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Abstract 

 
Most general-purpose work towards autonomic or 

self-managing systems has emphasized the front end of 
the feedback control loop, with some also concerned 
with controlling the back end enactment of runtime 
adaptations – but usually employing an effector 
technology peculiar to one type of target system. While 
completely generic “one size fits all” effector 
technologies seem implausible, we propose a general-
purpose programming model and interaction layer 
that abstracts away from the peculiarities of target-
specific effectors, enabling a uniform approach to 
controlling and coordinating the low-level execution of 
reconfigurations, repairs, micro-reboots, etc. 
 
1.  Introduction 
 

Current trends in software development  
increasingly favor the construction of large-scale, 
distributed software ensembles that provide new 
services via the loosely-coupled integration of a mix of 
pre-existing and new sub-systems.1 Each sub-system 
may have been built separately by some third party, 
and may be complex on its own: for example, it may 
itself be distributed; it may rely on its own stack of 
middleware layers; etc.  

These large-scale systems-of-systems present a 
technological heterogeneity that poses a significant 
problem when it comes to the development and the 
execution of provisions for their runtime adaptation. 

                                                           
1 The Gartner Group calls these systems “composite applications”: 
“Composite applications ... enable the development of new 
application systems by combining brand-new logic and transactions 
exposed by pre-existing, legacy applications” [1]. “Monolithic, 
isolated application stovepipes are being left behind. New systems 
are partitioned, distributed, integrated ....” [2]. 

By runtime adaptation, we mean any automated set of 
actions aimed at modifying the structure, behavior 
and/or performance of a target software system while it 
continues operating. Runtime adaptation can be used to 
address self-management concerns, for instance to (re-
)configure, recover from faults, tune extra-functional 
parameters, and so on. In systems-of-systems, these 
changes may impact multiple components or modules 
in multiple different sub-systems, which may have 
diverse technological underpinnings. 

One way to cope with this heterogeneity is to 
develop the code that is used to effect a desired 
adaptation step (sometimes called an effector) 
piecemeal and ad hoc for each distinct adaptation that 
can be applied to each target component. A better 
approach, when feasible, is to tailor (to each relevant 
adaptation step) generic effectors supplied by some 
technology that already interacts nicely with one or 
more of the sub-systems or sub-system components (or 
with middleware underlying those sub-systems). Either 
model, however, tends to negatively impact the level 
of generality of the autonomic techniques and 
solutions that apply runtime adaptations on systems-of-
systems by invoking these effectors. The best solution 
would be to abstract away from the peculiarities of 
individual effectors or effector technologies, with a 
uniform veneer that can be leveraged for simple and 
consistent interaction with all effectors. 

This paper introduces an abstract programming 
model, represented by a limited set of primitives that 
can be used to describe and direct the various phases 
of the work of an effector. This set of primitives can be 
reified as a generic effector API, to effectively hide 
diversity in effectors. Each effector can still be 
developed reflecting the technology and other specifics 
of its intended target component, which ensures 
efficiency in the adaptation implementation; however, 
all effectors can be managed uniformly through the 
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effector API according to the underlying programming 
model. This enables generality in the autonomic 
control facilities that interact with their adaptation 
targets via the effectors. While conceived for complex 
systems-of-systems, of course the same programming 
model can be conveniently adopted for more 
homogeneous systems. 

In the next section, we present a general model of 
self-management infrastructures, intended to be 
applicable to most autonomic computing approaches, 
within which our programming model “fits” – this 
material can be viewed as our “problem statement”.  
We then motivate the proposed programming 
abstractions using examples extracted from an 
industrial case study [12] [14]. This case study has 
provided the authors with a set of requirements, on the 
basis of which the proposed abstraction layer and its 
primitives have emerged. We then discuss the adoption 
of our programming model and the implementation of 
the corresponding generic effector API within the 
Kinesthetics eXtreme (KX) platform for the runtime 
adaptation of complex systems-of-systems. Previous 
papers on KX [7] [8] [9] [10] [11] emphasized the 
monitoring, analysis, planning and execution 
coordination aspects of its autonomic infrastructure; 
here we present our effector programming model and 
API for the first time. 
 
2.  Autonomic Management Model  
 

 
Figure 1: IBM MAPE-K reference model. 

As a general rule, autonomic computing techniques 
assume the presence of provisions that enable to 
dynamically adapt some aspects and elements of the 
system while it is in operation. The necessity of those 
provisions as first-class entities in an autonomic 

system is highlighted, e.g., within the MAPE-K 
(Monitor, Analyze, Plan, Execute -Knowledge) 
reference model for autonomic control loops, proposed 
by IBM [3], displays a high-level view of a MAPE-K 
framework, including its interactions with some system 
component to be adapted (i.e., a managed resource). In 
particular, the Execute element of a MAPE-K loop 
clearly relies on some means that can be used to carry 
out the planned changes onto the managed resource: in 
software systems terms, that equates to some pieces of 
code (some effectors) that can be invoked or otherwise 
activated to effect those changes. Most other models 
and architectures for general-purpose autonomic 
systems also highlight effectors as first-class entities: 
for example, the Rainbow platform for architecture-
based adaptation developed at CMU [20] (depicted in 

), and the Accord component framework [24]. Figure 2

Figure 2: CMU Rainbow architecture. 
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An effector can take many forms. Examples 
include: a resident algorithm or module running inside 
a software component; a set of proprietary operations 
that can be invoked from outside the component by 
some supervising entity or peer component(s); 
functionality exposed externally in compliance with 
some standardized programmatic interface (such the 
JMX management framework2 or the Common 
Information Model (CIM) family of standards3); 
mobile code that is dispatched to be executed onto the 
component [13]; or entirely external utilities in the 
environment that can manipulate arbitrary components 
or processes in some manner, e.g., process migration 
across hosts [21]. 

The kind and reach of the adaptation(s) made 
possible by an effector – or a related set of effectors - 
may vary considerably, ranging from the tuning of 
internal parameters within a single module, to the re-
                                                           
2 See http://java.sun.com/products/JavaManagement. 
3 See http://www.dmtf.org/standards/standard_cim.php. 
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arrangement of the architectural configuration and the 
distribution layout of a complex distributed system, to 
the controlled shut down and/or restart of the managed 
resources, as advocated in Recovery-Oriented 
Computing (ROC) [4]. Similarly, the nature and 
characteristics of effectors can be very different, and 
depend on multiple factors, such as the choices taken 
when designing the target system and any middleware 
technology upon which that system could rely - 
choices made in many cases without automated 
adaptation in mind - as well as the scope and goals of 
the autonomic solution intended to be applied to the 
system. By influencing the availability (or lack) of 
certain features - such as introspection, extensibility, 
openness, exposition of suitable programmatic 
interfaces, etc. – those factors determine how internal 
effectors are activated and external effectors imposed. 

When the target of runtime adaptation is 
monolithic, or mostly homogeneous - for instance, a 
system developed by a single stakeholder and/or with a 
single pre-integrated suite of software technologies - it 
may be possible to select and adopt a single technique 
for all effectors and all runtime adaptation needs. In 
the context of systems-of-systems, however, many of 
the options above can co-exist; moreover, the 
technologies adopted for the adaptation provisions 
might not interoperate well, particularly when 
combined in unanticipated and “creative” ways 
designed to cope with the self-management 
requirements imposed a posteriori on the constructed 
ensemble. Since systems-of-systems are by definition 
large-scale, widely distributed, and possibly 
administered under the ownership of multiple 
stakeholders, an autonomic controller intended to exert 
end-to-end concerted runtime adaptation on the whole 
system may face  challenging heterogeneity problems. 
 
3. Motivating Example 
 
3.1. Runtime adaptation with KX  
 

To facilitate the definition and development of 
complex, end-to-end adaptations that require multiple 
coordinated steps and impact multiple sub-systems, our 
KX autonomic infrastructure relies on an engine, 
named Workflakes [11] [14], for the enactment of 
runtime adaptation logic in the form of a process, or 
workflow. The workflow plan is structured as a task 
decomposition hierarchy. Leaf (atomic) tasks produce 
the intended side-effects of the workflow, that is, to 
effect changes onto the target system via the selection 
and execution of a specific effector. Workflakes hence 
considers effectors as first-class resources, and its 

design includes an effector catalog, that is, a repository 
that associates each leaf task with the possible 
effectors it might instantiate. 

In the absence of our effector programming model, 
how the Workflakes engine must interface to and 
activate an effector to enact a leaf task depends entirely 
on the nature and technology of the corresponding 
effector. The same would hold for any other autonomic 
controller without an effector abstraction layer. 

The first release of Workflakes, used in the case 
study described in Section 0, was limited to 
orchestrating effectors that could be exposed through a 
single technology. Mobile (Java) code was our choice. 
For one thing, that paradigm was particularly apt for an 
exo-structure like KX, which aimed from the start to 
“autonomizing legacy systems” from the outside [9], as 
opposed to infrastructure-level autonomic mechanisms, 
such as adaptive middleware (like IQ-Services [25] or 
ACT [26]), or kernel-level provisions (like Q-fabric 
[29], for resource management). Furthermore, we 
could take advantage of an in-house mobile code 
technology, named Worklets, which our lab had 
previously developed for unrelated purposes [22], and 
which we could tailor to runtime adaptation 
requirements. 
Worklets - like other mobile code systems - require at 
the receiving end of the code transfer the presence of a 
“landing dock”, which can receive and execute the 
incoming code. In Worklets, that dock is called a 
Worklet Virtual Machine (WVM) and is embedded in 
a Java Virtual Machine (JVM). WVMs allow incoming 
Worklets to be activated and also to interface to any 
adaptation code already residing within target system 
components. However, this approach had several 
drawbacks: the reach of Workflakes-orchestrated 
runtime adaptation was limited to targets into which 
WVMs could be embedded (via manual or automated 
instrumentation); we were forced to wrap with WVMs 
all kinds of effectors, even when other methods to 
expose those effectors existed natively; and, of course, 
the target system had to be implemented in Java. 
 
3.2. Case study description 
 

The case study regards a multi-channel instant 
messaging (IM) service for personal communication. 
The runtime environment (see ) consists of a 
typical three-tiered server farm, incorporating a mix of 
commercial software elements, such as a load 
balancing package at the front end; J2EE enterprise 
application servers as the backbone of the middle tier, 
and an Oracle relational database at the back end; 
proprietary applications, in particular the IM server 
hosted in the middle tier - which may or may not be 

Figure 3



wrapped within a J2EE Web application - and the 
distributed shared state repository that allows multiple 
replicas of the IM server to operate in an 
undifferentiated way as a collective service; and black 
box or legacy subsystems, typically providing some 
specific functionality, for example access to the service 
through certain channels, such as SMS or WAP, and 
gateways to the mobile communication network. 

Figure 3: The IM service architecture. 

The case study aimed mainly at facilitating service 
management by the system administrators in charge of 
such a complex distributed application, and enhancing 
the QoS perceived by end-users. Runtime adaptation 
focused mostly on the middle (application) tier. Even 
in that restricted context, heterogeneity of target 
components and effector technologies represented a 
source of complications. The major adaptation targets 
were the IM servers, the corresponding Web-based 
components (proprietary), and the BEA Weblogic 
J2EE application servers hosting those Web 
applications (third-party commercial products). The 
IM software did not natively expose specific 
provisions for automated management or self-tuning; 
on the other hand, since it was under one co-author’s 
control, it was amenable to instrumentation with 
mechanisms, such as the WVMs, for the purposes of 
the case study. In contrast, the commercial BEA 
software natively exposed full-fledged and extensible 
programmatic facilities for the management of the 
application server and some general features of the 
hosted Web applications, by means of a JMX-based 
framework, with its set of MBeans. 

For some of the goals of this case study, mobile 
code turned out to be very convenient: appropriately 
coded Worklets were shipped to the various service 
elements, in accord with adaptation logic described by 
workflow plans running in the Workflakes engine. For 
example, Worklets, which carried classes and 

configuration code for the IM servers to the various 
hosts in the server farm, were appropriate to carry out 
deployment, initialize the service from scratch, execute 
re-configurations on the fly, apply patches and roll-out 
new releases of an active service. All these tasks were 
beneficial in terms of service management automation. 

Another kind of adaptation addressed 
responsiveness issues in the Web-based component of 
the IM service. KX monitored thresholds on the size of 
the queue of pending HTTP requests to the IM Web 
applications, and Workflakes responded by tuning the 
number of threads assigned by the application server to 
the Web application: this adjusted the degree of 
parallelism in processing client requests, kept the 
queue size low, and hence ensured satisfactory system 
responsiveness to Web users accessing the IM service. 
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The effectors used to manipulate the threading 
model of the IM Web application were implemented as 
JMX MBeans. That approach could have permitted 
effector activation simply by remote messaging; 
however, since at that time Workflakes had adopted 
Worklets technology as the sole supported activation 
mechanism, we were forced to introduce a landing 
dock for Worklet effectors, embedded in the 
application server. This dock included a WVM and 
presented to incoming Worklets a local JMX-based 
interface to the same MBeans that could have been 
accessed remotely from Workflakes itself. Besides 
representing a substantial complication, this 
implementation was made possible only by the 
extensibility features of the BEA Weblogic 
management subsystem, and would have been 
difficult, or even infeasible, in less open contexts. 
Moreover, at all times when thread tuning was 
required for the runtime adaptation of the IM service, 
Workflakes had to ship a new instance of the same 
mobile code snippet to the application server, an 
unnecessary overhead. 

Figure 4 illustrates the complications that we had 
to introduce in order to force upon that situation the 
specific model mandated by Worklets mobile agent 
effectors. Case a) in the figure represents a 
hypothetical situation that would have occurred if the 
adaptation engine had been able to exploit the native 
JMX activation mechanisms of the provided MBeans; 
Case b), instead, shows the more convoluted 
interaction model required by Worklets. 

At the same time we recognized that drawback, 
we also realized that moving away completely from 
Worklet effectors to embrace a technique that could be 
a better fit in that specific case would have not been a 
solution, since we would have likely lost the afore 
mentioned benefits of using Worklets for other 
purposes we had observed in the same case study. 



In retrospect, the general lesson that could be 
drawn from the case study was clear: it is implausible, 
in particular in the context of systems-of-systems, to be 
able to select a single “one size fits all” effector 
technology that can be re-used efficiently across 
diverse technological settings and for all application 
requirements. Therefore, we began to consider how we 
could instead accommodate and hide diversity with a 
model that could approach the interaction with 
effectors in an abstract, uniform way. 

 
Figure 4: Interfacing JMX adaptation 

provisions to Worklets. 

 
4. Proposed Model 
 

Three main principles contribute to our effector 
programming model. They are: 
1. The distinction between the activation 

mechanisms and the adaptation provisions of 
effectors. 

2. The strict separation in runtime adaptation 
between the computations effecting changes and 
the adaptation logic according to which those 
computations are invoked. 

3. The generalization of the work carried out by an 
effector according to a limited number of phases. 

The first principle allows to distinguish within 
effectors two parts: the computation (i.e., the piece of 
code) that carries out in practice the desired changes, 
and which represents the actual adaptation provision 
available on the target component; and the activation 
mechanism that can be used to expose that 
computation to a variety of autonomic applications. 
That distinction can be expressed in terms of interface 
vs. implementation and information hiding: it helps 
isolate the heterogeneity problem within the 

technological underpinnings of activation mechanisms, 
and provides a focus for resolving that heterogeneity 
through abstraction. 

The second principle is about separation of 
concerns: coupled with the first, it allows to regard the 
end-to-end runtime adaptation of large-scale 
distributed systems as the interplay between a 
repertoire of known and available effector 
computations that had been variously coded in or 
around the different subsystems, and adaptation logic 
that is capable and in charge of coordinating those 
computations as needed, by acting on their activation 
mechanisms. In terms of the MAPE-K reference 
model, the adaptation logic corresponds to the Plan 
element, as opposed to the Execute element, which 
activates the effectors. In order to make explicit and 
strengthen that separation, our model advocates the 
presence within an autonomic control system of an 
adaptation engine, whose role is to enact the logic that 
governs each runtime adaptation, and that remains 
disjoint from effector invocation mechanisms. 

Case a) Remote MBean interface
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 Worklet Adaptation  Those first two principles inspired our adaptation 
engine from the start, and can be already recognized in 
the description of the first release of Workflakes from 
Section 3.1. WVMs represent the activation 
mechanism for Worklet-based effectors, since they 
allow to run incoming code that interfaces to any 
adaptation provisions residing on target system 
components. Furthermore, the presence of Workflakes 
within KX satisfies the second principle, since it takes 
the role of the engine that enacts the adaptation logic, 
and directs – but remains separate from – effector 
computations. 
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Finally, the third principle – and the main 
contribution of our model – derives from the 
observation that the work of an effector onto its target 
can be often segmented in a handful of operations, 
which – at a high level of abstraction – do not depend 
on implementation choices. The interplay between the 
adaptation engine and some effector, requires, at a 
minimum, the following: the engine must instantiate 
the effector, or otherwise bind to a pre-existing 
instance; optionally, it can pass parameters to it; it then 
invokes its activation mechanism; on the other side, the 
effector needs to report back to the engine any results 
that become available as the byproduct of its 
execution. Those operations provide an abstract view 
of major phases or stages that can be recognized in the 
cycle of activity of an effector, and have hence 
inspired the set of primitives employed by our 
programming model. 
 
4.1. Operational semantics 
 



We have turned the conceptual phases of an 
effector activity outlined above into a small set of 
primitives that constitute a common interface for all 
activation mechanisms, fully decoupling the adaptation 
logic and the effectors. Each activation mechanism 
used for some given effector technology must be 
standardized to expose these same primitives, and 
implement them in the most convenient way, given the 
characteristics and constraints of that technology.  

To make a practically useful interface that 
effectively enables transparent interaction with 
effectors, the primitives must present clear and 
consistent operational semantics. We have defined the 
following primitives: 
• Lookup: this primitive represents a preliminary 

step for the adaptation engine, which is used to 
identify the type of effector that is necessary at 
each specific stage during some runtime 
adaptation and – if applicable – even the particular 
instance of that type that must be activated. 

• Recruit: this primitive allows the adaptation 
engine to get a handle on the effectors that have 
been identified through the Lookup primitive. 
Depending on the situation, as well as on the kind 
of effector involved, it may be sub-categorized in 
one of two ways: 

o as Instantiate: implements the Recruit 
semantics in cases where a new instance 
is needed by the adaptation engine; 

o as Bind: implements the Recruit 
semantics in cases in which a suitable 
instance already exists and is available to 
the adaptation engine. 

• Configure: this primitive carries out any 
initialization and customization work that may be 
necessary on the recruited effector; for example, it 
may pass to it the parameters suitable for the 
adaptation task at hand. 

• Activate: this primitive is in charge of actually 
launching the execution of the effector 
computation; this may include the deployment of 
the effector onto the target component that needs 
to be adapted. 

• Relay: this primitive provides a way for the 
effector, once it is activated and its work is under 
way, to report back to the engine any relevant data 
that it generates or observes. Since the work of an 
effector can have a relatively long duration and 
can occur asynchronously with respect to its 
activation, it is not usually convenient to model 
the passing of results in a request/response 
fashion. It seems more appropriate and general to 
equip the effectors in use with a data conduit 

(established during the configuration phase), 
which the effectors can employ whenever they 
need to relay data back to the task processor. 

With the exception of Lookup, it is evident how all 
the primitives tend to be strongly dependent in their 
implementation on the technologies employed to 
develop the effectors, with their idiosyncratic 
properties. However, they collectively represent a 
uniform and abstract mode of interaction with all kinds 
of effectors. 

Lookup is the only primitive that does not require 
direct coupling between the adaptation engine and the 
effectors. Their relationship is in that case mediated, 
since Lookup assumes the availability of an effector 
catalog (see Figure 5), which becomes therefore an 
integral part of our model That catalog is a repository 
of knowledge about effectors (types as well as 
instances) and responds to queries issued by the 
engine, whenever the engine needs some effector to 
proceed with the runtime adaptation. Each query must 
result in enough information to enable the Recruit 
stage that follows to either Instantiate the effector (e.g., 
a class name or identifier, or an address from which 
the corresponding executable code can be 
downloaded), or Bind to it (e.g., a reference to an 
active effector instance, or an address of a registry 
where the active instance is indexed).  

In practice, the effector catalog must include some 
mechanism (such as associated meta-data) for the 
purpose of describing, discriminating among, and 
selecting suitable effectors for each task of a runtime 
adaptation process, and for the computing environment 
to be effected. No specific assumptions are, however, 
imposed at this level on the nature and format of the 
effector catalog; also the queries by the engine may in 
principle derive from a variety of application-
dependent situations and can be expressed in a 
multitude of ways. For those reasons, Lookup remains, 
like the other primitives, an abstract operation in our 
model, and its implementation is fully dependent on 
the implementation chosen for the catalog itself. 
 
4.2. Programming model for an effector API 
 

As a counterpart to the conceptual interface 
represented by the primitives described in Section 4.1, 
and in order to facilitate its application, we have 
devised a design, according to which the activation 
mechanisms of effectors can be organized into a 
generic effector API, and a programming model that 
goes with it. 

The main idea is the organization of the primitives 
comprised in the interface into three subsets (or slots), 
which become available at different times during the 



execution cycle of an effector and that are 
implemented separately. 

 
Figure 5: Design of the effector API. 

gure 5The slots – as shown in Fi  – are: 
• The Catalog slot, which comprises only the 

Lookup primitive. Since the implementation of 
this slot depends only on the nature of the effector 
catalog, and not on any specificity of the effectors 
listed in that catalog, that slot is always available, 
as it provides a conduit to issue queries to the 
catalog. A discussion on implementation options 
for the catalog follows in Section 5. 

• The Activation slot, so called because it 
encompasses the actual activation mechanism of 
an effector, by grouping together the Recruit, 
Configure and Activate primitives. Their 
implementation is technology-dependent: to 
accommodate multiple implementations, this slot 
can be filled by adopting a plugin mechanism. 
Multiple plugins that expose those primitives can 
be developed according to the various available 
effector technologies, and can be loaded into the 
slot dynamically. A plugin is selected and used 
every time a certain effector is looked up from the 
catalog, to allow the adaptation engine to interact 
with the effector respecting the semantics of the 
primitives in the slot, and at the same time in 
compliance with the technology of that effector. 

• The Relay slot, which comprises the Relay 
primitive, is also implemented by means of 
technology-dependent plugins. The plugin for this 
slot is selected, and passed to the instantiated 
effector as part of its Configure stage. It creates a 
communication channel from the effector back to 
the adaptation engine. To support the semantics of 
the Relay primitive and at the same time comply 
with the technological underpinnings of each 

activated effector, that communication channel 
must be implemented differently for each plugin, 
taking into consideration, whether the effector 
operates synchronously or asynchronously with 
respect to its invocation, or even whether the 
effector is able to pass back any data at all. For 
asynchronous cases, like in pub/sub messaging or 
mobile code dispatching, a callback on the 
adaptation engine that is activated when the Relay 
primitive communicates result data back can be 
appropriate. For synchronous cases, like for 
example remote method invocation, the invocation 
of Relay can be implemented as a necessary post-
condition of Activate operation.  

 Relay 

 
 
 Activate 
 

Configure  
Effectors Adaptation engine Catalog Recruit 

 
Lookup 

With the introduction of those slots and the related 
plugin-based programming model, we keep the 
interaction with effectors not only simple, but also 
independent from implementation concerns from the 
point of view of the adaptation engine. 

Effectors API 

To describe in detail how the programming model 
works, we rely on the sequence diagram in . 
That diagram shows in detail how each of the stages of 
the execution of an effector proceeds. Specifically, it 
depicts a use case in which the Recruit primitive is 
mapped onto Instantiate, i.e., it requires the creation of 
a new instance of some type of effector, following the 
query to the effector catalog performed in the Lookup 
stage. The diagram also shows that the Relay stage in 
this case leverages a callback mechanism to transmit 
back the results of the effector execution. Notice that 
the diagram distinguishes the invocation of the 
primitives (displayed in bold italic font) by the 
adaptation engine through the API and onto the 
various plugin-based slots, from the implementation-
dependent actions are carried out as a result of those 
invocations. 

Figure 6

The diagram also outlines the flow of information 
that is exchanged during the various stages (in 
parentheses on the arrows: q stands for query, q_res 
for query result; handle indicates the handle to the 
recruited effector; c_info stands for the information 
needed for the effector configuration; res for the 
results of the effector computation that are transmitted 
back to the engine). Finally, the diagram includes the 
interactions that affect the three slots described above 
(in the diagram, they are L-Slot for the Catalog slot, A-
Slot for the Activate slot, and R-Slot for the Relay 
slot): it shows when the Activate slot and the Relay 
slot are filled with the appropriate plugins, respectively 
on the basis of the effector returned as a result of the 
Lookup stage, and as part of the Configure stage. 
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Figure 6: The various stages of effector execution. 

5. Implementation  
 

Workflakes has been completely implemented in 
Java, extending the Cougaar open source platform4, 
and customizing it towards the requirements of 
orchestrating runtime adaptations.  shows a 
view of the main classes in the framework used to 
implement the programming model described in 
Section 4.2. All of our experimental work to date has 
been done with effector technologies that can be 
programmed in Java; to integrate non-Java effectors, 
one can rely on the cross-platform interoperability 

facilities made available by Java, such as the Java 
Native Interface (JNI)5. 

The ExecutableTask interface is used to wrap 
all kinds of effectors and to expose the primitives of 
our model. The GenericEffectorAPI class 
implements that interface and is the container for the 
three slots that provide the interaction channels with 
each individual effector. It also includes code for the 
management of those slots: the Figure displays the 
abstract base classes for the three slots. In order to 
accommodate some effector technology, it is 
necessary only to specialize those three classes. 

Figure 7

                                                                                                                      
4 5 See http://www.cougaar.org/. http://java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.html. 



With respect to the Activation and Relay slots, 
several specializations have been produced for a 
variety of interaction models and technologies (not 
shown in the Figure due to space limitations). We 
have variously experimented with event-based 
asynchronous messaging, SOAP-based remote 
invocation, native Java invocation, and of course our 
original mobile effectors based on Worklets. 

For the Catalog Slot, a specialization is shown, 
i.e., a catalog that wraps a Hashtable. That is a 
utility, representing the simplest option that enables 
to directly associate the signature of a leaf task to the 
corresponding effectors. 

 

 
Figure 7: Java framework for the generic effector API. 

 
Since our model allows to plug in other means to 

select effectors against tasks, much more sophisticated 
approaches can be incorporated: for example standard 
registries like UDDI8, or ruled-based matching (as in 
[16]), or even semantic reasoning upon ontologies like 
those employed in Semantic Web contexts (e.g., using 
OWL [23]). Some of those techniques may promote a 
vision in which the execution of effectors on the part 
of the adaptation engine is not only abstract with 
respect to the mechanics of the interaction, but also 
fully virtualized. That is, the logic of the runtime 
adaptation would not need to specify any explicit 
binding information or be concerned about what 

effector computations are available: it could simply 
define – formally, but at a high level - the actions 
(correction, repairs, optimizations, etc.) that have to be 
taken at some point, their goals and their constraints. 
The catalog would then take care to “ground” those 
actions by choosing the most appropriate effectors, or 
micro-workflow of several effectors, that can satisfy 
the requirements of those actions. That kind of 
virtualization can be seen as a future objective, 
towards which a uniform abstraction for activating 
effectors and the separation between adaptation logic 
and effector computations represent necessary 
intermediary steps. 

                                                           
8 http://www.uddi.org 

 
6.  Related work 
 



A classic approach to try to impose a degree of 
uniformity in the interactions between a given system 
and multiple heterogeneous counterparts is through 
instrumentation of the latter. Instrumentation can 
enable the “creation”, on board a managed resource, of 
an activation mechanism that is convenient from the 
point of view of the autonomic manager. Countless 
software instrumentation techniques exist, e.g., AIDE 
[17], ProbeMeister [18], and mediating connectors 
[19], with some others available commercially. 
Instrumentation, in general, has however a number of 
limitations. First, it requires some form of 
manipulation of the target code (either source or 
executable), which is not always feasible. Moreover, 
instrumentation techniques tend often not to port well 
across different computing platforms. Finally, as 
highlighted in our experience with the first release of 
Workflakes (see Section 0), inefficiencies and 
unnecessary design complications can arise when 
instrumentation imposes an interaction model that 
doesn’t match or wrap well native adaptation 
provisions that abide to a different model. We have, 
however, successfully employed instrumentation for 
what MAPE-K calls sensors (and Rainbow calls 
probes), to provide input to the KX monitoring and 
analysis. 

Another approach is to seek uniformity by 
restricting the adaptations supported to a few simple 
and “universal” operations: for example, as in some 
Recovery-Oriented Computing work [4], only 
shutdown and restart. That is not necessarily as limited 
as it may sound, since selective and controlled 
recursive micro-reboots on interdependent sets of 
elements of different granularity, have shown their 
effectiveness in particular with respect to self-healing, 
e.g., to improve the overall availability of complex 
software ensembles as diverse as operating systems 
(see [5]), or mission critical distributed systems (see 
[6]). However, in the case of systems-of-systems, the 
restart dependencies among components are not 
always known in advance. Moreover, even the 
relatively simple operation of rebooting a component is 
subject to the heterogeneity of platform and software 
technologies that is characteristic of systems-of-
systems. Therefore, the restart operation does not 
equate to a single effector, but rather to a category of 
effectors with possibly diverse implementations, and 
would nevertheless require a programming abstraction 
like the one we propose, in order to be applied in a 
uniform way across heterogeneous parts of a system. 

The above approaches – which are widely 
employed and successful to a degree in contexts where 
heterogeneity is limited - do not particularly promote 
any form of conceptualization or abstraction. However, 

for a general-purpose autonomic manager that must 
handle real-world applications involving systems-of-
systems, the benefits of suitable abstractions to interact 
with managed resources are increasingly recognized. 

For example, IBM, in its developerWorks 
Autonomic Computing Toolkit [15] organizes all 
interactions with its touchpoints onto the managed 
resource (effectors as well as sensors) around two 
classes: the first is called the 
ManagedResourceTouchpoint, and resides on 
the touchpoint; the second is called the 
AutonomicManagerTouchpointSupport, and 
represents its counterpart within the autonomic 
manager itself. Those two classes bind to each other 
via Java RMI, which imposes a client-server 
synchronous interaction model. The current release of 
the Toolkit provides only a single standardized 
operation for the interaction between those two 
classes: a sendEvent() method, available on the 
autonomic manager, which is suitable especially to 
implement transmission of monitoring data by sensors, 
and can possibly be used to provide functionality 
equivalent to our Relay primitive. Autonomic 
applications developed with the toolkit are free to 
specialize the Touchpoint and 
TouchpointSupport classes as they see fit, with 
no specific operational semantics nor generic 
programming model encouraged or enforced. 

IBM also envisions a more comprehensive 
approach, demonstrated by its Autonomic 
Management Engine (AME) [16], also part of the 
Autonomic Computing Toolkit. AME provides a 
prototype implementation of a full-fledged MAPE-K 
loop. For the Execute part, AME adopts a plugin-based 
model to bind to and activate action launchers. Each 
action launcher represents code that is written ad hoc 
to effect changes on managed resources, but all expose 
to AME the same interface. Each action launcher is 
also accompanied by an XML descriptor, and a parser 
class that allows the engine to retrieve and use the 
specification of the action launcher contained in the 
descriptor. That specification describes the actions that 
the action launcher must perform (i.e., the method that 
it must call), in response to certain events of relevance 
(called indications) that can occur during the earlier 
phases of the MAPE-K loop. All action launchers 
implement the ActionLauncher Java interface. 
That interface provides three major operations: 
• setSpecification() establishes the set of 

event/action rules for an action launcher; 
• satisfiesSpecification() indicates 

whether there exists an action launcher of this type 
that satisfies a given specification; 



• handleIndication() passes an event to the 
action launcher to enable execution of the 
corresponding action in accord with the loaded 
specification, and returns the action result. 

There are several similarities between our model 
and AME. First of all, they are both based on the idea 
of pluggable activation mechanisms for a range of 
potentially very diverse effectors. Considering the 
programming abstractions that are supported, the 
descriptors of action launchers and the related classes 
and methods can be used for an effector catalog and as 
a means for Lookup. One difference is that our model 
is not tied to any given type of catalog or querying, 
since it has a specific slot for plugging in different 
catalogs. Our Activate primitive is similar to the 
handleIndication() method. However, that 
method assumes synchronous execution of the effector 
computation, since its result is relayed back as the 
return value of the method. Our model is more flexible 
since it can also accommodate asynchronous effector 
execution, by separating the Activate and Relay stages. 
Our explicit and separate Configure primitive, which is 
not present in AME, also contributes to flexibility and 
generality, since it can be used not only to pass 
parameters every time the effector computation is 
invoked, but also for any generic configuration needs 
of the more sophisticated effectors. 
 
7. Conclusions 
 
We propose an abstract programming model for 
effectors, for use in autonomic computing frameworks 
that aim to be relatively general-purpose and operate 
on heterogeneous systems-of-systems, as opposed to 
implementing self-management, self-healing, etc. 
capabilities solely for a specific new system or class of 
systems. This work was motivated by our previous 
experimentation with such a generic framework, where 
interfacing to pre-existing adaptation provisions was 
challenging. Our programming model and sample API 
implementation distinguish between activation of 
effectors and their pre-built adaptation provisions, 
separates the runtime adaptation logic from both 
activation and adaptation provisions, and exploits the 
natural progression of the work of effectors into their 
selection, recruitment, configuration and actual 
activation, as well as providing for flexible ongoing 
interactions while the effector performs its work. 

We expect to continue refining the effector 
programming model and API implementations, and 
plan to apply this approach to a broad range of effector 
technologies. For instance, one of the authors is 
working with others on developing a KX-like 

autonomic infrastructure affording tolerance of 
intrusions, denial of service, and other security-related 
attacks [27], as well as on building an eCommerce-
oriented testbed intended as a community resource for 
experimentation with autonomic computing 
technologies [28]. 
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