
Experiences in Teaching eXtreme Programming in a
Distance Learning Program

Christian Murphy, Dan Phung, Gail Kaiser
Dept. of Computer Science

Columbia University
New York NY 10027

{cmurphy, phung, kaiser}@cs.columbia.edu

ABSTRACT
As university-level distance learning programs become more and
more popular, and software engineering courses incorporate
eXtreme Programming (XP) into their curricula, certain
challenges arise when teaching XP to students who are not
physically co-located. In this paper, we present our experiences
and observations from managing such an online software
engineering course, and describe some of the specific challenges
we faced, such as students’ aversion to using XP and difficulties
in scheduling. We also present some suggestions to other
educators who may face similar situations.

Categories and Subject Descriptors
K.3.1 and K.3.2 [Computers and Education]: Computer Uses in
Education - Distance Learning; Computer and Information
Science Education – Computer Science Education.

General Terms: Management, Human Factors.

Keywords: Distance and distributed learning, Software
engineering education.

1. INTRODUCTION
Many universities offer distance learning programs for graduate
students who are full-time professionals. At the same time,
computer science departments are incorporating core software
engineering principles into their courses, and introducing agile
processes like eXtreme Programming (XP) [1] as a main focus of
software engineering methodology. As these two trends merge
together, numerous challenges arise in teaching XP to students
who are not physically co-located.

In this paper, we present our experiences and observations from
managing such an online software engineering course, and
describe some of the specific challenges we faced. These include
students’ aversion to using XP, difficulties in pair programming,
problems related to scheduling, the lack of a personal relationship
with the “customer”, and issues stemming from out-of-date course
material. We also present some suggestions to other educators
who may face similar situations.

2. BACKGROUND
The COMS W4156 Advanced Software Engineering course at
Columbia University focuses on topics such as process life cycle,
project planning, team programming, and unit and integration
testing. It also covers component-based software engineering
models like EJB, CORBA, and COM. Most importantly, though,
the course uses eXtreme Programming as its methodology,
adjusted to the classroom environment (we note, however, that
much of our experiences are also relevant to other agile
processes). Students are expected to do all programming work in
pairs, and then are combined into teams of four for their semester-
long project. There are three XP iterations during the semester,
each lasting approximately three weeks.
The Advanced Software Engineering course is taught on campus
but also offered via the Columbia Video Network (CVN), which
is the graduate distance learning program of Columbia
University’s School of Engineering & Applied Science [4].
Classes available through CVN are taught on campus in New
York City by Columbia University faculty members. Faculty and
students meet on campus in specially equipped classrooms, and
the classes are recorded and made available electronically to
registered CVN students via online streaming media. An
important difference between CVN courses and other distance
learning programs is that CVN students see the same lectures,
have the same homework assignments, and take the same exams
as their on-campus counterparts; the CVN courses are not
specifically tailored to off-campus students. The advantage is that
CVN students receive the same learning experience as on-campus
students, so that they may receive the same academic credit.
The CVN videos are not re-recorded each time the course is
taught; the same set of videos may be re-used for many following
semesters. This means that even when the course is not offered on
campus (including during the summer), it can still be offered on
CVN, as long as there is a CVN course manager to oversee it. A
course manager is responsible for overseeing all aspects of the
course for the CVN students, such as distributing and grading
homework assignments, answering students’ emails, and
calculating final grades. The first two authors of this paper were
the course managers for Advanced Software Engineering from
2004-2007, during which time each course offering generally had
6-8 CVN students per semester; the third author is the faculty
member who taught the pre-recorded course.

3. CHALLENGES
CVN students who take this particular course tend to be full-time
professionals in the software industry who are completing Masters
degrees part-time; they may or may not also be taking other CVN

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

classes concurrently. Since CVN students taking Advanced
Software Engineering must also use eXtreme Programming,
challenges arise because of their physical distance and diverse
backgrounds and schedules.

3.1 Aversion to eXtreme Programming
One of the difficulties in teaching XP to CVN students stems
from the fact that, whereas the on-campus students tend to be
undergraduates or Masters students with little or no professional
software development experience, CVN students in this course
are almost always already employed as software developers and
may be using different methodologies in their professional work.
Students who have not been exposed to other methodologies have
an easier time accepting XP, whereas those who are using RUP,
waterfall, rapid prototyping, etc. during their professional work
find it difficult to change their mindset and approach while
working on course assignments.
In some cases, CVN students had already had bad experiences
with XP, and found that it was unmanageable or did not apply to
the particular project on which they were working. Or they
expressed the typical criticisms of main XP tenets, for example
that programming in pairs is less productive or that it is too timely
to write tests before writing code. Although this aversion to XP is
not necessarily an effect of distance learning in and of itself, it is
still related because the distance learners who are CVN students
tend to be software professionals, and those are the ones who have
difficulty accepting XP.

3.2 Virtual Pair Programming
The inability for pair programmers to be physically co-located is
perhaps the most obvious challenge in teaching XP in a distance
learning course. Although the CVN students are almost never in
the same physical location, they are still required to engage in pair
programming activities, and must figure out a way to share a
desktop environment and communicate in real time.
In our courses, most of the students used RealVNC or a similar
tool as their shared desktop, and a regular phone line for voice
communication. In the cases where students were unwilling or
unable to make extended long-distance phone calls, they used
VoIP technologies like Skype or voice-enabled chat tools like
MSN Messenger. Very rarely did students have to rely on typing
messages to each other, though in some cases this was necessary;
obviously, that practice was discouraged.
Aside from the technical challenge of actually conducting virtual
pair programming, we had the difficulty of breaking the group of
distance learning students into pairs. As described in [16], it is
typically desirable to match students based on skill level (actual
and perceived), and students tend to gravitate to each other based
on gender and ethnicity. Unfortunately, not only are the students
unable to meet each other because they are not co-located, even
the course manager (who determines the pairs) cannot get a sense
of which students may work well together.
In the past, we have tried to pair students based on their level of
programming experience, language expertise, and physical
location (so that they are in the same time zone). Unfortunately,
though, in some cases pairs have not worked out well, typically
because one of the students fails to perform well and neither the
instructor nor the programming partner is physically present to
encourage the student to participate more.

3.3 Scheduling Issues
Related to the virtual pair programming issues are the problems
that arise from the students being in different time zones. Because
Columbia University is on the east coast of the United States,
most of the students (even the distance learning ones) tend to live
in the metro-New York area, or at least in the Eastern Time Zone.
And while all students (distance learning or not) have different
time commitments and difficulty in scheduling time to work
together, this problem was exacerbated by the fact that sometimes
a student in one time zone would be paired with a student in
another, which was particularly a problem when the two students
were on different coasts of the United States (three time zones
apart) and worked full-time jobs during the day. Unfortunately,
this situation became inevitable when there would be one student
on the west coast and all others on the east coast. Students in the
Eastern Time Zone were generally unwilling to pair with someone
who worked until 7pm or 8pm Pacific Time (which is 10pm or
11pm ET). This usually only left weekends as potential times to
work together, which was frustrating to many students.
Additionally, having the students in different locations made it
impossible to have ad hoc “stand-up meetings”, which are critical
to any XP project. In fact, we observed that the only real-time
communications students had were during scheduled meetings
and pair programming sessions, and any other communication
was strictly done by email.
Lastly, the challenges presented in scheduling conspired with the
challenges presented by the students’ various programming
backgrounds when it came to doing code reviews. In our course, a
code review was one of the final tasks of the semester, and it was
difficult for the students to schedule enough time for the review
sessions. Moreover, the review sessions invariably took much
more time than the students expected. Even though the students
were supposed to agree upon programming conventions at the
beginning of the semester, ultimately they would have some
differences of opinion which stemmed from their own personal
experiences as professional software developers.

3.4 Course Manager as Customer
In any software engineering course that teaches XP, the issue
arises “who is the customer?” Ordinarily it is the instructor or a
teaching assistant, but in our CVN course it was the course
manager who took on that role. This raised a number of
challenges. Scheduling meetings with the “customer” was a
problem because the CVN students were grouped into teams of
four (two pairs), so the issue arose of finding a time when five
people were free, which in and of itself is a challenge,
compounded by the fact that (as described above) they sometimes
may have been in different time zones.
Aside from any technical issues, such as trying to arrange five-
way phone conversations or setting up a shared whiteboard, the
main problem is that the CVN students had a very impersonal
relationship with their “customer”. In an on-campus XP course,
when the customer is a member of the teaching staff, the students
can engage in face-to-face meetings with the customer. In our
case, though, the students had no way of getting to know the
customer personally, and could not get a “feel” for how the
customer was reacting. One of the main reasons for the XP
practice of having the customer always be available is so that

professional relationships can blend into personal relationships,
but this was generally impossible in our case.

3.5 Out-of-synch Course Material
As mentioned, the CVN courses are not targeted specifically to
off-campus students. Instead, the on-campus lectures are recorded
and then distributed. Additionally, the videos are not re-recorded
each semester, due to costs and the fact that the course is not
offered on campus every semester. Thus, the same set of videos
for a course may be re-used for many following semesters.
The issue in such a software engineering course (or any course in
which the technology is frequently changing, for that matter) is
that the material in the recorded lectures may be out of date. In
our case, the recordings of the lectures for the Advanced Software
Engineering course were made in early 2004 and were used up
until Summer 2007 (CVN is recording new lectures in Fall 2007).
Because this course teaches the use of component models, the
versions and capabilities of the different frameworks varied
greatly between what was discussed in lecture (in Spring 2004)
and what the students were actually able to download and use (as
late as Summer 2007). For instance, the EJB 3.0 spec was
released right after the Advanced Software Engineering course
was recorded for use on CVN, so those lectures described EJB
2.1. However, within a year or two many EJB container vendors
had completely moved away from EJB 2.1, and students viewing
those videos were unable to match what they were taught with
what they were using. This led to considerable difficulties for the
course manager, who had to help the students overcome the
difference between what they were taught and what was the
reality of the state-of-the-art.

4. SUGGESTIONS
It is first important to ensure that students participating in the
class are capable of working in distributed teams on a project with
such short time scales. To help all students in the course benefit
from their mutual experience, we screened students by their level
of past project experience. Those who had not participated in a
project longer than 5K lines of code were directed to take a more
intermediate course, since the typical project consisted of a client-
server system that was consisted of 5-10K LOC and supported by
third-party software plugins and frameworks. Proper screening of
the students is critical in maximizing each student’s contribution
and benefit within their pairs and teams.
Sometimes the screening process is not enough to assess the
impact of a student in the course, however. In our case, frequent
confidential peer assessments were conducted to gauge the
personal and professional fit of the pairs (this was done for on-
campus students, as well). It was not uncommon to find conflicts
with regards to personality and working styles (time habits,
controlling natures, idiosyncrasies, etc.) that sometimes required a
redistribution of students. The result of such redistributions
usually benefited the team and project completion.
Fixing the issues around scheduling is probably the toughest
challenge, since there are so many variables and so many
unforeseen factors involved (business trips, work deadlines,
family issues, etc.). The best advice is to keep a fixed weekly
schedule for pair programming sessions and team meetings, so
that further time need not be spent on negotiating available times
and rescheduling. In addition, although ad hoc face-to-face

meetings are practically impossible, it is still important to
communicate frequently, even if the meetings are not ad hoc and
are not face-to-face.
When meeting in person is not possible, the course manager or
instructor should also encourage telephone communication as a
first choice, with instant messaging a second choice, and trading
emails as a last option. Emails are too easily ignored and may not
result in significant progress on a matter. Although frequent in-
person meetings (either with the “customer” or other members of
the team) are impossible because of geographic location, we
suggest at least one face-to-face meeting at the beginning of the
semester. Such a meeting can generally be held if students live
near each other or in the vicinity of the university campus, and
provides a suitable background for all subsequent conversations.
Obviously the best way to address the issue of having out-of-date
material is to update the material more frequently, i.e. to record
new lectures every semester or at least every year. However, this
is not always feasible and, in our case, not a decision that we were
able to make. One suggestion for addressing this challenge is to
find (or create) documentation that describes the important
differences between what is described in the lecture and what is
available currently. Another suggestion would be to borrow
material from the teaching assistants of the most recently taught
on-campus course, since they would have material related to what
is more up-to-date.

5. RELATED WORK
Of course there has been quite a bit of work in investigating
software engineering education [9, 10, 24, 11, 26, 2, 15], but these
do not address the challenges that come up from teaching in a
distance learning setting. Edwards directly asks the question “can
quality graduate software engineering courses really be delivered
asynchronously on-line?” in his 2000 paper [8] and describes the
structure of the course, the assignments, and the tools, but he does
not discuss any of the challenges he encountered, nor did his
course use eXtreme Programming, which brings about separate
issues aside from those in a traditional software engineering
course. Similarly, the CURE tool [3] facilitates collaboration and
communication in distance learning software engineering courses,
and Pankratius and Stucky [20] report on their experiences of
teaching software engineering at a “virtual university”; however,
none of these address the difficulties that arise from teaching
eXtreme Programming and the accompanying non-technical
challenges.
Others discuss some of the problems they have encountered in
teaching computer science in distance learning programs, but
these tend to be for introductory courses [6, 21] or for advanced
courses that were specifically designed for distance learning [18];
note that, in our case, the course was taught to on-campus
students and recorded for distribution on the Internet (by CVN
policy), but was not specifically targeted to off-campus students.
There have been a number of experience papers published about
teaching software engineering by using eXtreme Programming
[14, 23], but none of these has addressed the problem of teaching
in a distance learning program. Others [16, 19] have looked at the
dynamics of pair programming in the classroom setting, but not
for “virtual pairs” who are not physically co-located. Many of the
problems related to virtual pair programming have been addressed
[12, 25, 27], and [7] has described how distributed software

design meetings can be conducted, but these focus mainly on the
technical issues and not necessarily the pedagogy.
Investigation of the teaching of distributed software engineering
is very important as the software development community
becomes more globalized. However, the work in this field, which
focuses on course design [5, 13], projects [22], and tools [7], does
not incorporate the challenges of eXtreme Programming. Other
work on Distributed eXtreme Programming [17] addresses many
of the issues raised in this paper, but not in an academic setting.

6. CONCLUSION
We have discussed some of the challenges that arise from
teaching software engineering using eXtreme Programming in a
distance learning course. Despite these challenges, there are many
benefits to such a program. We hope that our experiences help
other educators who face similar situations.

7. ACKNOWLEDGMENTS
Murphy and Kaiser are members of the Programming Systems
Lab, funded in part by NSF CNS-0717544, CNS-0627473, CNS-
0426623 and EIA-0202063, NIH 1 U54 CA121852-01A1. Phung
is funded by NSF ITR grant CNS-0426623.

8. REFERENCES
[1] K. Beck, Extreme Programming Explained: Embrace

Change, Addison-Wesley, 1999.
[2] M. Bernhart et al., “Dimensions of software engineering

course design”, In Proc. of the 28th ICSE, Shanghai, 2006,
667-672.

[3] P. Bouillon and J. Krinke, “Using Eclipse in distant teaching
of software engineering”, In Proc. of the 2004 OOPSLA
workshop on eclipse technology eXchange, Vancouver,
2004, 22-26.

[4] Columbia Video Network, http://www.cvn.columbia.edu.
[5] D. Damian, A. Hadwin, B. Al-Ani, “Instructional design and

assessment strategies for teaching global software
development: a framework”, In Proc. of the 28th ICSE,
Shanghai, 2006, 685-690.

[6] G. Davies and J. Preece, “Computer science, home
computing and distance learning—the largest computer
science course in the world?”, In Proc. of the 21st SIGCSE,
Washington DC, 1990, 143-146.

[7] U. Dekel, “Supporting distributed software design meetings:
what can we learn from co-located meetings?”, In Proc. of
the 2005 Workshop on Human and Social Factors of
Software Engineering, St. Louis MO, 2005, 1-7.

[8] S. Edwards, “Can quality graduate software engineering
courses really be delivered asynchronously on-line?”, In
Proc. of the 22nd ICSE, Limerick, Ireland, 2000, 676-679.

[9] P. Freeman, A. I. Wasserman, R. E. Fairley, “Essential
elements of software engineering education”, In Proc. of the
2nd ICSE, San Francisco, 1976, 116-122.

[10] P. Freeman, A. I. Wasserman, “A proposed curriculum for
software engineering education”, In Proc. of the 3rd ICSE,
Atlanta, 1978, 56-62.

[11] C. Ghezzi and D. Mandrioli, “The challenges of software
engineering education”, In Proc. of the 27th ICSE, St. Louis
MO, 2005, 637-638.

[12] B. Hanks, “Virtual Pair Programming”, Doctoral Symposium
at the 25th ICSE, Portland OR, 2003.

[13] M. Hawthorne and D. E. Perry, “Software engineering
education in the era of outsourcing, distributed development,
and open source software: challenges and opportunities”, In
Proc. of the 27th ICSE, St. Louis MO, 2005, 643-644.

[14] G. Hedin, L. Bendix, B. Magnusson, “Introducing software
engineering by means of Extreme Programming”, In Proc. of
the 25th ICSE, Portland OR, 2003, 586-593.

[15] S. Honiden et al., “Top SE: Educating Superarchitects Who
Can Apply Software Engineering Tools to Practical
Development in Japan”, Proc. of the 29th ICSE, Minneapolis
MN, 2007, 708-718.

[16] N. Katira, L. Williams, J. Osborne, “Towards increasing the
compatibility of student pair programmers”, In Proc. of the
27th ICSE, St. Louis MO, 2005, 625-626.

[17] M. Kircher, P. Jain, A. Corsaro, D. Levine, “Distributed
eXtreme Programming”, In Proc. of XP2001, May 2001.

[18] M. McDonald, B. Dorn, G. McDonald, “A statistical analysis
of student performance in online computer science courses”,
In Proc. of the 35th SIGCSE, Norfolk VA, 2004, 71-74.

[19] C. McDowell, L. Werner, H. E. Bullock, J. Fernald, “The
impact of pair programming on student performance,
perception and persistence”, In Proc of the 25th ICSE,
Portland OR, 2003, 602-607.

[20] V. Pankratius and W. Stucky, “Information systems
development at the virtual global university: an experience
report”, In Proc. of the 27th ICSE, St. Louis MO, 2005, 639-
640.

[21] J. A. Preston, L. Wilson, “Offering CS1 on-line reducing
campus resource demand while improving the learning
environment”, In Proc. of the 32nd SIGCSE, Charlotte NC,
2001, 342-346.

[22] I. Richardson, A. E. Milewski, N. Mullick, P. Keil,
“Distributed development: an education perspective on the
global studio project”, In Proc. of the 28th ICSE, Shanghai,
2006, 679-684.

[23] J. Schneider and L. Johnston, “eXtreme Programming at
universities: an educational perspective”, In Proc of the 25th
ICSE, Portland OR, 2003, 594-599.

[24] M. Shooman, “The teaching of software education”, In Proc.
of the 14th SIGCSE, Orlando FL, 1983, 66-71.

[25] D. Stotts et al., “Virtual Teaming: Experiments and
Experiences with Distributed Pair Programming”, Extreme
Programming and Agile Methods - XP/Agile Universe 2003,
Springer, Berlin/Heidelberg, 2003.

[26] H. van Vliet, “Some myths of software engineering
education”, In Proc. of the 27th ICSE, St. Louis MO, 2005,
621-622.

[27] A. M. Zin, S. Idris, N. K. Subramaniam, “Implementing
Virtual Pair Programming in E-Learning Environment”,
Journal of Information Systems Education, Summer 2006.

