
A Uniform Programming Abstraction for Effecting Autonomic Adaptations
onto Software Systems

Giuseppe Valetto
Telecom Italia Lab

Torino, Italy
Giuseppe.Valetto@tilab.com

Gail Kaiser
Columbia University

New York, NY, United States
kaiser@cs.columbia.edu

Abstract

Most general-purpose work towards autonomic or

self-managing systems has emphasized the front end of
the feedback control loop, with some also concerned
with controlling the back end enactment of runtime
adaptations – but usually employing an effector
technology peculiar to one type of target system. While
completely generic “one size fits all” effector
technologies seem implausible, we propose a general-
purpose programming model and interaction layer
that abstracts away from the peculiarities of target-
specific effectors, enabling a uniform approach to
controlling and coordinating the low-level execution of
reconfigurations, repairs, micro-reboots, etc.

1. Introduction

Current trends in software development
increasingly favor the construction of large-scale,
distributed software ensembles that provide new
services via the loosely-coupled integration of a mix of
pre-existing and new sub-systems.1 Each sub-system
may have been built separately by some third party,
and may be complex on its own: for example, it may
itself be distributed; it may rely on its own stack of
middleware layers; etc.

These large-scale systems-of-systems present a
technological heterogeneity that poses a significant
problem when it comes to the development and the
execution of provisions for their runtime adaptation.

1 The Gartner Group calls these systems “composite applications”:
“Composite applications ... enable the development of new
application systems by combining brand-new logic and transactions
exposed by pre-existing, legacy applications” [1]. “Monolithic,
isolated application stovepipes are being left behind. New systems
are partitioned, distributed, integrated” [2].

By runtime adaptation, we mean any automated set of
actions aimed at modifying the structure, behavior
and/or performance of a target software system while it
continues operating. Runtime adaptation can be used to
address self-management concerns, for instance to (re-
)configure, recover from faults, tune extra-functional
parameters, and so on. In systems-of-systems, these
changes may impact multiple components or modules
in multiple different sub-systems, which may have
diverse technological underpinnings.

One way to cope with this heterogeneity is to
develop the code that is used to effect a desired
adaptation step (sometimes called an effector)
piecemeal and ad hoc for each distinct adaptation that
can be applied to each target component. A better
approach, when feasible, is to tailor (to each relevant
adaptation step) generic effectors supplied by some
technology that already interacts nicely with one or
more of the sub-systems or sub-system components (or
with middleware underlying those sub-systems). Either
model, however, tends to negatively impact the level
of generality of the autonomic techniques and
solutions that apply runtime adaptations on systems-of-
systems by invoking these effectors. The best solution
would be to abstract away from the peculiarities of
individual effectors or effector technologies, with a
uniform veneer that can be leveraged for simple and
consistent interaction with all effectors.

This paper introduces an abstract programming
model, represented by a limited set of primitives that
can be used to describe and direct the various phases
of the work of an effector. This set of primitives can be
reified as a generic effector API, to effectively hide
diversity in effectors. Each effector can still be
developed reflecting the technology and other specifics
of its intended target component, which ensures
efficiency in the adaptation implementation; however,
all effectors can be managed uniformly through the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

effector API according to the underlying programming
model. This enables generality in the autonomic
control facilities that interact with their adaptation
targets via the effectors. While conceived for complex
systems-of-systems, of course the same programming
model can be conveniently adopted for more
homogeneous systems.

In the next section, we present a general model of
self-management infrastructures, intended to be
applicable to most autonomic computing approaches,
within which our programming model “fits” – this
material can be viewed as our “problem statement”.
We then motivate the proposed programming
abstractions using examples extracted from an
industrial case study [12] [14]. This case study has
provided the authors with a set of requirements, on the
basis of which the proposed abstraction layer and its
primitives have emerged. We then discuss the adoption
of our programming model and the implementation of
the corresponding generic effector API within the
Kinesthetics eXtreme (KX) platform for the runtime
adaptation of complex systems-of-systems. Previous
papers on KX [7] [8] [9] [10] [11] emphasized the
monitoring, analysis, planning and execution
coordination aspects of its autonomic infrastructure;
here we present our effector programming model and
API for the first time.

2. Autonomic Management Model

Figure 1: IBM MAPE-K reference model.

As a general rule, autonomic computing techniques
assume the presence of provisions that enable to
dynamically adapt some aspects and elements of the
system while it is in operation. The necessity of those
provisions as first-class entities in an autonomic

system is highlighted, e.g., within the MAPE-K
(Monitor, Analyze, Plan, Execute -Knowledge)
reference model for autonomic control loops, proposed
by IBM [3], displays a high-level view of a MAPE-K
framework, including its interactions with some system
component to be adapted (i.e., a managed resource). In
particular, the Execute element of a MAPE-K loop
clearly relies on some means that can be used to carry
out the planned changes onto the managed resource: in
software systems terms, that equates to some pieces of
code (some effectors) that can be invoked or otherwise
activated to effect those changes. Most other models
and architectures for general-purpose autonomic
systems also highlight effectors as first-class entities:
for example, the Rainbow platform for architecture-
based adaptation developed at CMU [20] (depicted in

), and the Accord component framework [24]. Figure 2

Figure 2: CMU Rainbow architecture.

Translation
Infrastructure

Arch
Evaluator

Adaptation
Engine

Model
Manager

Adaptation
Executor

Running System

System API

System Layer

ProbesResource
DiscoveryEffectors

Running System

System API

System Layer

ProbesResource
DiscoveryEffectors

Architecture Layer

Gauges

Arch
Evaluator

Adaptation
Engine

Model
Manager

Strategies
& Tactics

Rules

Adaptation
Executor PropertiesOperators

Architecture Layer

Gauges

Arch
Evaluator

Adaptation
Engine

Model
Manager

Strategies
& Tactics

Rules

Adaptation
Executor PropertiesOperators

An effector can take many forms. Examples
include: a resident algorithm or module running inside
a software component; a set of proprietary operations
that can be invoked from outside the component by
some supervising entity or peer component(s);
functionality exposed externally in compliance with
some standardized programmatic interface (such the
JMX management framework2 or the Common
Information Model (CIM) family of standards3);
mobile code that is dispatched to be executed onto the
component [13]; or entirely external utilities in the
environment that can manipulate arbitrary components
or processes in some manner, e.g., process migration
across hosts [21].

The kind and reach of the adaptation(s) made
possible by an effector – or a related set of effectors -
may vary considerably, ranging from the tuning of
internal parameters within a single module, to the re-

2 See http://java.sun.com/products/JavaManagement.
3 See http://www.dmtf.org/standards/standard_cim.php.

Analyze Plan

Knowledge

Execute Monitor

Managed resource

Sensor Effector

Autonomic Control

http://java.sun.com/products/JavaManagement

arrangement of the architectural configuration and the
distribution layout of a complex distributed system, to
the controlled shut down and/or restart of the managed
resources, as advocated in Recovery-Oriented
Computing (ROC) [4]. Similarly, the nature and
characteristics of effectors can be very different, and
depend on multiple factors, such as the choices taken
when designing the target system and any middleware
technology upon which that system could rely -
choices made in many cases without automated
adaptation in mind - as well as the scope and goals of
the autonomic solution intended to be applied to the
system. By influencing the availability (or lack) of
certain features - such as introspection, extensibility,
openness, exposition of suitable programmatic
interfaces, etc. – those factors determine how internal
effectors are activated and external effectors imposed.

When the target of runtime adaptation is
monolithic, or mostly homogeneous - for instance, a
system developed by a single stakeholder and/or with a
single pre-integrated suite of software technologies - it
may be possible to select and adopt a single technique
for all effectors and all runtime adaptation needs. In
the context of systems-of-systems, however, many of
the options above can co-exist; moreover, the
technologies adopted for the adaptation provisions
might not interoperate well, particularly when
combined in unanticipated and “creative” ways
designed to cope with the self-management
requirements imposed a posteriori on the constructed
ensemble. Since systems-of-systems are by definition
large-scale, widely distributed, and possibly
administered under the ownership of multiple
stakeholders, an autonomic controller intended to exert
end-to-end concerted runtime adaptation on the whole
system may face challenging heterogeneity problems.

3. Motivating Example

3.1. Runtime adaptation with KX

To facilitate the definition and development of
complex, end-to-end adaptations that require multiple
coordinated steps and impact multiple sub-systems, our
KX autonomic infrastructure relies on an engine,
named Workflakes [11] [14], for the enactment of
runtime adaptation logic in the form of a process, or
workflow. The workflow plan is structured as a task
decomposition hierarchy. Leaf (atomic) tasks produce
the intended side-effects of the workflow, that is, to
effect changes onto the target system via the selection
and execution of a specific effector. Workflakes hence
considers effectors as first-class resources, and its

design includes an effector catalog, that is, a repository
that associates each leaf task with the possible
effectors it might instantiate.

In the absence of our effector programming model,
how the Workflakes engine must interface to and
activate an effector to enact a leaf task depends entirely
on the nature and technology of the corresponding
effector. The same would hold for any other autonomic
controller without an effector abstraction layer.

The first release of Workflakes, used in the case
study described in Section 0, was limited to
orchestrating effectors that could be exposed through a
single technology. Mobile (Java) code was our choice.
For one thing, that paradigm was particularly apt for an
exo-structure like KX, which aimed from the start to
“autonomizing legacy systems” from the outside [9], as
opposed to infrastructure-level autonomic mechanisms,
such as adaptive middleware (like IQ-Services [25] or
ACT [26]), or kernel-level provisions (like Q-fabric
[29], for resource management). Furthermore, we
could take advantage of an in-house mobile code
technology, named Worklets, which our lab had
previously developed for unrelated purposes [22], and
which we could tailor to runtime adaptation
requirements.
Worklets - like other mobile code systems - require at
the receiving end of the code transfer the presence of a
“landing dock”, which can receive and execute the
incoming code. In Worklets, that dock is called a
Worklet Virtual Machine (WVM) and is embedded in
a Java Virtual Machine (JVM). WVMs allow incoming
Worklets to be activated and also to interface to any
adaptation code already residing within target system
components. However, this approach had several
drawbacks: the reach of Workflakes-orchestrated
runtime adaptation was limited to targets into which
WVMs could be embedded (via manual or automated
instrumentation); we were forced to wrap with WVMs
all kinds of effectors, even when other methods to
expose those effectors existed natively; and, of course,
the target system had to be implemented in Java.

3.2. Case study description

The case study regards a multi-channel instant
messaging (IM) service for personal communication.
The runtime environment (see) consists of a
typical three-tiered server farm, incorporating a mix of
commercial software elements, such as a load
balancing package at the front end; J2EE enterprise
application servers as the backbone of the middle tier,
and an Oracle relational database at the back end;
proprietary applications, in particular the IM server
hosted in the middle tier - which may or may not be

Figure 3

wrapped within a J2EE Web application - and the
distributed shared state repository that allows multiple
replicas of the IM server to operate in an
undifferentiated way as a collective service; and black
box or legacy subsystems, typically providing some
specific functionality, for example access to the service
through certain channels, such as SMS or WAP, and
gateways to the mobile communication network.

Figure 3: The IM service architecture.

The case study aimed mainly at facilitating service
management by the system administrators in charge of
such a complex distributed application, and enhancing
the QoS perceived by end-users. Runtime adaptation
focused mostly on the middle (application) tier. Even
in that restricted context, heterogeneity of target
components and effector technologies represented a
source of complications. The major adaptation targets
were the IM servers, the corresponding Web-based
components (proprietary), and the BEA Weblogic
J2EE application servers hosting those Web
applications (third-party commercial products). The
IM software did not natively expose specific
provisions for automated management or self-tuning;
on the other hand, since it was under one co-author’s
control, it was amenable to instrumentation with
mechanisms, such as the WVMs, for the purposes of
the case study. In contrast, the commercial BEA
software natively exposed full-fledged and extensible
programmatic facilities for the management of the
application server and some general features of the
hosted Web applications, by means of a JMX-based
framework, with its set of MBeans.

For some of the goals of this case study, mobile
code turned out to be very convenient: appropriately
coded Worklets were shipped to the various service
elements, in accord with adaptation logic described by
workflow plans running in the Workflakes engine. For
example, Worklets, which carried classes and

configuration code for the IM servers to the various
hosts in the server farm, were appropriate to carry out
deployment, initialize the service from scratch, execute
re-configurations on the fly, apply patches and roll-out
new releases of an active service. All these tasks were
beneficial in terms of service management automation.

Another kind of adaptation addressed
responsiveness issues in the Web-based component of
the IM service. KX monitored thresholds on the size of
the queue of pending HTTP requests to the IM Web
applications, and Workflakes responded by tuning the
number of threads assigned by the application server to
the Web application: this adjusted the degree of
parallelism in processing client requests, kept the
queue size low, and hence ensured satisfactory system
responsiveness to Web users accessing the IM service.

Mobile
NTW

Mobile
NTW

Clientsbrowserbrowser

Load Balancing

SMS-C

IM

Server

WAP Gateway
Web Appl.

IM

Server
Web Appl.

IM

Server
SMS Gateway

IM

Server
SMS Gateway

IM

Server

R-DBMS

Server
Farm

Web Appl.

IM

Server
Web Appl.

IM

Server

PC Client

Shared state

PC Client

Web Appl.

IM

Server
Web Appl.

IM

Server

The effectors used to manipulate the threading
model of the IM Web application were implemented as
JMX MBeans. That approach could have permitted
effector activation simply by remote messaging;
however, since at that time Workflakes had adopted
Worklets technology as the sole supported activation
mechanism, we were forced to introduce a landing
dock for Worklet effectors, embedded in the
application server. This dock included a WVM and
presented to incoming Worklets a local JMX-based
interface to the same MBeans that could have been
accessed remotely from Workflakes itself. Besides
representing a substantial complication, this
implementation was made possible only by the
extensibility features of the BEA Weblogic
management subsystem, and would have been
difficult, or even infeasible, in less open contexts.
Moreover, at all times when thread tuning was
required for the runtime adaptation of the IM service,
Workflakes had to ship a new instance of the same
mobile code snippet to the application server, an
unnecessary overhead.

Figure 4 illustrates the complications that we had
to introduce in order to force upon that situation the
specific model mandated by Worklets mobile agent
effectors. Case a) in the figure represents a
hypothetical situation that would have occurred if the
adaptation engine had been able to exploit the native
JMX activation mechanisms of the provided MBeans;
Case b), instead, shows the more convoluted
interaction model required by Worklets.

At the same time we recognized that drawback,
we also realized that moving away completely from
Worklet effectors to embrace a technique that could be
a better fit in that specific case would have not been a
solution, since we would have likely lost the afore
mentioned benefits of using Worklets for other
purposes we had observed in the same case study.

In retrospect, the general lesson that could be
drawn from the case study was clear: it is implausible,
in particular in the context of systems-of-systems, to be
able to select a single “one size fits all” effector
technology that can be re-used efficiently across
diverse technological settings and for all application
requirements. Therefore, we began to consider how we
could instead accommodate and hide diversity with a
model that could approach the interaction with
effectors in an abstract, uniform way.

Figure 4: Interfacing JMX adaptation

provisions to Worklets.

4. Proposed Model

Three main principles contribute to our effector
programming model. They are:
1. The distinction between the activation

mechanisms and the adaptation provisions of
effectors.

2. The strict separation in runtime adaptation
between the computations effecting changes and
the adaptation logic according to which those
computations are invoked.

3. The generalization of the work carried out by an
effector according to a limited number of phases.

The first principle allows to distinguish within
effectors two parts: the computation (i.e., the piece of
code) that carries out in practice the desired changes,
and which represents the actual adaptation provision
available on the target component; and the activation
mechanism that can be used to expose that
computation to a variety of autonomic applications.
That distinction can be expressed in terms of interface
vs. implementation and information hiding: it helps
isolate the heterogeneity problem within the

technological underpinnings of activation mechanisms,
and provides a focus for resolving that heterogeneity
through abstraction.

The second principle is about separation of
concerns: coupled with the first, it allows to regard the
end-to-end runtime adaptation of large-scale
distributed systems as the interplay between a
repertoire of known and available effector
computations that had been variously coded in or
around the different subsystems, and adaptation logic
that is capable and in charge of coordinating those
computations as needed, by acting on their activation
mechanisms. In terms of the MAPE-K reference
model, the adaptation logic corresponds to the Plan
element, as opposed to the Execute element, which
activates the effectors. In order to make explicit and
strengthen that separation, our model advocates the
presence within an autonomic control system of an
adaptation engine, whose role is to enact the logic that
governs each runtime adaptation, and that remains
disjoint from effector invocation mechanisms.

Case a) Remote MBean interface

MBean
Adaptation

Remote engine
invocation Managed resource

Application server

Local MBean interfaceCase b)
WVM MBean

 Worklet Adaptation Those first two principles inspired our adaptation
engine from the start, and can be already recognized in
the description of the first release of Workflakes from
Section 3.1. WVMs represent the activation
mechanism for Worklet-based effectors, since they
allow to run incoming code that interfaces to any
adaptation provisions residing on target system
components. Furthermore, the presence of Workflakes
within KX satisfies the second principle, since it takes
the role of the engine that enacts the adaptation logic,
and directs – but remains separate from – effector
computations.

engine
Worklet Managed resource
transfer

Application server

Finally, the third principle – and the main
contribution of our model – derives from the
observation that the work of an effector onto its target
can be often segmented in a handful of operations,
which – at a high level of abstraction – do not depend
on implementation choices. The interplay between the
adaptation engine and some effector, requires, at a
minimum, the following: the engine must instantiate
the effector, or otherwise bind to a pre-existing
instance; optionally, it can pass parameters to it; it then
invokes its activation mechanism; on the other side, the
effector needs to report back to the engine any results
that become available as the byproduct of its
execution. Those operations provide an abstract view
of major phases or stages that can be recognized in the
cycle of activity of an effector, and have hence
inspired the set of primitives employed by our
programming model.

4.1. Operational semantics

We have turned the conceptual phases of an
effector activity outlined above into a small set of
primitives that constitute a common interface for all
activation mechanisms, fully decoupling the adaptation
logic and the effectors. Each activation mechanism
used for some given effector technology must be
standardized to expose these same primitives, and
implement them in the most convenient way, given the
characteristics and constraints of that technology.

To make a practically useful interface that
effectively enables transparent interaction with
effectors, the primitives must present clear and
consistent operational semantics. We have defined the
following primitives:
• Lookup: this primitive represents a preliminary

step for the adaptation engine, which is used to
identify the type of effector that is necessary at
each specific stage during some runtime
adaptation and – if applicable – even the particular
instance of that type that must be activated.

• Recruit: this primitive allows the adaptation
engine to get a handle on the effectors that have
been identified through the Lookup primitive.
Depending on the situation, as well as on the kind
of effector involved, it may be sub-categorized in
one of two ways:

o as Instantiate: implements the Recruit
semantics in cases where a new instance
is needed by the adaptation engine;

o as Bind: implements the Recruit
semantics in cases in which a suitable
instance already exists and is available to
the adaptation engine.

• Configure: this primitive carries out any
initialization and customization work that may be
necessary on the recruited effector; for example, it
may pass to it the parameters suitable for the
adaptation task at hand.

• Activate: this primitive is in charge of actually
launching the execution of the effector
computation; this may include the deployment of
the effector onto the target component that needs
to be adapted.

• Relay: this primitive provides a way for the
effector, once it is activated and its work is under
way, to report back to the engine any relevant data
that it generates or observes. Since the work of an
effector can have a relatively long duration and
can occur asynchronously with respect to its
activation, it is not usually convenient to model
the passing of results in a request/response
fashion. It seems more appropriate and general to
equip the effectors in use with a data conduit

(established during the configuration phase),
which the effectors can employ whenever they
need to relay data back to the task processor.

With the exception of Lookup, it is evident how all
the primitives tend to be strongly dependent in their
implementation on the technologies employed to
develop the effectors, with their idiosyncratic
properties. However, they collectively represent a
uniform and abstract mode of interaction with all kinds
of effectors.

Lookup is the only primitive that does not require
direct coupling between the adaptation engine and the
effectors. Their relationship is in that case mediated,
since Lookup assumes the availability of an effector
catalog (see Figure 5), which becomes therefore an
integral part of our model That catalog is a repository
of knowledge about effectors (types as well as
instances) and responds to queries issued by the
engine, whenever the engine needs some effector to
proceed with the runtime adaptation. Each query must
result in enough information to enable the Recruit
stage that follows to either Instantiate the effector (e.g.,
a class name or identifier, or an address from which
the corresponding executable code can be
downloaded), or Bind to it (e.g., a reference to an
active effector instance, or an address of a registry
where the active instance is indexed).

In practice, the effector catalog must include some
mechanism (such as associated meta-data) for the
purpose of describing, discriminating among, and
selecting suitable effectors for each task of a runtime
adaptation process, and for the computing environment
to be effected. No specific assumptions are, however,
imposed at this level on the nature and format of the
effector catalog; also the queries by the engine may in
principle derive from a variety of application-
dependent situations and can be expressed in a
multitude of ways. For those reasons, Lookup remains,
like the other primitives, an abstract operation in our
model, and its implementation is fully dependent on
the implementation chosen for the catalog itself.

4.2. Programming model for an effector API

As a counterpart to the conceptual interface
represented by the primitives described in Section 4.1,
and in order to facilitate its application, we have
devised a design, according to which the activation
mechanisms of effectors can be organized into a
generic effector API, and a programming model that
goes with it.

The main idea is the organization of the primitives
comprised in the interface into three subsets (or slots),
which become available at different times during the

execution cycle of an effector and that are
implemented separately.

Figure 5: Design of the effector API.

gure 5The slots – as shown in Fi – are:
• The Catalog slot, which comprises only the

Lookup primitive. Since the implementation of
this slot depends only on the nature of the effector
catalog, and not on any specificity of the effectors
listed in that catalog, that slot is always available,
as it provides a conduit to issue queries to the
catalog. A discussion on implementation options
for the catalog follows in Section 5.

• The Activation slot, so called because it
encompasses the actual activation mechanism of
an effector, by grouping together the Recruit,
Configure and Activate primitives. Their
implementation is technology-dependent: to
accommodate multiple implementations, this slot
can be filled by adopting a plugin mechanism.
Multiple plugins that expose those primitives can
be developed according to the various available
effector technologies, and can be loaded into the
slot dynamically. A plugin is selected and used
every time a certain effector is looked up from the
catalog, to allow the adaptation engine to interact
with the effector respecting the semantics of the
primitives in the slot, and at the same time in
compliance with the technology of that effector.

• The Relay slot, which comprises the Relay
primitive, is also implemented by means of
technology-dependent plugins. The plugin for this
slot is selected, and passed to the instantiated
effector as part of its Configure stage. It creates a
communication channel from the effector back to
the adaptation engine. To support the semantics of
the Relay primitive and at the same time comply
with the technological underpinnings of each

activated effector, that communication channel
must be implemented differently for each plugin,
taking into consideration, whether the effector
operates synchronously or asynchronously with
respect to its invocation, or even whether the
effector is able to pass back any data at all. For
asynchronous cases, like in pub/sub messaging or
mobile code dispatching, a callback on the
adaptation engine that is activated when the Relay
primitive communicates result data back can be
appropriate. For synchronous cases, like for
example remote method invocation, the invocation
of Relay can be implemented as a necessary post-
condition of Activate operation.

 Relay

 Activate

Configure
Effectors Adaptation engine Catalog Recruit

Lookup

With the introduction of those slots and the related
plugin-based programming model, we keep the
interaction with effectors not only simple, but also
independent from implementation concerns from the
point of view of the adaptation engine.

Effectors API

To describe in detail how the programming model
works, we rely on the sequence diagram in .
That diagram shows in detail how each of the stages of
the execution of an effector proceeds. Specifically, it
depicts a use case in which the Recruit primitive is
mapped onto Instantiate, i.e., it requires the creation of
a new instance of some type of effector, following the
query to the effector catalog performed in the Lookup
stage. The diagram also shows that the Relay stage in
this case leverages a callback mechanism to transmit
back the results of the effector execution. Notice that
the diagram distinguishes the invocation of the
primitives (displayed in bold italic font) by the
adaptation engine through the API and onto the
various plugin-based slots, from the implementation-
dependent actions are carried out as a result of those
invocations.

Figure 6

The diagram also outlines the flow of information
that is exchanged during the various stages (in
parentheses on the arrows: q stands for query, q_res
for query result; handle indicates the handle to the
recruited effector; c_info stands for the information
needed for the effector configuration; res for the
results of the effector computation that are transmitted
back to the engine). Finally, the diagram includes the
interactions that affect the three slots described above
(in the diagram, they are L-Slot for the Catalog slot, A-
Slot for the Activate slot, and R-Slot for the Relay
slot): it shows when the Activate slot and the Relay
slot are filled with the appropriate plugins, respectively
on the basis of the effector returned as a result of the
Lookup stage, and as part of the Configure stage.

 Engine API C-Slot A-Slot R-Slot Effector Catalog

Lookup(q) Lookup(q)
Catalog query (q)

Catalog response (q_res)

Recruit
Stage

Lookup return (q_res)

Fill the A-Slot

Recruit(q_res)

instantiate effector

Recruit result(handle)

Recruit result(handle)

Configure(handle, c info)

Fill the R-slot

Configure(handle, c_info)
Initialize Effector(c_info)

Activate(handle)

Activate(handle)
Start up computation

produce result(res)

pass result(res)
Relay(handle)

callback(handle)

callback return(res)

Lookup
Stage

Configure
Stage

Activate
Stage

Relay
Stage

Lookup return (q_res)

Recruit(q_res)

Relay(handle)

Figure 6: The various stages of effector execution.

5. Implementation

Workflakes has been completely implemented in
Java, extending the Cougaar open source platform4,
and customizing it towards the requirements of
orchestrating runtime adaptations. shows a
view of the main classes in the framework used to
implement the programming model described in
Section 4.2. All of our experimental work to date has
been done with effector technologies that can be
programmed in Java; to integrate non-Java effectors,
one can rely on the cross-platform interoperability

facilities made available by Java, such as the Java
Native Interface (JNI)5.

The ExecutableTask interface is used to wrap
all kinds of effectors and to expose the primitives of
our model. The GenericEffectorAPI class
implements that interface and is the container for the
three slots that provide the interaction channels with
each individual effector. It also includes code for the
management of those slots: the Figure displays the
abstract base classes for the three slots. In order to
accommodate some effector technology, it is
necessary only to specialize those three classes.

Figure 7

4 5 See http://www.cougaar.org/. http://java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.html.

With respect to the Activation and Relay slots,
several specializations have been produced for a
variety of interaction models and technologies (not
shown in the Figure due to space limitations). We
have variously experimented with event-based
asynchronous messaging, SOAP-based remote
invocation, native Java invocation, and of course our
original mobile effectors based on Worklets.

For the Catalog Slot, a specialization is shown,
i.e., a catalog that wraps a Hashtable. That is a
utility, representing the simplest option that enables
to directly associate the signature of a leaf task to the
corresponding effectors.

Figure 7: Java framework for the generic effector API.

Since our model allows to plug in other means to

select effectors against tasks, much more sophisticated
approaches can be incorporated: for example standard
registries like UDDI8, or ruled-based matching (as in
[16]), or even semantic reasoning upon ontologies like
those employed in Semantic Web contexts (e.g., using
OWL [23]). Some of those techniques may promote a
vision in which the execution of effectors on the part
of the adaptation engine is not only abstract with
respect to the mechanics of the interaction, but also
fully virtualized. That is, the logic of the runtime
adaptation would not need to specify any explicit
binding information or be concerned about what

effector computations are available: it could simply
define – formally, but at a high level - the actions
(correction, repairs, optimizations, etc.) that have to be
taken at some point, their goals and their constraints.
The catalog would then take care to “ground” those
actions by choosing the most appropriate effectors, or
micro-workflow of several effectors, that can satisfy
the requirements of those actions. That kind of
virtualization can be seen as a future objective,
towards which a uniform abstraction for activating
effectors and the separation between adaptation logic
and effector computations represent necessary
intermediary steps.

8 http://www.uddi.org

6. Related work

A classic approach to try to impose a degree of
uniformity in the interactions between a given system
and multiple heterogeneous counterparts is through
instrumentation of the latter. Instrumentation can
enable the “creation”, on board a managed resource, of
an activation mechanism that is convenient from the
point of view of the autonomic manager. Countless
software instrumentation techniques exist, e.g., AIDE
[17], ProbeMeister [18], and mediating connectors
[19], with some others available commercially.
Instrumentation, in general, has however a number of
limitations. First, it requires some form of
manipulation of the target code (either source or
executable), which is not always feasible. Moreover,
instrumentation techniques tend often not to port well
across different computing platforms. Finally, as
highlighted in our experience with the first release of
Workflakes (see Section 0), inefficiencies and
unnecessary design complications can arise when
instrumentation imposes an interaction model that
doesn’t match or wrap well native adaptation
provisions that abide to a different model. We have,
however, successfully employed instrumentation for
what MAPE-K calls sensors (and Rainbow calls
probes), to provide input to the KX monitoring and
analysis.

Another approach is to seek uniformity by
restricting the adaptations supported to a few simple
and “universal” operations: for example, as in some
Recovery-Oriented Computing work [4], only
shutdown and restart. That is not necessarily as limited
as it may sound, since selective and controlled
recursive micro-reboots on interdependent sets of
elements of different granularity, have shown their
effectiveness in particular with respect to self-healing,
e.g., to improve the overall availability of complex
software ensembles as diverse as operating systems
(see [5]), or mission critical distributed systems (see
[6]). However, in the case of systems-of-systems, the
restart dependencies among components are not
always known in advance. Moreover, even the
relatively simple operation of rebooting a component is
subject to the heterogeneity of platform and software
technologies that is characteristic of systems-of-
systems. Therefore, the restart operation does not
equate to a single effector, but rather to a category of
effectors with possibly diverse implementations, and
would nevertheless require a programming abstraction
like the one we propose, in order to be applied in a
uniform way across heterogeneous parts of a system.

The above approaches – which are widely
employed and successful to a degree in contexts where
heterogeneity is limited - do not particularly promote
any form of conceptualization or abstraction. However,

for a general-purpose autonomic manager that must
handle real-world applications involving systems-of-
systems, the benefits of suitable abstractions to interact
with managed resources are increasingly recognized.

For example, IBM, in its developerWorks
Autonomic Computing Toolkit [15] organizes all
interactions with its touchpoints onto the managed
resource (effectors as well as sensors) around two
classes: the first is called the
ManagedResourceTouchpoint, and resides on
the touchpoint; the second is called the
AutonomicManagerTouchpointSupport, and
represents its counterpart within the autonomic
manager itself. Those two classes bind to each other
via Java RMI, which imposes a client-server
synchronous interaction model. The current release of
the Toolkit provides only a single standardized
operation for the interaction between those two
classes: a sendEvent() method, available on the
autonomic manager, which is suitable especially to
implement transmission of monitoring data by sensors,
and can possibly be used to provide functionality
equivalent to our Relay primitive. Autonomic
applications developed with the toolkit are free to
specialize the Touchpoint and
TouchpointSupport classes as they see fit, with
no specific operational semantics nor generic
programming model encouraged or enforced.

IBM also envisions a more comprehensive
approach, demonstrated by its Autonomic
Management Engine (AME) [16], also part of the
Autonomic Computing Toolkit. AME provides a
prototype implementation of a full-fledged MAPE-K
loop. For the Execute part, AME adopts a plugin-based
model to bind to and activate action launchers. Each
action launcher represents code that is written ad hoc
to effect changes on managed resources, but all expose
to AME the same interface. Each action launcher is
also accompanied by an XML descriptor, and a parser
class that allows the engine to retrieve and use the
specification of the action launcher contained in the
descriptor. That specification describes the actions that
the action launcher must perform (i.e., the method that
it must call), in response to certain events of relevance
(called indications) that can occur during the earlier
phases of the MAPE-K loop. All action launchers
implement the ActionLauncher Java interface.
That interface provides three major operations:
• setSpecification() establishes the set of

event/action rules for an action launcher;
• satisfiesSpecification() indicates

whether there exists an action launcher of this type
that satisfies a given specification;

• handleIndication() passes an event to the
action launcher to enable execution of the
corresponding action in accord with the loaded
specification, and returns the action result.

There are several similarities between our model
and AME. First of all, they are both based on the idea
of pluggable activation mechanisms for a range of
potentially very diverse effectors. Considering the
programming abstractions that are supported, the
descriptors of action launchers and the related classes
and methods can be used for an effector catalog and as
a means for Lookup. One difference is that our model
is not tied to any given type of catalog or querying,
since it has a specific slot for plugging in different
catalogs. Our Activate primitive is similar to the
handleIndication() method. However, that
method assumes synchronous execution of the effector
computation, since its result is relayed back as the
return value of the method. Our model is more flexible
since it can also accommodate asynchronous effector
execution, by separating the Activate and Relay stages.
Our explicit and separate Configure primitive, which is
not present in AME, also contributes to flexibility and
generality, since it can be used not only to pass
parameters every time the effector computation is
invoked, but also for any generic configuration needs
of the more sophisticated effectors.

7. Conclusions

We propose an abstract programming model for
effectors, for use in autonomic computing frameworks
that aim to be relatively general-purpose and operate
on heterogeneous systems-of-systems, as opposed to
implementing self-management, self-healing, etc.
capabilities solely for a specific new system or class of
systems. This work was motivated by our previous
experimentation with such a generic framework, where
interfacing to pre-existing adaptation provisions was
challenging. Our programming model and sample API
implementation distinguish between activation of
effectors and their pre-built adaptation provisions,
separates the runtime adaptation logic from both
activation and adaptation provisions, and exploits the
natural progression of the work of effectors into their
selection, recruitment, configuration and actual
activation, as well as providing for flexible ongoing
interactions while the effector performs its work.

We expect to continue refining the effector
programming model and API implementations, and
plan to apply this approach to a broad range of effector
technologies. For instance, one of the authors is
working with others on developing a KX-like

autonomic infrastructure affording tolerance of
intrusions, denial of service, and other security-related
attacks [27], as well as on building an eCommerce-
oriented testbed intended as a community resource for
experimentation with autonomic computing
technologies [28].

8. Acknowledgements

Kaiser’s Programming Systems Laboratory is funded
in part by National Science Foundation grants CNS-
0426623, CCR-0203876 and EIA-0202063, and in part
by Microsoft Research.

9. References

[1] M. Pezzini, “Composite Applications Head Toward the
Mainstream”, Article Top View AV-21-1772, the Gartner
Group, October 16, 2003.

[2] Y.V. Natis, “Predicts 2004: Application Integration and
Middleware”, Article Top View AV-21-8190, the Gartner
Group, December 19, 2003.

[3] I.B.M. Corporation, An architectural blueprint for
autonomic computing, Technical Report, available at:
http://www-306.ibm.com/autonomic/pdfs/ACwpFinal.pdf,
I.B.M. Corporation, April 2003.

[4] G. Candea, and A. Fox, ”Recursive Restartability:
Turning the Reboot Sledgehammer into a Scalpel”, in
Proceedings of the 8th Workshop on Hot Topics in Operating
Systems, Schloss Elmau, Germany, May 2001.

[5] M.W. Shapiro, “Self-Healing in Modern Operating
Systems”, ACM Queue, 2(8), November 2004.

[6] G. Candea, J. Cutler, A. Fox, R. Doshi, P. Garg, and R.
Gowda, “Reducing Recovery Time in a Small Recursively
Restartable System”, in Proceedings of the International
Conference on Dependable Systems and Networks (DSN-
2002), Washington, DC, USA, June 2002.

[7] P.N. Gross, S. Gupta, G.E. Kaiser, G.S. Kc and J.J.
Parekh, “An Active Events Model for System Monitoring”,
in Proceedings of the Working Conference on Complex and
Dynamic Systems Architectures, December 2001.

[8] G. Kaiser, J. Parekh, P. Gross, and G. Valetto.
“Kinesthetics eXtreme: An External Infrastructure for
Monitoring Distributed Legacy Systems”, in Proceedings of
the 5th Annual International Active Middleware Workshop,
June 2003.

[9] G. Kaiser, P. Gross, G. Kc, J. Parekh, and G. Valetto,
“An Approach to Autonomizing Legacy Systems”, in

Proceedings of the Workshop on Self-Healing, Adaptive and
Self-MANaged Systems, New York, NY, USA, June 2002.

[10] J. Parekh, G. Kaiser, P. Gross and G. Valetto,
“Retrofitting Autonomic Capabilities onto Legacy Systems”,
Journal of Cluster Computing, Kluwer, in press.

[11] G. Valetto, and G. Kaiser, “Using Process Technology
to Control and Coordinate Software Adaptation”, in
Proceedings of the 25th International Conference on
Software Engineering (ICSE 2003), Portland, OR, USA, May
2003.

[12] G. Valetto, and G. Kaiser, “A Case Study in Software
Adaptation”, in Proceedings of the 1st ACM SIGSOFT
Workshop on Self-Healing Systems (WOSS’02), Charleston
SC, USA, November 18-19, 2002.

[13] G. Valetto, G. Kaiser, and G.S. Kc, “A Mobile Agent
Approach to Process-based Dynamic Adaptation of Complex
Software Systems”, in Proceedings of the 8th European
Workshop on Software Process Technology, LNCS 2077, pp.
102-116, June 2001.

[14] G. Valetto, Orchestrating the Dynamic Adaptation of
Distributed Software with Process Technology, Ph.D. Thesis,
Columbia University, New York, NY, USA, May 2004.

[15] I.B.M. Corporation, Autonomic Computing Toolkit
Developer’s Guide 2nd edition, available at: http://www-
106.ibm.com/developerworks/autonomic/books/fpy0mst.htm
, I.B.M. Corporation, August 2004

[16] I.B.M. Corporation, Autonomic Management Engine
Developer’s Guide v.1.5, I.B.M. Corporation, 2004.

[17] P.W. Gill, Probing for a Continual Validation
Prototype, MS Thesis, Worcester Polytechnic Institute, May
2001.

[18] P. Pazandak, and D. Wells, “ProbeMeister: Distributed
Runtime Software Instrumentation”, in Proceedings of the 1st
International Workshop on Unanticipated Software
Evolution, June 2002.

[19] R.M. Balzer, and N.M Goldman, “Mediating
Connectors: A Non-ByPassable Process Wrapping
Technology”, in Proceedings of the DARPA Information
Survivability Conference & Exposition, Vol. 2, January 2000.

[20] S. Chen, A. Huang, D. Garlan, B. Schmerl, and P.
Steenkiste, “Rainbow: Architecture-based Self-Adaptation

with Reusable Infrastructure“, IEEE Computer, 37(10),
October 2004.

[21] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The
Design and Implementation of Zap: A System for Migrating
Computing Environments”, in Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation (OSDI 2002), Boston, MA, USA, December
2002.

[22] S.E. Dossick, and G.E. Kaiser, “Worklets for Adaptive
Workflow”, position paper in CSCW-98 Workshop: Towards
Adaptive Workflow Systems, November 1998.

[23] L. McGuinness, and F. van Harmelen (eds.), OWL Web
Ontology Language Overview, a W3C Recommendation,
February 2004, http://www.w3.org/TR/owl-features/

[24] H. Liu, M. Parashar, and S. Hariri, “A Component-
based Progarmming Framework for Autonomic
Applications”, in Proceedings of the 1st IEEE International
Conference on Autonomic Computing, New York, NY, USA,
May 2004.

[25] G. Eisenhauer, and K. Schwan, “An Object-Based
Infrastructure fir Program Monitoring and Steering”, in
Proceedings of the 2nd SIGMETRICS Symposium on Parallel
and Distributed Tools (SPDT’98), August 1998.

[26] S.M. Sadjadi, and P.K.McKinley, “Trasparent Self-
Optimization in Existing CORBA Applications” in
Proceedings of the 1st IEEE International Conference on
Autonomic Computing, New York, NY, USA, May 2004.

[27] A. Keromytis, J. Parekh, P.N. Gross, G. Kaiser, V.
Misra, J. Nieh, D. Rubenstein, and S. Stolfo, “A Holistic
Approach to Service Survivability”, in Proceedings of the 1st
ACM Workshop on Survivable and Self-Regenerative
Systems, October 2003

[28] Y. Diao, J.L. Hellerstein, S. Parekh, R. Griffith, G.
Kaiser, and D. Phung, “Self-managing Systems: A Control
Theory Foundation”, in Proceedings of the IEEE Workshop
on Engineering of Autonomic Systems, April 2005.

[29] C. Poellabauer, H. Abbasi, and K. Schwan,
“Cooperative Run-time Management of Adaptive
Applications and Distributed Resources”, in Proceedings of
ACM Multimedia, Juan-Les-Pins, France, October 2002.

http://www-106.ibm.com/developerworks/autonomic/books/fpy0mst.htm
http://www-106.ibm.com/developerworks/autonomic/books/fpy0mst.htm

