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Leveraging Local Intra-Core Information to
Increase Global Performance in

Block-Based Design of Systems-on-Chip
Cheng–Hong Li and Luca P. Carloni, Member, IEEE,

Abstract—Latency-insensitive design is a methodology for
system-on-chip (SoC) design that simplifies the reuse of intellec-
tual property cores and the implementation of the communication
among them. This simplification is based on a system-level
protocol that decouples the intra-core logic design from the
design of the inter-core communication channels. Each core
is encapsulated within a shell, a synthesized logic block that
dynamically controls its operation to interface it with the rest of
the SoC and to absorb any latency variations on its I/O signals.
In particular, a shell stalls a core whenever new valid data are not
available on the input channels or a down-link core has requested
a delay in the data production on the output channels.

We study how knowledge about the internal logic structure
of a core can be applied to the design of its shell to improve
the overall system-level performance by avoiding unnecessary
local stalling. We introduce the notion of functional independence
conditions (FIC) and present a novel circuit design of a generic
shell template that can leverage FIC. We propose a procedure
for the logic synthesis of a FIC-shell instance that is only based
on the analysis of the intra-core logic and does not require any
input from the designers. Finally, we present a comprehensive
experimental analysis that shows the performance benefits and
limited design overhead of the proposed technique. This includes
the semi-custom design of an SoC, an ultra-wideband baseband
transmitter, using a 90nm industrial standard cell library.

I. INTRODUCTION

Designers of systems-on-chip (SoC) for embedded applica-
tions face the difficult task of assembling and coordinating sev-
eral hardware blocks under stringent time-to-market require-
ments. Latency-insensitive design (LID) has been proposed as
a correct-by-construction design methodology for synchronous
SoCs. LID provides a sound way to cope with the complexity
of SoC design because:

1) it reconciles traditional and well-accepted CAD meth-
ods for semi-custom design, which are based on the
synchronous model of computation, with the reality
that chips designed with nanometer technologies are
increasingly becoming distributed systems due to the
impact of global communication delays [1];

2) it facilitates the reuse and assembly of pre-designed and
pre-validated intellectual property (IP) cores, which can
be either hard macros in GDSII format or soft macros,
i.e. synthesizable logic blocks specified in a hardware
description language like Verilog or VHDL [2], [3];

3) it helps SoC engineers to meet the required target
clock frequency (achieve timing closure) and reduce the
number of costly iterations in the design process by
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Fig. 1. Shell encapsulation, relay station insertion, and channel backpressure.

simplifying the automatic application of wire pipelining;
this is a technique to fix timing violations in global
interconnect that is very effective, yet challenging to
apply [4].

These results are made possible thanks to the separation of
computation and communication, a form of orthogonalization
of concerns [5], that the theory of latency-insensitive proto-
cols formally enforces [6]. According to the LID methodol-
ogy, an SoC is obtained through the assembly of cores (or
pearls), each of which must be first encapsulated within an
automatically-synthesized interface module called shell (or
wrapper). The cores perform the actual computation in the
system while the shells handle global communication and
synchronization.

Figure 1 shows a latency-insensitive system with five shell-
core pairs connected by point-to-point, unidirectional chan-
nels. Each core can be an arbitrarily-complex sequential mod-
ule (a control logic block carrying state, a pipelined datapath
with feedback loops, . . . ) as long as it satisfies the requirement
that it is stallable, i.e. it can be clock gated. The shell
dynamically controls the operations of the core by deciding
whether to stall it or fire it at any given clock cycle based
on the value of the flow-control signals on the input/output
channels. Data communicated over a channel is labeled by
a bit signal indicating whether the current data is valid or
void. At each clock cycle the shell fires the core if and only
if each input channel presents a new valid data token (AND-
firing semantics). Otherwise, it stalls the core through clock
gating while storing valid data that have arrived in its input
queues (for future processing) and putting void data on each
output channel. Since the shell has necessarily limited storage
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capability, a stop bit signal is transmitted backward on each
channel whenever a downlink shell needs to request an uplink
shell to slow down the production of good data (backpressure).

At the implementation stage, the wires of a channel with
delay longer than the target clock period can be pipelined
by inserting one or more relay stations. A relay station is
a clocked buffer with two-fold storage capacity and simple
flow-control logic. By processing the void and stop bit sig-
nals, the flow-control logic of the shells and relay stations
implements the latency-insensitive protocol. This is designed
to accommodate arbitrary variations of delay on inter-core
wires while guaranteeing that the functional behavior of the
original synchronous system is preserved (semantics preserva-
tion) without the need of changing any part of the intra-core
logic design [6].

LID helps to meet the required target clock frequencies
through automatic wire pipelining but performance in terms of
data processing throughput (number of valid data tokens pro-
cessed over time) may be affected negatively by the insertion
of relay stations [7], [8]. This is because each relay station
that is added to the system a posteriori must be initialized
with a void data token (a “bubble”, also denoted with the
symbol τ ). If the relay station is inserted on a cyclic path,
such as a feedback loop, the AND-firing semantics of the
shells makes the bubble circulate in the loop indefinitely, thus
causing the processing throughput of the overall system to
drop below the ideal value (equal to one). For example, the two
relay stations placed between Core A and Core E in Figure 1
induce two bubbles that circulate in the loop and stall these
cores periodically, thus reducing the throughput of the entire
system to 0.5. Throughput degradation can be easily computed
in advance and can be reduced by optimizing the relay station
insertion or the sizing of the shell queues [7], [8].

The original works on LID make a general assumption that
the IP cores are black boxes whose internal logic structure is
not known to the designers [6], [9]. These earlier works show
how the knowledge of the core’s I/O signals is sufficient to
automatically synthesize the shell circuits. However, in assem-
bling a complex SoC it may be the case that some cores are
acquired as synthesizable modules or are developed in-house,
thereby giving to the designers access to the internal details of
their implementation. If indeed the core is a white box, then a
different type of shell can be automatically synthesized around
it to improve the performance of the overall latency-insensitive
system. This is the topic of the present paper.

Contributions. We study how knowledge about the internal
logic structure of a core can be applied to the design of its shell
to improve the overall system-level performance by avoiding
the unnecessary local stalling. While being fully compatible
with the classic shells and relay stations, this FIC-shell is
capable of exploiting dynamically its core’s functional inde-
pendence conditions (FIC). Formally defined in Section II, FIC
capture those scenarios when some input data are not needed
for the current computation inside a core and, therefore, even
if no valid data token is present on the corresponding input
channel the core could still be fired. Such a scenario may occur
for instance in a finite state machine (FSM) when it is in a
certain state thereby its state transition and output functions do
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Fig. 2. Modeling a core module as a finite state machine (FSM).

not depend on a given input variable. At any given clock cycle,
FIC depend on the local logic state of the core and, potentially,
on a subset of the data on some other input channels. By
avoiding unnecessary stall and actually firing the core, the
shell may reduce the overall number of stalls incurred in the
whole system and raise its global processing throughput. In
Section II, we present a simple motivating example of this
fact, while in Section V we show its impact in a real SoC
design.

In Section III we present a novel circuit design of a generic
FIC-shell that can dynamically exploit FIC when the core is
given as a white box. Like for the original simpler shell in
LID, this design can be used as a parameterized template to
automatically synthesize a specific instance of the FIC-shell
for any given stallable core.

In Section IV we provide a fully automatic procedure for the
logic synthesis of the main logic block of a FIC-shell instance
based on the particular characteristics of its corresponding
core. Our method requires no input from designers and relies
on efficient logic synthesis algorithms.

In Section V we analyze in detail the applicability and
effectiveness of the performance optimization based on FIC
in the LID methodology. This includes a report on the semi-
custom design of a real SoC using LID. Our results confirm
that the system performance of a latency-insensitive system
can benefit considerably from this idea with minor area (and
no delay) overhead.

Finally, in Section VI we present an extensive discussion of
related work.

II. FUNCTIONAL INDEPENDENCE CONDITIONS

Without loss of generality a core can be viewed as syn-
chronous logic network [10] and can be modeled as a finite
state machine (FSM). We revisit the classic FSM model in the
context of LID to highlight the role played by the core’s I/O
channels (Figure 2):
• The inputs of the FSM is a set of Boolean variables, par-

titioned into N groups: P = P1

⋃
. . .

⋃
PN , where Pi is

a set of wi Boolean variables {pi1, . . . , piwi
}, representing

the data portion of an input channel i of parallelism wi.
• The outputs of the FSM is a set of Boolean variables

partitioned into M groups: Q = Q1

⋃
. . .

⋃
QM , where

Qj = {qj1, . . . , qjwj
} represents the data of an output

channel j of parallelism wj .
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Fig. 3. A synchronous system made of two communicating FSMs.

• Let S = {s1, . . . , sn} and S′ = {s′1, . . . , s′n} be the sets
of Boolean variables representing the FSM present-state
and next-state, respectively. At each clock transition the
next-state’s values becomes the present-state’s values.

• Let B = {0, 1}. The state transition functions are
an array of Boolean functions mapping the input and
present-state variables to the next-state variables fi :
B|P1|+···+|PN | × B|S| → B. We also simply write
f : B|P1|+···+|PN | × B|S| → B|S| Likewise, the out-
put functions are an array of Boolean functions map-
ping the input and present-state variables to the output
variables gj : B|P1|+···+|PN | × B|S| → B, or simply
g : B|P1|+···+|PN | × B|S| → B|Q1|+···+|QM |.

We now give a definition of FIC based on the FSM model:

Definition 1 Let T ≡ {P̃1, . . . , P̃k, . . . , P̃N; S̃} be a tuple of
values for the input and present state of a FSM; the state
transition functions and output functions are independent from
value P̃k of channel Pk when for any other tuple of values
T′ ≡ {P̃1, . . . , P̃′k, . . . , P̃N; S̃} that only differs for the value
of input channel Pk, we have

f(T) = f(T′) and g(T) = g(T′) (1)

Whether f and g are independent from the value of an
input channel is contingent on the values of the other in-
put channels and the present state. Given a tuple T ≡
{P̃1, . . . , P̃k, . . . , P̃N; S̃}, of input and present-state values, if
f and g are independent from the value of Pk, we call 1

FICPk
(T) ≡ {P̃1, . . . , P̃k−1, P̃k+1, . . . , P̃N; S̃} (2)

a functional independence condition of input channel Pk.
Generally, there may be more than one tuple of input and

present-state values under which the core’s computation is
independent from the value of input channel Pk.

Definition 2 Let T ⊆ B|P1|+···+|PN | × Bn be the set of all
possible tuples of input and present-state values. The complete
set of functional Independence condition (FIC) of channel Pk
is

FICPk
≡

⋃
T∈T

FICPk
(T) (3)

Since the number of the distinct input and present-state values
is finite, the set FICPk

is also finite.

1We use the term FIC instead of don’t care because the latter should
be reserved for those input minterms of a Boolean function for which the
function’s output value is not specified or not needed [10], [11].
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Fig. 4. A latency-insensitive system derived from the system of Fig. 3

Next, we present a simple example to show how FIC can
be used to optimize the performance of a latency-insensitive
system. The realization of such optimization hinges on the
identification of FIC . In Section IV we provide a procedure
to find FIC for each input channel. The set of FIC returned by
our procedure is implicitly represented as a Boolean predicate
that can be efficiently implemented as a hardware logic block
(the FIC-detect block), which in turn becomes part of the FIC-
shell.

A. Motivating Example

Consider the synchronous system of Figure 3 having two
interconnected Moore FSMs M1 and M2. Each FSM has a
single input variable that is set equal to the output variable
of the other FSM: X is the output of M1 and the input of
M2, while Y is the output of M2 and the input of M1. In
the FSM state transition diagrams each edge is labeled with
the value of the input variable that activates the corresponding
transition. Both FSMs have three states: the set of states of
M1 is {A,B,C} and the set of states of M2 is {D,E, F}.
Since we have single-output Moore FSMs, we simply assume
that in each state S the value of the output variable is equal to
the corresponding lowercase letter s: in other words, FSM M1

outputs X = a while being in state A, X = b while in state
B, and X = c while in state C. Similarly, FSM M2 outputs
Y = d while being in state D, Y = e while in state E, and
Y = f while in state F . As denoted by the arrow, the initial
states are respectively A for M1 and D for M2. There are three
sets of traces in Figure 5: the first set captures the behavior
of the strictly synchronous system of Figure 3. Notice that the
system cycles through five compound state transitions: for M1

we have (A → C → A → A → B) → (A → C . . . ), while
for M2 we have (D → F → E → F → E)→ (D → F . . . ).

The second set of traces in Figure 5 describes the behavior
of the system of Figure 4: this latency-insensitive system is
obtained from the system of Figure 3 by encapsulating each
FSM with a distinct shell and inserting a relay station on the
channel from M2 to M1. Since the relay station is initialized
with a void token (denoted as τ ), this is what variable Y ′b
presents at the first cycle t0. Due to the AND-firing semantics
of LID, this value continues to iterate in the feedback loop
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Fig. 5. Set of traces for the behaviors of the three systems in the motivating example.

forcing each shell to periodically stall its core FSM: M1

stalls at t3n while M2 stalls at t3n+1 with n ≥ 0. Pairwise
comparison of the X,Y traces with the Xb, Yb traces shows
that they are latency-equivalent as expected [6]: i.e., they are
the same if one ignores the τ symbols. But, the data processing
throughput of the system is reduced from 1 to 2

3 = 0.66.
Part of the lost throughput, however, can be recovered if

one takes advantage of FIC by analyzing the internal structure
of the FSM (an assumption not made in [6] where cores are
treated as black boxes). For instance, when M2 is in state F ,
its computation is independent from the value of input channel
Xb. Thus, the present-state value F is a FIC of Xb under all
possible input patterns: FICXb

≡ {∗;SM2 = F}. This FIC
can be used to design a shell that: (a) avoids to stall M2

whenever it is in state F and there is a τ on channel Xb (stall
avoidance); (b) remembers that after each stall avoidance it
must eventually stall M2 when the “previously-unneeded” data
on channel Xb arrives, only to be discarded (delayed stall).
This is what happens first at cycles (t1, t2) and then again at
cycles (t8, t9) in the third set of traces of Figure 5 where the
stalled FSM is reported in the last row (and delayed stalls are
marked with parenthesis). The key point is that, even for this
simple system, delaying a local stall by a single clock cycle
allows us to raise the global throughput by 9% to 5

7 = 0.72.

III. SHELL DESIGN

We present the design of a shell interface module that can
exploit functional independence conditions (FIC-shell). This
is a variation of the shell design presented in [9], [12], which
we review first.

A. Classic Shell With Backpressure

A classic shell aligns the incoming data tokens, which may
arrive with arbitrary latencies, so that the input and output
traces of an encapsulated core module is latency-equivalent
to the original core module. Conceptually a shell has two
different kinds of logic controllers (though in implementation
they can be combined): a firing control block decides when
a core module should be stalled by gating the core’s clock
and a channel control block handles incoming data tokens,
interface signals, and input queue operations for each channel.
Figure 6(a) reports a block diagram of a two-input-two-output
classic shell. A shell receives data from input channels and
broadcasts outputs of the core to output channels at every clock
cycle. A channel carries data and two special 1-bit signals: void
and stop. The void signal is used by the sender shell to inform

the sender’s downlink receivers whether the accompanying
data is valid. The stop signal is a flow-control signal and is
used by a receiver to inform the receiver’s uplink sender to
stop sending more data (backpressure).

The shell control logic is presented in Figure 6(b) [9], [12].
At each clock cycle the shell decides whether the computation
of a core module can proceed: the computation is allowed
for the next clock cycle (“firing”) if and only if the fire
signal is high (Eq. 4). The signal fire is set high if all of
the input channels are ready, and no downlink receiver sends
in backpressure. Otherwise the shell stalls the core by setting
fire low to gate the core’s clock. In a classic shell an input
channel i is ready if it presents a valid data token, either from
the channel (voidIni = 0) or from the queue (qEmptyi = 0),
as stated in Eq. 7. The signal backpressurej is set high if a
downlink receiver of an output channel j is unable to save
a valid data generated by the sender in its own queue; it is
indicated by Eq. 5 with stopInj = 1 and voidOutj = 0. The
output tokens generated by a stalled module are marked as
void if there is no backpressure from the receivers (the second
clause in Eq. 6). In the case of backpressure from a downlink
receiver of an output channel j, the data to the receiver is
marked as valid until the receiver has storage space to save
it (the first clause in Eq. 6) because a void token is never
saved by the shell of the receiver. Eq. 8 to 10 are the rules for
steering the input data. For an input channel i, a valid but not
consumed (due to stalling) data is stored in its queue for later
use, indicated by enqi = 1 as in Eq. 8. If the core is fired and
the queue is not empty, the data at the head of the queue is
used by the core and thus it is dequeued (deqi = 1, Eq. 9).
The bypassi signal directs the proper data to the core, either
from the channel or from the output of the queue (Eq. 10).
Finally, when the queue is full (qFulli = 1), the stopOuti is
set high, thus activating the backpressure to request the uplink
sender of the input channel to stall (Eq. 11).

B. Design of a FIC-Shell

Figure 7(a) reports a block diagram of the newly proposed
FIC-shell design. While the firing control block of the classic
shell is reused, the channel control logic is modified to support
the new stall avoidance and delayed stall operations discussed
in the example in Section II. First, the FIC-shell differs
from the classic shell by the conditions deciding a channel’s
readiness. Normally a FIC-shell operates like a classic shell,
but it “becomes more aggressive” when FIC can be exploited,
i.e. whenever one or more input channels present invalid
data which are not necessary to the core’s computation. In
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Fig. 6. (a) A block diagram of a two-input-two-output shell and a stallable core module. (b) The channel and firing control logic of the shell.
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Fig. 7. (a) Block diagram of a FIC-shell. (b) FIC-shell channel and firing control logic. For simplification we only show one input channel with i = 1.

this case, these channels are declared ready and the FIC-
shell fires the core module. However, this operation makes
the core run one more clock cycle ahead of the next valid
data for such channels. So, when this data arrives it must
be discarded. Therefore, for each input channel a FIC-shell
maintains a counter that records how many cycles the core
module currently runs ahead with respect to the next valid
data on the channel.

For an input channel i, whether a FIC for the channel is
satisfied at a given clock cycle is dynamically established
by the FIC-detecti block: this is a combinational logic block
that monitors the present state of the core and the values of
other input channels. Each channel has its own single-output
FIC-detect block 2. When the FIC-detecti sets FICi to high,
the current data of the channel is not needed for the core’s
computation. In Section IV we present a procedure for the
logic synthesis of this block.

Figure 7(b) lists the channel and firing control logic of the

2In practice, all the FIC-detect blocks can be combined into a single
component to increase logic optimization opportunities.

FIC-shell. As indicated earlier, the firing control logic (Eq. 12
to Eq. 14) is the same as the one of the classic shell. On
the other hand, the channel control logic is different because
it takes advantage of FIC for potential stall avoidance and
updates counters of input channels to induce delayed stalls.
The control logic of an input channel i follows simple rules
implemented as Eq. 18 and Eq. 19 to maintain the count of the
input channel: whenever a core is fired but the input channel
has no valid data (i.e. it receives void data voidIni = 1 and
the queue is empty qEmpty i = 1), the count of the channel
is incremented by 1 (Eq. 18). A non-zero count indicates
the next valid data is outdated, and the valid data should be
discarded on arrival (potentially causing a delayed stall). When
a delayed stall is caused by dropping a valid but outdated
data in this case, the count is decreased by 1 (Eq. 19). The
channel control also decides the readiness of an input channel
following Eq. 15. An input channel i is ready if any of the
following conditions holds:

1) The queue provides a valid data (qEmpty i = 0).
2) The channel provides a valid (voidIni = 0) and fresh

data (marked by the zero count, i.e. cntZeroi = 1).
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Fig. 8. A shift register used as the counter in the FIC-shell.

3) The core’s computation does not depend on the data
value (indicated by FIC i = 1), and either the counter
has not reached its maximum value (cntMax i = 0)
or the data is valid (voidIni = 0). When the count
reaches its maximum value, the channel control can no
longer declare its channel as ready even if this channel
is receiving a void data and the FIC i is true, because
exploiting the FIC for stall avoidance in such cases
would cause the overflow of the counter. However, there
is an exception to this rule: When the counter reaches
its maximum value, an input channel is still declared
as ready if a valid (voidIni = 0) data is received
and the core’s computation is independent from the
data (FIC i = 1). This is because the count will not
be increased in such cases: this valid data is dropped
regardless of whether the core will be fired, so the count
will either be the same (if the core is fired) or will be
decreased (not fired). So regardless of the maximum
value of the count, the FIC-shell will always be able
to synchronize the incoming data properly.

In practice, instead of using an up-down counter, a shift
register is sufficient because the actual count is not needed.
Figure 8 shows an implementation of a 1-bit wide shift register
which is used as a counter in our FIC-shell. Increasing the
count by one shifts a “1” into the register (shRight i, which is
inci); decreasing the count by one shifts a “1” out (shLeft i,
which is deci). Evaluating cntZeroi and cntMax i is straight-
forward: the inverse of the leftmost bit indicates whether the
count is zero (cntZeroi), and the rightmost bit flags whether
the register reaches its maximum capacity (cntMax i).

We use purely synchronous queues to save unused but valid
data tokens. The enqueuing and dequeuing operations of a
queue only take effect at the rising (or falling) clock edges,
i.e. the enqueued data token is latched by the queue’s storage
element at the next rising/falling clock edge. Similarly, a queue
updates its output, including the data and queue status signals
(qFull i and qEmpty i) at every rising/falling clock edge. The
synchronous queue implementation has no combinational path
between its inputs and outputs.

Remark. A FIC-shell still follows the latency-insensitive
protocol when it communicates with relay stations or other
shells. It only relaxes the conditions of firing a core module.
So, FIC-shells and classic shells can co-exist in a system.
Therefore a designer can use FIC-shells only when it is
beneficial to the system’s performance. Since the system
throughput is set by the critical feedback loops [7], [8], FIC-
shells can be used only for those core modules that are part

of such loops, while classic shells are sufficient elsewhere.

C. The FIC-Queue: Reducing the Stalls due to Backpressure

FIC can also be used to reduce the stalls due to backpres-
sure. This can be achieved by “virtually” increasing the queue
sizes without allocating real storage elements for data. To do
so, we designed a new queue, called FIC-queue 3. The FIC-
queue maintains the same operating semantics as a normal
synchronous queue. Internally, for any data which is not
needed for the core’s computation the queue only remembers
the data’s existence but not the value. In such cases, compared
to normal synchronous queues with the same amount of data
storage elements, the new FIC-queue appears to be larger.
Thus the FIC-queue can potentially reduce the number of stalls
caused by backpressure.

Figure 9 reports the implementation of the FIC-queue design
taking advantage of FIC. The FIC-queue replaces the original
queue in Figure 7(a), and provides the same semantics as
discussed earlier. Figure 9(a) shows the block diagram of the
queue, its internal signals, and its external interface with the
remaining logic of the shell. Compared to the original queue,
the FIC-queue of an input channel i reads one more input
signal FIC i, which indicates whether the core’s computation
is independent from the oldest not used data on the input
channel 4. The control examines the status of the internal
queue and the FIC i signal to decide whether the oldest data
should be saved. The control logic is implemented as a two-
state FSM. Figure 9(b) shows the state transition diagram of
the FSM and the values of outputs at the two states. Initially
the control is in the state NOT FI. The FI state indicates that
a data not needed for the core’s computation exists but its
value is discarded. The control discards a data not critical to
the core’s computation and enters the FI state in either of the
following two scenarios:

1) If the queue is empty and the core’s computation does
not depend on the input data (FIC i = 1) and the channel
control logic enqueues the data (deq i · enq i), then the
control discards the data and enters the FI state.

2) If the core’s computation is independent from the head
of the internal queue (FIC i · deq i · qEmpty i), then it is
popped out and the FSM enters the FI state.

At the FI state, the FSM reports externally that the queue is
not empty, regardless of the status of the internal queue. Note
that qFull i and qEmpty i are both sequential signal as they
depend only on the internal full and empty signals, which are
updated at rising/falling clock edges, as discussed earlier.

IV. LOGIC SYNTHESIS OF FIC-DETECT BLOCK

We present a procedure to automatically identify the set
of functional independence conditions (FIC) as defined in
Section II. The FIC are returned as logic predicates of present
state and current input variables; they can be implemented as
simple combinational logic. We then use the FIC to synthesize

3As discussed in Section VI, the FIC-queue generalizes a technique recently
proposed in [13].

4This is either the incoming data from the channel if the internal queue is
empty, or the head of the internal queue if it is not empty.
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Fig. 9. FIC-queue for a given input cahnnel i: (a) block diagram; (b) FSM and its output signals of the control in (a).

the FIC-detect block for the channel. Our procedure builds on
the unobservability conditions of a Boolean function to derive
FIC 5. First, we recall some background concepts.

A. Background Definitions

For a Boolean function f , a variable x is unobservable
if f is not sensitive to the changes of x [10]. A variable’s
unobservability may only hold under certain conditions that
are expressed by the complement of the Boolean difference,
which computes under what conditions f is sensitive to x.
The Boolean difference is simply the result of XOR (⊕) of
f ’s co-factor with respect to x and x. Thus, the conditions
under which function f is insensitive to variable x is:

∂f

∂x
= f |x=1⊕ f |x=0

where ⊕ is the complement of XOR.
The consensus of Boolean function f with respect to

variable x is the part of f that is independent of x:

Cx(f) = f |x=1 · f |x=0 (22)

Consensus can be extended to a set of variables by iteratively
applying Eq. 22 to each variable [10].

B. Logic Synthesis of the FIC-Detect Block

We now introduce our procedure, which consists of four
steps. Our presentation is based on the FSM model of a core
and the definition of FIC as given in Section II.
Step 1. To derive the FIC for an input channel Pi, we first
restrict the computation to a single Boolean input variable
pik ∈ Pi with respect to a scalar state transition function fs′t
(s′t ∈ S′ is a single next state variable). We have:

∂fs′t

∂pi
k

= fs′t
|pi

k
=1 ⊕ fs′t

|pi
k
=0 (23)

Similarly for the unobservability of pik w.r.t. an output
function gj` for an output variable qj` ∈ Qj we have:

5Computing unobservability conditions is used to derive observability don’t
cares. It is the basis of our procedure, but not the focus of this paper. We
refer the interested reader to [10].

∂gj
`

∂pi
k

= gj
` |pi

k
=1 ⊕ gj

` |pi
k
=0 (24)

Computing unobservability conditions using Boolean dif-
ference directly on a large multi-level Boolean network may
not be practical, unless the network’s global logic functions
f and g are given, or can be efficiently derived. An effective
solution, which has been shown successful on large designs, is
to iteratively applying Boolean difference locally. In addition,
methods of approximating unobservability conditions to re-
duce the size of their representations can also be applied [10] 6.
For simplicity, in the sequel we denote the computation of un-
observability conditions with the Boolean difference operator.
Step 2. Since FIC involve all state and output variables we
perform the conjunction of all the unobservability conditions
by Eq. (23) and Eq. (24):

gFICpi
k
(f ,g) =

` ^
s′t∈S′

∂fs′t

∂pi
k

´
·
` ^

Qi∈Q

^
g

j
`
∈Qi

∂gj
`

∂pi
k

´
(25)

Step 3. A channel Pi has generally many input variables.
Hence, we take the conjunction across:

gFICPi(f ,g) = CPi(
^

pi
k
∈Pi

gFIC pi
k
(f ,g))

= Cpi1
(Cpi2

(· · ·Cpi
k
(

^
pi

k
∈Pi

gFIC pi
k
(f ,g)) · · · ) (26)

Note that the consensus function is used to eliminate any
cube that contains input variables from channel Pi. These
cubes can arise after taking the conjunctions across the un-
observability conditions of single variables.
Step 4. In LID not every input channel presents a valid data at
each clock cycle. So we require all the input variables which
appear in Eq. (26) to come from input channels presenting
valid data. Recall that a good data can come either from the
channel (i.e. its voidIn is 0) or from the channel’s queue (i.e.
the queue is not empty qEmpty = 0). Further, if the data is

6If some approximations are used, our procedure returns a subset of FIC
defined in Section II.
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Fig. 10. (a) A core module with 2 input channels (3 input variables in total)
modeled by a 4-state Moore FSM. (b) The unobservability conditions of each
input variable with respect to the 2-state transition functions. (c) The final
FIC depending both on inputs and states. (d) The final FIC depending only
on states.

from the channel, it cannot be outdated (the count is zero, i.e.
cntZero = 1). So the final FIC can be obtained as follows:

FIC IS
Pi

(f ,g) ≡ Replace each literal p in gFICPi
(f ,g) with

p · (voidInk ·cntZerok +qEmptyk ), and p
with p · (voidInk · cntZerok + qEmptyk )

(27)

where voidInk , qEmptyk , and cntZerok are signals from the
input channel k containing the variable p.

The domain of the single-output Boolean function
FIC IS

Pi
(f ,g) that is obtained at the end of Step 4 is the set of

state variables, input variables, voidIn and qEmpty variables
minus the set of input, voidIni and qEmpty i variables of the
channel Pi. A combinational logic network can be synthesized
to implement this function within the channel FIC-detect
block: at each clock cycle, if (FIC IS

Pi
(f ,g) = 1) then the

current data value of the channel Pi is not needed to compute
the state transition and the output function of the core.

The firing of a core module is controlled by the fire
signal, which must be stable by the end of each clock cycle.
Therefore, the dependency of FIC on input-channel variables
may induce extra timing constraints as it may lead to long
combinational paths from an uplink sender of data to the
fire signal across the communication channel. Hence, we may
want to restrict ourselves to FIC depending only on state
variables. This requires a different (alternative) final step in
our procedure.
Step 4’. To restrict FIC dependency to state variables only,
we apply the consensus function to Eq. (26) over all input
variables iteratively:

FIC S
Pi

(f ,g) = CP ( gFICPi(f ,g))

= Cp11
(Cp12

(· · ·Cpi
k
(· · · ( gFICPi(f ,g) · · · ))) (28)

If the core module has no combinational path from its inputs
to outputs (thus it can be viewed as a Moore FSM), Eq. (24)
will return 1 because an output variable does not depend

on any input. The same steps can still be applied to make
FIC S

Pi
(f ,g) equal to FIC S

Pi
(f).

Example. We apply the procedures discussed above to a sim-
ple core module whose behavior is modeled by a Moore FSM.
The core, its FSM model, and the state transition functions are
reported in Figure 10(a). It has two input channels consisting
of three variables in total ({a, b} and c), and four states
encoded as (s0s1) ∈ {00, 01, 10, 11}.

We applied our four-step procedures to derive the FIC for
each input channel. Since the core is a Moore FSM, only
Eq. (23) must be applied in Step 1. The FIC of all three
input variables with respect to each state transition function
are shown in Figure 10(b). Finally, Eq. (25) and Eq. (26)
provide the FIC for each of the two channels: FIC IS

P1
(f) =

s1c (voidIn2 · cntZero2 + qEmpty2 ) and FIC IS
P2

(f) = s1.
If we prefer to restrict ourselves to FIC depending only on

the state variables, then we apply Step 4’ instead of Step 4.
In this case, the FIC for Channel 2 becomes FIC S

P2
(f) = s1,

while the input data coming at Channel 1 are always needed:
FIC S

P1
(f) = ∅. Overall, less opportunities for avoiding stalling

can be exploited, but this might be necessary to meet timing
constraints on the shell logic.

V. EXPERIMENTAL RESULTS

We present various experiments designed to evaluate the
applicability, efficiency, and overhead of the proposed op-
timization technique. We implemented the FIC-computation
procedure discussed in Section IV within the logic synthesis
tool ABC [14]. We test it with a suite of sequential cir-
cuits including the ISCAS-89 benchmarks, and with a real-
world SoC, an ultra-wideband baseband transmitter [15], [16].
Both experiments demonstrate that FIC-based optimization has
broad applicability, is efficient, and imposes little overhead.

A. Applicability of FIC optimizations

In the first set of experiments, we evaluate the applicability
and practicality of FIC optimization by applying it to ISCAS-
89 benchmarks and other sequential circuits. For each bench-
mark, the FIC are derived assuming that each single input is
a LID channel (this overly-simplified assumption will be later
discarded when we apply FIC optimization to the SoC). We
distinguish a FIC that depends only on core’s state variables
(SD-FIC) from one that depends also on input variables (ISD-
FIC). Figure 11 reports three distributions showing the oc-
currence frequencies of FIC in reachable states for benchmark
circuit s1488 . Figure 11(a) lists the ratio of reachable states in
which a particular input has FIC. Figure 11(b) lists the number
of inputs which have FIC in each of the 48 reachable states.
Figure 11(c) shows the ratio of states where at least some
inputs have SD-FIC. Note that the analysis only considers
satisfied SD-FIC at each reachable state for a given input.
In benchmark circuit s1488 , SD-FIC are very frequent: all
but two inputs have satisfied SD-FIC in most states. Further,
in most reachable states there is a significant number of
inputs which have FIC. Note that SD-FIC dominate, and
by considering also ISD-FIC only a little more functional
independence conditions can be exploited.
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Fig. 11. Frequency distributions of functional independence conditions in s1488. In Figure 11 and 12, the acronym “ISD-FIC” refers to FIC that are functions
of both state variables and at least one input variable while “SD-FIC” refers to FIC that are functions of state variables only.

reachable # of inputs states with avg. # of inputs with # of inputs states with avg. # of inputs with
Bench PI PO FF states with SD-FIC SD-FIC inputs (%) SD-FIC per state with ISD-FIC ISD-FIC inputs (%) ISD-FIC per state
s1488 8 19 6 48 8 48 (100) 5.83 8 48 (100) 6.46
s208 10 1 8 256 8 256 (100) 7.00 9 256 (100) 9.00
s27 4 1 3 6 2 4 (66) 1.17 4 6 (100) 2.83
s298 3 6 14 218 0 0 (0) 0.00 3 218 (100) 2.06
s349 9 11 15 2625 8 2368 (90) 7.22 8 2368 (90) 7.22
s382 3 6 21 8865 0 0 (0) 0.00 3 8865 (100) 2.00
s386 7 7 6 13 5 13 (100) 4.08 7 13 (100) 6.77
s510 19 7 6 47 19 47 (100) 18.40 19 47 (100) 18.51
s526n 3 6 21 8868 0 0 (0) 0.00 3 8868 (100) 2.00
s832 18 19 5 25 17 25 (100) 14.16 18 25 (100) 16.72
s953 16 23 29 504 13 504 (100) 6.57 15 504 (100) 13.66
ex1 9 19 5 20 8 20 (100) 5.20 9 20 (100) 7.40
keyb 7 2 5 19 7 16 (84) 3.21 7 19 (100) 6.79
kirkman 12 6 4 16 6 9 (56) 2.38 11 16 (100) 9.94
planet1 7 19 6 48 7 48 (100) 5.71 7 48 (100) 6.33
sand 11 9 5 32 10 32 (100) 8.69 11 32 (100) 10.06
shiftreg 1 1 3 8 0 0 (0) 0.00 0 0 (0) 0.00
Add256Cntrl 1 2 12 24 1 23 (95) 0.96 1 23 (95) 0.96
TagGen 4 9 24 20161 0 0 (0) 0.00 2 20161 (100) 2.00
TagGenCntrl 2 2 13 23 2 22 (95) 1.87 2 23 (100) 1.91
boltzmann 7 21 93 903 6 903 (100) 5.77 6 903 (100) 5.86
lan 10 8 20 24 10 24 (100) 6.50 10 24 (100) 9.83
Avg. 7 9 14 1943 6 198 (72) 4.76 7 1931 (94) 6.74

Fig. 12. Statistics on the occurrence frequencies of functional independence conditions across all benchmarks.

Figure 12 shows the occurrence frequencies of FIC across
all benchmarks. For each benchmark, column “PI”, “PO”,
“FF” report the number of primary inputs, primary outputs,
and flip-flops respectively; column “# of inputs with SD-FIC”
reports the number of inputs which have satisfied SD-FIC in
at least one reachable state, while column “states with SD-FIC
inputs” reports the number of reachable states in which at least
one input has one satisfied SD-FIC. The non-weighted average
of inputs with satisfied SD-FIC per reachable states is given
in the following column. The analogous analysis is applied to
ISD-FIC, and results are listed in the last three columns.

These experimental results indicate that FIC are frequent
in reachable states. While by definition the set of ISD-FIC
includes the set of SD-FIC, the number of SD-FIC is high
in most designs. In particular, all of FIC discovered in the
benchmark circuit s349 are SD-FIC.

These results confirm also that in practice it is sufficient to
focus on exploiting SD-FIC since they already offer many op-
portunities to improve the performance of a latency-insensitive
system. Further, the SD-FIC-detect logic is typically faster and

much smaller.

B. Latency-Insensitive Design of an SoC for Wireless Com-
munication

In the second set of experiments, we applied latency-
insensitive design and the proposed FIC optimization to the
semi-custom design of a system-on-chip for wireless commu-
nication in order to measure the performance improvements
made possible by the FIC optimization and assess the associ-
ated overhead in terms of both area and delay.

We started from the original RTL specification of the
SoC that was designed by Liu et al. and presented in [15],
[16]: this is a “coded orthogonal frequency division modula-
tion” (COFDM) baseband solution for ultra-wideband systems.
Figure 13 shows the top-level diagram of the system: the
transmitter receives packets from the medium access control
(MAC) layer, and outputs encoded symbols to a DAC for
physical transmission.

To evaluate the FIC optimization we actually synthesized
three versions of this SoC: (1) the original or “strict” system,
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RS throughput speedup A’s SD-FIC B’s SD-FIC D’s SD-FIC E’s SD-FIC F’s SD-FIC
locations No FIC FIC (%) occurred used occurred used occurred used occurred used occurred used

A 0.833 0.918 10.2 0.004 0.004 0.230 0.165 0.369 0.368 0.016 0.000 0.985 0.000
B 0.800 0.917 14.6 0.004 0.000 0.230 0.164 0.369 0.368 0.016 0.000 0.986 0.093
C 0.800 0.868 8.5 0.004 0.000 0.230 0.000 0.369 0.368 0.016 0.004 0.986 0.154
D 0.750 0.831 10.8 0.004 0.000 0.230 0.000 0.369 0.369 0.016 0.005 0.986 0.206
E 0.667 0.670 0.4 0.004 0.004 0.230 0.107 0.369 0.000 0.016 0.016 0.986 0.002
F 0.800 0.987 23.4 0.004 0.000 0.230 0.000 0.369 0.000 0.016 0.000 0.986 0.944
G 0.667 0.670 0.4 0.004 0.000 0.230 0.000 0.368 0.000 0.016 0.016 0.986 0.492

Fig. 14. Throughput improvements with one RS insertion and shell queues of size two.

(2) a latency-insensitive design (LID) version of it, and (3) a
LID version with FIC optimization (the FIC-shell does not use
the FIC-queue). We made the entire system latency-insensitive
by encapsulating the five datapath modules and the controller
with classic LID shells. In the third version we used the new
FIC-shells, whenever applicable, 7 by exploiting the SD-FIC
which are derived as explained in Section IV. These conditions
are found and detected on five global communication channels
(A, B, D, E, and F) that connect the datapath modules.
The functional validation and throughput measurements of
the two latency-insensitive systems are done by simulating
the synthesizable RTL design. All of the simulations test the
transmission of ten consecutive data packets, which requires
more than forty thousand clock cycles. To measure the area
and delay, we (a) synthesized the three designs using Synopsys
Design Compiler, (b) completed technology mapping with a
90nm industrial standard cell library, and (c) performed static
timing analysis on the mapped design.

Figure 15 reports the throughput improvements due to FIC
optimization for different design configurations of the latency-
insensitive SoC. The various configurations are latency-
equivalent systems that differ only for the number and location
of the relay stations across the seven global communication
channels. All of the shells use input queues of size two. System
throughput is improved in many cases and in some cases
very significantly: e.g., when one or two relay stations are
inserted on channel F, the FIC optimization brings the through-
put almost up to 1, the ideal value. Overall the throughput
speedups across all configurations range from 0.3% to 30.7%
with average equal to 10.3%.
Effectiveness of FIC. All of the FIC are computed automat-
ically without human interventions, and all but one module
have at least one input channel with FIC (more precisely, SD-
FIC). Some of the FIC that the tool discovered are surprisingly
effective. For example, the feedback channel F from the

7Modules with no SD-FIC are encapsulated with classic shells. This is
possible because our proposed FIC-shell follows the same LI protocol as
classic shells.
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Fig. 15. Throughput improvements with one or two RS insertions on different
channels.

Shaping module to the Spreading module is only needed in a
very few number of clock cycles. Similarly, the Pilot-Insertion
module does not need its input from channel B periodically,
and this FIC often contributes to the throughput improvement.

The effectiveness of a FIC roughly depends on how often
it can be used to avoid stalling of modules in the critical
loops. Figure 14 reports the throughput improvements due
to FIC optimization (“throughput” and “speedup” columns)
for various configurations with one relay-station insertion, the
frequency of the occurrences of the corresponding FIC, and the
frequency of its usage to avoid stalls in the remaining columns.
For example, when a relay station is inserted on channel D,
the throughput is improved from 0.75 to 0.83, because the FIC
of channel D and F avoid a significant number of stalls of the
Shaping module and the Pilot-Insertion module respectively,
and B-C-D-F-B forms the critical loop of the design. In
contrast, when a relay station is inserted on channel E, the
throughput remains almost the same after FIC optimization,
even if B’s FIC is used for stall avoidance 10% of the overall



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, , VOL. XX, NO. YY, ZZ 200X 11

queue size = 1 queue size = 2
RS throughput throughput

locations No FIC FIC No FIC FIC
A 0.750 0.751 0.833 0.918
B 0.750 0.791 0.800 0.917
C 0.750 0.750 0.800 0.868
D 0.750 0.831 0.750 0.831
E 0.667 0.670 0.667 0.670
F 0.750 0.987 0.800 0.987
G 0.667 0.670 0.667 0.670

Fig. 16. Impact of the FIC optimization and queue sizing on the throughput
(with one RS insertion).

simulation time and E’s FIC is used whenever possible. This
is because channel B is not on the critical loop (which is G-E-
G in this case), and channel E’s FIC happens rarely and thus
cannot have a sizable impact on throughput.
Area and Delay Overheads. We compared the area and
delay of the synthesized original transmitter versus its latency-
insensitive versions with and without FIC optimization. The
area overhead is minimal: 1.04% for shells with queue size of
1, and 3.26% for shells with queue size of 2. FIC-shells with
FIC-detect blocks add negligible area (less than 0.01%) to the
classical shells. The critical-path delay of both the classic and
FIC-optimized latency-insensitive transmitters are the same as
in the original strict design, i.e. the maximum clock speed is
not affected. Consequently, FIC optimization often increases
the latency-insensitive system’s effective performance, which
is defined as clock frequency times system throughput [7].
FIC Optimization and Queue Sizing. As discussed in [8],
[17], [18], the input queue sizes in the shells also affect system
throughput. This is because reconvergence paths with different
end-to-end latencies caused by relay-station insertions can
become a critical loop consisting of forward data paths and
backward backpressure paths. For example, if we insert one
relay station on channel F in an LID implementation of our
design where queues have size one, the reconvergence paths
E-A-F becomes a critical loop with a cycle mean of 4/3 (so the
throughput is 3/4 = 0.75). In order to avoid this throughput
degradation, one option is to increase the size of the shell’s
input queues. For instance, to increase the queue sizes to two
makes it possible to raise the throughput to 0.8. Columns
labeled as “No FIC” in Figure 16 report analogous throughput
variations due to different queue sizes when the relay station
is inserted on one of the global channels.

On the other hand, the use of FIC creates more opportunities
for throughput optimization. For instance, instead of sizing
the queues, we can exploit a FIC of channel F to bring the
throughput back to 0.98. This requires less area overhead and
achieves higher throughput than the queue sizing technique. In
other scenarios, e.g. if the relay station is inserted on channel
B, to combine queue sizing and FIC optimization can achieve
a higher throughput (0.92) than using only one technique alone
(0.80 for queue sizing only or 0.79 for FIC optimization only).
Columns labeled as “FIC” in Figure 16 report the throughput
data for the various scenarios.
Sizing of Shift Registers. The sizes of the shift registers affect
the achievable throughput optimizations through FIC. Intu-
itively the larger the shift registers are, the more opportunities
to exploit FIC for throughput optimizations by consecutive
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Fig. 17. Impact of the size of the shift registers in the FIC-shells on system
throughput for the latency-insensitive design of the COFDM: (a) One RS
insertion; (b) Two RS insertions.

stall avoidance. When a shift register is full, the FIC-shell can
no longer exploit FIC of the corresponding input channel.

On the other hand, the throughput improvements by en-
larging shift registers are also limited, since the location of
the relay stations and the timing of FIC occurrences are the
inherent deciding factors 8. Figure 17 reports the impacts of the
size of the shift registers on system throughput. Figure 17(a)
measures the throughput of the latency-insensitive COFDM
design with one RS insertion on one of the seven global data
channels; Figure 17(b) measures the throughput of the same
design but with two RS insertions. In both sets of experiments,
the sizes of all the shift registers vary from zero to three
across all FIC-shells. Note that a FIC-shell using shift registers
of size zero “degenerates” to a classic shell, so the leftmost
data points in the two figures are the throughput values of the
systems using classic LID shells. Also, note that in the case
of inserting one relay station, the throughput improvements
stop after the size of the shift registers becomes larger than
one. Similarly, in the second set of experiments of inserting
two relay stations, the throughput levels off when the size
of the shift registers exceeds two. This shows that for the
latency-insensitive COFDM design small shift registers suffice
to enable all of the possible FIC optimization opportunities.
Evaluations of FIC-queue. We also compared the FIC op-
timization using the FIC-queue technique to the one without
using it, whose results are presented earlier. We found that the

8Assuming the environment does not constrain the system throughput.
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reachable # of inputs states with avg. # of inputs with # of inputs states with avg. # of inputs with
Bench PI PO FF states with SD-FIC SD-FIC inputs (%) SD-FIC per state with ISD-FIC ISD-FIC inputs (%) ISD-FIC per state
s1488 8 19 6 48 8 48 (100) 5.83 8 48 (100) 6.46
s208 10 1 8 256 8 256 (100) 7.00 9 256 (100) 9.00
s298 3 6 8 135 2 7 (5) 0.10 3 135 (100) 2.09
s27 4 1 3 5 2 3 (60) 1.00 4 5 (100) 3.40
s349 - - - - - - (-) - - - (-) -
s382 - - - - - - (-) - - - (-) -
s386 7 7 4 13 5 13 (100) 4.08 7 13 (100) 6.77
s510 19 7 6 47 19 47 (100) 18.40 19 47 (100) 18.51
s526n - - - - - - (-) - - - (-) -
s832 18 19 5 24 17 24 (100) 14.08 18 24 (100) 16.67
s953 - - - - - - (-) - - - (-) -
ex1 9 19 5 18 8 18 (100) 5.28 9 18 (100) 7.39
keyb 7 2 5 19 7 16 (84) 3.21 7 19 (100) 6.79
kirkman 12 6 4 16 6 9 (56) 2.38 11 16 (100) 9.94
planet1 7 19 6 48 7 48 (100) 5.71 7 48 (100) 6.33
sand 11 9 5 32 10 32 (100) 8.69 11 32 (100) 10.06
shiftreg 1 1 3 8 0 0 (0) 0.00 0 0 (0) 0.00
Add256Cntrl 1 2 5 18 1 17 (94) 0.94 1 17 (94) 0.94
TagGen - - - - - - (-) - - - (-) -
TagGenCntrl 2 2 5 19 2 18 (94) 1.84 2 19 (100) 1.89
lan 10 8 5 23 10 23 (100) 6.52 10 23 (100) 9.83
Avg. 8 8 5 48 7 38 (82) 5.60 8 47 (92) 7.51

Fig. 18. Statistics on the occurrence frequencies of functional independence conditions across all benchmarks subjected to state minimization, sequential
and combinational logic optimizations. Benchmarks whose state space cannot be handled by the tool are marked by dashes in the corresponding rows.

throughput improvements of using FIC-queue on the COFDM
design are few. The only throughput improvement is seen in
the case of inserting one relay station on both channel A and
channel E. The real storage space of queues in each shell
is one. The throughput of the design increase from 0.60 to
0.66. Applying FIC-queue to other design configurations, the
throughput remains the same.

C. Discussion of FIC-Based Optimization

The presence of functional independence conditions is
mostly due to the behavior of a design, not to the sub-
optimality of the implementation of its logic circuits. That is,
the behavior of a core module or the entire system implicitly
introduces the FIC. Hence, when the core is implemented as
a netlist of logic gates, our algorithm automatically constructs
FIC based on the logic structure by operating at the circuit
level. This claim is supported by the analysis of the experi-
mental results for those cases where the behavior of the design
is known:

1) Benchmark s1488 , whose FIC are analyzed in Fig-
ure 11, is an add-shift-multiplier [19] controlled by a
3-bit counter. By design. its inputs are only needed in the
first cycle of each round of multiplication. This explains
why this benchmark has many state-dependent FIC.

2) For the case of the COFDM SoC the occurrence of
FIC of channel B may be traced back to the speci-
fication of the standard protocol as given in [20]: the
Pilot-Insertion module adds pilot symbols periodically
to allow a receiver to measure the distortions of the
transmitted symbols and when it operates in this mode
it does not need the inputs from channel B.

A second observation is that logic optimizations do not
affect the amount of FIC discovered by our algorithm. We
repeat the same analysis as presented in Figure 12 measuring
the occurrence frequencies of FIC for the same suite of bench-
marks after applying state minimization with STAMINA [21]

and the logic optimization scripts in ABC 9. The corresponding
results are presented in Figure 18 10. The comparing of the two
sets of results presented in Figure 12 and in 18 shows that the
frequency of FIC occurrence frequencies are almost the same.
This means that the optimization of the logic structures does
not significantly affect the number of FIC.

Also, while the synthesis of the COFDM design that is
returned by Synopsys Design Compiler includes also various
logic optimization steps, our procedure still identifies FIC that
are induced by the COFDM communication protocol. In fact,
this should not be a surprise if one accepts that FIC depend
on the functional specification (the behavior) of the design,
which is not changed by a logic synthesis tool.

As a final note, we would like to stress the ability of
the proposed algorithm to discover the FIC automatically
regardless of the nature of the design and without human
interventions. For example, our method discovers the FIC in
the COFDM design automatically without the knowledge of its
logic design and protocol design, and synthesizes the necessary
FIC-detection logic in a “correct-by-construction” fashion.

VI. RELATED WORK

FIC-based optimization is related to the concept of early
evaluation in asynchronous circuit and system design. Early
evaluation allows an asynchronous component to compute
its output before all of its input values are available. It is
a more practical restriction of the OR-causality precedence
relation for which Yakovlev et al. provide formal models and
implementations for speed-independent asynchronous circuits
in [22], [23]. Early evaluation has been applied to phased logic
at different granularity levels by Reese et al. [24], [25] and
to the optimization of pipelined asynchronous logic by both
Brej et al. [26] and, more recently, Ampalam and Singh [27].

9For the original analysis we did not apply any sequential/combinational
logic optimizations to the benchmarks.

10The state space of certain benchmarks cannot be handled by STAMINA.
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Early evaluation can be extended to synchronous circuits
if these operate according to a latency-insensitive protocol.
The idea has been first investigated in the context of multi-
clock latency-insensitive circuits in [28], [29], and it has been
applied to elastic systems by using a new latency-insensitive
protocol that explicitly encodes anti-token signals [30]. Both
the work by Casu and Macchiarulo on adaptive latency-
insensitive protocols [13] and our preliminary results on FIC-
based optimization [31] have shown that unnecessary stalling
can be avoided with local modification in the logic design of a
shell and without requiring any change in the channel interface
signals (void and stop bits) that were defined to implement the
original latency-insensitive protocol [9].

Two ingredients common to early evaluation and FIC-based
optimization are: the design of the detection logic and the
mechanism to implement delayed stalls for dealing with late-
arriving, previously-unneeded data items (see Section II-A).

Detection Logic. To improve performance with early evalu-
ation or exploiting FIC, a mechanism to dynamically detect the
occurrence of such event must be supplied. Most approaches in
the literatures assume that this functionality has to be manually
designed. The burden of manual design is partially reduced
in the method described in [29], which however requires
designers to provide high-level specifications of triggering
functions that are then automatically translated into FSM
implementations.

Casu and Macchiarulo identify the need to have an “effec-
tive and simple” combinational logic block, which they call
“oracle”, to implement the detection logic, but they do not
provide a method to synthesize it [13]. All the aforementioned
approaches somewhat assume that the designers have full
knowledge of the triggering conditions. Instead, the notion of
FIC and the logic synthesis procedure for the FIC-detect logic
block that we have presented in Section IV establish an auto-
matic solution for this problem that does not request any effort
from the designers. Such automatic procedures are possible
because an implementation of the functional specification of
a core contains all the necessary information. Fully-automatic
synthesis approaches are obviously more desirable since they
eliminate human errors and simplify the application of the
proposed optimization method.

Reese et al. in [24] provide an algorithm based on traversing
root-to-terminal paths in a BDD representing the given logic
function. This method applies to the synthesis of one trigger
function on a fixed subset of inputs. Our procedure, which
uses unobservability conditions, targets arbitrary multi-input
and multi-output logic functions and finds all the triggering
conditions on all of the possible input subsets.

Handling Delayed Stalls. One challenge of both early eval-
uation and FIC-based optimization is to ensure the functional
correctness of the final implementation. If a logic component
evaluates its outputs in the absence of a valid data token, when
the absent valid token finally arrives it will be obsolete and,
therefore, unusable for correct computation. Hence, it is neces-
sary to ensure that all the computations are fired on the fresh
data tokens. To deal with this problem, various approaches
have been proposed that are either based on asynchronous de-
sign styles or assume various kinds of global synchronization

schemes, among which are synchronous latency-insensitive
systems. Still, even though these methods apply to distinct
design styles, they can be divided into three broad classes.

One class of methods assumes communication protocols
which use explicit acknowledgement to request new wave of
data tokens as in many asynchronous systems. The idea is to
withhold the acknowledgement until all data arrive, even if
some early arrivals already trigger the computation. Reese et
al. use Petri nets to model and implement such a handshaking
mechanism for asynchronous phased-logic systems [24], [25].

An alternative approach is to augment the communication
infrastructure with flow of anti-tokens, which run in parallel
with the normal data flow but in the opposite direction and
annihilate unused (and unneeded) normal data tokens [26],
[27], [30]. Whenever a computation core early evaluates, it
generates one anti-token for each input channel from which
a late token is expected. Such mechanisms require communi-
cation protocols that accommodate the flow of anti-tokens as
well as carefully-designed interface circuits which propagate
and destroy normal tokens and anti-tokens properly.

The third approach is based on counting the number of
subsequent tokens to be discarded due to early evaluations
for each input channel. This notion is similar to the accu-
mulation of negative tokens in the “guarded” Petri net model
proposed by Júlvez et al. for performance analysis of early
evaluation [32]. Casu and Macchiarulo [13] implement this
technique by using an up-down counter for each input channel
whose value is the number of tokens to be discarded. We use
a 1-bit shift register instead of an up-down counter to reduce
the hardware overhead 11.

Compared to the anti-token and counting-based approaches,
the explicit acknowledgement method is more restrictive.
The withholding of the acknowledgements is equivalent to
increasing the counter value to one, but it also prohibits
“consecutive” early firings, which result in greater counter
values if a counting-based approach is used. Thus, the ac-
knowledgement method loses some optimization opportunities
that are possible with the other two techniques: the counting-
based approaches support back-to-back consecutive early fir-
ings by allowing greater-than-one counter values; the anti-
token techniques achieves the same effect by sending out anti-
tokens continuously as long as there is no traffic congestion
of the anti-token flows. Interestingly, compared to using anti-
tokens, the counting-based method can be viewed as storing
(the number of) the anti-tokens locally in queues, which pro-
vide buffering mechanism. Finally, while the communication
interfaces supporting anti-token flows require the modification
of the global communication protocols, the counting-based
methods, including ours, do not as they only demand changes
that are inherently “local” to the interface.

11Casu and Macchiarulo have proposed a novel technique to use FIC not
only to reduce the number of stalls caused by void tokens but also the stalls
caused by backpressures. This is achieved by discarding valid but not needed
data tokens which cannot be immediately used, instead of requesting its sender
to repeat sending the same data. In such cases the counter value is decreased
from zero to negative one, in order to properly align the next wave of data
tokens. In Section III-C we showed how this idea can be generalized to
virtually increase the queue sizes in our FIC-shells for backpressure reduction.
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VII. CONCLUSIONS

We studied the problem of leveraging the local knowledge
on the internal logic of a core to improve the global SoC per-
formance in latency-insensitive design. We defined the notion
of functional independence conditions (FIC) and we described
a logic synthesis procedure to generate automatically a shell
interface (a FIC-shell) around a given a core that dynamically
detects FIC occurrences to avoid unnecessary local stalling of
the core, thereby increasing the overall system performance.
We presented a comprehensive experimental study that in-
cludes: an evaluation of the applicability and practicality of
the proposed technique with a suite of benchmark circuits
and the complete semi-custom design of an SoC for wireless
communication. Experimental results show that on average the
data processing throughput of this SoC can be increased by up
to 30% with an area overhead that is never larger than 3.26%.
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