffe shop eatery

Restaurant

2)map the word "cafe" to "Restaurant"

domain:AmericanNYCRestaurant.NYCRestaurant.Restaurant.service

Fig. 1. Finding servers in GloServ

of the service classes and usually reside in the more specific,

lower levels of the ontology. Each service instance has a set
of properties that are populated. According to the service’s
attributes, it is classified in a set of related classes within the
ontology. Services are registered and queried for either in a
user-centric way through a web-based form or in an automated
fashion by issuing a first-order predicate logic query. We have
implemented the GloServ front-end as a web-based form.
The form generated reflects the ontology of the service class.
Service providers and users register or query for services by
filling in values for each of the attributes of the service. Details
of the implementation are given in IV.

At the lower levels, maintaining a purely hierarchical on-
tology structure becomes difficult as classes tend to overlap.
Thus, in order to efficiently distribute service instances ac-
cording to similar content, servers that hold information on
similar classes are distributed in a peer-to-peer network. We
employ a CAN peer-to-peer architecture to distribute classes
with similar content. The CAN architecture is generated as
a network of n-level overlays, wheren is the number of
subclasses nested within the main class. An example of an
ontology classification using theRestaurantclass and the CAN
overlay network generated is seen in Figure 2. The first CAN
overlay is ad-dimensional network which has the first level of
subclasses of theRestaurantclass. The number of dimensions
is determined by the maximum number of nodes which can be
added into the CAN. This is estimated to be (log2 n)/2 where
n is the number of nodes in the network, to ensure that the
number of query hops areO(log2 n).

Boston

Restaurant

CAN

CAN

hasRating

hasPriceRange

hasPriceRange

NYC
Restaurant

Downtown

CAN TopRated

NYC
Restaurant

Destination

hasCuisine

hasPriceRange

CANhasRating

Restaurant

hasC
uisine

Italian

Restaurant

NYC
Restaurant

Restaurant
Chicago

SF

NYC
Restaurant

FineDining
NYC

Fig. 2. CAN overlay network

Continuing with the restaurant example, as services register
within CAN nodes and instances are created, they are classified
into the subclasses ofRestaurant. When a new CAN node
joins the network, one of the CAN dimensions is split into
two and data is transfered over to the new node. If there
are c classes andd dimensions, classes are separated intod
parts where each part containsc/d classes. According to some
criteria, one of these dimensions is chosen and split into two.
The current criteria we use is choosing the dimension with

4

the largest number of keys. However, in the future we will
implement network management techniques which keep track
of the overloaded servers and split the dimension which has
the greatest number of overloaded nodes. Thus, if the initial
node has 3 dimensions with 10 classes in each dimension, then
the range of each dimension is:[0− 9], [0− 9], [0− 9]. When
a new node joins the network, one of the dimensions is split
and the resulting two nodes will have the following range of
values:[0−4], [0−9], [0−9] and[5−9], [0−9], [0−9]. Figure 3
illustrates the joining of four CAN nodes in the network.

Fig. 3. CAN node splitting into two nodes

A service registration instance is a unique URI which refers
to the service’s description. Service instances are distributed to
all CAN nodes that handle their service classes and stored in
a database. Since we are using a CAN distributed hash table,
not every node within the system needs to be updated. For
queries, when a query is matched exactly, the first matching
node will have the complete data set for that particular query
restriction and thus further nodes need not be traversed. For
a related match query, only the servers that hold logically
similar information will be searched. Figure 4 gives a graphical
overview of the query propagation in the CAN. We explain
the details of ontology querying by looking at theRestaurant
ontology as our running example.

Fig. 4. Query propagation in the GloServ CAN

When a user initially contacts a GloServ user agent and
enters a service name, the initial GloServer is found after
following the steps outlined in Figure 1. Since each hierar-
chical node handles a class which is disjoint from its siblings,
the query is routed down only one branch reducing the query

hops considerably. Once the correct GloServer is contacted,
the user agent obtains the ontology pertaining to that service
class. The interface to the user can either be human-centric or
automated, depending on the implementation. In either case,
a query is formed and sent to the GloServer. The query is a
first order predicate logic statement that contains restrictions
on various properties such as: (hasLocation someNYC) and
(hasCuisine some (Korean or Chinese)). The server
handling that service class creates a class with this query
restriction and classifies it in its ontology. Since the subclasses
of the Restaurantclass are restricted by location, the query
class gets classified as a subclass of theNYCRestaurantclass.
The query is then forwarded to the nodes that handleNY-
CRestaurantclasses. When a node is found, the query class is
classified again. Since theNYCRestaurantclass has subclasses
that have cuisine restrictions, when the reasoner classifies the
query class, it becomes a subclass ofNYCRestaurantand a
superclass ofKoreanNYCRestaurantandChineseNYCRestau-
rant classes. The classification indicates that the query must be
routed to the servers handling Chinese and Korean restaurants.
In order to route the query within a CAN, the query needs
to reduce to a dimension and key. We use the dimension
and key values assigned to each of these classes during the
CAN network generation to convert the ontology class to a
< dimension, key > pair

We illustrate ontology querying with the following example.
Let us assume we have aNYCRestaurantontology that has 30
subclasses, separated into 3 dimensions with 10 subclasses
in each dimension. Each subclass is assigned a unique key.
Thus, keys are separated into [0-9], [10-19] and [20-29] for
dimensions 1, 2 and 3 respectively and a class is represented
by its< dimension, key > pair. Furthermore, theChineseNY-
CRestaurantsubclass is assigned to dimension0 with key 0
and KoreanNYCRestaurantto dimension1 with key 0. If a
user queries for: (hasLocation someNYC) and (hasCuisine
some(Korean or Chinese)) the query message is[0; 0; ∗].
As seen in Figure 4, Node1 receives the query and stops
propagating it because it handles these classes.

If a user relaxes her query requirements to not only include
equivalent, superclass or subclass relationships but sibling
relationships as well, Node1 looks at the sibling classes
and issues query messages for each. For example, if the
query message[∗; 4; ∗] comes into Node1 where semantic
matches to the query are classes that are numbered 4, 5 and
6 in dimension 1, then the query message is converted to
[∗; 4, 5, 6; ∗], processed in Node1 and propagated to Node3.
A query continues to propagate until the original node is
reached. Since a dimension is circular, it is guaranteed that
the query will return back to its original position with at most
O(n1/d) hops. For example, each of these siblings have certain
restrictions on various properties. The related query matching
algorithm finds properties that are related to thequeryclass’s
properties and looks into the siblings that have these property
restrictions.

Each property has a domain class and a range class. In
order to find a related property, the range is classified and

5

the equivalent classes and subclasses of the range are looked
into. For instance, theCuisineclass has the subclassItalian
which has subclassesPizzaand Pasta. When a query comes
in for a pizzeria with a five star rating in NYC, the query
class will have the following restriction: (hasLocation some
NYC) and (hasCuisine somePizza) and (hasRating some
FiveStar). This query class is classified according to how
the ontology is constructed. In our ontology, it first gets
classified under theItalianNYCRestaurantclass. If there are
no instances within this class that have aPizza cuisine and
FiveStarrating, then the related classes of the thePizzaclass
are analyzed. Since thePasta class is related to thePizza
class, the query is reformulated to includePastaas the cuisine.
Alternately, a user may choose to have related information in
the query even if exact ones exist in which case the results
given are both exact and related matches.

III. SERVICE COMPOSITION IN GLOSERV

A. Motivation

Currently, outside of GloServ, service composition is done
mainly within one service class. For example, travel sites such
as expedia.com and priceline.com allow one to search for a
combination of travel services such as tickets, hotels and car
rentals. The menupages.com site gives information on restau-
rants in certain major cities in the United States which also
include menus, price ranges and ratings for each restaurant and
restaurants can be searched for either by location or cuisine.
Additionally, the seamlessweb.com site also allows one to
place an order at a restaurant for delivery. When searching
for movies, sites such as movies.com or fandango.com give a
list of movies in a certain location along with ratings and a
link to purchase tickets.

There are many other examples of web services, such
as these, which allow one to search and invoke a number
of different services. However, the main drawback to these
systems is that they exist as separate entities on the web. Thus,
when one wants to search for a restaurant and a nearby movie
theatre, one will need to first go to the restaurant site, find the
restaurant and then go to the movie site and search for the
theatre near the restaurant’s location that is playing a movie
that interests him.

Additionally, when searching for a service using Google,
the type of search is limited to key words which does not
allow specificity or greater reasoning as mentioned above.
Thus, besides not being able to search for a combination of
services at once, it is also not possible to reason over the data
in order to search for similar services. So a restaurant search
in local.google.com is limited to search terms such as “chinese
restaurant” or “pizza” which returns results with these terms
in them, but can not extend the search to include price range,
cuisine, or ratings.

GloServ’s subquerying extension solves the above prob-
lems. Since service information from different classes are
aggregated, categorized in an ontology and distributed across
a global network, multiple services can be searched for in
a single query. The search for services can also be quite

sophisticated where one can search for details given the
ontology of each service class which can result in exact and
similar matches. Thus, a search for Chinese Restaurants can
also produce results for Asian restaurants such as Japanese
or Korean. We have also added the capability of combining
ontology querying with text search [8]. Thus, service providers
are not limited to the ontology description but can add their
own set of key words as well. Users can then add key words
in addition to filling out the ontology form.

Finally, because all these services are distributed in a global
network and can be accessed rather quickly, combining more
than one service in a given search becomes possible. A few
challenges exist in accomplishing this: 1) creating a query
language which allows servers to distinguish different parts
of the query, namely, the part belonging to its own service
class, the parts belonging to other service classes and shared
properties between each part; 2) routing the query to the other
servers, collecting all the results from the various servers and
processing them such that those with matching attributes are
displayed to the user in a easy to understand graphical user
interface. We describe the design of our solution below.

B. Matching services

Two services can be matched only if they share a com-
mon property. Combining two services in one search only
makes sense if there is a relationship between them. As all
service classes are described in ontologies within GloServ,
a relationship between two services means that they share a
property. For example, theTheatre, Restaurantand Weather
classes share theLocation property. Thus, a search can be
issued for an outdoor restaurant which has a nearby theatre
playing an action movie in a region of NYC which does not
show rain in the forecast.

Another example of matching properties in a combined
search occurs when searching for annotations for a given
service, such as reviews. The matching property will be the
InstanceID of a given service. Every service has a unique
ID which distinguishes it from others. TheAnnotationclass
has a service instance ID property as well in order to identify
the service being annotated. Thus, a search for a “Japanese
restaurant in NYC which has an excellent rating by Zagat”
reduces to matching the service instance IDs of the restaurants
obtained to the service instance IDs of the annotations.

Additionally, the shared property might have different mean-
ings in the two service classes and the semantic relationship
may often be invisible to the ontologies. For example, the
Name property of a person could be matched to theAuthor
property of a restaurant review.

To match two services based on a shared property, only
the type of the properties in two services classes have to
match. For our prototype, we use theLocation property and
the InstanceID property as the shared properties since these
are used to search for location-based services as well as
finding annotations on services such as reviews. TheLocation
property is an object property that has theLocationclass as its
range. TheInstanceID property is a datatype property which

6

is a string datatype. Because matching is done based on the
type of a property, this not only requires, but also promotes one
of the fundamental ideas of ontologies, namely that ontologies
can be reused and become common “vocabulary”. To adhere to
our example, theLocationclass is envisioned to be engineered
once and then reused by every service class that needs to
express a physical location. We have designed this class to be
categorized by country, county/state, city. Additionally, there
attributes for street, zip, longitude and latitude. While one
could argue that this type constraint limits the ability to freely
combine service classes, we believe that it has the opposite
effect. By providing an incentive to reuse ontologies (i.e.,
combining services into one query), we promote this very
desirable concept.

C. Query Language

Thus far, we discussed the general concept of when service
classes can be combined into one query. In the next step, we
will elaborate how we extended our basic query language
to allow combining services. The query language used is
the same as that of Protege’s [9], which is an open source
development environment for ontologies and knowledge-based
systems and this is what we have extended.

The first and most important design decision was to organize
the service classes in a chain. Every query has a main service
class that it is searching for. In addition it may contain one
or more subqueries that relate to a different service class. The
main query part is a regular GloServ query. If the user is
searching for an Italian Restaurant in New York City, the main
query might be: (hasLocation someNYC) and (hasCuisine
some Italian). Each subquery itself is a regular GloServ
query, except that all property names are qualified with the
service class the subquery is referring to. If the user is
searching for a nearby theatre which is THX certified, the
subquery could look like:Theatre.hasTHX has True .

Besides the main query and the subquery a third part
is required that identifies the shared property. To express
this relationship we added the equals operator to the
querying language which is similar to an SQL join operation.
Following the given example, if the user wants the Theatre
to be near the Restaurant, the equals expression would be:
Restaurant.hasLocation equals Theatre.hasLocation
and the overall resulting GloServ query would be:
((hasLocation some NYC) and (hasCuisine some
Italian)) and (Theatre.hasTHX has true) and
(Restaurant.hasLocation equalsTheatre.hasLocation)

As mentioned earlier, one query might contain multiple
subqueries. All of them use the same syntax and can be told
apart by the qualifier that is used as a prefix to the property
names. The order in which the equals expressions describe
relationships between the service classes determine in which
order the subqueries will be processed by GloServ.

D. Request Routing

The GloServ message format is similar to HTTP and SIP.
Each message contains a list of headers which indicate the

method, JOIN (for node joins), QUERY, REGISTER, as well
as a payload. A query that is sent to a a CAN network for the
first time is labeled as auserqueryand contains the full logical
query statement. This initialuserquery is classified within
the ontology and is then converted into aninternalquery.
The internalquery consists of a numeric representation of
the matching classes (< dimension, key > pairs described
in section II-B) along with the logical query statement. The
internalqueryis routed in the CAN internally so that further
classification is avoided.

When combining services, each query part is sent to its
corresponding CAN servers. Since the primary query of the
combined query is just like any other GloServ query, it is
routed and processed like a regular query. From the example
above, the query is initially routed to the GloServers which
handle theRestaurantservice class.

Once a GloServer is found which has matching instances,
these instances are retrieved but not sent to the user directly.
Instead, a new query is constructed, which is related to the
service class within the subquery. This new query is derived
from the old query in three steps. First, the main query is
stripped away. Second, the qualifier prefixes of the subquery
are removed, transforming this into a valid main query. Third,
and most importantly, the equals expression is resolved by
creating an expression for every found value of the shared
property. This set of expressions is then “OR”-ed and attached
to the new query.

Continuing with the example introduced above and as-
suming that Restaurants in Manhattan and Queens were
found, the new query for Theatres would look like this:
(hasTHX has true) and ((hasLocation some Manhat-
tan) or (hasLocation someQueens)) As seen above, this
new query is a regular GloServ query without subqueries. The
new Theatre query is issued to the GloServ architecture just
like any other query, but contains the Restaurant instances
in its payload. Thus, it is routed through the Theatre CAN
network until Theatre instances are found. Once this happens,
a final answer containing both, the Restaurant and matching
Theatre instances is sent to the searching user. Figure 5
illustrates how the query is routed across the different CAN
networks. If two services are so closely related that users
frequently search for them in a combined query, there are
two ways to optimize routing in the GloServ architecture. In
a first step, the routing table of the Restaurant servers could
have direct pointers to the servers in the Theatre network.
While this would reduce delays and bandwidth requirements,
it would also require greater overhead. If two services are so
closely related that the users often combine them and only in
rare cases query for just one of them, the two services can be
integrated into a single CAN network. While this approach is
totally different from the approach presented thus far and is
beyond the scope of this document, we implemented it in our
prototype to demonstrate the feasibility.

Since the GloServ CAN network is a black box to the user,
there is no way of knowing how many answers will be returned
from a query. Similarly no GloServ node knows how many

7

Fig. 5. Subquery routing in GloServ

other nodes a query will traverse once it has left the node.
Thus, there is a need for a mechanism to keep track of answers.
GloServ implements a simple mechanism to do that job. Every
query has a value which could be read as “what percentage
of the overall answer does this query cover”. The initial query
sent by the user amounts for 100% of all answers. Every
GloServ node that forwards queries changes this percentage.
For example, if the initial query is answered by the first node
(i.e., it stores instances) and sent to 4 neighboring nodes in the
CAN, the sent answer amounts for 25% of the overall answer
and every single query sent to neighboring nodes amounts for
25% of the overall answer. If one of these queries is then split
into five 5 queries, each of these new queries will amount
for 5% of the overall answer. Using this mechanism, the user
can measure “how much” of the overall answer he received
at any point in time. This is not an accurate metric in the
sense that a value of 50% does not really mean that the user
received 50% of the answer messages or even 50% of the
instances. However, when the value reaches 100% the user
can be completely certain that he has received all answers.

IV. I MPLEMENTATION

We have implemented a prototype of GloServ using Protege
and Racer-Pro [13]. Protege is an open-source development
environment for ontologies and knowledge-based systems. In
order to follow a real-world classification, we have written
tools to automatically generate ontologies pertaining to the
restaurant classification inhttp://www.menupages.com. The
Restaurantontology is modified to represent the CAN lookup
table. The subclasses withinRestaurantare assigned to a
unique 〈dimension, key〉 pair. When a node joins a server,
the server’s ontology is split across a dimension and transfered
over to the new node.

We have built a front-end user interface to GloServ written

in PHP. The interface uses Google Maps to display location-
based services. The front-end parses the OWL ontology using
PHP and automatically generates a form based on the service
description given in the ontology. Service providers and users
register or query via this form. The ontology also has annota-
tion properties which guides the front-end server in populating
the fields within the ontology. Thus, for properties that may
also have key word search enabled as mentioned in I, the
interface displays a text box underneath the form for the user
to enter key words in. The interface is seen in Figure 6 and
can be accessed on the web athttp://gloserv.dyndns.org:8080

The query parser is implemented using JFlex and CUP.
JFlex is a lexical analyzer and offers a language to describe the
different kinds of tokens. For example, GloServ defines string
and literal tokens, tokens for operators like “has”, “some” and
“or” and tokens for items like brackets. CUP is a parser and
offers a language to describe a grammar. The grammar uses the
tokens defined with JFlex. GloServ defines basic statements
like “A some B”, complex compositions like “(A some B) or
(C some D)” and so on. In the language CUP offers, Java
code is inserted to express what the parser should do when
it finds the constructs defined by the grammar. Therefore,
GloServ defines classes that represented all kinds of language
constructs used in queries (Identifier, SomeStatement, Has-
Statement, OrExpression, etc.).

Both JFlex and CUP generate Java code. We have defined
a QueryParser class which calls the methods offered by the
generated code to parse queries. The generated code then cre-
ates a Java representation of the query based on the language
construct classes described earlier. The class QueryParser
defines a number of methods to perform common tasks on
query statements, e.g., Normalization (query is transformed to
an OR-ed list of AND-ed statements) or finding nested queries.
It also provides methods to extract subqueries and transform
them in a way that the subquery can be issued individually.
Once the query reaches a CAN GloServer, it is classified
within the ontology. For query classification, the query needs
to be converted in the Racer syntax. If the query matches the
service class of that server, then for instance retrieval, since
we store the instances in a database, the query also needs to
be converted into an SQL query. We have also implemented a
cache in order to avoid the overhead of classification in case
the query has already been seen.

V. EVALUATION

We have evaluated the querying latency of GloServ for dif-
ferent types of ontologies. Since the ontology is the principal
bottleneck of the system, it is essential to determine the ideal
ontology size and type needed for optimal performance. The
worst case is expected for unique queries where the query
needs to be classified using Racer. The best case is when the
query has already seen and found in the cache.

One GloServer was run on an IBM Lenovo machine which
has an Intel core duo processor (2 GHz each), 1 GB RAM
running Windows XP. In order to measure the query latency
for different types of ontologies, we modified two aspects of

8

Fig. 6. GloServ Front-End

the ontology which we suspect will be the two things most
modified. First, the size of the ontology was varied. For the
Restaurant service class, the shared classes were theLocation,
CuisineandPriceRangeclasses. TheCuisineandPriceRange
classes had a total of 50 classes. We adopted the classification
of restaurants used in the menupages.com site and categorized
the CuisineandPriceRangeclasses accordingly.

Currently, there are around 600 cities [1] with population
greater than 50,000 in the United States and around 1,300
urban areas in the world [2]. Since services are distributed in
GloServ where each subnetwork handles a subset of a high-
level service class, if we distribute these services by location,
then we anticipate that each CAN will handle 100 to 200
locations within a given region. Because of this, a location-
based service class will have this many subclasses as well. For
example, each subclass of the restaurant class will be restricted
by a location, thus doubling the number of location classes. In
addition to this, there are auxiliary classes, such as cuisine and
price range. Thus, in total, we expect the number of classes
to equal2Cl +Ca, whereCl is the number of location classes
and Ca is the number of auxiliary classes. So in total, the
number of classes are expected to be between 250 and 450.
We tested the system on 250, 350 and 450 class ontologies.

Additionally, we varied the number of properties that are
restricted per subclass within the main class. For example,
if each subclass of the restaurant class has a restriction on
the location, then this signifies one restriction (O1). However,
the restaurant classes may be restricted in more than one
property, for example, location and cuisine restrictions (ie.,
ChineseNYCRestaurant has a restriction for Chinese cuisine
and NYC location). Thus, we varied the number of restrictions
per class from 1 to 10 restrictions. The query issued for one
service class was in the form (A some B or C some D or E
some F).

The results in Figures 7 shows that for the simplest ontol-
ogy, which has 250 classes and one restriction per subclass,
O1, query processing took 150 ms and grew sublinearly as
the number of classes grew to 450. On the other extreme,
for an ontology that had 10 restrictions per subclass, query
classification became very slow and grew at a faster rate. Since

we expect that ontologies will range in size from 250 to 350
and have between 1 to 3 restrictions, we believe querying time
will range from 150 ms to 550 ms. For cached queries and
internal queries, processing was much faster at 30 ms for all
ontology types since classification was not done in these cases.

From our evaluation, we can see that increasing the ontology
class size does not affect the latency as much as raising the
number of restrictions per class. Thus, if an ontology is going
to be more complicated, requiring greater logical restrictions,
then the number of classes should be kept at a minimum.
However, if the ontology has one or two restrictions per
class, the number of classes can get larger. For optimal query
time, it is best to keep both at a manageable level. However,
since query classification is done once per CAN traversal, and
since a CAN is localized, the query cache will be used often
thus decreasing the query latency considerably. Additionally,
since these ontologies represent high-level service classes and
mimic categorizations seen in yellow-page directories, it is
highly unlikely that the number of restrictions per property
will become very complicated. Thus, it is safe to assume that
the restrictions will average around 3 restrictions per class.

For combined service queries, the value of the the number
of service classes combined in the query will be multiplied
by the latency of an initial user query. Thus, for a typical
restaurant and movie search where each of these ontologies
have approximately 350 classes each with 1 to 3 restrictions,
the latency will be twice that of a single service query which
ranges from 500 ms to 1s. Again, with the use of caching, this
value will drop considerably.

Fig. 7. Query Latency

We will continue to evaluate the system to test the through-
put of each node. Currently, Racer blocks for each query.
Although it can handle up to 1,500 simultaneous queries,
it becomes very slow. We will tweak the system a bit to
bypass the blocking in Racer and test the time it takes for all
these queries in order to better assess the number of servers
necessary for a CAN network to function.

9

VI. RELATED WORK

A. Service Discovery

Current approaches to service discovery are either central-
ized or decentralized. Centralized service discovery systems
include SLP [12], Jini [16], and UDDI [4]. These systems are
limited in network scalability as well as in representing service
data.

The existing work closest to our research use schemas to
map onto a network [15], [5], [20]. These systems are similar
to GloServ in that they use data from a schema or ontology
to map onto a network. [5] outlines a semantic gossiping
framework that exchanges ontology information within a peer-
to-peer network. It uses Gnutella [10] as its underlying peer-
to-peer structure. The main problem with this system is that
it uses flooding to broadcast its queries and thus reduces the
scalability of the network.

[15] proposes the HyperCuP, a 2-tier peer-to-peer hierarchy
which uses indices within a super-peer topology. The indices
are built using schema information from associated peers.
Super-peers are connected to each other in a hypercube or Cay-
ley graph and represent disjoint concepts. Underlying peers
of a super-peer contain information regarding that particular
concept. [20] describes Meteor-S which is also similar to
GloServ in that it separates peer-to-peer networks into different
domains and represents these services using an ontology.
However, the JXTA framework’s Peer Discovery Protocol is
used which employs flooding techniques for disseminating
information and hence does not scale globally.

GloServ differs from these systems by using an ontology to
map a multi-tier hierarchical peer-to-peer network. It is similar
to [15] and [20] in that a concept represents a subnetwork.
However, unlike [15], concepts that are disjoint from each
other are hierarchically organized whereas concepts that are
similar to each other are organized in a CAN. Indices within
the CAN are formulated according to the ontological content
of each node whereas in [15], indices refer to whole peers.
Also, because of the CAN DHT, GloServ generatesO(log2 n)
query messages whereas in [20] flooding is used which
generatesO(n) messages which is inefficient on a global scale.
Additionally, [5] and [15] describe the peer-to-peer network
formation, namely, dealing with nodes entering and leaving
the system and concentrate less on describing how the data is
disseminated. We, on the other hand, describe the formation of
the network as well as describe algorithms that distribute and
query the data by mapping the ontology onto a CAN network.

VII. C ONCLUSION

We have discussed the design, implementation and evalua-
tion of service combination in GloServ, an ontology-based hy-
brid hierarchical peer-to-peer global service discovery mech-
anism. GloServ is able to register and query for services
semantically using a service classification ontology. Since
these services are aggregated in a global network, combining
different services in a single search becomes possible. Our
results show that this is indeed possible as long as the number

of classes within the service ontology remains at a manageable
size.

REFERENCES

[1] 2000 census: US municipalities over 50,000: Alphabetical.
http://www.demographia.com/db-2000city50k.htm.

[2] Demographia world urban areas. http://www.demographia.com/db-
worldua.pdf.

[3] Owl web ontology language. OWL http://www.w3.org/2004/OWL/.
[4] UDDI technical white paper. white paper, UDDI (universal description,

discovery and integration), September 2000. http://www.uddi.org/pubs/.
[5] K. Aberer, P. Cudre-Mauroux, and M. Hauswirth. A framework for

semantic gossiping. InACM SIGMOD: Special Interest Group on
Management of Data, 2002.

[6] Knarig Arabshian and Henning Schulzrinne. Distributed context-aware
agent architecture for global service discovery.The Second International
Workshop on Semantic Web Technology For Ubiquitous and Mobile
Applications (SWUMA’06), 2006.

[7] Knarig Arabshian and Henning Schulzrinne. An ontology-based hi-
erarchical Peer-to-Peer global service discovery system.Journal of
Ubiquitous Computing and Intelligence (JUCI), 2006.

[8] Knarig Arabshian and Henning Schulzrinne. Combining ontology
queries with text search in service discovery. Technical report, Columbia
University Technical Report CUCS-006-07, January 2007.

[9] J. Gennari, Mark A. Musen, R. W. Fergerson, W. E. Grosso, M. Crub´ezy,
H. Eriksson, N. F. Noy, and S.-C. Tu. Evolution of prot´egé: An
environment for knowledge-based systems development. Technical
report, Stanford University, 2002.

[10] Gnutella. http://gnutella.wego.com.
[11] T. R. Gruber. A translation approach to portable ontology specifications.

Knowledge Acquisition, 5(2):199–220, 1993.
[12] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service location

protocol, version 2. RFC 2608, Internet Engineering Task Force, June
1999.

[13] Volker Haarslev and Ralph Moller. Racer user’s guide and reference
manual version 1.7.19. Technical report, Technical University of
Hamburg-Harburg, University of Hamburg, 2004.

[14] Matthew Horridge, Alan Rector, Nick Drummond, Holger Knublauch,
and Hai Wang. A user oriented owl development environment designed
to implement common patterns and minimise common errors. In
3rd International Semantic Web C3onference (ISWC2004), Hiroshima,
Japan, Nov 2004.

[15] Alexander Loser, Wolf Siberski, Martin Wolpers, and Wolfgang Ne-
jdl. Information integration in schema-based peer-to-peer networks.
In Proceedings of the Conference on Advanced Information Systems
Engineering, June 2003.

[16] Sun Microsystems. Jini architectural overview. Technical report, 1999.
[17] Alan Rector. Modularisation of domain ontologies implemented in

description logics and related formalisms including owl. In2nd Interna-
tional Conference on Knowledge Capture (K-CAP), Sanibel Island, FL,
2003.

[18] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), pages 329–350, Heidelberg, Germany, November 2001.

[19] Ion Stoica, Robert Morris, David R. Karger, Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for Internet
applications. San Diego, CA, USA, August 2001. ACM.

[20] Kunal Verma, Kaarthik Sivashanmugam, Amit Sheth, Abhijit Patil,
Swapna Oundhakar, and John Miller. METEOR-S WSDI: A scalable
p2p infrastructure of registries for semantic publication and discovery
of web services.Journal of Information Technology and Management.
Special Issue on Universal Global Integration, 6(1):17–39, 2005.

