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Abstract

A SIP server may be overloaded by emergency-induced call volume, “American Idol” style
flash crowd effects or denial of service attacks. The SIP server overload problem is interest-
ing especially because the cost of serving and rejecting a SIP session could be in the same
neighborhood. For this reason, the built-in SIP overload control mechanism based on generat-
ing rejection messages could not prevent the server from entering congestion collapse at heavy
load. The SIP overload problem calls for a pushback control solution in which the potentially
overloaded receiving server may notify its upstream sending servers to have them send only
the amount of load within the receiving server’s processing capacity. The pushback framework
can be achieved by SIP application layer rate-based feedback or window-based feedback. We
propose three new window-based feedback algorithms and evaluate them together with two ex-
isting rate-based feedback algorithms. We compare the different algorithms in terms of number
of tuning parameters and performance under both steady and dynamic load. Furthermore, we
identify two categories of fairness requirements for SIP overload control, namely, user-centric
and provider-centric fairness. With the introduction of a new double-feed SIP overload control
architecture, we show how the algorithms can meet those fairness criteria.
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1 Introduction

The Session Initiation Protocol [1] (SIP) is a signaling protocol standardized by IETF for cre-
ating, modifying, and terminating sessions in the Internet. It has been used for many session-
oriented applications, such as voice calls, multimedia distributions, video conferencing, presence
service and instant messaging. Major standards bodies including 3GPP, ITU-I, and ETSI have
all adopted SIP as the core signaling protocol for Next Generation Networks predominately
based on the Internet Multimedia Subsystem (IMS) architecture.

The wide spread popularity of SIP has raised attention to its readiness of countering overload
[2]. SIP server can be overloaded for many reasons such as emergency-induced call volume, flash
crowds generated by TV programs (e.g., American Idol), special events such as “free tickets
to third caller”, or even denial of service attacks. Although server overload is by no means a
new problem for the Internet, the key observation distinguishes the SIP overload problem from
others is that the cost of rejecting a SIP session usually could not be ignored when comparing
to the cost of serving a session. Consequently, when a SIP server has to reject a large amount of
arriving sessions, its performance collapses. This situation explains the reason why the built-in
SIP overload control mechanism based on generating a rejection response messages does not
solve the problem. If, as often recommended, the rejected sessions are sent to a load-sharing
SIP server, the alternative server will soon also be generating nothing but rejection responses,
leading to a cascading failure. Another important aspect of SIP overload is related to its multi-
hop server architecture with a name-based application level routing. This aspect creates the
so-called “server-to-server” overload problem that is generally not comparable to overload in
other servers such as web server.

To avoid the overloaded server ending up at a state spending all its resources rejecting
sessions, Hilt et. al. [3] outlined a SIP overload control framework based on feedback from the
receiving server to its upstream sending servers. The feedback can be in terms of a rate or a load
limiting window size. However, the exact algorithms that may be applied in this framework and
the potential performance implications are still wide open. In particular, to our best knowledge
there has been no published work on specific window-based algorithms for SIP overload control,
or comprehensive performance evaluation of rate-based feedback algorithms that also discusses
dynamic load conditions and overload control fairness issues.

In this paper, we introduce a new dynamic session estimation scheme which plays an essential
role in applying selected control algorithms to the SIP overload environment. We then propose
three new window-based algorithms for SIP overload. We also apply two existing load adaptation
algorithms for rate-based overload control. Thus we cover all three types of feedback control
mechanisms in [3]: the absolute rate feedback, relative rate feedback and window feedback.
To evaluate the performance of different algorithms we implemented a SIP simulator on the
widely used OPNET platform [4]. Our simulator is one of the independent SIP simulator
implementations calibrated in the IETF SIP server overload design team. The simulation results
show that although the algorithms differ in their tuning parameters, most of them are able
to achieve theoretical maximum performance under steady state load conditions. The results
under dynamic load conditions with source arrival and departure are also pretty encouraging.
Furthermore, we look at the SIP overload fairness issue and propose the notion of user-centric
fairness vs. service-provider-centric fairness. We show how different algorithms may achieve
the desired type of fairness. In particular, we found that the user-centric fairness is difficult to
achieve in the absolute rate or window-based feedback mechanisms. We solve this problem by
introducing a new double-feed SIP overload control architecture.

The rest of this document is organized as follows: Section 2 presents the background on
the SIP overload problem, and discusses related work. In Section 3 we propose three window-
based SIP overload control algorithms and describe two existing load adaptation algorithm to be
applied for rate-based SIP overload control. Then we present the simulation model and basic SIP
overload results without feedback control in Section 4. The steady load performance evaluation
of the control algorithms are discussed in Section 5, followed by dynamic load performance with
fairness consideration in Section 6. Finally Section 7 concludes the paper and talks about future
work.
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Figure 1: SIP voice call session message flow

2 Background and Related Work

2.1 SIP Overview

SIP is a message based protocol for managing sessions. There are two basic SIP entities, SIP
User Agents (UAs), and SIP servers. SIP servers can be further grouped into proxy servers for
session routing and registration servers for UA registration. In this paper we focus primarily on
proxy servers. In the remainder of this document, when referring to SIP servers, we mean proxy
server unless explicitly mentioned otherwise. One of the most popular session type that SIP is
used for is voice call session. This is also the type of session we will consider in this paper. In a
typical SIP voice call session, the caller and callee has UA functionalities, and they set up the
session through the help of SIP servers along the path between them. Figure 1 shows the SIP
message flow establishing a SIP call session. The caller starts with sending an INVITE request
message towards the SIP proxy server, which replies with a 100 Trying message and forwards
the request to the next hop determined by name-based application level routing. In Figure 1
the next hop for the only SIP server is the callee, but in reality it could well be another SIP
server along the path. Once the INVITE request finally arrives at the callee, the callee replies
with a 180 Ringing message indicating receipt of the call request by the callee UA, and sends a
200 OK message when the callee picks up the phone. The 200 OK message makes its way back
to the caller, who will send an ACK message to the callee to conclude the call setup. Afterwards,
media may flow between the caller and callee without the intervention of the SIP server. When
one party wants to tear down the call, the corresponding UA sends a BYE message to the other
party, who will reply with a 200 OK message to confirm the call hang-up. Therefore, a typical
SIP call session entails processing of five incoming messages for call setup and two incoming
messages for call teardown, a total of seven messages for the whole session.

SIP is an application level protocol on top of the transport layer. It can run over any
common transport layer protocols, such as UDP and TCP. A particular aspect of SIP related
to the overload problem is its timer mechanism. SIP defines quite a number of retransmission
timers to cope with message loss, especially when the unreliable UDP transport is used. As
examples we illustrate three of the timers which are commonly seen causing problems under
overload. The first is timer A that causes an INVITE retransmission upon each of its expiration.
With an initial value of T1 = 500 ms, timer A increases exponentially until its total timeout
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Figure 2: Server to server overload

period exceeds 32 ms. The second timer of interest is the timer that controls the retransmission
of 200 OK message as a response to an INVITE request. The timer for 200 OK also starts with
T1, and its value doubles until it reaches T2 = 4 s. At that time the timer value remains at T2

until the total timeout period exceeds 32 s. The third timer of interest is timer E which controls
the BYE request retransmission. Timer E follows a timeout pattern similar to the 200 OK timer.
Note that the receipt of corresponding messages triggered by each of the original messages will
quench the retransmission timer. They are the 100 Trying for INVITE, ACK for 200 OK, and 200
OK for BYE. From this description, we know that for example, if an INVITE message for some
reason is dropped or stays in the server queue longer than 500 ms without generating the 100
Trying, the upstream SIP entity will retransmit the original INVITE. Similarly, if the round trip
time of the system is longer than 500 ms, then the 200 OK timer and the BYE timer will fire,
causing retransmission of these messages. Under ideal network conditions without link delay
and loss, retransmissions are purely wasted messages that should be avoided.

2.2 Types of SIP Server Overload

There are many causes to SIP overload, but the resulting SIP overload cases can usually be
grouped into either of the two types: server-to-server overload or client-to-server overload.

A typical server-to-server overload topology is illustrated in Figure 2. In this figure the
overloaded server (the Receiving Entity or RE) is connected with a relatively small number of
upstream servers (the Sending Entities or SEs). One example of server-to-server overload is a
special event like “free tickets to the third caller”, also referred to as Flash Crowds. Suppose
RE is the Service Provider (SP) for a hotline N. SE1, SE2 and SE3 are three SPs that reach
the hotline through RE. When the hotline is activated, RE is expected to receive a large call
volume to the hotline from SE1, SE2 and SE3 that far exceeds its usual call volume, potentially
putting RE into a severe overload.

The second type of overload, known as client-to-server overload, is when a number of clients
overload the next hop server directly. An example is avalanche restart, which happens when
power is restored after a mass power failure in a large metropolitan area. At the time the power
is restored, a very large number of SIP devices boot up and send out SIP registration requests
almost simultaneously, which could easily overload the corresponding SIP registration server.
This paper only discusses the server-to-server overload problem. The client-to-server overload
problem may require different solutions and is out of scope of this paper.

2.3 Existing SIP Overload Control Mechanisms

Without overload control, messages that cannot be processed by the server are simply dropped.
Simple drop causes the corresponding SIP timers to fire, and further amplifies the overload
situation.
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SIP has a 503 Service Unavailable response message used to reject a session request and cancel
any related outstanding retransmission timers. However, because of the relatively high cost of
rejection, this message cannot solve the overload problem.

SIP also defines an optional parameter called “Retry-after” in the 503 Service Unavailable
message. The “Retry-after” value specifies the amount of time that the receiving SE of the
message should cease sending any requests to the RE. The 503 Service Unavailable with “Retry-
after” represents basically an on and off overload control approach, which is known to be unable
to fully prevent congestion collapse [2]. Another related technique is to allow the SE to failover
the rejected requests to an alternative load-sharing server. However, in many situations the
load-sharing server could ultimately be overloaded as well, leading to cascading failure.

2.4 Feedback-based Overload Control

The key to solving the SIP server overload problem is to make sure the upstream SEs only send
the amount of traffic that the RE is able to handle at all times. In this ideal situation, there
will be no message retransmission due to timeout and no extra processing cost due to rejection.
The server CPU power can be fully utilized to deliver its maximum session service capacity.

A feedback loop is a natural approach to achieve the ideal overload control goal. Through
the loop, RE notifies SEs the amount of load that is acceptable.

To some extent the existing SIP 503 Service Unavailable with “Retry-after” mechanism is a
basic form of the feedback mechanism. Unfortunately its on and off control nature has proven
to be problematic. Therefore, the IETF community has started looking at more sophisticated
pushback mechanisms including both rate-based and window-based feedback. A generalized
model of the feedback-based control model is shown in Figure 3. There are three main compo-
nents in the model: feedback algorithm execution at RE, feedback communication from RE to
SE, and feedback enforcement at the SE.

2.4.1 Feedback Algorithms

Absolute rate, relative rate and window feedback are three main SIP feedback control mecha-
nisms. Each mechanism executes specific control algorithms to generate and adapt the feedback
value.

In absolute rate-based feedback, the feedback generation entity RE needs to estimate its
acceptable load and allocate it among the SEs. The feedback information is an absolute load
value for the particular SE. The key element in absolute rate feedback is an algorithm for
dynamic acceptable load estimation.

In relative rate-based feedback, the feedback generation entity RE computes an incoming
load throttle percentage based on a target resource metric (e.g., CPU utilization). The feedback
information is a dynamic percentage value indicating how much proportion of the load should
be accepted or rejected relative to the original incoming load. The key element in relative
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rate feedback is the dynamic relative rate adjustment algorithm and the choosing of the target
metric.

In window-based feedback, the feedback generation entity RE estimates a dynamic window
size for each SE which specifies the number of acceptable sessions from that particular SE. The
feedback information is the current window size. The key element in window-based feedback is
a dynamic window adjustment algorithm.

The feedback generation could be either time-driven or event-driven. In time-driven con-
trol, the control is usually exercised every pre-scheduled control interval, while in event-driven
mechanisms, the control is executed upon the occurrence of some events, such as session service
completion. We will examine both time-driven and event-driven algorithms in this paper.

2.4.2 Feedback Enforcement

The SEs may choose among many well-known traffic regulation mechanisms to enforce feedback
control, such as percentage throttle, leaky bucket and token bucket, automatic call gapping, and
window throttle.

Percentage throttle: percentage throttle is usually used with rate-based mechanism. In
an absolute rate-based mechanism, assuming the target absolute rate is λ′ and the original
incoming rate is λ, then SE should block (1 − λ′/λ) percentage of the requests before sending
the load to the RE. In a relative rate-based mechanism, the blocking percentage is usually
directly available. The implementation of percentage throttle is also simple. One can generate
a random number between 0 and 100 when a request arrives. If the generated number is below
the blocking percentage value, the request is rejected, otherwise it is accepted.

Leaky bucket and token bucket: leaky bucket and token bucket control are two classical
rate control mechanisms used in the Internet. Both of them provide a long term rate cap, while
allow certain traffic burst as specified by the bucket depth. The only difference of these two
mechanisms is how the bursts impact the network. While a leaky bucket absorbs the bursts at the
application input and smooths them out before passing them to the network, the token bucket
passes the burst directly to the network [5]. Both leaky bucket and token bucket mechanisms
can be used to enforce rate-based feedback control, although their use with the absolute rate-
based mechanism is more straightforward because the absolute rate value directly supplies the
most important rate parameter in the two bucket schemes.

Automatic Call Gapping: Automatic call gapping is a technique commonly used in
telecommunication networks to regulate call rate. In automatic call gapping, a gap timer is
started when receiving a call. All calls subsequently received while the gap timer is still active
are blocked. After the gap timer expires, the next call arrival will be accepted and triggers the
start of the gap timer again. From its definition, automatic call gap can be seen as a variation
of the bucket mechanism with a zero burst size. Comparing to the token bucket and leaky
bucket mechanisms, automatic call gapping is more conservative and does not allow burst, the
applicability is similar.

Window Throttle: In a window throttle mechanism, the SE keeps track of the current
window size as advertised by the RE. If there is a window slot available when a new call arrives
at the SE, the call is accepted and forwarded to the RE. Otherwise, the call is blocked by the
SE.

A call that is blocked by any of the load regulation mechanisms above may either be queued
for future sending opportunities or be rejected immediately, leading to the keep vs. discard
blocking mode of feedback enforcement. Essentially the keep mode allows certain level of burst
for incoming traffic depending on the regulation queue size. It is worth noting that the keep mode
is not the necessary condition to allow burstiness. E.g., a token bucket mechanism operating at
discard blocking mode also permits bursts.
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In addition to the burstiness aspect, a more subtle difference between the keep mode and the
discard mode resides in signaling delay. In the keep mode, there is certain delay incurred in the
load regulation queue which is not present in the discard mode. This delay in general does not
affect any SIP retransmission timer, but it does contribute to the overall signaling delay and
therefore has to be kept within a reasonable value.

Considering the difference between the two modes, the keep mode is most suitable when the
load regulation contains internal smoothing functions such as in the leaky bucket mechanism. In
that case the size of the load regulation queue corresponds to the leaky bucket burst parameter.
For other load regulation mechanisms including percentage throttle, token-bucket, automatic
call gapping and window throttle, the discard mode is usually more convenient. All the above
feedback enforcement mechanisms are well-known. Since our focus is on the feedback algorithms,
throughout this document we will use percentage throttle for rate-based feedback and window-
throttle for window-based feedback mechanisms .

2.4.3 Feedback Communication

The feedback information for SIP signaling overload control can be communicated via an in-
band or out-of-band channel. Specifically, an in-band approach may piggyback the feedback
information through some new header fields of existing SIP messages; an out-of-band approach
may use separate SIP messages such as SIP SUBSCRIBE and NOTIFY messages. In general, the
inband approach is more efficient but it does not work well when there are not enough existing
messages to carry the feedback information. On the other hand, the outband approach incurs
more overhead for generating additional messages, but may carry feedback information anytime
necessary.

In this paper, we have chosen to use the in-band feedback communication approach. i.e., any
feedback information available is sent in the next immediate message that goes to the particular
target SE. This approach fits particularly in the server-to-server overload situation because
there is generally no problem finding existing messages to carry feedback information under
overload and it incurs minimal overhead.

2.5 Single-hop vs. Multi-hop Pushback

There are two types of pushback control, single-hop vs. multi-hop. In single-hop pushback, a
feedback loop is constructed between each pair of the two adjacent SIP servers. Since the SE
knows which next hop SIP server is for a received request, it can assess the load condition of
the corresponding next-hop SIP server and execute load regulation mechanism for the incoming
requests.

On the contrary, multi-hop pushback has the feedback loop extends from the overloaded
server to a far upstream SE which may be close to the source of the SIP session. Assuming a
upstream SE needs to regulate load for a downstream RE that is multiple hops away. When the
upstream SE receives a SIP request, it has to first determine whether the request will eventually
go through the specific downstream RE. This is usually not an easy task when there are multiple
hops between the SE and the RE and when SIP routing is not strictly static. In addition, when
any of the SIP servers between the SE and the RE that forwards the feedback information as
part of the multi-hop feedback loop, they have to know the SIP route leading to the specific RE
as well. The middle path servers also need to recursively consolidate information from all the
next hop SIP servers that lead to the RE.

Because of the restricted SIP routing assumption and the apparent complexity in generating
consolidated feedbacks, the multi-hop pushback mechanism is only applicable to some simple
network scenarios and is out of the this document.

2.6 Related Work

Signaling overload itself is a well studied topic. Many of the previous work on call signaling
overload in general communication networks is believed to be usable by the SIP overload study.
For instance, Hosein [6] presented an adaptive rate control algorithm based on estimation of
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message queueing delay; Cyr et. al. [7] described the Occupancy Algorithm (OCC) for load
balancing and overload control mechanism in distributed processing telecommunications systems
based on server CPU occupancy; Karsera et. al. [8] proposed an improved OCC algorithm called
Acceptance-Rate Occupancy (ARO) by taking into consideration the call acceptance ratio, and
also a Signaling RED algorithm which is a RED variant for signaling overload control.

Specifically on SIP, Ohta [9] showed through simulation the congestion collapse of SIP server
under heavy load and explored the approach of using a priority queueing and Bang-Bang type
of overload control. Nahum et. al. [10] reported empirical performance results of SIP server
showing the congestion collapse behavior.

In addition, Whitehead [11] described a unified overload control framework called GOCAP
for next generation networks, which is supposed to cover SIP as well. But there has been no
performance results yet and it is not clear at this time how the GOCAP framework may relate
to the IETF SIP overload framework.

In the most closely related work to this document, Noel and Johnson [12] presented initial
results comparing a SIP network without overload control, with the built-in SIP overload control
and with a rate-based overload control scheme. However, their paper does not discuss window-
based control, or present performance results under dynamic load, and it does not address the
overload fairness problem.

3 Feedback Algorithms for SIP Overload Control

The previous section has introduced the main components of SIP overload feedback control
framework. In this section we investigate its key component - the feedback algorithm. We
propose three window-based SIP overload control methods, namely win-disc, win-cont, and win-
auto. We also apply two existing adaptive load control algorithms for rate-based control. Before
discussing algorithm details, we first introduce a dynamic SIP session estimation method which
plays an important role in applying selected rate-based or window-based algorithms to SIP
overload control.

3.1 Dynamic SIP Session Estimation

Design of SIP overload control algorithm starts with determining the control granularity, i.e., the
basic control unit. Although SIP is a message-based protocol, different types of SIP messages
carry very different weights from admission control perspective. For instance, in a typical
voice call session, admitting a new INVITE message starts a new call and implicitly accepts six
additional messages for the rest of the session signaling. Therefore, it is more convenient to use
a SIP session as the basic control unit.

A session oriented overload control algorithm frequently requires session related metrics as
inputs such as the session service rate. In order to obtain session related metrics a straightfor-
ward approach is to do a “full session check”, i.e., to track the start and end message of all
SIP signaling sessions. For example, the server may count how many sessions have been started
and then completed within a measurement interval. In the case of a voice call signaling, the
session is initiated by an INVITE request and terminated with a BYE request. The INVITE and
BYE are usually separated by a random session holding time. However, SIP allows the BYE
request to traverse a different server from the one for the original INVITE. In that case, some
SIP server may only see the INVITE request while other servers only see the BYE request of a
signaling session. There could also be other types of SIP signaling sessions traversing the SIP
server.These factors make the applicability of the “full session check” approach complicated, if
not impossible.

We use an alternative “start session check” approach to estimate SIP session service rate .
The basic idea behind is that under normal working conditions, the actual session acceptance
rate is roughly equal to the session service rate. Therefore, we can estimate the session service
rate based only on the session start messages. Specifically, the server counts the number of
INVITE messages that it accepts per measurement interval Tm. The value of the session service
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rate is estimated to be µ = Naccepted
inv /Tm. Standard smoothing functions can be applied to the

periodically measured µ.
One other critical session parameter often needed in SIP overload control algorithms is the

number of sessions remaining in the server system, assuming the server processor is preceded by
a queue where jobs are waiting for service. It is very important to recognize that the number of
remaining sessions is NOT equal to the number of INVITE messages in the queue, because the
queue is shared by all types of messages, including those non-INVITE messages which represent
sessions that had previously been accepted into the system. All messages should be counted for
the current system backlog. Hence we propose to estimate the current number of sessions in the
queue using Eq. 1:

Nsess = Ninv +
Nnoninv

Lsess − 1
(1)

where Ninv and Nnoninv are current number of INVITE and non-INVITE messages in the
queue, respectively. The parameter Lsess represents the average number of messages per-session.
Ninv indicates the number of calls arrived at the server but yet to be processed; Nnoninv/(Lsess−
1) is roughly the number of calls already in process by the server.

Eq 1 holds for both the “full session check” and the simplified “start session check” estima-
tion approaches. The difference is how the Lsess parameter is obtained. When the “full session
check” approach is used, the length of each individual session will be counted by checking the
start and end of each individual SIP sessions. With our simplified “start session check” ap-
proach, the session length can be obtained by counting the actual number of messages Nproc

msg ,
processed during the same period the session acceptance rate is observed. The session length is
then estimated to be Lsess = Nproc

msg /Naccepted
inv .

3.2 Active Source Estimation

In some of the overload control mechanisms, the RE may wish to explicitly allocate its total
capacity among multiple SEs. A simple approach is to get the number of current active SEs
and divide the capacity equally. We do this by directly tracking the sources of incoming load
and maintaining a table entry for each current active SE. Each entry has an expiration timer
set to one second.

3.3 The win-disc Control Algorithm

A window feedback algorithm executed at the RE dynamically computes a feedback window
value for the SE. SE will forward the load to RE only if window slots are currently available.
Our first window based algorithm is win-disc, the short name for window-discrete. The main
idea is that at the end of each discrete control interval of period Tc, RE re-evaluate the number
of new session requests it can accept for the next control interval, making sure the delays for
processing sessions already in the server and upcoming sessions are bounded. Assuming the RE
advertised window to SEi at the kth control interval T k

c is wk
i , and the total window size for all

SEs at the end of the kth control interval is wk+1, the win-disc algorithm is described below:

w0
i := W0 where W0 > 0

wk
i := wk

i − 1 for INVITE received from SEi

wk+1 := µkTc + µkDB −Nk
sess at the end of T k

c

wk+1
i := round(wk+1/Nk

SE)

where µk is the current estimated session service rate. DB is a parameter that reflects the
allowed budget message queueing delay. Nk

sess is the estimated current number of sessions in
the system at the end of T k

c . µkTc gives the estimated number of sessions the server is able to
process in the T k+1

c interval. µkDB gives the average number of sessions that can remain in
the server queue given the budget delay. This number has to exclude the number of sessions
already backlogged in the server queue, which is Nk

sess. Therefore, wk+1 gives the estimated total
number of sessions that the server is able to accept in the next Tc control interval giving delay

10



budget DB . Both µk and Nk
sess are obtained with our dynamic session estimation algorithm in

Section 3.1. Nk
SE is the current number of active sources discussed in Section 3.2. Note that the

initial value W0 is not important as long as W0 > 0. An example value could be W0 = µengTc

where µeng is the server’s engineered session service rate.
Note that in this and all following window-based algorithms, although individual window size

is maintained for each active upstream SEs, there is one common SIP processing queue shared
by all of them. When a message is arrived, the current window availability for the specific SE
is always checked. If window slot is available, the message is enqueued. Otherwise, the message
may be dropped or rejected. If all SEs implement the window throttle mechanism correctly,
there should in general be no drop or rejection due to window slot unavailable.

3.4 The win-cont Control Algorithm

Our second window feedback algorithm is win-cont, the short name for window-continuous. Un-
like the time-driven win-disc algorithm, win-cont is an event driven algorithm that continuously
adjusts advertised window size when the server has room to accept new sessions. The main idea
of this algorithm is to bound the number of sessions in the server at any time. The maximum
number of sessions allowed in the server is obtained by Nmax

sess = µtDB , where DB is again the
allowed message queueing delay budget and µt is the current service rate. At any time, the
difference between the maximum allowed number of sessions in the server Nmax

sess and the current
number of sessions Nsess is the available window to be sent as feedback. Depending on the
responsiveness requirements and computation ability, there are different design choices. First is
how frequently Nsess should be checked. It could be after any message processing, or after an
INVITE message processing, or other possibilities. The second is the threshold number of session
slots to update the feedback. There are two such thresholds, the overall number of available slots
Wovth, and the per-SE individual number of available slots Windvth. To make the algorithm
simple, we choose per-message processing Nsess update and we fix both Wovth and Windvth to
1. unless the values need to be changed for comparison purpose. A general description of the
win-cont algorithm is summarized as below:

w0
i := W0 where W0 > 0

wt
i := wt

i − 1 for INVITE received from SEi

wt
left := Nmax

sess −Nsess upon msg processing
if(wt

left ≥ 1)
wt

share = wt
left/N

t
SE

wt
i′ := wt

i′ + wt
share

if(wt
i′ ≥ 1)

wt
i := (int)wt

i′

wt
i′ := (frac)wt

i′

Note that since wt
i may contain a decimal part, to improve the feedback window accuracy

when wt
i is small, we feedback the integer part of the current wt

i and add its decimal part to the
next feedback by using a temporary parameter wt

i′ .
In the algorithm description, µt, Nsess and NSE are obtained as discussed in Section 3.1 and

Section 3.2. The initial value W0 is not important and a reference value is W0 = µengTc where
µeng is the server’s engineered session service rate.

3.5 The win-auto Control Algorithm

Our third window feedback algorithm, win-auto stands for window-autonomous. Like win-cont
, win-auto is also an event driven algorithm. But as the term indicates, the win-auto algorithm
is able to make window adjustment autonomously. The key design principal in the win-auto
algorithm is to automatically keep the pace of window increase below the pace of window
decrease, which makes sure the session arrival rate does not exceed the session service rate. The
algorithm details are as follows:
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w0
i := W0 where W0 > 0

wt
i := wt

i − 1 for INVITE received from SEi

wt
i := wt

i + 1 after processing a new INVITE

The beauty of this algorithm is its extreme simplicity. The algorithm takes advantage of the
fact that retransmission starts to occur as the network gets congested. Then the server auto-
matically freezes its advertised window to allow processing of backlogged sessions until situation
improves. The only check the server does is whether an INVITE message is a retransmitted
one or a new one, which is just a piece of normal SIP parsing done by any existing SIP server.
There could be many variations along the same line of thinking as this algorithm, but the one
as described here appears to be one of the most natural options.

3.6 The rate-abs Control Algorithm

We implemented an absolute rate feedback control by applying the adaptive load algorithm of
Hosein [6], which is also used by Noel [12]. The main idea is to ensure the message queueing
delay does not exceed the allowed budget value. The algorithm details are as follows.

During every control interval Tc, the RE notifies the SE of the new target load, which is
expressed by Eq.2.

λk+1 = µk(1− (dk
q −DB)

C
) (2)

where µk is the current estimated service rate and dk
q is the estimated server queueing delay

at the end of the last measurement interval. It is obtained by dk
q = Nsess/µk, where Nsess is

the number of sessions in the server. We use our dynamic session estimation in Section 3.1 to
obtain Nsess, and we refer to this absolute rate control implementation as rate-abs in the rest
of this document.

3.7 The rate-occ Control Algorithm

Our candidates of existing algorithms for relative rate based feedback control are Occupancy
Algorithm (OCC) [7], Acceptance-Rate Occupancy (ARO), and Signaling RED (SRED) [8].
We decided to implement the basic OCC algorithm because this mechanism already illustrates
inherent properties with any occupancy based approach. On the other hand, tuning of RED
based algorithm is known to be relatively complicated.

The OCC algorithm is based on a target processor occupancy, defined as the percentage of
time the processor is busy processing messages within a measurement interval. So the target
processor occupancy is the main parameter to be specified. The processor occupancy is measured
every measurement interval Tm. Every control interval Tc the measured processor occupancy
is compared with the target occupancy. If the measured value is larger than the target value,
the incoming load should be increased. Otherwise, the incoming load should be decreased. The
adjustment is reflected in a parameter f which indicates the acceptance ratio of the current
incoming load. f is therefore the relative rate feedback information and is expressed by the
Eq. 3:

fk+1 =





fmin, if φkfk < fmin

1, if φkfk > 1
φkfk, otherwise

(3)

where fk is the current acceptance ratio and fk+1 is the estimated value for the next control
interval. φk = min(ρB/ρk

t , φmax). fmin exists to give none-zero minimal acceptance ratio,
thus prevents the server from completely shutting off the SE. φmax defines the maximum
multiplicative increase factor of f in two consecutive control intervals. In this report we choose
the two OCC parameters φmax and fmin to be 5 and 0.02, respectively in all our tests.

We will refer to this algorithm as rate-occ in the rest of this document.
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4 Simulation Model and Basic Performance

4.1 Simulation Platform

We have built a SIP simulator on the popular OPNET modeler simulation platform. Our SIP
simulator captures both the INVITE and non-INVITE state machines as defined in RFC3261. It
is also one of the independent implementations in the IETF SIP server overload design team,
and has been verified in design team under common simulation scenarios.

Our general SIP server model consists of a FIFO queue followed by a SIP processor. De-
pending on the control mechanisms, specific overload related pre-queue or post-queue processing
may be inserted, such as window increase and decrease mechanisms. The feedback information
is included in a new overload header of each SIP messages, and are processed along with normal
SIP message parsing. Processing of each SIP messages creates or updates transaction states as
defined by RFC3261. The transport layer is UDP, and therefore all the various SIP timers are
in effect.

Our UA model mimics an infinite number of users. Each UA may generate calls at any rate
according to a specified distribution and may receive calls at any rate. The processing capacity
of UA is assumed to be infinity since we are interested in the server performance.

4.2 Simulation Topology and Configuration

We use the topology in Figure 2 for current evaluations. There are three UAs on the left,
each represents infinite number of callers. Each UA is connected to an SE. The three SEs all
connect to the RE which is the potentially overloaded server. The queue size is 500 messages.
The core RE connects to UA0 which represents infinite number of callees. Calls are generated
with exponential inter-arrival from the callers at the left to the callees on the right. Each call
signaling contains seven messages as illustrated in Figure 1. The call holding time is assume to
be exponentially distributed with average of 30 seconds. The normal message processing rate
and the processing rate for rejecting a call at the RE are 500 messages per second (mps) and
3000 mps, respectively.

Note that the server processer configuration, together with the call signaling pattern, results
in a nominal system service capacity of 72 cps. All our load and goodput related values presented
below will be normalized to this system capacity. Our main result metric is goodput, which
counts the number of calls with successful delivery of all five call setup messages from INVITE
to ACK below 10 s.

For the purpose of this simulation, we also made the following assumptions. First: we
do not consider any link transmission delay or loss. However, this does not mean feedback
is instantaneous, because we assumed the piggyback feedback mechanism. The feedback will
only be sent upon the next available message to the particular next hop. Second, all the edge
proxies are assumed to have infinite processing capacity. By removing the processing limit of
the edge server, we avoid the conservative load pattern when the edge proxy server can itself be
overloaded.

These simple yet classical network configuration and assumptions allow us to focus primarily
on the algorithms themselves without being distracted by factors of less importance, which may
be further explored in future work.

4.3 SIP Overload Without Feedback Control

For comparison, we first look at SIP overload performance without any feedback control.
Figure 4 shows the simulation results in two basic scenarios. In the “Simple Drop” scenario,

any message arrived after the queue is full are simply dropped. In the “Threshold Rejection”
scenario, the server compares its queue length with a high and a low threshold value. If the
queue length reaches the high threshold, new incoming INVITE requests will be rejected but
other message are still processed. The processing of new INVITE requests will not be restored
until the queue length falls below the low threshold. As we can see, the two result goodput curves
almost overlap. Both cases display similar precipitous drop when the offered approximates the
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Figure 4: SIP overload with no feedback control

server capacity, a clear sign of congestion collapse. However, the reasons for the steep collapse
of the goodput are quite different in the two scenarios. We use the offered load of 450 cps as an
example to illustrate more details in both cases which are shown in Figure 5 and Figure 6. For
easy display, the curves are moving average smoothed over 60 seconds.

From Figure 5 and Figure 6 we can see that, a bit contrary to intuition, in the “Simple Drop”
mechanism, one third of all calls are still delivered to and responded by the callee, while with
”Threshold Rejection” no calls could reach the callee. Further exploring Figure 5, we found the
following problems associated with that scenario. Since all messages are competing resources
with the same priority, the volume of a particular type of the message determines its success
probability. The 180 RINGING messages does not retransmit so it has the lowest volume and
almost got completed dropped. The 200 OK messages retransmission mechanism gives itself
ten times of the volume of 180 RINGING. The INVITE messages has three fewer retransmission
opportunities per message compared with the retransmission opportunities of 200 OK. But its
original volume is much larger than the original volume of 200 OK since the number of 200
OK messages is only the fraction of the INVITE that arrive at the callee. Overall, the INVITE
volume is still clearly larger than the 200 OK volume. (Note that if there are more than one
congested server in the path, the INVITE message will have an additional advantage over 200
OK in getting through because of its hop-by-hop reliability delivery vs. the 200 OK’s end-to-end
reliability delivery.) Figure 5 shows both INVITE and 200 OK only have a very small portion of
their messages got processed.

For the “Threshold Rejection” case, the reason no calls are delivered to the callee is that the
queue size is constantly at the edge of full occupancy. Therefore, almost all INVITE messages
are either rejected or dropped. The server virtually spends all its time rejecting calls.

There are various quick improvements we can make to the above two scenarios given our
observation. For example, for ”Simple Drop”, we could assign higher priority for 200 OK, or
release the assumption of mandatory receipt of 180 RINGING message. However, our simulation
with those fixes show virtually no improvements in performance because the server is still always
flooded with much higher load then it can handle. For ”Threshold Rejection”, one fix would be
to place an artificial cap on the fraction of CPU power that could be used for rejecting calls.
But this would not work out because excessive calls beyond the server’s rejection capacity would
still be dropped and those dropped calls would introduce a retransmission flood that paralyzes
the server.

5 Steady Load Performance

5.1 Parameter Summary for Different Feedback Algorithms

We summarize in table 1 the parameters for all rate-based and window-based overload control
algorithms we discussed in Section 3. In essence most of the algorithms have a “binding”
parameter, three of them use the budget queueing delay DB , and one uses the budget CPU
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Figure 5: “Simple Drop” mechanism
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Figure 6: “Threshold Rejection” mechanism
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Table 1: Parameter sets for overload algorithms
Algorithm Binding Control Measure Additional

Interval Interval
rate-abs DB Tc Tm

rate-occ ρB Tc Tm fmin and φ

win-disc DB Tc Tm

win-cont DB
∗ N/A Tm

win-auto N/A† N/A N/A

DB: budget queueing delay
ρB: CPU occupancy
Tc: discrete time feedback control interval
Tm: discrete time measurement interval for selected server metrics;
fmin: minimal acceptance fraction
φ: multiplicative factor
∗ DB recommended, fixed binding window size also possible
† Optionally DB may be applied for corner cases

occupancy ρB . All three discrete time control algorithms have a control interval parameter Tc.

5.2 The win-disc Control Algorithm

We looked at the sensitivity of DB and Tc for each applicable algorithms. Figure 7 and Figure 8
show the results for win-disc. All the load and goodput values have been normalized upon the
theoretical maximum capacity of the server.

We started with a Tc value of 200 ms and found that the server achieves the unit goodput
when DB is set to 200 ms. Other 0 < DB <200 ms values also showed similar results. This
is not surprising given that both the SIP caller INVITE and callee 200 OK timer starts at T1

= 500 ms. If the queueing delay is smaller than (1/2)T1 or 250 ms, then there should be no
timeout either on the caller or callee side. A larger value of DB triggers retransmission timeouts
which reduces the server goodput. For example, Figure 7 shows that at DB = 500 ms, the
goodput has already degraded by 25%.

Letting D =200 ms, we then looked at the influence of Tc. As expected, the smaller the
value of Tc the more accurate the control would be. In our scenario, we found that a Tc value
smaller than 200 ms is sufficient to give the theoretical maximum goodput. A larger Tc quickly
deteriorates the results as seen from Figure 8.

5.3 The win-cont Control Algorithm

The win-cont algorithm has one main parameter which is the budget queueing delay DB . The
goodput results under increasing load at different values of DB is shown in Figure??. According
to the algorithm, DB should be larger than zero. Because the event-driven win-cont algorithm is
more accurate and finer grained in window control than win-disc. The range of DB values that
achieves theoretical maximum goodput expands to 400 ms, which is wider than the win-disc
case. It should be noted that when DB is set to 400 ms, the server is still at the theoretical
maximum goodput. That means the budget queueing delay is not fully used. In this particular
case, the actual server queuing delay is only around 100 ms, thus prevents the SIP retransmission
timer from firing.

Although win-cont is not time-driven and does not have the notion of an explicitly de-
fined fixed control interval, we can simulate different control frequency by changing the overall
available window slot update threshold Wovth, as shown in Figure 10. Since one window slot
corresponds to around 14 ms, the Wovth value of 1, 2, 7, 14 correspond to roughly 14 ms, 28 ms,

16



����������������� � � � � � � � 	 � 
��
�� ��� ��� � � � � � �� ��� � ��� �� � � ��� ��� � ��� �� � � ��� ��� � ��� �� � � ��� ��
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Figure 8: win-disc goodput under different control interval Tc
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Figure 9: win-cont goodput under different budget queuing delay
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Figure 10: win-cont goodput under different Wovth

98 ms, 196 ms. It can be seen that the performance remains at the theoretical maximum in all
cases, both at light and heavy overload.

5.4 The win-auto Control Algorithm

The win-auto algorithm has virtually no parameters during normal operation. In evaluating the
steady state performance, we do need to supply an initial window value. We found that the
choice of appropriate initial window depends on the load pattern. If we consider the extreme
case where the load pattern is a step function, the choices of the initial window parameter are
described below.

If the steady load target of the step function is below the server capacity, a window size that
is very small (e.g. one) will render a goodput somewhat below the maximum. There are two
ways to solve this problem: one is to disable the window-control when the load is below the
server capacity. This introduces an additional feedback activation threshold parameter. The
other approach is simply to supply a relatively larger initial window size. We found that a value
in the order of ten works well.

If the steady load target exceeds the server capacity, am extremely small window size (e.g.,
1) is almost always sufficient to result in an ideal maximum goodput. A larger initial window
size in the order of ten in this situation may sometimes lead to suboptimal performance of not
reaching the maximum theoretical goodput. Further investigation reveals that, this suboptimal
performance is caused by the difference in stabilized queueing delay. If the initial window size
is one, when the system reaches steady state, the queueing delay is very small compared to the
500 ms SIP T1 timer. If a larger initial window is applied, however, the system may stabilizng at
a point where the queueing delay can exceed 250 ms. The round-trip delay then exceeds 500 ms,
which triggers the 200 OK and the BYE retransmission timer, both fire at 500 ms. The two
timer expiration introduce three additional messages to the system, a retransmitted 200 OK,
the ACK to the retransmitted 200 OK, and a retransmitted BYE. This situation increases the
normal session length from seven to ten and reduces the maximum server goodput by 28%. A
cure to this situation is to introduce an extra queueing delay binding parameter to the window
adjustment algorithm. Specifically, before the server increases the window size, it checks the
current queueing delay, if the queueing delay value already exceeds the desired threshold, the
window is not increased. However, the optimal value of the queueing delay threshold parameter
is not very straightforward and the introducing of the additional parameter leads to much more
complexity. Figure 11 shows an example. At a load of 8.3, the original goodput of the win-auto
algorithm is about 0.7, which is sub-optimal. When the additional delay check is applied and
D = 200 ms, the system reaches theoretical goodput of 1. In other cases when D = 100 ms or
D = 300 ms the goodput does not offer as much improvement.

With all the above considerations for choosing the initial window value, it is important to
keep in mind that in realistic scenarios the decision is much easier and the sub-optimal behavior

18



�����������������
� �� ��� ��� ��� ��� ��� ��� ��� ��� ���	
�� 
����� ��� ��� ��������� � ����������� �  !"#$ %&���'( �  !"#$%&���'( �  !"#$ %&���'( �  !"#$) �!  **+�+!
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Figure 12: The win-auto goodput under different initial window size

can mostly be avoided without the added delay binding. Normally loads are increased gradually
when a server starts. Choosing an initial window value in the order of ten is usually appropriate.
Once the startup phase is finished, the server window size stabilizes at a pretty small value and
operates as a zero-parameter autonomous system close to its maximum capacity. Figure 12
shows the results of win-auto under steady loads, all the loads have an increase rate of two
sessions per second until it reaches the specified stable rate. It is seen to achieve maximum
theoretical goodput at all the four different initial window size of 5, 10, 20, 50.

5.5 The rate-abs Control Algorithm

The two main parameters of the rate-abs algorithm are control interval Tc and budget queuing
delay DB . The goodput of rate-abs under different budget queuing delay when Tc = 200 ms is
shown in Figure 13. The effects of Tc given with budget queueing delay D = 200 ms is plotted
in Figure 14 The sensitivity of rate-abs to the two parameters Tc and D is less than win-disc,
and overall performance is in between win-auto and win-disc. This could be partially attributed
to the fact that rate-abs employees a percentage-throttle at the SE, which result in less bursty
of the traffic sending to the RE compared to win-disc. On the other hand, the event driven
win-cont offers a more accurate than the time-driven algorithms.
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Figure 13: rate-abs goodput under different queuing delay budget
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Figure 14: rate-abs goodput under different control interval
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Figure 16: rate-occ goodput under different Tc

5.6 The rate-occ Control Algorithm

The rate-occ algorithm has a number of parameters φmax, fmin, U and Tc. We set φmax = 5,
fmin = 0.02, Tc = 200 ms and plot the goodput under different values of ρB in Figure 15. As it
shows, under the specific setting, ρB = 85% gives the best goodput performance which is about
0.85, matching the CPU occupancy level. ρB = 100% results in virtually no control. For other
values, the higher the ρB the better the performance for the light overhead immediately after
passing the server saturation point, but the stable goodput drops to 0.6 - 0.7 when ρB = 95%.

Figure 15 shows rate-occ under different control intervals given the same φmax, fmin and
with ρB set to 85%. When Tc increases to over 200 ms, the stable goodput during overload
decreases as expected. What is particularly interesting in this figure is that unlike rate-abs and
win-disc where lower Tc always result in better performance, in rate-occ the performance under
a short control interval is more complicated. For example, the results of Tc = 50 ms show
some degradation in the stable goodput under heavy load compared to Tc = 200 ms. But at
Tc = 14 ms, the results show a surprising up trend at the heavy overload region over load of 4,
although The goodput of the light overload region below load of 1.4 is poorer than all the rest
scenarios. These are caused by the multiplicative increase/decrease nature of the algorithm,
and the choice of the multiplicative increase/decrease factor would affect the exact behavior. In
fact, when the Tc = 14 ms, the algorithm is no longer working in the close region of 85% CPU
occupancy as originally desired, instead the CPU occupancy reaches 93% at the load of 8.4.
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Figure 18: Goodput vs. DB at load value 8.4

5.7 Comparing Performance of the Different Algorithms

There are two interval parameters Tm and Tc used by a subset of the algorithms. Tm is used
by four of the five algorithms. Tm and Tc need to be separate only when Tc is relatively large
compared to Tm. The choice of the Tm value depends on how volatile the target server metric is
over time. For example, if the target metric is the server service rate, which is relatively stable,
a value of 100 ms is usually more than sufficient. If on the other hand, the target metric is the
current queue length, then smaller or larger Tm makes clear differences. In our study, when
the specific algorithm requires to measure the server service rate and CPU occupancy, we apply
Tm; when the algorithm requires information on the current number of packets in the queue, we
always obtain the instant value. Our results show that Tm = min(100 ms, Tc) is a reasonable
assumption, by which we reduce the two interval parameters into one.

In Figure 17 and Figure 18, we plotted the goodput results from three algorithms win-cont,
win-disc and rate-abs under different DB values under two different load conditions: at the edge
of overload where load is 1, and a heavy overload where load is 8.4.

Since the win-cont algorithm does not allow DB to be zero, the value for win-cont at 0 ms
is not reported. For other DB values, all three algorithms perform very similar. The only
difference for win-disc and rate-abs is at DB = 0, where rate-abs is better than win-disc at light
overload. The DB parameter essentially provides some bursty capability at the server. So this
could be related to the fact that the window throttle mechanism used by win-disc results in a
more busty arrival at the server than the percentage throttle mechanism in rate-abs. In any
case, it is clear that a positive DB value centered at around 200 ms provides a good outcome.
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Figure 20: Goodput vs. Tc at load 8.4

23



Table 2: Parameters used for comparison
DB(ms) Tc(ms) Tm(ms)

rate-abs 200 200 100
rate-occ1‡ N/A 200 100
rate-occ2‡ N/A 14 14
win-disc 200 200 100
win-cont 200 N/A 100
win-auto N/A N/A N/A

‡ in addition: ρtg = 0.85, φ = 5, fmin = 0.02

Figure 19 and Figure 20 compare the Tc parameter for win-disc, rate-abs and rate-occ with
BD = 200 ms. For the rate-occ binding parameter ρB , we used 85% for the tests in Figure 19
and Figure 20. We will explain why this value is chosen shortly. It can be seen that the
performance of win-disc and rate-abs are very close to maximum theoretical value in all cases
except for when Tc = 1 s in the heavy load case. This shows win-disc is more sensitive to control
interval than rate-abs, which could also be caused by the more busty nature of the traffic resulted
from window throttle. It is clear that for both win-disc and rate-abs a shorter Tc improves the
results, and a value below 200 ms is sufficient. Overall, rate-occ performs not as good as the
other two. But what is interesting about rate-occ is that from 14 ms to 100 ms control interval,
the goodput increases in light overload and decreases in heavy overload. This could be a result
of rate adjustment parameters which may have cut the rate too much at the light overload.

Having looked at various parameters for all different algorithms, we now summarize the
best goodput achieved by each algorithm in Figure 21. The specific parameters used for each
algorithm is listed in Table 2.

It is clear from Figure 21 that all algorithms except for rate-occ are able to reach the theoreti-
cal maximum goodput. The corresponding CPU occupancy also confirms the goodput behavior.
What is important to understand is that the reason rate-occ does not operate at the maximum
theoretical goodput like the others is not simply because of the artificial limit of setting the
occupancy to 85%. This point can be confirmed by the earlier Figure 15. The inherent issue
with an occupancy based heuristic is the fact that occupancy is not as direct a metric as queue
length or queueing delay in solving the overload problem. Figure 21 shows one factor that really
helps improve the rate-occ performance at heavy load seem to be using extremely small Tc.
But updating the current CPU occupancy every 14 ms is not straightforward in all systems.
Furthermore, when this short Tc is used, the actual server occupancy rises to 93%, which goes
contrary to the original intention of setting the 85% budget server occupancy. Yet another issue
with setting the extremely short Tc is its much poorer performance than other algorithms under
light overload, which should be linked to the tuning of OCC’s heuristic increase and decrease
parameters.

The merits of all the algorithms achieving maximum theoretical goodput is that they ensure
no retransmission ever happens, and the server is thus always busy processing messages, with
each single message being part of a successful session.

Another metric of interest for comparison is the session setup delay, which we define as from
the time the INVTE is sent until the ACK to 200 OK message is received. We found that the
rate-occ algorithm has the lowest delay but this is not significant considering it operates at the
sub-optimal region in terms of goodput. win-cont comes next with a delay of around 3 ms. The
rate-abs offers a delay close to that of win-cont at about 3.5 ms. The remaining two win-disc
and win-auto have a delay of 5 ms and 6 ms respectively. In fact all these values are sufficiently
small and are not likely make any difference.

From the steady state load analysis so far, we conclude that the occupancy based approach
is less favorable than others because of its relatively more number of tuning parameters and
not being able to adapt to the most efficient processing condition for the maximum goodput.
win-disc and abs-rate are by definition quite similar and they also have the same number of
parameters. Their performance are also very close, although rate-rate has shown a slight edge,
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Figure 21: Goodput performance for different algorithms
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Figure 22: The double feed architecture

possibly because of the smoother arrival pattern resulted from percentage throttle. win-cont has
less tuning parameter than win-disc and abs-rate, and offers equal or slightly better performance
Finally, win-auto is an extremely simple algorithm yet achieves perfect results in most situations.

6 Dynamic Load Performance and Fairness for SIP Over-
load Control

Although steady load performance is a good starting point for evaluating the overload control
algorithms, most of the regular overload scenarios are not persistent steady overload. Otherwise,
the issue would become a poor capacity planning problem. The realistic server to server overload
situations are more likely short periods of bulk loads, possibly accompanied by new sender
arrivals or departures. Therefore, in this section we extend our evaluation to the dynamic
behavior of overload control algorithms under load variations. Furthermore, we investigate the
fairness property of each of the algorithms.
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6.1 Fairness for SIP Overload Control

6.1.1 Defining Fairness

Under overload, the server may allocate its available capacity among all the upstream senders
using criteria considered fair. Theoretically, fairness can be coupled with many other factors and
could have unlimited number of definitions. However, we see two basic types of fairness criteria
which may be applicable in most scenarios: service provider-centric and end-user-centric.

If we consider the upstream servers representing service providers, a service-provider centric
fairness means giving all the upstream servers the same aggregate success rate.

The user-centric fairness criteria aim to give each individual user who are using the overloaded
server the same chance of call success, regardless of where the call originated from. Indeed, this
end-user-centric fairness may be preferred in regular overload situation. For example, in the TV
hotline “free tickets to the third caller” case, user-centric fairness ensures that all users have
equal winning probability to call in. Otherwise, a user with a service provider who happens to
have a large call volume would be in a clear disadvantage.

6.1.2 Achieving Fairness

Technically, achieving the basic service provider-centric fairness is easy if the number of active
sources are known, because the overloaded server simply needs to split its processing capacity
equally in the feedback generated for all the active senders.

Achieving user-centric fairness means the overloaded server should split is capacity pro-
portionally among the senders based on the senders original incoming load. For the various
feedback mechanisms we have discussed, technically the receiver in both the absolute rate-based
and window-based feedback mechanisms does not have the necessary information to do pro-
portional capacity allocation when the feedback loop is activated. The receiver in the relative
rate-based mechanism does have the ability to deduce the proportion of the original load among
the senders.

To achieve user-centric fairness in absolute rate and window-based mechanisms, we intro-
duce a new feedforward loop in the existing feedback architecture. The resulting double-feed
architecture is shown in Figure 22. The feedforward information contains the sender measured
value of the current incoming load. Like the feedback, all the feedforward information is nat-
urally piggybacked in existing SIP messages since SIP messages by themselves travel in both
directions. This way the feedforward introduces minimal overhead as in the feedback case. The
feedforward information from all the active senders gives the receiver global knowledge about
the original sending load. It is worth noting that, this global knowledge equips the receiver with
great flexibility that also allows it to execute any kind of more advanced user-centric or service
provider-centric fairness criteria. Special fairness criteria may be required, for example, when
the server is experiencing denial of service attack instead of regular overload.

6.2 Dynamic Load Performance

Figure 23 depicts the arrival pattern for our dynamic load test. We used the step function
load pattern because if the algorithm works in this extreme case, it should work in less harsh
situations. The three UAs each starts and ends at different time, creating an environment of
dynamic source arrival and departure. Each source also has a different peak load value, thus
allowing us to observe proportional fairness mechanisms when necessary.

Figure 24, Figure 25 and Figure 26 show the performance of rate-abs, win-disc and win-cont
under dynamic load. In all cases, the goodput follows well with the change of total offered load.
As long as the total offered load exceed the server capacity, the total goodput is around 1.

The results also show that in the rate-abs and win-dsic case, when the total offered load
exceeds the server capacity, the goodput shared by each active source is roughly equal, achieving
provider-centric fairness. In the case of win-cont, the share of allocation is not clear. This means
that the basic algorithm in Section 5.3, although intended to achieve equal capacity for each
source, does not actually guarantee that. However, we will present below an improved win-cont
algorithm which can solve this problem.
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Figure 25: win-disc goodput under dynamic load����������������� � ��� ��� ��� ��� ���� ���� ���� ���� ������	
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Figure 26: win-cont goodput under dynamic load
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Figure 27: win-disc goodput under dynamic load with equal user success rate����������������� � ��� ��� ��� ��� ���� ���� ���� ���� ������	
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Figure 28: rate-abs goodput under dynamic load with equal user success rate

6.2.1 The rate-abs, win-disc and win-cont Control Algorithms

As we mentioned in Section 6.1.2, the inherent property of absolute rate or window feedback
mechanisms such as rate-abs, win-disc and win-cont make them impossible to achieve user-
centric fairness without additional work. We therefore introduced the double-feed architecture
with which the RE is informed of the original incoming load from each sources before the load
regulation is applied. We then make modifications to the algorithms in Section 3.3, Section 5.3
and Section 5.5. In the rate-abs and win-disc cases, the modification is straightforward, we
simply divide the available total rate or window size proportionally among the active sources.
The results are shown in Figure 27 and Figure 28. In both cases the goodput are proportionally
shared among the active sources.

In the win-cont case, the total available window size during each feedback update could be
very small, and most of the times close to one. Simply dividing the small available total window
size proportionally and update the feedback as it accumulates to an integer value could cause
noticeable differences between the actual share and the expected share of the capacity. This
is also the reason why the basic win-cont algorithm does not provide equal allocation for the
upstream senders. Therefore, we propose an improved win-cont allocation algorithm based on
weighted fair processing, which gives better accuracy for small window allocation for multiple
upstream senders. The algorithm is described as below:

w0
i := W0 where W0 > 0

w0
left′ := 0

wt
i := wt

i − 1 for INVITE received from SEi

wt
left := Nmax

sess −Nsess upon msg processing
wt

left := wt
left + wt

left′

if(wt
left ≥ 1)
wt

left′ = (frac)(wt
left)
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wt
share = (int)(wt

left)
Assuming the proportion of original load from SEi is P%

wt
i := wt

share with probability P/100

A simple way to implement the probabilistic allocation of the available window is to assign
each active SE a specific range between 0 to 100 . The range length is proportional to the
SE’s share of the total original load. Each range does not overlap, and the sum of all range
length is 100. Each time during an allocation decision, a random number between 0 and 100
is generated. The allocation belongs to the SE whose assigned range covers the generated
number. For example, three SEs each contributes 10%, 30%, 60% of the the total incoming
load are assigned range value of 0-10, 10-40, and 40-100 respectively. A randomly generated
number of 20 falls into the range of te second SE, while a randomly generated number of 50 falls
into the range of the third SE. The results from this algorithm is shown in Figure 29 through
Figure 31. The goodput from three sources are shown separately for clarity.

It can be seen that UA1 starts at the 100th second with load 0.57 and gets a goodput of
the same value. At the 400th second, UA2 is started with load 1.68, three times of UA1’s
load. UA1’s goodput quickly declines and reaches a state where it shares the capacity with
UA2 at a one to three proportion. At the 700th second, UA3 is added with a load of 3.36.
The combination of the three active sources therefore has a load of 5.6. We see that both UA1
and UA2’s goodput immediately decrease. The three sources settle at a stable situation with
roughly 0.1, 0.3, and 0.6 goodput, matching the original individual load. At the 1000th second,
the bulk arrival of UA3 ends and UA3 left the system. The allocation split between UA1 and
UA2 restores to the similar situation before UA3’s arrival at the 700th second. Finally, at the
1300th second, UA1 departs the system, leaving UA2 with load 1.68 alone. Since the load is
still over the server capacity, UA2 gets exactly the full capacity of the system with a goodput
of 1.

Since equal allocation to each sources can be seen as a special case of the proportional allo-
cation, this improved algorithm can naturally achieve the basic service-provider centric fairness
for win-cont as well.

6.2.2 The rate-occ Control Algorithm

The dynamic performance of rate-occ is shown in Figure 32 through Figure 34. The goodput
change also adapts to the offered load change reasonably fast, although the total goodput does
not reach 1 for the same reason as explained in the steady state performance of rate-occ. In
addition, as can be expected from the original algorithm, rate-occ by default achieves user-
centric fairness because all the SEs throttle the same percentage of its original incoming load.
On the other hand, if rate-occ is required to provide basic provider-centric fairness by giving
equal allocation to all the SEs, the RE will need to estimate the proportional share of each
SE from their incoming load, and then compute the individual throttle percentage for each of
them.

6.2.3 The win-auto Control Algorithm

Figure 35 through Figure 37 illustrate the dynamic performance of the simplest win-auto al-
gorithm. We see that with source arrival and departure, the system still always reaches the
maximum goodput as long as the current load is larger than the server capacity. A difference
from the other algorithms is that it could take a noticeably longer adaptation time to reach the
steady state under certain load surge. For example, if we look at Figure 36 which is the goodput
for ua2, at the 700th second when the load increases suddenly from 2.25 to 5.6, it took over 60 s
seconds to completely stabilize. However, the good thing is once steady state is reached, the
total goodput of all three UAs adds up to one. Moreover, performance under source departure
is good. At 1300th second, when UA2 becomes the only UA in the system, its goodput quickly
adapts to 1. There is, however, one specific drawback of the win-auto mechanism. Since there
is basically no processing intervention in this algorithm, we found it hard to enforce an explicit
share of the capacity. The outcome of the capacity split seem to be determined by the point
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Figure 30: win-cont ua2 goodput with dynamic load����������������	 � ��� ��� ��� ��� 	��� 	��� 	��� 	��� 	���
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Figure 31: win-cont ua3 goodput with dynamic load
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Figure 33: rate-occ ua2 goodput with dynamic load����������������		�� � ��� ��� ��� ��� 	��� 	��� 	��� 	��� 	���
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Figure 34: rate-occ ua3 goodput with dynamic load
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when the system reaching the steady state which is not easy to predict. Therefore, win-auto
may not be a good candidate when explicit fairness is required. But because of its extreme
simplicity, as well as near perfect steady state aggregate performance, win-auto may still be a
good choice in some situations.

In summary, for dynamic behavior, our simulation shows that all algorithms except win-auto
adapts well to the offered dynamic load, showing little transition difference during new source
arrival and existing source departure as well as at load change boundaries.

As far as fairness is concerned, the rate-occ algorithm by default can provide user-centric fair-
ness; the basic rate-abs, win-disc and win-cont algorithms are capable of service provider centric
fairness by allocating equal amount of capacity to each SE. After implementing our double-
feed architecture with sources reporting the original load to the RE, we are able to achieve
user-centric fairness in all rate-abs, win-disc and win-cont algorithms through a proportional
allocation of total RE capacity according to SEs’ original incoming load.

7 Conclusions and Future Work

The SIP server overload problem is interesting for a number of reasons: first, the cost of rejecting
a request could not be ignored as compared to the cost of serving a request; Second, the various
SIP timers lead to many retransmissions in overload and amplify the situation; Third, SIP has
a server-to-server application level routing architecture. The server-to-server architecture helps
the deployment of a pushback SIP overload control solution. The solution can be based on
feedback of absolute rate, relative rate, or window size.

We proposed three window adjustment algorithms win-disc, win-cont and win-auto for window-
based feedback and resorted to two existing rate adjustment algorithms for absolute rate-based
feedback rate-abs and relative rate-based feedback rate-occ. Among these five algorithms, win-
auto is the most SIP specific, and rate-occ is the least SIP specific. The remaining three win-disc,
win-cont, and rate-abs are generic mechanisms, and need to be linked to SIP when being applied
to the SIP environment. The common piece that linked them to SIP is the dynamic session
estimation algorithm we introduced. It is not difficult to imagine that with the dynamic session
estimation algorithm, other generic algorithms can also be applied to SIP.

Now we summarize various aspects of the five algorithms.
The design of most of the feedback algorithms contains a binding parameter. Algorithms

binding on queue length or queueing delay such as win-disc, win-cont and rate-abs outperform
algorithms binding on processor occupancy such as rate-occ. Indeed, all of win-disc, win-cont
and rate-abs are able to achieve theoretical maximum performance, meaning the CPU is fully
utilized and every message processed contributes to a successful session, with no wasted message
in the system at all. On the other hand, occupancy based heuristic is a much coarser control
approach. The sensitivity of control also depends on the extra multiplicative increase and
decrease parameter tuning. Therefore, from steady load performance and parameter tuning
perspective, we favor algorithms other than rate-occ.

The adjustment performed by each algorithm can be discrete time driven such as in win-disc
and rate-abs, rate-occ or continuous event driven such as in win-cont and win-auto. Normally
the event-driven algorithm could have smaller number of tuning parameters and also be more
accurate. But with a sufficiently short discrete time control interval the difference between
discrete and continuous adjustments would become small.

We found that all the algorithms except win-auto adapts well to traffic source variations
as well as bulk arrival overload. When we further look at the fairness property, especially the
user-centric fairness which may be preferable in many practical situations, we found the rate-
occ realizes it by default. All other algorithms except win-auto can also achieve it with our
introduction of the double-feed SIP overload control architecture.

Finally, win-auto frequently needs to be singled out because it is indeed special. With
an extremely simple implementation and virtually zero parameter, it archives a remarkable
steady load aggregate output in most cases. The tradeoff to this simplicity is a noticeable
load adaptation period upon certain load surge, and the difficulty of enforcing explicit fairness
models.
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Figure 36: win-auto goodput with dynamic load for ua2����������������		�� � ��� ��� ��� ��� 	��� 	��� 	��� 	��� 	���
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Figure 37: win-auto goodput with dynamic load for ua3
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Our possible work items for the next step may include adding delay and loss property to the
link, and applying other arrival patterns as well as node failure models to make the scenario
more realistic. It would be interesting to see whether and how the currently closely matched
results of each algorithm may differ in those situations. Another work item is that although
we currently assumed percentage-throttle for rate-based and window-throttle for window-based
control only, it may be interesting to look at more types of feedback enforcement methods at
the SE and see how different feedback algorithms will behave.
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