
1

A Recursive Data-Driven Approach to Programming Multicore Systems

Rebecca Collins and Luca P. Carloni
Technical Report CUCS-046-07

Department of Computer Science
Columbia University

1214 Amsterdam Ave, MailCode 0401
New York, NY, 10027

December 2007
[rlc2119,luca]@cs.columbia.edu

Abstract—In this paper, we propose a method to program
divide-and-conquer problems on multicore systems that is based
on a data-driven recursive programming model. Data intensive
programs are difficult to program on multicore architecture s
because they require efficient utilization of inter-core communica-
tion. Models for programming multicore systems available today
generally lack the ability to automatically extract concurrency
from a sequential style program and map concurrent tasks to
efficiently leverage data and temporal locality. For divide-and-
conquer algorithms, a recursive programming model can address
both of these problems. Furthermore, since a recursive function
has the same behavior patterns at all granularities of a problem,
the same recursive model can be used to implement a multicore
program at all of its levels: 1. the operations of a single core,
2. how to distribute tasks among several cores, and 3. in what
order to schedule tasks on a multicore system when it is not
possible to schedule all of the tasks at the same time. We present
a novel selective execution technique that can enable automatic
parallelization and task mapping of a recursive program onto a
multicore system. To verify the practicality of this approach, we
perform a case-study of bitonic sort on the Cell BE processor.

I. I NTRODUCTION

The performance of single core architectures is not keeping
up with Moore’s Law. Even though more transistors fit on a
chip with each new process generation, there are limits on the
amount of instruction level parallelism that can be extracted
from a sequential program, and contrary to trends thus far in
microprocessor design, the technique of extending pipelines to
increase ILP is yielding diminishing returns [9]. If it is difficult
to make a larger processor do two times the amount of work
as a smaller processor in the same amount of time, why not
use two small processors to do twice as much work in the
same time as one small processor? Unfortunately, while having
two processors can allow one to compute two independent
jobs in half the time, it doesn’t always allow one to compute
one big task twice as fast. Individual programs almost always
have data dependencies that force some of the operations to
be ordered with respect to each other. Meanwhile, conven-
tional programming models were designed for single CPU
systems and either assume sequential execution, or require
the programmer to explicitly distinguish concurrent tasks(for
example, with POSIX threads). The holy grail of multicore

programming is a tool that takes a sequential program and
automatically transforms it into an efficient parallel program.
Many paradigms for programming multicores can handle the
case where there are few interdependencies very well. Paral-
lelization is achieved simply by partitioning the data set and
moving the partitions to separate cores. Programming these
multicore systems in a way that can make one big task twice
as fast (or at least significantly faster), however, is a challenge.

In this paper we introduce a new model of computation
for multicores that is based on a recursive data-driven view
of the application. Our work focuses on applications that can
be defined withdivide-and-conquerstyle recursive programs.
Our model is driven by the data of the application. Given a
recursive program that divides the data with each recursive
step, efficient task mapping and scheduling become intuitive.
If one pictures the execution of a recursive function as a tree
of procedure calls, the data assigned to sibling proceduresare
more closely coupled than those of cousins. Thus, the decision
to co-schedule two tasks can be based on their relationship in
the tree - i.e. how tightly coupled their data is. Moreover,
the cores can organize themselves dynamically based on how
the data is distributed among them. We accomplish this by
separating the view of the global data from the actual data
itself so that each core recurses on the data structures of the
abstract global data set, but selectively executes code that alters
the actual data. Each core dynamically determines which code
it should execute based on the data that is present locally.

Related Works. Models of computation for multicore pro-
gramming can be characterized according to what is asked of
the programmer and what is asked of the backend (ie. libraries
and compiler).

Thedata-parallel programming modelcan be used when the
same operation can be applied to different data independently
and it works well with graphical processing units since they
typically have a large number of cores, but not a very high-
bandwidth intercommunication system [12]. In a data-parallel
model, the programmer can express concurrency by defining
functions over vectors where a function at an element of the
vector does not depend on the values of any of the other vector
elements. Data-parallel computing does well with applications
that require little inter-task communication. Any overalltask

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

L1

M1 ...

1C

L2

M2

2C

LN

MN

NC
Supervisor

(may be off-chip)

Multicore System

Fig. 1. Abstract Model of a Multicore System.

that can be broken up into many small independent tasks will
work. In this model, the programmer must explicitly separate
the application into independent pieces, and the backend will
manage data transfer and task mapping. However, it is not
obvious how one could model data dependencies between
separate data-parallel functions.

MapReduceis a programmed model used for handling
reduction applications on very large data sets [3], [2]. The
MapReducemodel works in two steps. In the “Map” step, each
input token is mapped to a key-value pair. In the “Reduce”
step, all of the key-value pairs generated in the Map step are
partitioned according to their keys and their values are sent
to a reduction function. The programmer provides a function
for mapping a single input instance to a key-value pair and
reduction functions that handle all of the values matched to
specific keys; the backend handles all of the data movement.
In multicore systems,MapReducehas been used with shared
memory systems.

With the streamingmodel of computation [10] a program
is defined as a series of filters, where each filter is a unit of
computation. Filters have input and output channels and can
be pipelined with other filters to build complex operations.In
this model the programmer explicitly defines a data flow where
different cores will be responsible for different operations. The
temporal flow of the data gives good hints about which filters
are dependent on each other.

The idea of parallelizing a divide-and-conquer problem
according to a recursive function definition has been proposed
for Symmetric MultiProcessor (SMP) Architecture from a
compiler-oriented perspective, and shown to have good perfor-
mance [7]. In this approach, the compiler automatically detects
data independence in the recursive calls.

The goals of our work differ from those of previous works
in two ways. First, we aim to develop a model primarily
for applications with strong data dependencies that require
communication between concurrent tasks. We prefer systems
whose cores have private local memories rather than globally
shared memories; our motivation is that when the number of
cores scales to the hundreds or even thousands in the future [5],
architectures based on globally shared memory will be difficult
to sustain. Our methodology is data-driven; it requires that
the programmer explicitly partition the data as it is divide-
and-conquered through recursive programming, but does not
require any concurrent programming beyond this. Then, as
the partitioned data is distributed among cores, each core runs
the same recursive program, but a core will only follow the
recursive paths that overlap with that core’s local data.

Library for Clean Data Partitioning

Recursive Code
Optimized

Sequential Code

Single-Core Multi-Core Multi-Stage

Parallel Application

Platform Specific Details
- number of cores

- size of local storage

ex: right_half(), left_half()

Supplied by Programmer

(optional)

Fig. 2. Software Development Flow

II. A BSTRACT MODEL OF A MULTICORE SYSTEM

Before presenting the specifics of our approach, we define
how we abstract a multicore system (Fig. 1). A multicore
system is made up ofN cores that can work together plus
1 supervising core. TheseN + 1 cores may be homogeneous,
or they may be different like in the IBM Cell BroadBand
Engine [4]. We label the coresCi, where 1 ≤ i ≤ N .
Each coreCi has a store of local memory whose capacity is
denotedMi. Together all of the local memories are combined
to form the aggregate local memory,AM =

⋃
∀i

Mi. The
main memory of the system is located off chip, separate from
the local memories of the cores.

In typical sequential programming models, the data itself
is abstract from the memory. We also keep the notion of
data separate from memory and denote the overall data of
the program asD. The data stored in a single coreCi’s local
memoryMi, is labeledLi, while AL is the data stored in the
aggregate memoryAM .

III. M ETHOD

Figure 2 shows the design flow for developing an application
with the recursive data-driven approach. The programmer
provides a recursive implementation of the application. The
implementation may have a standard sequential form except
that when the recursive calls are made, the data must be cleanly
partitioned. For example, if the data is in an array format,
instead of recursing using C-style pointers, the programmer
will use functions likeright half() or left half() that will pass
the right and left halves of the array but will also keep trackof
where the data overlaps and how it fits together in the overall
data set.

The parallel implementation of the application has three
parts, labeled “Single-Core”, “Multi-Core”, “Multi-Stage” in
Figure 2. The single-core part of the application corresponds to
a single core executing on data contained in its local memory.
The multi-core part corresponds to a multiple cores executing
on a set of data that fits within their combined local memories.
The multi-stage part corresponds to a task that operates over
a set of data too large to fit into the combined local memories
of the available cores and so the task must be broken up into
smaller pieces that will fit and computed in several stages.

The easiest step of converting the recursive code to the
parallel code is creating the single-core code. Since execution

3

on a single core is sequential, the sequential recursive code
can be copied directly. For performance, the programmer may
also provide a non-recursive implementation optimized forthe
desired architecture. However, this optimization step is not
mandatory for the correctness of our approach.

The challenge in creating multi-core and multi-stage code is
that the data will not all fit necessarily into one local memory,
and the code must manage how the data is broken up. In
addition to the recursive code, for these parts we also add data
structures to handle the difference betweenglobal data and
local data, but from two different perspectives. In the multi-
core code, the global data represents the data that is storedin
the combined local memories of the cores (the aggregate data
AL) and on each coreCi the local data represents the data
that is resident in that core’s local memory,Li.

The multi-core code will run on each coreCi. Initially, the
function call will be made on the aggregate dataAL, even
though no one core contains all ofAL. But at each level of
recursion, the overall size of the data is iteratively divided by
half into smallerAL′. To complete the multi-core code from
the original recursive implementation, recursive calls using
the partitioned data set will be augmented with conditional
wrappers. Two new functions are introduced in these condi-
tionals: mydata intersects(), which is true if AL′ ∪ L 6= ∅,
andmydata contains(), which is true ifAL′ ∩L = L. Before
each recursive call,mydata intersects()andmydata contains()
check whether the data used in the recursive call intersect the
core’s local dataLi or are contained inLi. If the local data
does not intersect the recursed data, the core will skip this
part of the code. If the recursed data contained in the local
data, the single-core code will be called. Otherwise, when the
local data intersects but does not contain the recursed data,
the recursion continues in the multi-core code.

In the multi-stage code, theglobal data represents the
overall data of the application,D, and thelocal data represents
the data that will fit into the combined local memories of the
coresAM – theglobal data of the multi-core code.

Conditional wrappers are introduced around the recursive
calls in the multi-stage code that check whether the recursed
data will fit into the local memory or not. In this case, we
just need a functionwill fit that checks whether the recursed
dataD′ will fit into AM , |D′| ≤ |AM |. If it will fit, then the
multi-core code is called, otherwise, the recursion continues
in the multi-stage code. The multi-stage code also takes into
account the size of individual local memoriesMi, and whether
it is necessary to schedule allN cores on a particular task.

There is an important distinction in the way the multi-
core and multi-stage codes are run. The multi-core code is
duplicated and run simultaneously on theN cores. However,
different paths of the recursion are followed by each core
according to which part of the global data they have. The
multi-stage code is run by only one supervising core.

IV. EXAMPLE

In this section, a small example parallel application is built
from a sequential recursive program. Consider the problem
of vector addition,C = A + B. This algorithm can be

vector_add(int *C, int *A, int *B, int n)
{
if(n == 1) {

C[0] = A[0] + B[1];
}
C_LH = left_half(C);
C_RH = right_half(C);
// etc.
vector_add(C_LH,A_LH,B_LH, n/2);
vector_add(C_RH,A_RH,B_RH, n/2);

}

Fig. 3: Recursive Vector Addition.

multicore_vector_add(List *C, List *A, List *B,
int n)

{
if(mydata_intersects(A_LH,B_LH and C_LH) {

if(mydata_contains(A_LH,B_LH and C_LH) {
singlecore_vector_add(C_LH,A_LH, B_LH,n/2);

} else {
multicore_vector_add(C_LH,A_LH,B_LH,n/2);

}
}
if(mydata_intersects(A_RH,B_RH, and C_RH) {

if(mydata_contains(A_RH,B_RH, and C_RH) {
singlecore_vector_add(C_RH,A_RH, B_RH,n/2);

} else {
multicore_vector_add(C_RH,A_RH,B_RH,n/2);

}
}

}

Fig. 4: Multi-Core Recursive Vector Addition.

easily parallelized using existing models, but we use it as
a simple instructional example. Figure 3 shows a recursive
implementation of vector addition.

For single-core code, we keep the same function, but
for clarity, we rename it singlecore_vector_add().
Figure 4 shows howvector_add() is converted to
multicore_vector_add(). The integer arrays are changed
to (List *) data structures. This change decouples the data
Mi from the data viewAL′ that is used in the recursive
calls. Each core executes with a high level view of the
aggregate data setAL. However, since only a piece ofAL
will fit into local memory, each coreCi is restricted by
mydata_intersects() and mydata_contains() to only
work on parts of the data that are contained inLi. TheList
structures have information about the positions ofAL′ data in
AL, but do not contain the actual data. Notice that if a core
Ci contains the data from the left half ofA, B andC, but not
the right half, then it will recurse in the first conditional,but
will skip the second completely.

Apart from decoupling the data from the data view, the
only other change is that the exit case is removed. In the
multi-core code, an exit case is no longer needed because it
is guaranteed that when the size of the data becomes small
enough,singlecore_vector_add() will be called to han-
dle the rest of the work. Sincesinglecore_vector_add()
is only called on data present in the local memory, it is easy
to plug in a more efficient non-recursive version for better
performance.

Figure 5 shows the multi-stage code. This code is very
similar to the multi-core code. TheList structure is over-

4

multistage_vector_add(List *C, List *A, List *B,
int n)

{
if(will_fit(A_LH,B_LH, and C_LH) {
spawn_multicore_vector_add_threads(

C_LH,A_LH,B_LH,n/2);
} else {
multistage_vector_add(C_LH,A_LH,B_LH,n/2);

}
if(will_fit(A_RH,B_RH, and C_RH) {
spawn_multicore_vector_add_threads(

C_RH,A_RH,B_RH,n/2);
} else {
multistage_vector_add(C_RH,A_RH,B_RH,n/2);

}
}

Fig. 5: Multi-Stage Recursive Vector Addition.

sort(int *list, int n, int direction)
{

if(n==1) return;

left = left_half(list);
right = right_half(list);
sort(left, n, direction);
sort(right, n, direction*-1);
merge(left, right, n, direction);

// sort_2() is the same as sort(), except it
// skips the sort() calls before merge()
sort_2(left, n, direction);
sort_2(right, n, direction);

}

merge(int *left, int *right, int n, int dir)
{

if(n == 1) {
if((right[0] - left[0])*dir< 0)

swap left[0] and right[0]
return;

}
left_of_left = left_half(left);
right_of_left = right_half(left);
left_of_right = left_half(right);
right_of_right = right_half(right);

merge(left_of_left, left_of_right, n/2, dir);
merge(right_of_left, right_of_right, n/2, dir);

}

Fig. 6: Recursive implementation of Bitonic Sort.

loaded here to representD rather than AL. The func-
tion spawn_multicore_vector_add_threads() handles
the bookkeeping of managing threads and sending data back
and forth to theN cores. For both the multi-stage code and the
multi-core code, the first call of the recursive function mayalso
be checked in casewill_fit() or mydata_contains(),
respectively, is true for the global data set.

For example, if D is smaller than AM , then it is
not necessary to recurse at all, we can just invoke
spawn_multicore_vector_add_threads() directly.

V. I NTERCOMMUNICATION - BITONIC SORT

In the vector addition example discussed in Section IV,
the parallelization is trivial since no intercommunication is
required between the cores. In this section, we describe bitonic
sort, the application we use in our experiments. Bitonic sort

is a good benchmarking algorithm because its communica-
tion pattern is interesting and because hand-optimized im-
plementations have been written on a number of multicore
platforms [11], [8].

Bitonic sort is a popular parallel sorting algorithm because
the order of compare-and-swap operations is not data depen-
dent. That is, when choosing which elements of the array to
compare, the position of the elements in the array matters, but
not the values (unlikequicksort, for example). In this section,
the algorithm and implementation of bitonic sort are explained.

Bitonic sort is a divide-and-conquer algorithm where a list
of elements is sorted by first sorting its two halves in opposite
directions, and then merging the two halves together. The
merge is done by compare-and-swapping the1st element of
the first half to the1st element of the second half, and then the
2nd element of the first half to the2nd element of the second
half, and so on. The compare-and-swap operations go in the
direction that we are sorting the list. After this initial merge
(where the elements aren/2 elements apart), we repeat the
mergelog n times, but each time we reduce the distance that
the elements are apart by half and consider pieces of the list
completely separately.

Figure 7(a) shows an example of a list being sorted with
bitonic sort. Figure 7(b) shows a picture of how we might map
the data dependencies of the arrays elements throughout steps
of the algorithm. Depending on how we group the elements,
we can look at the algorithm in more or less detail just like a
fractal. Notice that at the finest level of granularity, the boxes
hold one piece of data. As we increase the granularity so
that two or four pieces of data are grouped together, then the
structure of the communication remains the same, but overall
there are fewer communication paths. In fact, the structureat a
course granularity mirrors the fine grained structure of within
a local block. In this way, we can look at the algorithm as
a divide-and-conquer algorithm where we group locations in
the array together according to their location in the hierarchy.
So before breaking the computation up to be distributed on
multiple cores, we can break up the data into chunks that have
good locality. Or, from another point of view, we can break
the problem up into chunks that are small enough to fit into
one core’s local memory or cache.

Consider the recursive implementation of bitonic sort in
Figure 6. The structure of the recursive functionsort() is
similar tovector_add() in the way that it splits up the input
data array withleft_half() andright_half() functions.
However, in the middle ofsort(), there is a call to another
recursive functionmerge(). Both sort() andmerge() are
divide-and-conquer recursive programs, but they divide their
input differently. Figure 8 shows at a high level how data is
mapped differently for the two functions. For our preliminary
experiments, we handle data passing simply by matching up
pairs of cores that together contain the data forsort() that
should be used by two cores formerge() and have the
two cores swap data accordingly as shown in the bottom of
Figure 8. Internal data swapping has a straightforward pattern
for bitonic sort, however the swap patterns may not always
be so direct. We can easily detect when swapping should
occur - when one recursive program calls another recursive

5

a2 a3 a4 a5 a6 a7 a8a1

a2 a3 a4 a5 a6 a7 a8a1

a2 a3 a4 a5 a6 a7 a8a1

a2 a3 a4 a5 a6 a7 a8a1

a2 a3 a4 a5 a6 a7 a8a1

a2 a3 a4 a5 a6 a7 a8a1

a2 a3 a4 a5 a6 a7 a8a1

99 16 32 25 5 19 7810

99 32 16 5 25 78 1910

16 32 99 78 25 5 1910

16 32 99 78 25 19 510

16 19 5 78 25 32 9910

5 19 16 32 25 78 9910

10 16 195 25 32 78 99

(a) Example Bitonic Sort (b) Data Dependencies - Recursive Layers

0

1

2

3

4

5

6

timestep

Fig. 7: Bitonic Sort – (a) An example of how to sort a list using Bitonic Sort. At each stage, the elements of the list are paired up and
sorted in the direction shown with the red and green arrows. Elements that will be swapped in the current sorting step are highlighted. (b)
The data dependencies for each sorting step are shown. Notice that the position of an element matters, but its value does not, so genericai

variable names are used.

a2 a3 a4 a5 a6 a7 a8a1

a5 a6 a7 a8a2 a3 a4a1

a2a1 a3 a4 a5 a6 a7 a8 a2 a3 a4 a5 a6 a7 a8a1

a3 a4 a7 a8a2 a5 a6a1

a5a1 a2 a6 a3 a7 a4 a8

sort() mapping

merge() mapping

a2a1 a5 a6

swap

Fig. 8: Data Mapping.

program and the two split data differently. In the most trivial
implementation the data could be sent back and forth to the
supervisor to convert between the data mappings. However, in
the most general case, a tool that can automatically determine
how to swap the data between cores on-the-fly is a much more
interesting, and likely more efficient, alternative.

VI. EXPERIMENTS

A recursive data-driven model can be applied to different
applications on different platforms. To evaluate performance
and scalability of this new model, we implemented Bitonic
sort on the Cell BE architecture [4]. As a preliminary exercise,
we converted the original recursive function to multi-coreand
multi-stage code by hand.

Cell BE Architecture. We performed our experiments on
a QS20 CellBlade with Cell Software Development Kit 2.0.
A QS20 features two Cell BE processor chips together with
a 1GB memory. Each Cell chip hasN = 8 processing cores
called SPEs, and one PowerPC core, which is used as the
supervising core. Each SPE core has a local memoryMi =

256KB that is used for both data and code. The SPE local
memories are not cached. Data is transferred between cores
through direct memory access (DMA). The communication
network between cores, called the Element Interconnect Bus,
is capable of transferring up to 96 bytes per cycle, and the
link to main memory is 16 bytes per cycle [1]. Each SPE is a

SIMD processor capable of doing the same operation over the
elements of a 128-bit wide vector, for example, a vector of four
32-bit integers [6]. We setLi = 128KB (or 32K integers)
since bitonic sort only takes input whose size is a power of 2,
and we must leave room inMi for the code and stack. One
Cell chip, then hasAL = 1M (256K integers). The QS20 has
two cell chips, which if used together double the data storage
capacity:AL = 2M . However, the communication between
cores on different chips is not as fast as the communication
between cores on the same chip.

Implementation. The core recursive function of our imple-
mentation is essentially the same as the code in Figure 6.
In our model, the single-core code can be replaced with
sequential code to enhance performance. We have three local
functions: sort(), merge(), and sort_2(). We replaced
the single-core code forsort() with a standardquicksort
implementation [13]. We replaced the recursive single-core
code for merge() with an iterative alternative. One could
also replacesort_2() with quicksort, but we found that the
original recursive version had better performance. However,
we did enhance the recursive implementation ofsort_2() by
calling insertion sortfor small instances to avoid unnecessary
overhead from recursive calls at the small scale. For compar-
isons with single-core systems, we used the samequicksort
implementation as in our single-coresort() code.

Scaling the Input Size.The graph in Figure 9 compares
the performance of our bitonic sort implementation with other
implementations running on different platforms as the input
data size scales from512K to 128M integers. Both axes have
a logarithmic scale.

CellSort [11] is a hand-optimized bitonic sort implementa-
tion for the Cell processor. Our implementation is about 10
times slower than CellSort for smaller input sizes, such as
1M integers, but comes within a factor of 6 in the larger input
cases. There are a number of reasons why the recursive model
does not come closer to the “ideal” performance of a hand-
optimized implementation. First, for single-core computation,

6

512K
1M 2M 4M 8M 16M

32M
64M

128M

Number of Integers sorted

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000
T

im
e

(s
)

-
lo

ga
rit

hm
ic

 s
ca

le

CellSort
Recursive Sort
AMD Opteron 252
PPE

Fig. 9: Scaling the Input Size.

CellSort uses a vectorized SIMD bitonic sort implementation
that is optimized for the SPE architecture. Our experiments
use a standardquicksort implementation instead which is
about 4 times slower for single-core sorting. Since single-
core sort operations grow with the input size, this penalty
carries over to larger input sets. In addition, the communication
protocols in our implementation are very simple and do not
yet contain optimizations such as double buffering. One source
of overhead intrinsic to our approach comes from the cost of
making recursive function calls. However, since the recursive
implementation of bitonic sort cuts the problem size in half
with each recursive function call, the number of recursive
function calls should grow with the logarithm of the global
data size and become less of a penalty as the input size scales
up. Moreover, since the cores do not need to use the data
during the initial multi-core recursive function calls, the data
transfer could be overlapped with these recursive calls in a
more optimized version.

Figure 9 also shows the performance times on two sin-
gle core systems runningquicksort. The first is an AMD
Opteron(tm) Processor 252 with 2.5 GHz , and the second is
the PowerPC PPE from the Cell processor. In both cases our
recursive implementation on the Cell gives better performance.

Scaling Cores.Perhaps more important than the comparison
of multicore to single-core is the performance of the multicore
application when the number of cores is greatly increased.
The advantage of multicore over single core hinges on the
scalability of multicore applications. While there are limits to
much faster single core systems can become in the future, the
scale of multicore systems is rapidly increasing. Figure 10
shows the speedup observed as the number of cores was
increased from 2 to 16 cores. For smaller data sizes such as
64K integers or 256K integers, increasing the number of cores
past 4 does not improve performance very much if at all. As
the data size scales up, however, the speedup gained from
using more cores increases dramatically.

Notice that our programming method allows us to seam-
lessly scale the deployment of the same bitonic sort code
across the16 SPU and2 PPE processors that are featured
in the two Cell chips hosted on the QS20 CellBlade board.

2 4 8 16

Number of Cores

0

2

4

6

8

S
pe

ed
up

 r
el

at
iv

e
to

 2
 c

or
es

64K integers (256K data)
256K integers (1M)
1M integers (4M)
4M integers (16M)
16M integers (64M)

Fig. 10: Scaling the Processing Cores.

VII. C ONCLUDING REMARKS

The recursive model we propose for programming multicore
systems is powerful because it expresses concisely (1) data
locality - i.e. which parts of the data should be co-located
when the overall data is distributed; and (2) temporal locality
- if tasks must be scheduled, which tasks should be run at
the same time (temporally co-located). In a multicore setting,
when recursion is used as a means to reduce the problem
size, a single recursive function statement can be used at all
of the different levels of the problem - on a single core, on
multiple cores, and on multiple cores over multiple stages.
Since recursion is naturally hierarchical, it will continue to be
an intuitive model even over networks of multicore systems.

To test the performance of our approach, we have imple-
mented bitonic sort on the Cell BE multicore system. We
found that at each level of programming, we could reuse the
same recursive function which greatly eased development. The
recursive implementation of bitonic sort scales with both the
input size and the number of cores. The performance came
within a factor of 6 of a hand-optimized implementation of the
same algorithm. Furthermore, the difference in performance
of the recursive implementation and the hand implementation
decreased as the problem size scaled up. When scaling the
number of cores, we observe that the speedup improved as
the program size increased.

Future Work. For this work, we performed the conversion
from a recursive program to a parallel recursive program by
hand, and have identified several challenging areas that will
require future work in developing a tool that can perform this
conversion automatically for any general recursive function.
When two interleaved recursive functions such assort()

andmerge() have different low level data mappings, the tool
must convert between the mappings to direct inter-core data
swapping. The partitioning of data is another interesting area
of research. In some cases, such as matrix multiplication, the
input data should be distinguished from the output data and
the input partitions would probably overlap. In other cases,
it be best to partition the data in non-contiguous blocks, and
for very complicated partitions, themydata_intersects()
andmydata_contains() functions would also become more
complicated.

7

REFERENCES

[1] T. W. Ainsworth and T. M. Pinkston. Characterizing the Cell EIB on-
chip network. IEEE Micro, 27(5):6–14, 2007.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. InOSDI’04: Sixth Symposium on Operating System
Design and Implementation, San Francisco, CA, December 2004.

[3] C. Rangeret al. Evaluating MapReduce for multi-core and multiproces-
sor systems. InProc. of the Symposium on High Performance Computer
Architecture, February 2007.

[4] J.A. Kahleet al. Introduction to the CELL multiprocessor.IBM J. Res.
Develop., 49(4-5):589–604, September 2005.

[5] K. Asanovic et al. The landscape of parallel computing research: A
view from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[6] M. Gschwindet al. Synergistic processing in Cell’s multicore architec-
ture. IEEE Micro, 26(2):10–24, 2006.

[7] M. Gupta et al. Automatic parallelization of recursive procedures.
International Journal of Parallel Programming, 28(6):537–562, 2000.

[8] N. K. Govindaraju et al. GPUTeraSort: High performance graphics
coprocessor sorting for large database management. InACM SIGMOD
International Conference on Management of Data, Chicago, United
States, June 2006.

[9] V. Agarwal et al. Clock rate versus IPC: the end of the road for con-
ventional microarchitectures. InProc. Annual International Symposium
on Computer Architecture, pages 248–259, 2000.

[10] W. Thies et al. StreamIt: A compiler for streaming applications,
December 2001. MIT-LCS Technical Memo TM-622, Cambridge, MA.

[11] B. Gedik, R. R. Bordawekar, and P. S. Yu. CellSort: High performance
sorting on the Cell processor. InVery Large Data Bases Conference
(VLDB), Vienna, Austria, September 2007.

[12] M. D. McCool. Data-parallel programming on the Cell BE and the
GPU using the RapidMind development platform. InGSPx Multicore
Applications Conference, Santa Clara, October 2006.

[13] M. A. Weiss. Data structures and algorithm analysis in C (2nd ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1997.

