
Post–Patch Retraining for Host–Based Anomaly Detection

Michael E. Locasto
Dept. of Computer Science

Columbia University
locasto@cs.columbia.edu

Gabriela F. Cretu
Dept. of Computer Science

Columbia University
gcretu@cs.columbia.edu

Shlomo Hershkop
Dept. of Computer Science

Columbia University
shlomo@cs.columbia.edu

Angelos Stavrou
Dept. of Information and Software Engineering

George Mason University
astavrou@gmu.edu

Abstract

Applying patches, although a disruptive activity, remains
a vital part of software maintenance and defense. When
host-based anomaly detection (AD) sensors monitor an ap-
plication, patching the application requires a correspond-
ing update of the sensor’s behavioral model. Otherwise, the
sensor may incorrectly classify new behavior as malicious
(a false positive) or assert that old, incorrect behavior is
normal (a false negative). Although the problem of “model
drift” is an almost universally acknowledged hazard for AD
sensors, relatively little work has been done to understand
the process of re-training a “live” AD model — especially
in response to legal behavioral updates like vendor patches
or repairs produced by a self-healing system.

We investigate the feasibility of automatically deriving
and applying a “model patch” that describes the changes
necessary to update a “reasonable” host-based AD behav-
ioral model (i.e., a model whose structure follows the core
design principles of existing host–based anomaly models).
We aim to avoid extensive retraining and regeneration of
the entire AD model when only parts may have changed —
a task that seems especially undesirable after the exhaustive
testing necessary to deploy a patch.

1 Introduction

Software systems have large, complex codebases that
contain a number of vulnerabilities. Patching these errors
in anticipation of or in response to attacks that exploit them
remains one of the primary methods of defense for software
systems. Patching, however, is a disruptive activity. Patches
have the potential to change system behavior in unantici-
pated ways. Therefore, administrators and system owners

must thoroughly vet patches before deployment: a poten-
tially expensive and time–consuming activity. In essence, a
patch affects not only the program that it is applied to, but
also the environment (including other software, data, and
defense systems) in which the program resides.

Defense systems that rely on measuring an application’s
behavior profile may be misled by the patch’s deployment.
For example, if a host–based anomaly detection (AD) sys-
tem monitors an application, the AD must rebuild (i.e.,
patch) its behavioral model in response to changes the patch
introduces. Even though most work on anomaly detection
acknowledges the value of keeping a model updated, rela-
tively little attention has been paid to the question of sum-
marizing and communicating these changes to a sensor in a
manner enabling precise and automated model updates.

This paper highlights the general problem of updating an
application’s environment in response to changes enacted
by a self-healing or a reactive patching mechanism. In or-
der to make the discussion concrete, however, we examine
the feasibility of a procedure that amends an AD behavioral
model in response to security–critical repairs.

1.1 AD Model Retraining

To the best of our knowledge, the two main current ap-
proaches to the problem of AD model retraining include:
(1) fully retraining the AD sensor, and (2) incorporating a
mechanism for gradual, online retraining into the AD algo-
rithm itself. The first choice represents a significant increase
in the length of the recovery process, and a patient attacker
can exploit the latter. Instead, our goal is to harness the fact
that patches, especially security–related ones, cause small,
localized changes in the underlying AD model. Therefore,
if we can provide an automated mechanism that efficiently
incorporates these changes into the existing model, we can
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avoid a lengthy and attack–prone retraining phase.

1.1.1 Complete Retraining

The first approach seems unsatisfactory because retraining
the model may take significant amounts of time, and it rep-
resents an additional burden on sysadmins. Long train-
ing phases (usually necessary to capture the breadth of a
complex application’s behavior) impose additional delay on
the patch deployment process (sometimes hours or days of
downtime). If a patch is generated and deployed automat-
ically (due to a self–healing or automatic defense mecha-
nism), delays introduced by a long retraining period appear
to defeat one of the main purposes of automated defense:
the ability to respond with little or no human supervision
at speeds comparable to that of the attack. Also, this phase
may simply relearn large amounts of behavior that have not
changed. Unfortunately, these problems may discourage
sysadmins from employing an AD sensor in the first place.

1.1.2 Gradual Retraining

The latter approach (i.e., online, gradual retraining) is most
often employed to counter the problem of “model drift”, in
which the AD system makes an assumption that the mon-
itored environment will display new normal behavior over
its lifetime (i.e., behavior that was not captured during the
training period). For example, user behavior and access pat-
terns can change in response to social demands not antici-
pated by the authors of the training phase. Thus, the AD
algorithm continuously incorporates new data (e.g., input
data such as network traffic or data summarizing behavioral
patterns, such as sequences of system calls) into the model
of “normal.” Consequently, a very patient attacker can grad-
ually retrain the AD to accept data or behavior that would
otherwise be considered malicious.

Rather than tackle this problem by automatically “clean-
ing” the input data or model [13] of this malicious influ-
ence (an important open problem), we propose altering the
model only in response to legal, sanctioned, and (presum-
ably) non–malicious changes in an application’s behavior.

1.1.3 Spot Retraining

Sanctioned updates like patches are one cause of “model
drift.” AD systems need to distinguish between sanctioned
and unsanctioned changes to the application they moni-
tor. It seems as if most security–critical patches enact
small changes to the system that only affect or invalidate
correspondingly small parts of an application’s behavioral
model. If this hypothesis is correct, then it seems possible
to construct an AD model update procedure that derives the

necessary changes from the text of a patch itself 1. The key
challenge is to notify the AD about a patch in terms that it
understands: changes in control and data flow. This chal-
lenge is the essence of automatic AD model retraining.

In this paper, we explore what can be done to automat-
ically derive and deploy such a “model patch” by exam-
ining the data and control flow changes resulting from 11
security–critical patches. If the actions expressed within a
patch can be captured in a standard summary of control and
data flow changes, then that information can be used to up-
date the AD model automatically. As a small example, if
a patch changes the control flow so that a function foo()

no longer calls function bar(), then an update procedure
should remove predictive relationships involving foo() and
bar() from the model.

We somewhat conflate the notion of a “repair” con-
structed by a self-healing mechanism with traditional
source–level or binary–level patches. We do so to remain
agnostic to the particular repair technique and not depend
on an arbitrarily–chosen self–healing mechanism. Viewing
self–healing repairs as patches helps make our techniques
applicable to normal reactive patching mechanisms (e.g.,
Patch Tuesday) as well2. An automated method for patch-
ing an AD sensor’s behavioral model is ideal for use in self–
healing and automatic update systems to reduce the amount
of manual effort required to deploy repairs.

2 Related Work

AD sensors provide one mechanism for detecting the
presence or activation of malware on a host by observing
a shift in an application’s execution profile. This conclu-
sion rests on the assumption that malicious inputs rarely
occur during normal operation. However, since a system
can evolve over time, it is likely that new non–malicious
inputs will be seen [16]. The seminal work of Hofmeyr,
Somayaji, and Forrest [20, 26] helped initiate application
behavior profiling at the system call level [12, 25, 17, 19]
because that interface represents the services that malcode,
once activated, must use to effect persistent changes and
other forms of I/O. In particular, the malware may begin to
use system services that the application has not previously
invoked, or it may employ the set of already–used services
in new ways (e.g., via new arguments [23] to those calls).
Such information is now easy to collect; the strace and
ltrace tools for Unix perform exactly this task. As a ba-
sis for our work on patching an AD model, we propose a

1We can utilize the actual patching procedure to recover the context of
the changes and a limited form of parsing or symbolic execution to gather
information about data flow changes.

2Ironically, binary patches are often obfuscated to frustrate an attacker’s
attempts to reverse–engineer the vulnerability. Dealing with this type of
patch is an interesting technical challenge. Section 4 limits our evaluation
to source–level patches.
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hybrid model that follows the form and content of this pre-
vious work. The model captures aspects of both control
flow (via the execution context) and data flow (via return
values and arguments).

Anomaly sensors [30, 21] classify network inputs as
potentially malicious without relying on static signatures.
Content–based approaches may work against slow and
stealthy worms, but not all polymorphic ones, since the
analysis is often fixed on specific byte patterns. Indeed,
some work [15] has illustrated the evasion of anomaly–
based classifiers, and Taylor and Gates suggest that anomaly
detection (as originally conceived for host–based monitor-
ing) is ill–suited for current network traffic [28].

Most publications suggest updating the model after sig-
nificant changes to the environment, data stream, or appli-
cation. Little work, however, has been done to show the
feasibility of such a process in any practical fashion be-
yond retraining the entire system from a known clean train-
ing set. It seems that anomaly detectors would benefit from
an additional source of information that can confirm or re-
ject the initial classification, and Pietraszek [24] suggests
using human–supervised machine learning for such tuning.
Although researchers [22, 11] suggest updating a network
content–based anomaly sensor in a reactive fashion (that is,
based on confirmation of an attack from a highly precise,
host–based detector) little work to sketch an update pro-
cedure, experimentally validate the claim, or evaluate the
utility of such action has been done.

3 Updating an AD Model

A variety of specific AD models, training algorithms,
and testing algorithms exist. Many models, however, ex-
press the same basic structure and contain similar types of
information. Despite this variety, our goal is to provide
a mechanism that provides enough information to update
these models given minor tweaks, translation proxies, or
shim code to adjust for the syntactic differences between
the model patch generator and the model in question.

Notwithstanding these differences, the key problem is
translating from a static description of what behavior could
occur (as expressed by the patch) to whatever dynamic de-
scription of events is contained in the model. In order to
make this discussion concrete, however, we define a basic,
straightforward context window anomaly model that con-
tains aspects of both data and control flow.

The model employs a context of m function instances to
predict the occurrence of other function instances. That is,
the model can be logically represented as a table of entries
of the form: {fi(argsi, rvali), . . . , fj(argsj , rvalj} →
{fk(argsk, rvalk)}. The conditional probability of fk oc-
curring with a particular set of arguments argsk and re-
turn values rvalk is based on the proceeding context of m

(which can vary) functions3. The simplest case is based on
monitoring only sequences of system call names or num-
bers for each process. Modeling both the system calls and
the arguments to those calls allows the model to improve
its granularity. In addition, we can model library and ap-
plication function calls and their parameters. One way to
model the relationship between calls and arguments is to
calculate the aggregated conditional probabilities between
specific calls and arguments [27].

While it may be fairly straightforward to adjust control
flow based directly on the information contained in a patch
(e.g., an insertion or removal of a function call), character-
izing changes to the data sets representing the arguments or
return values represents a more challenging task, and some
pathological cases exist. For example, the dynamic behav-
ior of a patch might be such that the application processes
a completely different distribution of input data or produces
radically different output data. Entries in the model for
functions that process such data may now have outdated
character distribution models or constraints for their argu-
ments. Arbitrary and widespread behavioral changes will
likely perturb the model beyond our ability to micro–patch
it. In these cases, simply retraining by replaying a “clean”
input archive may represent the best option.

As in Section 1, we make the simplifying assumption
that security–critical patches do not widely perturb the
model or constraints on data arguments. Our examination
of patches in Section 4 bears this hypothesis out. How-
ever, in cases where dataflow does drastically change be-
tween “known” data distributions, we may be able to auto-
matically or manually annotate the model patch with these
change types. A model patch can be bootstrapped from the
patch text, then improved manually or via symbolic execu-
tion — in this case, manually improving the model patch
and applying it will still likely result in a faster update of
the model rather than complete retraining.

4 Evaluation

Our evaluation contains two assessments. First, we re-
view some anomaly and specification–based sensors to dis-
cover their supervised or unsupervised training time. We
do so to confirm our hypothesis that such systems have rel-
atively long training periods that occasionally require sig-
nificant user input or supervision. In some cases, including
Systrace [25] and modern PC firewalls that employ a user–
driven training mode, supervision can span hours or weeks.
Second, we summarize the changes in data and control flow
enacted by a series of security–critical patches.

3Although we restrict our examination to a host–based model, examin-
ing the impact that patches have on n–gram based network content models
is an interesting area for complementary work.
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4.1 Cost of Training

The training phase represents a crucial component of
most AD systems. The detection performance of an AD
sensor depends significantly on the training data set’s qual-
ity, labeling (or lack thereof), and size, as well as the partic-
ular learning method (supervised or unsupervised) in use.
Much research on both network and host–based sensors in-
dicates that some minimum training requirement (defined in
terms of requests, runs, or packets) exists before the model
quiesces and becomes usable to the sensor [14, 25, 18, 29].
In most cases, increasing the length of the training phase
can boost detection performance.

We can classify training cost based on two broad cat-
egories: supervised and unsupervised. An unsupervised
training phase usually requires several thousand packets or
requests. Moreover, some host–based detection systems im-
pose an additional one–time overhead due to static analysis.
Furthermore, when a host–based sensor employs dynamic
analysis, there is also a per–request latency that can lead to
several hours of offline training. Supervised AD systems
require user input to drive the training process. In such
systems, it is very difficult to quantify the effort required
to train the system since it depends on user activity. It is
clear, however, that such systems require input from mul-
tiple users over a long period of time [25, 18] before they
can generate a normality model capable of differentiating
between normal and abnormal behavior.

4.2 Security Patch Survey

A patch can affect a behavioral model by changing ei-
ther or both the control and data flow. Examples of changes
in control flow include updating, removing, or introducing
new decision control structures; introducing a new child
function; or inserting a new parent function (e.g., a san-
ity check on input parameters). Changes in data flow in-
clude adding new variables or symbolic values; adding or
removing arguments or function parameters; and modifica-
tions to the set of possible return values. We note that our
examination is strictly static: it does not attempt to execute
the patches or otherwise determine if the code contained in
them is ever actually executed. In addition, we don’t distin-
guish between macros and function calls.

Table 1 lists our results for a variety of applications, in-
cluding stunnel [1], some web servers [2, 3, 4], linux [5],
cvs [6] and fetchmail [7], as well as various vulnerabilities
in libpng [8], Firefox [9], and Samba [10].

4.3 A Model Update Procedure

Most of the control flow changes we observed result
from invocations of new functions as well as the insertion

of new if statements or updates of if conditions. Most
data flow changes involve new arguments to function calls,
or new ways of wrapping those arguments, as well as new
return statements that introduce new values. A major-
ity of the patches we examined made very minor changes;
for example, the patch to ghttpd substitutes the use of a
“safe” library function and derives the value of a new ar-
gument for that call. The patch for nullhttpd introduces a
new if statement and condition with a call to an applica-
tion function to log an error (presumably, the dynamic be-
havior also involves the invocation of the library printf()
family of functions and the write() system call). We can
use a parsing and symbolic execution phase to learn and
summarize these implicit changes. We envision generating
model patches in a format similar to source code patches
like those produced by diff. Model patches contain up-
date summaries to the conditional probability entries in the
model, along with changes to the format of the arguments
and insertion and removal of functions from a call chain.

5 Conclusions

Applications contain vulnerabilities that, for the foresee-
able future, can only be addressed by post–deployment re-
active patching and self–healing strategies; we cannot ex-
cise all vulnerabilities prior to deployment. Patching and
self–healing, whether automated or manual, are disruptive
activities for the application and its environment, especially
when the environment contains a host–based AD sensor.
After a repair or patch, the sensor’s model may be outdated.

We examine 11 security–critical patches to obtain an
idea of how to summarize the data and control flow changes
necessary to update a behavioral model. In follow–on
work, we will define a “model patch” description language
(MPDL), specify an algorithm for automatically deriving
an MPDL script from the text of a patch, and build a
tool that executes the AD update procedure by running an
MPDL script. We expect that the end–to–end automation of
AD model updates can ease the workload on overburdened
sysadmins when deploying a patch or self–healing repair.
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