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Abstract

Latency-insensitive protocols allow system-on-chip engineers to decouple the design of the computing cores
from the design of the inter-core communication channels while following the synchronous design paradigm. In
a latency-insensitive system (LIS) each core is encapsulated within a shell, a synthesized interface module that
dynamically controls its operation. At each clock period, if new data has not arrived on an input channel or
a stalling request has arrived on an output channel, the shell stalls the core and buffers other incoming valid
data for future processing. The combination of finite buffers and backpressure from stalling can cause throughput
degradation. Previous works addressed this problem by increasing buffer space to reduce the backpressure requests
or inserting extra buffering to balance the channel latencyaround a LIS. We explore the theoretical complexity
of these approaches and propose a heuristic algorithm for efficient queue sizing. We also practically characterize
several LIS topologies and how the topology of a LIS can impact not only how much throughput degradation will
occur, but also the difficulty of finding optimal queue sizingsolutions.
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I. INTRODUCTION

L ATENCY-INSENSITIVE design (LID) [6], [7] is a correct-by-construction methodology for systems-
on-chip (SOCs) that simplifies the assembly of intellectualproperty (IP) cores by reconciling the

traditional methods for digital chips based on thesynchronous paradigm[4] with the dominant impact of
interconnect delay that characterize nanometer technologies [9]. In particular, LID decouples the design
of the IP cores from the design of the communication channelsamong them. Also, for the latter it eases
the application ofwire pipelining, a technique to fix timing violations in global interconnectthat is both
effective and challenging [2], [36].

Given a netlist of IP cores, which may be specified as synthesizable RTL modules, a latency-insensitive
system (LIS) is automatically derived by encapsulating each core within ashell. A shell is a synthesized
logic block that implements a latency-insensitive protocol and acts as an interface around the core for
global, inter-core, communication. The idea is to build a distributed global communication infrastructure
that relies on a set of point-to-point, lossless, elastic, pipelined channels instead of centralized communi-
cation resources. IP cores may be synchronous sequential logic blocks of any complexity as long as they
satisfy thestallability requirement; i.e., their operation can be temporarily stalled throughclock-gating.
Inter-shell channels made of long wires can be pipelined through the insertion ofrelay stations(clocked
buffers with two-fold storage capacity [6]) in order to meetthe target clock period. The theory of LID
guarantees thatany number of relay stations can be distributed on these channels up to late stages of
the design process without requiring the re-design of any IPcore and without jeopardizing the system
behavior [7]. Essentially, this is possible because: (a) the data exchanged by the shells are marked as
either valid1 or void, (b) the relay stations are initialized with void data, and (c) each shell keeps its core
unaware of the existence of void data by controlling it via anAND-firing policy: at each clock period the
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1Valid and void data are also denoted respectively as informative and stalling events in the theory of latency-insensitive design [7].
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Fig. 1. Example of a system transformed into a LIS. A and B are encapsulated in shells, and a relay station is inserted on A’supper
channel.

component t0 t1 t2 t3 . . .

A (upper) 0 2 4 6 . . .

A (lower) 1 3 5 7 . . .

B 0 τ 1 5 . . .

Relay Station τ 0 2 4 . . .

TABLE I
OUTPUT TRACES OF THE COMPONENTS IN THELIS OF FIG. 1(RIGHT).

shell fires the core if and only if it has a new valid data from each input channel, and it stalls the core
otherwise. Valid data that are not consumed while the core isstalled are buffered by inputqueues(a shell
has a distinct input queue per each channel). As a result, thebehavior of the LIS islatency-equivalent
to the behavior of the original synchronous system; i.e., each channel presents exactly the same sequence
of valid data but for the possible interleaving of some void data [7].

The simple example in Figure 1 illustrates how a synchronoussystem is transformed into a LIS. Each
of the two IP coresA and B is encapsulated in a shell. Let’s assume that the upper channel has been
routed on a path much longer than the lower channel and, therefore, in order to meet the target clock
period we must pipeline it by inserting one relay stationrs. Then, Table I illustrates a behavior of this
simple system whereA is a module that generates even numbers to its upper channel and odd numbers
to its lower channel andB is an adder whose latched output is initialized to zero. We use τ to denote a
void data item as proposed in [7].

Besides the “traditional” clock frequency of its synchronous circuits, the main performance metric of a
LIS is the rate at which it processes valid data [8]. This throughput, which may be reduced by the periodic
occurrence of void data, depends on two factors: (1) the internal structure of the LIS and (2) the interaction
with the environment where the LIS operates. The internal structure determines itsmaximal sustainable
throughput (MST)θ as the LIS effectively processes valid data at this rate unless the environment forces
it to slow down (e.g., by not providing enough valid data). The insertion of a relay station on afeedback
loop of a LIS reduces its MST because the initialization valueτ continues to circulate around the loop
and causes each shell on the loop to periodically stall its core [8], [27]. As explained in Section III, LISs
can be effectively modeled withmarked graphsand, in particular, the MST of a LIS can be precisely
derived by performing a static analysis of the structure of the corresponding marked graph.

In the example of Figure 1 there is no feedback loop and theτ value that is initially present in
the relay station eventually leaves the system, which therefore has the highest possible MST, i.e.θ =
# valid data items

clock periods
= 1. Note, however, that the presence of the void data item forces the shell ofB to stall

its core during the first clock period. Hence, this shell mustbuffer the first valid data onA’s lower channel
(equal to1) in the corresponding input queue while waiting for the firstvalid data onA’s upper channel
(equal to0) to traverse the relay station. If this simple system does not interact with the environment, a
queue of size one provides sufficient storage space to avoid any data loss.

In general, however, systems are combined to derive more complex systems: this makes it impossible to
know in advance the sequence ofτ data items that each component will observe during its operations. For
instance, if an uplink subsystem with an MST of3

4
feeds another downlink subsystem with a lower MST
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Fig. 2. Adding backedges to the LIS example (left). Inserting an additional relay station for performance reasons (right).

of 2
3
, only the presence of queues of infinite size (infinite queues) could provide the shells of the latter

with sufficient buffering capacity. But since infinite queues are unrealizable in practice, a communication
protocol is necessary among the shells to avoid any possibleloss of valid data. Specifically, a downlink
shell must be able to send astop signal back on an input channel to indicate that its queue is full and
that the corresponding uplink shell must stall. This operation, calledbackpressure[7], guarantees lossless
communication. But its implementation, which is based on the addition of a backward communication
line on each channel, may cause the introduction of new feedback loops across multiple shells that in
turn may force the overall LIS to have a degraded MST.

In Figure 2(left) we illustrate backpressure by adding a backward edge (backedge) for every forward
edge in our example. This causes the introduction of two backpressure feedback loops. Each of these
loops comprises some forward and some backward edges. Now, if we suppose that the shells have queues
with fixed capacityq = 1, this system’s MST becomes2

3
. Note that even though the shell ofB has space

to store one data token fromA, it still must send a stop signal toA on the lower channel as it fills the
space because it does not know beforehand when valid data will arrive. In other words, ifB receives a
τ on the upper channel and a new valid data token on the lower channel when the lower input channel
queue is already full, then the valid data token would be lost.

Marked graphs can be used to model bothideal (i.e. theoretical and not realizable) LISs with infinite
queues andpractical LISs that use finite queues together with backpressure. IfG denotes a marked
graph modeling an ideal LIS,θ(G) denotesG’s MST, andd[G] is the marked graph obtained by adding
backedges toG (the doubled graphof G). It has been shown thatθ

(

d[G]
)

= θ(G) when the system has
finite queues that are “big enough” [27]. Still, it is a challenge to determine how big the finite queues
must be to match the performance of a system with infinite queues (queue sizing problem).

In some cases an alternative to increasing queue size is to insert additional relay stationsthat would
not be required for wire pipelining purposes but that are useful to increase the value ofθ(d[G]), possibly
up to θ(G). In fact, for the example of Figure 2(right) it is sufficient to insert a relay station on the lower
channel so thatA’s data are delayed one period along both channels, andB receives data from both of
them at the same time. With respect to increasing the queue sizes, this technique allows more flexible
placement of the additional storage space. However, as we show in Section VI, it does not work for all
possible cases because the additional relay stations can potentially impact performance elsewhere in the
system.

Contributions. We focus on the performance optimization of thepractical LIS (with backpressure
and finite queues) so that its MST is equal to theideal MST of the equivalenttheoretical LIS (with
infinite queues and no backpressure). In other words, we study the problem of how to avoidthroughput
degradationin LIS implementations that are based on backpressure. We consider both the optimal sizing
of the input queues in the shells and the insertion of additional relay stations beyond what is required for
wire pipelining purposes. We provide a unifying modeling framework for this problem based on marked
graphs (Section III) and we outline which approaches work for different classes of LIS topologies. In some
cases, fixed queue sizing is enough to optimally solve MST degradation from backpressure (Section IV).
In the most general case, however, no easy solution exists for optimally sizing the queues. In fact, we
prove that this is an NP-complete problem (Section V). On theother hand, as we contrast queue sizing
with the alternative method of relay-station insertion, wedemonstrate that the latter has more limited
applicability by presenting the counter-example of a LIS whose MST cannot be optimized by only adding



4

relay stations (Section VI). Further, we prove that optimalrelay station insertion is also NP-complete
(Appendix). Finally, we propose a heuristic algorithm for the queue sizing problem (Section VII) and
evaluate empirically how well it performs compared to an exact algorithm (Section VIII).

II. RELATED WORK

Wire pipelining, i.e. the insertion of sequential elements(or clocked buffers) to pipeline long wires in
integrated circuits that are designed with nanometer technologies, has been discussed in several works [6],
[15], [23], [28], [32], [36]. Variations of a relay station circuit have been used for wire pipelining to build
efficient on-chip global communication infrastructures invarious projects [2], [3], [13], [14], [20].

The performance analysis of latency-insensitive systems originally presented in [8] is based on the
assumption of infinite queues. With infinite queues, backpressure mechanisms are not necessary, and the
MST of a LIS is always at its ideal limit. More recent works recognize the necessity of backpressure in
practical LIS implementations and explore ways to deal withthe throughput degradation that can occur.
In particular, Lu and Koh show that the performance of a practical LIS with finite queues can match the
performance of an ideal LIS with infinite queues if the queuesare big enough [26], [27]. In order to find
optimal queue sizes, they employ mixed integer linear programming.

Casu and Macchiarulo avoid queue sizing issues by scheduling the core firing and eliminating back-
pressure [11], [12]. This technique works when it is possible to analyze statically how the behavior
of the global system should be scheduled throughout its components, but it cannot be applied to open
systems that operate in an environment that may produce dataat a dynamically variable rate. Casu and
Macchiarulo [10] are also the first to propose solving throughput degradation by inserting additional relay
stations to balance the latencies of converging communication paths (like the two paths in the example
of Figure 2). In Section VI we discuss this technique and contribute the example of a LIS where this
approach alone cannot bring about a full recovery of the ideal throughput.

In order to study how to avoid MST degradation in a LIS we formally define the Queue Sizing Problem
and Relay Station Insertion Problem. These problems are somewhat related to the Slack Matching Problem
that has been defined for quasi delay-insensitive (QDI)asynchronoussystems [29], [33]. With slack
matching, paths in an asynchronous system are pipelined to meet a target throughput goal. In a LIS,
which is a synchronous system, this technique is akin to breaking up a core-shell pair into multiple core-
shell pairs. With queue sizing, however, we do not break up core/shell pairs, but we simply add extra
storage capacity on the backpressure paths. And with relay station insertion, we pipeline wires between
computational cores, but not the core logic itself. The Slack Matching Problem has been modeled with
marked graphs and proven NP-complete by Kim and Beerel [25] and has been solved with algorithms
that are based on mixed integer linear programming by Prakash and Martin [33].

In this work, we forgo the popular mixed integer linear programming approach to these hard problems
and instead we analyze the system topology to identify special cases where the problem is not as difficult.
In addition, we extend our previous results [16] on throughput degradation in LISs with proofs about the
complexity of optimal queue sizing and relay station insertion.

III. M ODELING A LIS WITH MARKED GRAPHS

Marked graphs, also known asdecision-freePetri nets, are a simple model for concurrent systems [18]
and, particularly, for systems that have a periodic behavior. Their simplicity makes them quite amenable
to analysis.

The components of a LIS produce valid/void data synchronously according to a global clock. LISs
can be conveniently modeled with marked graphs at the communication-protocol level because (a) they
operate as deterministic systems and (b) it is only necessary to distinguish valid from void data regardless
of the specific value of the valid data items.
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A. Marked Graphs

Formally, amarked graphis a tupleG = (P, T, F, M0) whereP is a finite set ofplaces, T is a finite
set of transitions, F ⊆ (P × T )∪ (T ×P ) is a set of arcs,M0 : P → Z

∗ is the initial marking (or state),
and such thatP ∩ T = ∅ ∧ P ∪ T 6= ∅ and∀p ∈ P

(

|{t|(t, p) ∈ F}| = |{t|(p, t) ∈ F}| = 1).
In other words, a marked graph is a bipartite directed graph with two kinds of vertices (places and

transitions) where each place has exactly one incoming edgeand one outgoing edge that both go to
transitions. Places can hold zero or moretokens; transitions cannot hold tokens, but they canfire. A firing
creates a new marking by moving tokens around in the graph. A transition isenabledto fire when the
place on each of its incoming edges has at least one token. When a transition fires, it takes a token from
each of its incoming places and puts a new token into each of its outgoing places [18]. Theinitial marking
of a marked graph specifies how many tokens each place has before any firing. We report here some of
the many important properties of marked graphs. For proofs and more complete discussions, the reader
is invited to consult the extensive literature on the subject [1], [18], [30], [31].

While the firing activity may change the overall number of tokens in a marked graphG, the number
M0(c) of tokens that are present on a cyclec of G is invariant under any firing sequence. IfG is strongly-
connected, then a firing sequence leadsG back to the initial markingM0 when it fires every transition
an equal number of times.

A marked graphG is timed if there exists a delayd(t) associated with each transition. Thecycle mean,
or cycle metric, µ(c) of a cyclec of G is the sum of the transition delays along a cycle divided by the
number of tokens in the cycle, i.e:

µ(c) =

∑

t∈c d(t)

M0(c)

The cycle timeπ(t) of a transitiont of G is the average time separation between two consecutive firings
of t. Its reciprocal gives the average firing rate oft.

If G is strongly connected then all transitions have the same cycle timeπ(G), which is called the cycle
time of G and is equal to the largest cycle mean across all its cycles [34]. 2 Cycles whose cycle mean
coincide withπ(G) are calledcritical cycles. Cycle timeπ(G) is a natural performance metric for the
system modeled byG because its reciprocal gives the rate of consumption/production of tokens, i.e. the
system’s throughput. It can be computed using Karp’s algorithm to find the maximum cycle mean of a
directed graph [21], [24] or using linear programming [5], [37].

B. Modeling Latency-Insensitive Systems with Marked Graphs

Since LIS are synchronous systems, we model them using timedmarked graphs such that∀t ∈ G
(

d(t) =
1
)

. 3 Also, for our purposes we slightly restrict the behavior of amarked graph by assuming that it occurs
as an indexed sequence of markings according to astep semantics: the marked graph moves from a
marking Mi to a markingMi+1 in a single step during which all enabled transitions fire concurrently.
Given this assumption, the firing activity of a timed marked graph can be cast into the synchronous
paradigm as it is discussed in [4]: it evolves through an infinite sequence of atomic reactions where each
reaction corresponds to a step between two markings and can be indexed with a natural number capturing
the progression of time (atimestampor clock period).

Figure 3 shows how we use marked graphs to model a relay station and a two-input shell with
backpressure. The large white circles represent places, the small black dots (in the white circles) represent
tokens, and the thin black rectangles represent transitions. Each token on a forward edges models a valid
data on a LIS channel. Conversely, each token on a backedge (shown as a dashed line) represents one
available slot in a queue or a relay station. In the initial marking, the relay station’s incoming forward

2Similar results are found in [5], [21], [30], [35].
3Given this assumption of unit transition delay, the numerator of the cycle mean coincides with the number of transitionsin the cycle,

which is also equal to the number of places. Hence the cycle mean becomes equal to the ratio of places and tokens around the cycle.
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Fig. 4. Marked-graph model (withq = 2) of a path across multiple shells and relay stations in a LIS.

edge has no token since it must produce aτ in the first timestamp and its outgoing backedge has two
tokens corresponding to the two available slots in the queue. The shell’s incoming forward edges have
one token each since a shell produces a valid data token in thefirst timestamp, and its backedges have a
numberq of tokens that is equal to the capacity of the corresponding input queue.

Figure 4 shows a path across multiple shells and relay stations in an RTL implementation of a LIS and
the corresponding path in a marked-graph model withq = 2. To avoid cluttering in the RTL diagram we
do not show the backpressure signals and we only show the single relevant input channel in the shells.
Recall that compared with a simple edge-triggered flip-flop,which can be used to pipeline channels but
without backpressure, a relay station presents the characteristic twofold buffering capability (together with
the necessary control logic), thereby asecondary(or auxiliary) register is coupled to amain register [6]
Also, a shell relies on the logic of its stallable core to latch the output signals and features by-passable
input queues to avoid adding any delay to the original latency of a core when stalling is not necessary.
In the best case, i.e. in the absence of any stalling, the latency to traverse either a relay station or a
shell-core pair is one clock period.4 In the marked-graph model the various data storage elementsin
each module are abstracted to a single place per shell or relay station that can hold multiple tokens when
stalling occurs. When the marked graph is initialized, we place the data tokens that will be transferred
during the first clock period behind the transition corresponding to the shell that is initialized with this
data.

Due to the structure of relay stations and shells, the structure of a marked graph modeling a LIS is a
little more restricted than that of a general marked graph. Specifically, with respect to the initial marking:
(a) if a transition has an incoming place with one token, thenthat transition corresponds to a shell in the
LIS and all of its incoming places must have one token; and (b)if a transition has an incoming place with
zero tokens, that transition corresponds to a relay stationin the LIS and it must have only one incoming
and one outgoing place. Also notice that places on forward edges have either one or zero tokens and that
every cycle must have at least one token.

C. Maximal Sustainable Throughput

The fundamental performance metric of a LIS is the rate of production of valid data, i.e. its throughput.
The throughput of a LIS depends on two factors: its internal structure and its interaction with the

4More precisely, in the absence of stalling the latency to traverse a shell-core pair is the same as the latency to traversethe sole core,
which may be greater than one if the core is a pipelined circuit like a three-stage multiplier.
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Fig. 5. Marked-graph model of the LIS of Fig. 1 withq = 1.

environment where it operates. The internal structure determines the maximal throughput that LIS can
sustain, i.e. a LIS effectively runs with this throughput unless the environment forces it to slow down
either by not providing enough valid data to process or by requiring it to wait via backpressure.5 As
discussed in the Introduction, the insertion of relay stations may change the internal structure of a LIS
and have a negative impact on its performance. To quantify such impact, we define the notion ofmaximum
sustainable throughput (MST)of a marked graphG as follows:

θ(G)=























1 if G is acyclic;

min
{

1, 1
π(G)

}

if G is cyclic and

strongly connected

min∀GSCC∈G

{

θ(GSCC)
}

otherwise.

with GSCC being the component graph, where each vertex represents a strongly-connected component
(SCC) ofG and there is one arc between two vertices ofGSCC whenever there is at least one arc between
the corresponding SCCs ofG [19]. 6

This definition allows us to model the impact of the LIS topology on its MST while moving from a
ideal LIS with infinite queues and no backpressure to a practical LIS with finite queues and backpressure.
The rationale is the following. First, since an acyclic marked graph can sustain any rate of token produc-
tion/consumption, its MST is set to one by definition. Second, if G is strongly connected then its MST is
equal to the reciprocal of its cycle time that is determined by any of its critical cycles. Finally, whenG is
cyclic with multiple SCCs then its MST is effectively determined by the slowest among them. In fact, if
a slower SCC feeds a faster one then it implicitly reduces thethroughput of the latter. Instead, if it is the
faster SCC that is positioned up-link with respect to the slower then the LIS is not safe in terms of loss
of valid data (i.e. there is unbounded token accumulation inthe place ofG connecting the two SCCs).
In this case, we must interpret the MST as a design constraintfor the LIS implementation. Since infinite
queues cannot be realized, designers must satisfy this constraint by either slowing down the faster SCC
or speeding up the slower. These goals may be reached explicitly by changing part of the LIS internal
structure in terms of relay stations positions and shell encapsulation, but this may not always be possible.
Backpressure instead provides always an implicit solutionto make a practical LIS safe, but backedges
introduce cycles that may lead to MST degradation with respect to the ideal LIS. In the rest of the paper
we focus on how to avoid this problem.

D. The Queue Sizing Problem

To restate the problem of queue sizing: Given an ideal LIS modeled by a marked graphG with MST
θ(G), after adding backpressure we have a doubled graphd(G) that may have new critical cycles such
that θ(d[G]) ≤ θ(G). For instance, Figure 5 shows the marked graph representation of the doubled graph
in Figure 2(left) assumingq = 1. It is strongly-connected and the cycle{A, relay station, B, A} with 3

5In the theoretical case where the queues are infinite, backedges may be eliminated from the model because backpressure signals are only
sent when a queue is full.

6Thestrongly connected components(SCCs) of a directed graph are partitions of the vertices such that all vertices in an SCC are mutually
reachable.
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Fig. 6. Queue-sizing solution to the throughput degradation shown in Fig. 5.

places and only 2 tokens is thecritical cycle setting the cycle time equal to3
2
. Hence, the MST of this

LIS is 2

3
< 1.

But the number of tokens in backedges can be altered by increasing the shell queues, and if enough
tokens are added to the doubled graph, its MST will match the cycle time of the original “undoubled”
graph. For instance, in Figure 6 the queue length forB’s lower channel is increased to two so that the
MST matches the one of the ideal LIS, which is equal to one. Howto find the optimal queue lengths to
avoid MST degradation while adding backpressure is theQueue Sizing Problem (QS). In Section V we
formalize QS and prove its complexity.

IV. W ILL FIXED QUEUE SIZING WORK?

Fixed queue sizingis setting all queues in a system to the same given length. In the example of Figure 5,
the queue sizes are set asq = 1. There are some classes of LISs for which fixingq = 1 is sufficient to
maintain the optimal MST. To describe their topologies, we introduce some graph terminology. A path
p = (v0, v1, . . . , vk) is a sequence of vertices connected by edges and its length|p| is equal to the number
of its edges (k − 1). A path (v0, v1, . . . , vk) is simple if it has no cycles. A group of two or more simple
paths isreconvergentif they would form a cycle if the graph were undirected. Anarticulation point is a
vertex without which the graph would be disconnected [19].

A. Tree

An ideal LIS with a tree topology does not have cycles nor reconvergent paths. Fixed queue sizing is
sufficient in this case because the introduction of backpressure leads to a practical LIS that is modeled
by a doubled graphd[G] with no cycles except those cycles between each edge and its corresponding
backedge. These cycles have by construction at least two tokens. Therefore, there is no MST degradation.

B. SCC and No Reconvergent Paths

A more common, and more complicated, topology is a strongly connected component (SCC). In a
special case where an SCC has no reconvergent paths, fixed queue sizing will also work.
Claim: A practical LIS whose topology is made up of SCCs with no reconvergent paths maintains the
MST of the equivalent ideal LIS if it has queues of size one.
Proof: Given a graphG that is strongly connected with no reconvergent paths, letu andv be two vertices
of G that are both in one ofG’s cycles. SinceG is strongly connected, there is a path fromu to v and
a path fromv to u along the cycle that they share. If the path fromu to v is p1 and the path fromv
to u is p2, there cannot be any path from a node (notu or v) in p1 to a node inp2 that does not go
throughv. Otherwise there are reconvergent paths. Suppose there is some other vertexw in G that does
not lie on the paths betweenu and v. There must be paths betweenu and w and betweenv and w.
Without a loss of generality, suppose the path fromw to u does not containv. It must also be the case
that the path fromu to w does not containv (otherwise there are reconvergent paths fromw to u). From
these observations, it follows that a graphG that is strongly connected with no reconvergent paths will
be made up of cycles such that any vertex that belongs to more than one cycle is an articulation point (u
in the discussion above). Since cycles are only connected toeach other through articulation points, the
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Topology Description Solution to MST Degradation?
Tree No cycles, no reconvergent paths. MST is 1. All τ ’s inserted by relay

Including DAGs with no reconvergent paths. stations eventually leave the LIS.
SCC with no Cycles, but no reconvergent paths. To move from one cycleWhen doubled, no new cycles will
reconvergent paths to another, you must pass through an articulation point. reduce the MST
Network of SCCs Many SCCs, connected by a DAG with reconvergent paths.Fixed queue sizing will not work in

Two types: these more general graphs.
1) relay stations only between SCCs, and
2) relay stations within SCCs.

TABLE II
CLASSIFICATION OF LIS TOPOLOGIES BASED ON THEIR IMPACT ON THETHROUGHPUTDEGRADATION PROBLEM.

only new cycles (with more than two vertices) that can resultfrom doublingG are the inverses ofG’s
original cycles, where theinverseof cycle c is defined as the cycle formed by the backedges of all of
c’s edges. All backedges have at least one token. Thus, we are guaranteed that: (a) the inverse of cyclec
has at least as many tokens asc has, and (b) the inverse does not have a smaller ratio of tokens to places
than the original cycle. So the MST of the graph with backedges will not be less than the MST of the
graph without backedges. Cycles between an edge and its backedge will also be added tod[G], but by
construction they always have two tokens. �

Likewise, a LIS with many SCCs (each without reconvergent paths) can also maintain optimal MST
with q = 1 as long as those edges connecting its SCCs do not when doubledform a cycle that has some
backedges and some forward edges - all cycles must be made of either all forward edges or all backedges.
This is true when the SCCs are connected by a directed acyclicgraph (DAG) with no reconvergent paths.

Table II summarizes the special cases of system topologies that we consider. Trees and SCCs with
no reconvergent paths have no MST degradation as long as queues have at least size one. We prove the
difficulty of optimally solving Queue Sizing for general systems in Section V, and we focus on the last
case, a network of SCCs, in our experiments in Section VIII.

V. SIZING QUEUES FORGENERAL TOPOLOGIES

While fixed queue sizing is a desirable solution, it is unfortunately only optimal for a very restricted
class of topologies. In this section, we formally define the Queue Sizing Problem and show that it is
NP-complete by a reduction from Vertex Cover [22]. In this discussion, when we talk about an edge or
a backedge of a marked graph modeling a LIS, we mean the two arcs and the (one) place between two
transitions. So, a path of lengthk hask places (but technically2 ∗ k arcs). Likewise, our figures will now
show one arrow head per edge rather than per arc in contrast tothe arcs in Figures 4-6.

Queue Sizing Problem:
Instance: A marked graphGQS modeling a latency-insensitive system having MST equal toθ(GQS) and
an integer K. Letd[GQS] be the doubled graph ofGQS where every shell has one token per place on its
backedges.
Question: Is there a way to add K extra tokens to places on backedges ofd[GQS] such thatθ(d[GQS]) =
θ(GQS) (i.e. the MST calculated before adding backedges is the sameas the MST after adding backedges)
?

A. Queue Sizing∈ NP

Checking a solution to Queue Sizing can be done with Karp’s algorithm to find the maximum cycle
mean before and after extra tokens are added to the graph [21], [24]. Karp’s algorithm for a graph
G = (V, E) has complexityO(|V ||E|).
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Fig. 7. Vertex construct.

u v

u v

Edge in Vertex Cover graph:

Corresponding edge construct:

Fig. 8. Edge construct.

u v

Fig. 9. Edge construct after relay stations have been added.

Fig. 10. A cycle that limits the ideal MST to5
6
.

B. Vertex Cover∝ Queue Sizing

Given an instance of Vertex Cover, a graphGV C = (VV C , EV C), and an integerK, we must construct
an instance of Queue Sizing, a marked graphGQS, and integerK ′.

1) First, for every vertexv ∈ VV C , create avertex constructlike the one shown in Figure 7 - one edge
in GQS;

2) Next, for every edge(u, v) ∈ EV C , create aedge constructlike the one shown in Figure 8 by adding
two edges. All of the transitions inGQS so far are either sources of outgoing edges or sinks of
incoming edges, but not both;

3) Add relay stations to the edges added in Step 2. Figure 9 shows the resulting construct for an edge
(u, v) ∈ EV C ;

4) Last, add a separate cycle toGQS with 6 places and 5 tokens like the one in Figure 10. This addition
sets the MST to5

6
since there are no other cycles in the ideal LIS.

5) Let K ′ = K.
To complete the Queue Sizing Problem instance, add in backedges as shown in Figure 11. Note that

for every edge(u, v) ∈ EV C , there is a cycle inGQS like the one shown in Figure 12. This cycle has
a mean of4

6
< 5

6
, causing MST degradation. The only way to avoid this problemis to add exactly one
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u v

Fig. 11. Edge construct with backedges.

u v

Fig. 12. Cycle in edge construct.

u v

w

u v

w
P1 P3

P4

Fig. 13. Example of an additional (“side-effect”) cycle.

extra token to the backedge of either theu or v vertex construct.
1) Solution to Queue Sizing−→ Solution to Vertex Cover:In this step, we need to show that a solution

to the Queue Sizing (QS) instance corresponds to a solution to the Vertex Cover (VC) instance. Given a
solution to QS, every cycle that corresponds to an edge in theVC instance will have at least one extra
token in one of the vertex constructs. Create a solution to VCinstance as follows: If the vertex construct
corresponding tov ∈ VV C has an extra token on its backedge, addv to the cover (i.e. the VC solution).

Since for every edge inGV C , there is a corresponding cycle inGQS such that one of the vertex constructs
must have an extra token, every edge inGV C has one endpoint in the cover. The QS solution can have
only K’=K extra tokens, so the VC solution also has at most K vertices.

2) Solution to Vertex Cover−→ Solution to Queue Sizing:Now assume that there is a solution to
the VC instance. For every edge inGV C , one of its endpoints must be in the cover. For each vertex in
the cover, add one extra token to that vertex construct’s backedge inGQS. Then all of the cycles that
correspond to edges inGV C (like the ones in Figure 12) have a mean of at least5

6
.

However, there are more cycles inGQS than we have discussed so far. Theseadditional cycles7 are a
side-effect of our edge constructs. Figure 13 shows an example of such a cycle. We must ensure that all
of the additional cycles inGQS have a mean greater than or equal to5

6
.

We can separate each of these additional cycles inGQS into two parts: parts that correspond to a vertex
construct, and parts that don’t. There are four ways a cycle can visit a vertex construct, shown on the left
of Figure 14. Furthermore, because of the wayGQS is constructed, between visiting two vertex constructs,
the cycle will pass through exactly two places. To help with clarity of constructing cycles, we represent
these different ways of visiting vertex constructs withP-blocks(P is for path), shown in Figure 14. We
can build a cycle by connecting P-blocks together. When putting P-blocks together, the matching edges

7In the previous stepQS −→ V C, these additional cycles are already covered in the assumedQS solution.
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P1

P3 P4

P2

Fig. 14. The four ways to visit a vertex (left) and their P-blocks (right).

P-block tokens places
P1 2 3
P2 4 3
P3 2 2
P4 2 2

TABLE III
TOKENS AND PLACES PERP-BLOCK.

must both be forward or both backward (in the pictures, this means matching edges must be either both
solid or both dashed). In the process of combining P-blocks,the transitions to or from which the matching
edges go will be combined into one transition. For instance,P1, P4 and P3 are combined to create the
additional cycle of Figure 13.

To check the mean of each additional cycle, we must take the sum of the tokens of all of its P-blocks
and divide by the sum of the places of all of its P-blocks. An important observation is that given two
paths, Px and Py, wherex = tokens(Px),y = places(Px),w = tokens(Py), andz = places(Py); ifx

y
≥ 5

6

and w
z
≥ 5

6
, then6x ≥ 5y and6w ≥ 5z, and so6(x + w) = 6x + 6w ≥ 5y + 6w ≥ 5y + 5z = 5(y + z).

Thus x+w
y+z

≥ 5
6
. Therefore, if we break a cycle up into several paths such that each path has a path mean

of at least5
6
, then the cycle mean is at least5

6
. By path meanwe mean the number of tokens in the path

divided by the number of places.
For each type of P-block, Table III lists its number of placesand starting number of tokens, i.e. before

extra tokens are added to the backedges of vertex constructsin GQS according to the given solution of
GV C . Hence, only P1 blocks can ever have extra tokens (while all of the other P-blocks have conveniently
at least as many tokens as they have places). Now, given an edge we know that one of its endpoints must
be in the cover. Given a path ofk vertices, wherek is even, we can break the path up in tok

2
disjoint

edges, and therefore we can assume that at leastk
2

of the vertices are in the cover. Therefore, in a path
of k P1 blocks in the QS instance, we start with a path mean of2k

3k
, and then inferk

2
extra tokens, and

the mean becomes
2k+ k

2

3k
=

4k

2
+ k

2

3k
=

5k

2

3k
= 5k

6k
= 5

6
. Similarly, a cycle of onlyP1 blocks corresponds to a

loop in the VC instance, and we know that a loop ofk vertices wherek is odd must havek
2

+ 1 vertices
in the vertex cover (integer division), and thusk

2
+ 1 extra tokens in the QS graph.

Since only paths with P1 blocks can have a path mean less than5
6
, we only need focus on cycles that

contain P1 blocks. These cycles can be broken up into two cases:
Case 1 (Cycle of only P1 blocks). Based on our inferences above, any cycle with an even number of

P1 blocks has a cycle mean equal to5

6
. If the number,k, of P1 blocks is odd, wheree + 1 = k, then the

cycle can be broken up into two paths. The first path containse, an even number, of P1 blocks, and so
we know that there are at leaste

2
extra tokens, bringing the first path’s mean up to5

6
. The second path

contains a single P1 block, and since the loop only contains P1 blocks, we can also take into account one
more “extra token”, and the second path’s mean is3

3
. And so the overall cycle mean is≥ 5

6
.

Case 2 (Cycle with some P1 blocks and some other types of P-blocks). Let us break the cycle in paths
of consecutive P1 blocks. In each path, there is either an oddor an even number of P1 blocks. If the
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A

E

D

C

B

relay station

Fig. 15. An LIS where relay-station insertion is not enough.

number is even, then the path mean is5

6
. If the number is odd, we can group together all but one of the

P1 blocks into pairs of consecutive P1 blocks. Notice that both the incoming and outgoing edges from a
path of P1 blocks are forward edges (i.e. solid edges in the figures). Since we must match forward edges
to forward edges, the only way we can form a cycle by connecting a path of consecutive P1 blocks with
something other than another P1 block is to “leave” the groupof P1 blocks with a P4 block, and “return”
to the group with a P3 block. So the P1 block that makes the odd count will always be matched by a P4
and a P3 block, and we can count those pieces together, for a total of 6 tokens and 7 places. Since the
cycle can be separated into paths whose path mean is≥ 5

6
, the cycle mean must be≥ 5

6
. �

VI. REDUCING MST DEGRADATION WITH RELAY STATION INSERTION

So far we have discussed queue sizing as a way to reduce MST degradation. An alternative method
is to add extra relay stations to the practical LIS. This may sound counterintuitive since inserting relay
stations is what causes MST degradation in the first place. Infact, relay stations can be added to a LIS
for two reasons. The first is a functional reason: to break up long wire delays so that the clock rate can
be reduced. The second reason is performance optimization:Casu and Macchiarulo suggest “equalizing”
all reconvergent paths by inserting enough relay stations to make them have the same latency [10]. For
instance, adding extra latency to one path of the LIS of Figure 2 actually increases its MST.

Inserting additional relay stations rather than increasing queue sizes has a few advantages. First, relay
stations may be added anywhere along the wire, while extra logic for increasing a queue must be added
within a shell (namely, the shell for which the queue holds data). This may give additional flexibility in
completing the physical design of the LIS during the placement and routing phases. Furthermore, relay
station insertion allows for a more modular design.

However, there are LISs where no assignment of additional relay stations can optimize performance.
Figure 15 illustrates an example. Observe that the system’soptimal MST is determined by the cycle
{A,relay station, E, D, C, B, A}, whose token-to-place ratio is5

6
. When backedges are considered, the

cycle {A, relay station, E, C, A} reduces the overall system’s MST to3
4
. To improve the MST using

relay-station insertion, a relay station must be added to either edge(A, C) or edge(C, E). But this ends
up reducing the system’s optimal MST since these edges belong to small cycles. For instance, if a relay
station is inserted on edge(A, C), then the cycle{A, new relay station, C, B,A} has a token-to-place
ratio of 3

4
.

The problem of finding an assignment of additional relay stations to optimize performance (in cases
where it is possible) is NP-complete, like queue sizing. Theproof is similar to the proof for queue sizing
and is included in the Appendix.

Since relay station insertion cannot be used in all cases, westick to queue sizing algorithms for our
experiments.
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VII. SOLVING THE QUEUE SIZING PROBLEM

Previous works have used mixed integer linear programming to solve the queue sizing problem. [26],
[27]. We propose two new algorithms: a heuristic and an exactalgorithm.

A. Abstraction of Queue Sizing

We first transform an instance of the Queue Sizing problem into an instance of theToken Deficit Problem
(TD), which is defined formally below. We do so because we want to correlate cycles that intersect with
each other in the graph.

Token Deficit Problem:
Instance: Set of setsS = (s1, s2, s3, ..) where eachsi ∈ S is a set{ci, cj, ...} whose elements each have
a non-negative deficitd(c) ∈ Z

∗, positive integerK.
Question: Is there a weight assignmentw(si) ∈ Z

∗ to eachsi ∈ S such that
∑

si∈S w(si) ≤ K and
∑

si∈X w(si) ≥ d(ci) ∀ ci ∈ si, whereX is the set of allsi such thatci ∈ si ?

An instance of TD is created by partitioning the cycles in theLIS marked graph of the original QS
instance into setssi such that ifcx, cy ∈ si, thencx andcy share edgeei in the LIS graph. Each cycle is
associated with adeficitequal to the number of extra tokens needed in that cycle to bring the cycle’s mean
above the ideal MST. This transformation abstracts away thegraph structure and highlights the edges that
are involved in multiple cycles. Our goal is to assign each edge a number of extra tokens such that the
sum of tokens of all of a cycle’s edges is greater than or equalto the cycle’s deficit.

Creating an instance of TD from an instance of QS requires a list of the graph’s cycles. The number of
cycles is potentially exponential, though in many practical cases it is not large. We mitigate these costs
by simplifying the LIS marked graphs where possible:

1) cycles whose mean is greater than or equal to the ideal MST may be ignored (including all cycles
that do not have any relay stations);

2) if a setsi is a subset of setsj, we may omitsi from the instance;
3) a cyclecx that only appears in one setsi may be automatically removed, andsi’s weight incremented

by cx’s deficit;
4) if the topology of the LIS is a DAG of SCCs, possibly with reconvergent paths, but we know that

relay stations are only inserted on the edges between SCCs, then we can collapse each SCC to a
single vertex and work on the simplified marked graph - greatly reducing the number of cycles that
must be enumerated. This particular case is discussed in more detail in Section VIII-A, and we
show in Section VIII-C that our heuristic algorithm performs well for larger graphs of this type.

Observe that there always exists a numberK for which TD can be solved [26]. An easy way to look at
this is to consider that every relay station introduces one void data item, orτ , into the LIS, and if there
are R relay stations, no cycle can be deficient in more thanR tokens. Hence, addingR extra tokens to
one edge in each cycle that has backedges guarantees that none of them will have a cycle mean less than
one.

The Token Deficit Problem is also NP-complete. This can be shown with a reduction from Dominating
Set. We do not include the proof, but instead refer the readerto [17].

B. Algorithms

We propose a heuristic algorithm that produces a solution in0(|S|2|V ||C|) time, where|C| is the
number of cycles and|V | is the number of vertices in the original LIS graph. For comparison purposes,
we also develop an algorithm that produces the optimal solutions for the TD problem.

Heuristic Algorithm: Given an instance of the Token Deficit Problem, assign to each elementsi ∈ S

a weight equal to the maximal deficit among its elements. By construction, this initial assignment is a
solution. Now,
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1) for eachsi ∈ S whose weight is not yet fixed, decrementw(si) and check that the weight assignment
is still a solution. If it is a solution, leave the new weight of si, if not increment and fixw(si) back
to its value at the beginning of the step;

2) repeat Step 1 if anyw(si) is unfixed. Otherwise, stop.
To check that the weight assignment is correct costs©(|S||C|), and

∑

si∈S w(si) can be at most|S||V |,
therefore the overall complexity of this algorithm is©(|S|2|V ||C|).

Exact Algorithm: First, the graph instance is expanded by replicating the sets sx so that if D is the
largest deficit of the elements ofsi, thensi will be replicatedD times. This simplifies the problem since
for all weights,w(sx) ∈ {0, 1}. Then, we perform a binary search onK whose values vary fromK = 1
to K = the heuristic solution. For each round of the binary search, we build aK-depth search tree that
branches by choosing one of the edges to havew(sx) = 1. In the worst case (a “no” answer), the search
tree takesO((|S|D)K) time.

VIII. E XPERIMENTAL ANALYSIS

We evaluated our heuristic algorithm completing a set of experiments with LISs that were derived
through random graph generation. We built agraph generatorthat takes as inputs:v (number of vertices),
s (number of strongly-connected components),c (minimum number of cycles within each SCC),rs

(number of relay stations), whether or not reconvergent paths are allowed between SCCs (rp = 1 for
yes, 0 for no) and a policy for relay-station insertion (either any or scc). Graphs are generated with the
following steps:

1) partition the graph into SCCs;
2) for each SCCs:

a) make a cycle that visits all of the vertices ins;
b) chooseu, v ∈ s such that(u, v) is not an edge ofs and add(u, v) to s;
c) repeat Step 2bc times; this guarantees that at leastc cycles are added tos as long as there

are enough possible edges ins so that an unused(u, v) can always be chosen;
3) create a connected auxiliary graphH whose vertices correspond to SCCs in the generated graph

and whose edges are randomly chosen avoiding to create cycles between SCCs (reconvergent paths
are allowed ifrp = 1);

4) for each edge (s1, s2) between SCCss1 ands2 in H choose verticesvs1
∈ s1 andvs2

∈ s2, and add
edge (vs1

, vs2
) to the graph;

5) insert relay stations randomly on edges that satisfy the chosen policy: with policyany they may be
inserted on any edge while with policyscc they may be inserted only on edges that connect SCCs;
i.e., those edges added in Step 4.

The results presented below are the average of 50 trials where graph topology and the specific locations
of relay stations are selected randomly.

A. MST Degradation

Backpressure causes a degradation of maximal sustainable throughput in cases where (1) a graph
contains a cycle that is made up of both backedges and forwardedges, (2) one or more of the forward
edges in the cycle has had relay station insertions, and (3) where there are more relay stations than the
amount of extra queue space on the backedges. Figure 16 contrasts the change in MST when we move
from infinite to finite queues. Clearly to make topology restrictions on where relay stations may be inserted
has a large impact on MST. When relay stations are restrictedto edges between SCCs (scc insertion), the
MST with infinite queues is optimum at 1.0. The MST over finite size queues (q = 1) for scc insertion
does degrade between 15% and 30%; however, it is still significantly higher than the MST when relay
stations can be inserted within SCCs, no matter how large thequeues are. When relay stations are inserted
anywhere in the graph (any insertion), there is not much difference in MST as the queue sizes increase.
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Fig. 16. MST of graph (v=50,s=5,c=5,rp=1) given infinite andfinite (q = 1) queues.
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Fig. 17. MST Improvement using Fixed Queues.

This is simply because new cycles introduced in the graph when backedges are considered usually do
not introduce lower token-to-place ratios than the cycles without backedges. In the case ofscc insertion,
there are no cycles with relay stations until after the backedges are added into consideration. In the rest
of the paper, we will focus on graphs that usescc insertion since this is where the most improvement is
needed.

B. Fixed-Size Queues

Figure 2 is an example of LIS where optimal MST cannot be maintained withq = 1. There is no fixed
queue size that will provide optimal MST in arbitrary graph topologies. To construct a LIS that does not
have optimal MST with fixed queues of sizeq, take Figure 2 and add(q − 1) more relay stations to the
upper channel betweenA andB. In extreme cases, fixed queue sizing will not work; however,in average
and typical cases, fixing the sizes of the queues to the same value can be a fast and effective approach.
Figure 17 shows the MST improvements that are gained in LIS derived with our graph generator as the
fixed queue sizeq increases. On average, withq = 1, the MST can be as low as 65% of the optimal, but
whenq >= 5, the MST is above 90% of the optimal.

C. Exact vs. Heuristic Solution

Table IV lists experimental results using LISs with the following topology: SCCs connected with
reconvergent paths, where ten relay stations are inserted only on the edges between SCCs. This topology
allows us to use some optimization steps to greatly reduce the graph size before adjusting queue sizes.
Since no relay stations are added within SCCs and there are nocycles between SCCs, any cycle that
degrades the MST after backpressure is added must have inter-SCC backedges. So we can optimize the
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(V,E) # SCC # Edges Cycles RS Exact Heuristic % Exact # Cycles Heuristic
(inter-SCC) (inter-SCC) Soln. Soln. finished in Unfinished Soln. - no Exact

(50,82.00) 10 12.00 26.25 10 3.44 3.69 0.96 245.00 10.50
(100,122.06) 10 12.06 41.15 10 3.48 3.65 0.96 328.00 9.00
(100,144.71) 20 24.71 171.14 10 3.79 4.07 0.56 32032.09 9.73
(200,222.10) 10 12.10 40.76 10 3.20 3.31 0.98 802.00 8.00

TABLE IV
HOW GOOD ARE THE SOLUTIONS RETURNED BY THE HEURISTIC ALGORITHMS?

MST by adding tokens to the inter-SCC edges only. Also, sincethere are no cycles with relay stations
and without backedges, we know that the optimal MST is equal to 1. This means that we simply need
to add extra queue tokens to the backedges so that every cyclehas at least as many tokens as places.
With these observations, we can collapse the SCCs to single nodes and solve the queue-sizing problem
considering only the inter-SCC edges and far fewer cycles.

Each experiment shows the average values over 50 different graphs. ‘(V,E)’ gives a characterization of
the graph in terms of the number of vertices and edges. ‘# Edges (inter-SCC)’ is the average number of
edges between SCC. ‘Cycles (inter-SCC)’ is the average number of cycles between SCCs (after backedges
have been added). ‘RS’ is the number of relay stations added to the system. As mentioned at the end of
Section VIII-A, these experiments do not put relay stationswithin an SCC (only between SCCs). ‘Exact
Soln.’ lists the average amount of additional queue space (numberof tokens added to the marked graph
representation) that is necessary to optimize performanceusing the exact algorithm. ‘Heuristic Soln.’
shows the average amount of queue space needed when using theheuristic. In some cases, the exact
program was halted after running for more than an hour. ‘% Exact finished’ refers to the percent of 50
trials that it completed in under an hour. For these cases ‘# Cycles in Unfinished’ and ‘Heuristic Soln -
no Exact’ tell the number of cycles and the heuristic solution.

The heuristic performs very well in these experiments, producing solutions within 8% of the exact
algorithm in every case. In addition, it can handle much larger problems. One limitation is that the initial
listing of all the cycles, a necessary step in the heuristic algorithm, may blow up fairly quickly. Using our
topology-based optimization of collapsing SCCs, the number of vertices can actually scale much higher
than the experiments shown here, provided that the number ofSCCs remains relatively low and it is
possible to only add relay stations between SCCs.

IX. CONCLUDING REMARKS

Back-pressure is a logical mechanism to control the flow of information on a communication channel
and guarantee that no data is lost. Adding backpressure to a latency-insensitive system (LIS), however,
can cause a degradation of its maximal sustainable throughput (MST). This degradation can be corrected
by increasing the shell queues on communication channels that are a bottleneck for performance and/or by
inserting relay stations along channels that have some slack. We studied how the LIS topology impacts the
MST degradation and how it is related to the different solutions. When a LIS is made up of SCCs with no
reconvergent paths, or a tree of SCCs with no reconvergent paths, using fixed-size queues achieves optimal
MST. In more general topologies, using relatively small fixed-size queues can often bring performance
within 90% of the optimal MST. However, we also show that the queue sizing problem for optimal MST
is NP-complete. This motivated us to develop a heuristic that produces solutions that are close to the
exact one while being able to handle much larger problems. Interestingly enough, in our experiments the
class of graphs with the greatest MST degradation, i.e. the class of directed acyclic graphs of SCCs that
only have relay stations between SCCs, can be easily simplified with a straightforward optimization.



18

Fig. 18. Vertex construct for RSI problem.

APPENDIX

Relay Station Insertion Problem:
Instance: A Marked Graph modeling a Latency-Insensitive System, as described in Section III, and an
integer K.
Question: Is there a way to add at most K Relay Stations to the graph such that the doubled graph has
ideal maximal sustainable througput?

The difference in this problem compared to Queue Sizing is that while we can insert a Relay Station to
balance throughput (since the backedge of a relay station has additional queue capacity) the relay station
also increases the latency along the path where it is added. This additional latency may also reduce the
throughput of cycles in the system. There exist systems where the throughput cannot be improved to the
ideal MST using only relay station insertion.

A. Relay Station Inertion∈ NP

As with the Queue Sizing problem, a potential Relay Station Insertion solution can be checked with
Karp’s algorithm.

B. Vertex Cover∝ Relay Station Insertion

Given an instance of Vertex Cover, a graphGV C = (VV C , EV C) and an integerKV C , we must construct
an instance of the Relay Station Insertion Problem.

Since Vertex Cover is NP-complete even for planar graphs with degree at most three [22], we assume
that no vertex has degree more than three.

Construct an instance of Relay Station Insertion as follows:
1) Let the integerKRSI = 3 ∗ KV C ;
2) for each vertex inVV C , create a vertex construct like the one in figure 18. Each construct starts

with three backedges, and a total of six transitions. Three of the transitions are the source of the
backedges, and three are the sinks/destinations. We connect these transitions by adding all possible
edges between the three source transitions and all posible edges between the sink transitions (twelve
edges - shown in blue in the Figure 18). In the discussion below, we do not consider the backedges
of these edges, because since the blue edges are added in bothdirections, there is no backedge that
causes a new cycle in the doubled graph;

3) For each edge(u, v) ∈ EV C , we add edges between two vertex constructs foru and v similarly
to how we added edges for the Queue Sizing edge constructs, two edges to make a cycle with a
backedges from each vertex construct, and adding a relay station to both inter-vertex paths. However,
this time we have three backedges to choose from in the vertexconstructs. For each incoming edge
to a vertex construct, connect it to a different backedge. Since we’ve assumed that there are not
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u  c o n s t r u c t v  c o n s t r u c t       (u ,v)  
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Fig. 19. Edge construct for RSI problem.

Fig. 20. Adding a Relay Station to the Edge construct.

Fig. 21. Adding a Relay Station to the Edge construct breaks another cycle...

more than three incoming edges, each incoming edge will havea distinct backedge. In the case
where there are fewer than three incoming edges, we leave theextra backedges unconnected - they
are “dummy” edges, but we need them later to maintain an equalcost of adding a vertex of high
degree and of low degree to the Vertex Cover;

4) As with Queue Sizing, again construct an extra cycle that limits the MST to 5

6
.

1) Solution to Relay Station Insertion−→ Solution to Vertex Cover:Every edge inEV C corresponds
to a cycle inGRSI with a mean of4

6
, as shown in Figure 19. Given a Solution to Relay Station Insertion,

we know that a relay station must have been inserted in one of the vertex constructs, as in Figure 20. But
this will create latency in the cycles within the vertex construct (Figure 21). Therefore, if a relay station
is inserted to a vertex construct to increase the storage capacity of one backedge, then two more relay
stations must be inserted for the other two backedges (figure22). So, for every edge inEV C , at least one
vertex construct will have had three relay stations added. If the RSI solution uses3K or fewer extra relay
stations, then it must correspond to a VC solution withK or fewer vertices in the Cover.

2) Solution to Vertex Cover−→ Solution to Relay Station Insertion:Given a solution to Vertex Cover,
for each vertex in the Cover, add three relay stations to thatvertex’s construct in the RSI instance, like
in figure 22. This will take care of the cycles constructed explicitly from the edges ofGV C .
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Fig. 22. Add 3 Relay Stations to really fix the cycle.

We will reason about the extra cycles that can be formed inGRSI using P-blockssimilar to those in
Figure 14 for the Queue Sizing construction. Consider Figure 23. It enumerates all possible ways to visit
a vertex construct. Let us refer to the different cases as P1,P2, etc. Note that for P1-P4 and P1’-P4’, we
enter and leave through the transitions that are connected to the same backedge in the vertex construct.
This means that there is only one way that the incoming and outgoing edges can go - they both go to the
same vertex construct, and the cycle will visit exactly two vertex constructs.

We can reduce most of these cases. Relay Stations will be added to only three of the edges in each
construct (this is by our construction from the first line of this subsection). If two P-blocks have the same
incoming and outgoing edges and the same number of edges thatcould have had relay stations added (or
backedges of edges that could have relay station added), then we can reduce one to the other. Call these
edges of interest “interesting edges”. Consider P1 and P3. They both have the same number of interesting
backedges, but P3 has two extra inter-vertex construct edges. Using the same observation that we can find
a lower bound of a cycle’s mean based on lower bound of all of the path means of paths that make up the
cycle, we can reduce P3 to P1 since any cycle that includes P3 corresponds to a cycle that corresponds
P1 and the cycle with P1 will have a lower cycle mean.

We can also reduce P8 to P5. In this case, P5 has no interestingedges, but P8 has one interesting forward
edge and one interesting backedge. But since Relay Stationswill either be added to all interesting forward
edges or none, those on the two interesting edges in P8 will cancel each other out.

Using these reductions, we can reduce all of the cases to P1, P1’, P5, P5’, P11, and P11’. P1 and P1’
can only make two types of cycles: Cycle Type 1: P1,P1; Cycle Type 2: P1’,P1’. Cycle Type 1 corresponds
to the cycle explicitly constructed for each edge, and have already been discussed. It is easy to see that
cycles with Cycle Type 2 will also have a mean greater than5

6
.

Of the remaining P5,P5’,P11 and P11’, only P11 can have a pathmean less than5
6
. (a relay station

could be added to P11’ interesting edge, but then P11 will have a mean of5
5

> 5
6
). If there are two P11

blocks next to each other, they correspond to an edge inGV C , so one of them must have had a relay
station added to it’s interesting edge (that is, the forwardedge corresponding to it’s interesting edge).
Therefore the overall path mean of the two P11 blocks is at least 8

9
> 5

6
. If there are three P11 blocks in

a row, then one must have a relay station, so the overall path mean is at least11
13

> 5
6
. If a P11 block is

not next to another P11 block, the only other block it could connect to is a P5 block, and the path mean
of the P11,P5 path would be6

7
> 5

6
. For any cycle, the cycle mean will always be greater than5

6
, and the

solution to Vertex Cover corresponds to a solution to Relay Station Insertion.�
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Fig. 23. Ways to visit vertex constructs from cycle in the RSIconstruction.
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