
Dynamic Adaptation of Rules for
Temporal Event Correlation in Distributed Systems

Rean Griffith*, Joseph L. Hellerstein**, Yixin Diao**, and Gail Kaiser*

*Computer Science Department
Columbia University, New York, New York

{kaiser, rg2023}@cs.columbia.edu

**IBM Thomas J. Watson Research Center
Hawthorne, New York

{hellers, dias}@us.ibm.com
January 22, 2005

Abstract

Event correlation is essential to realizing self-managing
distributed systems. For example, distributed systems often
require that events be correlated from multiple systems us-
ing temporal patterns to detect denial of service attacks and
to warn of problems with business critical applications that
run on multiple servers. This paper addresses how to spec-
ify timer values for temporal patterns so as to manage the
trade-off between false alarms and undetected alarms. A
central concern is addressing the variability of event prop-
agation delays due to factors such as contention for net-
work and server resources. To this end, we develop an ar-
chitecture and an adaptive control algorithm that dynami-
cally compensate for variations in propagation delays. Our
approach makes Management Stations more autonomic by
avoiding the need for manual adjustments of timer values in
temporal rules. Further, studies we conducted of a testbed
system suggest that our approach produces results that are
at least as good as an optimal fixed setting of timer values.

1. Introduction

Event correlation is a key component of today’s Informa-
tion Technology management infrastructure, and we expect
it to be essential to the future of self-managing systems. In-
creasingly, it is important to correlate events from different
systems using temporal patterns. For example, a denial of

service attack may be detected by correlating failed logins
on multiple machines in a short period of time (e.g., under
one second), and problems with multi-server applications
can be detected by the transition times between processing
stages that occur on different severs. This paper addresses
how to determine timer values for temporal patterns so as
to properly balance false alarms and undetected alarms. A
central concern is addressing the variability in event propa-
gation delays due to contention for network and server re-
sources and other factors. To this end, we develop an archi-
tecture and an adaptive control algorithm that dynamically
compensate for variations in propagation delays. Not only
does our approach make Management Stations more auto-
nomic by avoiding the need for manual adjustments in timer
values, our studies suggest that our approach produces re-
sults that are at least as good as an optimal fixed adjustment
in timer values.

Traditionally, event correlation is done using if-then
rules (also called event-condition-action) that are inter-
preted by an engine in aManagement Station. The if-part
of these rules consists of an event pattern and the then-part
specifies an action to be taken (although other approaches
can be employed as well as in [11]). Herein, our focus is on
the if-part and so we assume that the then-part is an alarm
(which is the most common case in practice) such as send-
ing an email, paging an administrator, or creating a trouble
ticket.

The challenges associated with managing distributed
systems have made it common for correlation rules to re-
late events from multiple systems. Consider the illustrative

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

examples below in which the question marks indicate vari-
ables that are bound to values based on the content of events
received.

• Rule 1: If there is a SlowResponse event from
system ?S1 at location ?L1 within 1 minute
of another SlowResponse event from system
?S2 6= ?S1 at location ?L1 and there is no
SlowResponse event from system S3 at location
?L2 6= ?L1, then alert the Network Manager for lo-
cation ?L1.

• Rule 2: If there is a CompletedPhase1
event from application ?A1 and there is no
CompletedPhase2 event from application ?A1
within 5 seconds of the first event, then alert the
Application Manager for application ?A1.

• Rule 3: If there is a FailedLogin event from
system ?S1 in cluster ?C1 and there is a
FailedLogin event from system ?S2 in cluster
?C1 within 1 second, then alert the Security Man-
ager for cluster ?C1.

Rule 1 provides a way to distinguish network problems
from application problems based on a pattern consisting of
two events from different machines at the same location.
Rule 2 checks on the health of a critical business application
that has processing steps that may be executed on different
systems. Rule 3 checks for certain kinds of security intru-
sions by looking for patterns of failed logins. In all of these
rules, the if-part of the rule contains a pattern that is to be
matched by events from multiple nodes. Also, in all cases
there is atimer value that constrains the maximum elapsed
time between receiving the first and last events in the pat-
tern (although in general more complex temporal patterns
may be used [5]). For Rule 1, the timer value is determined
by the experience of system administrators with the timing
of related events. For Rule 2, the timer value relates to the
time between processing steps. For Rule 3, the timer value
is chosen to distinguish human interactions from robots.

Performing temporal event correlation such as is done
in Rules R1–R3 requires that events be timestamped. Un-
fortunately, for many situations in which event correlation
is needed, the clock at the event source is unreliable. For
example, the event source may be a personal workstation
or a customer-managed server in outsourcing situations that
is not running appropriate clock synchronization software.
Even if the event source is running the right software, the
system may have a partial failure that affects clock synchro-
nization, which may in fact be why it is sending an event.
Last, security protocols such as Kerberos rely on clock syn-
chronization, and so clock synchronization may be compro-
mised early in an attack.

If the timestamp at the event source is unreliable, the
management station uses the arrival time of the event at the
Management Station. These arrival times include the delay
to propagate the event from its source. If propagation delays
are the same for all events in a pattern, this is not a prob-
lem since the elapsed time of event patterns is unchanged.
Unfortunately, there may be substantialpropagation skew,
a term we use to refer to the difference between propaga-
tion delays in an event pattern. Experiments we conducted
reveal propagation skews that are often within 50% of the
pattern generation time. Among the reasons for propagation
skews are transients in resource usage and contention with
administrative tasks (e.g., Java garbage collection).

We can compensate for propagation skew by adjusting
timer values based on measurements taken from appropriate
probes. However, since the propagation skew varies from
one instance of a pattern to another, we can only estimate
the skew for any particular pattern. This creates a conun-
drum. If we over-compensate for propagation skew by us-
ing too large of a timer value, true problems may go unde-
tected. We refer to these asundetected alarms. Clearly,
undetected alarms diminish the ability of the system to re-
spond quickly to problems. On the other hand, if we use
too small of a timer value, there will be many alarms that
are generated for situations that do not merit action, such
as a change in workload or re-allocation of resources to the
application. We refer to these asfalse alarms. False alarms
are undesirable since they divert the operations staff from
true problems.

In terms of related work, event correlation has been
widely used to monitor and analyze networks, systems, and
applications for the last twenty years (e.g., [8]). Com-
monly addressed issues include correlation speed and ac-
curacy [4, 11, 9] and the expressiveness of correlation pat-
terns. For the latter, there has been particular interest in
non-rule based approaches [11], probabilistic correlation
[6], and temporal patterns [7, 1, 5]. Our work relates to tem-
poral patterns in distributed systems. In particular, noneof
the systems in [7, 1, 5] mention propagation skew. Hence,
none of these systems provide the architectural or algorith-
mic support needed to compensate for propagation skew.

This paper makes the following contributions:

1. description of the problem of propagation skew for
temporal event correlation in distributed systems, in-
cluding measurements of propagation skew for a test-
bed system;

2. an architecture that includes Calibration Probes, Probe
Monitors, and a Controller that collaborate to adjust
timer values in order to compensate for propagation
skew; and

3. an adaptive control algorithm for dynamically adjust-
ing timer values to compensate for propagation skew

2

Event

Source

Event

Source

Network

E2

E3

E1

Alarms

Management Station

Rule
E3

E3

Rule
E2

E1

E1

LAN

LAN

Matched

Timer Value

Event

Figure 1. Architecture of a Management Station that sup-
ports temporal event correlation.

and an assessment of the algorithm in terms of the
probability of a correct result.

Our approach makes Management Stations more autonomic
by avoiding the need for manual adjustments in timer val-
ues. Further, studies of a testbed system suggest that our
approach produces results that are at least as good as an op-
timal fixed setting of timer values.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the architecture we propose. Section 3 de-
tails our adaptive control algorithm that compensates for
propagation skews. Section 4 assesses our approach using
data from a testbed system. Our conclusions are presented
in Section 5.

2. Architecture

This section describes the architecture of a system that
compensates for propagation skews in temporal event cor-
relation for distributed systems.

Figure 1 illustrates the characteristics of existing ap-
proaches to temporal correlation of events in distributed
systems [7, 1, 5] as they relate to the problem of propaga-
tion skew. Event sources generate events (the solid circles)
that traverse one or more networks. When an event arrives
at the Management Station, a timestamp is applied. Then,
the Management Station queues a copy of the event for each
partially instantiated pattern for which there is a match with
the incoming event (indicated by dotted circles). When a
pattern is first instantiated for a rule, a timeout is specified
with duration equal to the timer value for the rule. If the
timeout occurs before matching the last event in the pattern,

Event

Source 1

Management

Station

E1

Event

Source 2

E2

tfirst

tlast

t*last

t*first

{Telp

{

{

Tprp,first

Tprp,last

} Tgen

Telp = Tgen + τ

Ttmr

τ = Tprp,last
− Tprp,first is the propagation skew

Figure 2. Interaction diagram for temporal event correla-
tion. Timer values are specified based on the time to gener-
ate a patternTgen, but the estimate of this at the Manage-
ment Station isTelp.

an alarm is generated.
Figure 2 illustrates the dynamics of correlating a tempo-

ral pattern consisting of the two events,E1 andE2. E1 is
generated by Event Source 1 at timetfirst, andE2 is gen-
erated by Event Source 2 at timetlast. Thus, the pattern
generation time isTgen = tlast − tfirst.

Administrators write rules for temporal correlation based
on pattern generation time. As in rules R1-R3, consider
a timer valueTtmr that is chosen so that an alarm is be
generated ifTgen > Ttmr. Since the Management Sta-
tion does not knowTgen, it usesTelp instead. From Fig-
ure 2,Telp = t∗last − t∗first = Tgen + τ , whereτ is the
propagation skew. Propagation skew is computed as fol-
lows. The propagation delay of the first and last events are
Tprp,first = t∗first − tfirst andTprp,last = t∗last − tlast.
So,τ = Tprp,last − Tprp,first.

The elapsed time of a patternTelp as seen at the Manage-
ment Station differs from the pattern generation time byτ ,
the propagation skew. IfTprp,last = Tprp,first thenτ = 0
and soTelp = Tgen, which is the ideal case. However, in our
experiments,τ varies considerably.

Figure 3 depicts the ways in which we extend the ar-
chitecture in Figure 1 to compensate for propagation skew.
There are four considerations.

1. instrumentation that creates events so that there are
known pattern generation times for one or more Cal-
ibration Patterns;

2. a way to measure the propagation skew of the events
generated in (1);

3. a mechanism for computing slack times that compen-
sate for propagation skews; and

4. rules that use slack times to adjust timer values.

3

C1

C2

Controller

Alarms

Management Station

Rule
E1

E2

∆1(k)+

Rule
E3

E3

E1

Probe MonitorC1

C2

∆2(k)+

Propagation

Skew τ(k)Slack

Times

Event

Source

Event

Source

Network

E2

E3

E1

Calibration

Probe

Calibration

Probe

Synchronized

Clocks

LAN

LAN

Timer Value

Matched

Event

Figure 3. Architecture that supports compensation for
propagation skews by having: (1) Calibration Probes that
create Calibration Patterns that have a known pattern gener-
ation time; (2) rules that use slack times to adjust timer val-
ues; (3) a Probe Monitor that computes propagation skews
for Calibration Patterns; and (4) a Controller that computes
values of slack time.

Initialize calibration pattern i

1. SendStart message to calibration probei.

First event in calibration pattern i

1. Time(EventReceived) = NOW.
2. ki = ki + 1.
3. StartExcessiveIntraframe timer.

On receipt of last event in calibration pattern i

1. Time(EventReceived) = NOW.
2. InvokeController with

τi(ki) = Time(LastEvent)
- Time(FirstEvent).

3. Delete all matched events.

Timeout for calibration pattern i.
1. Delete all matched events.

Figure 4. Operation of the Probe Monitor in the Manage-
ment Station.

Item (1) is addressed by the Calibration Probes. Calibra-
tion Probes run on systems that are part of the manage-
ment infrastructure and so their clocks are reliable and syn-
chronized (e.g., using the Network Timer Protocol). Cali-
bration Probes generate Calibration Events that include the
timestamps applied at the event source. Calibration Events
also have a timestamp corresponding to the time of their ar-
rival at the Management Station. For example, once Event
C2 in Figure 2 arrives at the Management Station, it has
timestamps corresponding totlast and t∗last. Calibration
Events are selected so as to create a Calibration Pattern that
is detected at the Management Station.

Item (2) is handled by the Probe Monitor on the Man-
agement Station. The Probe Monitor measures propagation
skews for Calibration Patterns based on information in the
Calibration Events. Figure 4 details the operation of the
Probe Monitor.

Item (3) is addressed by the controller, which dynami-
cally updates slack times as propagation skews are received.
We discuss the controller at length in the next section.

Item (4) is handled by including a slack time for each
partially instantiated pattern. As before, the timer value
is specified by administrators based on their insights into
the temporal pattern. The slack time is used to compensate
for propagation skew. The operation of the system in Fig-
ure 1 is changed in that when the first event of a pattern is
matched, the Management Station specifies a timeout equal
to thesum of the timer value and the slack time. We note in
passing that our architecture can readily be generalized to
have multiple timer values and slack times if more complex
temporal patterns are used.

3. Control Algorithm

This section develops the adaptive control algorithm that
updates slack times to compensate for propagation skew.
The algorithm is based on a simple technique from statisti-
cal hypothesis testing that uses non-parameteric statistics, a
class of approaches that do not assume a particular proba-
bility distribution.

We want the control algorithm to choose slack times that
maximize the probability of getting a correct result. There
are two cases. In the first, pattern generation timeTgen,i(k)
for thek-th pattern of thei-th rule is larger than the timer
valueTtmr,i of i-th rule. Under these circumstances, the
correct result is that an alarm is generated. In the second
case,Tgen,i(k) is less thanTtmr,i. Here, no alarm should be
generated. In statistical hypothesis testing, these casesare
expressed using negative logic. That is, an incorrect result
in the first case is a undetected alarm, and an incorrect result
in the second case is a false alarm. Herein, we simplify
matters by focusing on the probability of a correct result.

4

We now show how the probability of a correct result re-
lates to slack time. To simplify matters, we consider a single
Calibration Pattern with generation timeTgen. We study the
probability of a correct result for thei-th correlation rule
whose if-part is satisfied by the Calibration Pattern. This
rule has timer valueTtmr,i. We define thetimer offset for
this rule to beδi = Ttmr,i−Tgen. Note that Rulei produces
a correct result if it generates an alarm whenδi < 0, and it
does not generate an alarm whenδi > 0.

The concept of the timer offset turns out to be central to
the theory that underlies the selection of slack times. For
the case in which an alarm should be generated, we have

P (Correct|Alarm should be generated)

= P (Correct|δi < 0)

= P (Telp,i(k) > Ttmr,i + ∆i(k)|δi < 0)

= P (Tgen,i + τi(k) > Ttmr,i + ∆i(k)|δi < 0)

= P (τi(k) > ∆i(k) + δi|δi < 0)

Observe that we increase the probability of a correct result
if either the slack time is close to zero or the timer offset
is more negative. The latter case means that we are more
likely to raise an alarm if the pattern generation time is
much smaller than the timer value. The case of when an
alarm should not be generated is addressed in analogous
manner.

P (Correct|Alarm should not be generated)

= P (Correct|δi > 0)

= P (Telp,i(k) < Ttmr,i + ∆i(k)|δi > 0)

= P (Tgen,i + τi(k) < Ttmr,i + ∆i(k)|δi > 0)

= P (τi(k) < ∆i(k) + δi|δi > 0)

Here, we increase the probability of a correct result if either
slack times or the timer offset are large. The latter case
means that the pattern generation time is much larger than
the timer value. Observe that in both cases, when skew is
close to zero, then the magnitude of slack time need not be
large to get a correct result.

Figure 5 plots the probability of a correct result versus
the timer offset for data we collected using the experimental
setup described in the next section. There are three plots.
The first is from an experiment in which no load was placed
on the systems or network. Here, propagation skew is close
to 0. Hence, there is a high probability of a correct result
since slack time is 0. The second and third plots of the
first row present data collected when there was substantial
load. In the second plot, slack time is 0. We see that the
probability of a correct result is larger for negative timer
offsetsδi (i.e., when an alarm should be generated), but the
probability of a correct result is small whenδi > 0, at least
until δi becomes fairly large. The reason for this asymmetry

−0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

of
 a

 C
or

re
ct

 R
es

ul
t

Timer Offset (δ
i
)

unloaded, ∆=0
MAPC= 0.97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timer Offset (δ
i
)

loaded, ∆=0
MAPC= 0.44

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timer Offset (δ
i
)

loaded, ∆=200
MAPC= 0.75

Figure 5. Probability of a correct result for loaded and
unloaded testbed configurations and different fixed settings
of slack time (∆). The horizontal axis is the timer offset,
which is the difference between the timer value of a rule
and the pattern generation time.

can be explained the distribution of propagation skews. Its
mean is approximately 0.2 second. As a result, if∆i(k) =
0, then a largerδi is needed so thatτi(k) < δi. We can
compensate for this by setting∆i(k) to 0.2 second. which
is done in the third plot. This results in a larger probability
of a correct result whenδi > 0. However, it also reduces
the probability of a correct result forδi < 0.

The foregoing demonstrates a fundamental trade-off be-
tween false alarms and undetected alarms. We are assured
of a correct result in the case whereδi < 0 by using a very
large∆i(k). However, doing so results in poor performance
whenδi > 0. The reverse applies as well.

We now introduce our metric for quantifying the per-
formance of an approach to computing slack times. A
way to take into account the trade-off just mentioned is to
consider the minimum probability of a correct result for
the two cases. That is,min{P (Correct| Alarm should be
generated), P (Correct|Alarm should not be generated)} =
min{P (Correct| δi < 0), P (Correct|δi > 0)}.

In our studies, we approximate the minimum probability
of a correct result by averaging across multiple values ofδi

(both negative and positive) for known pattern generation
times. We refer to this as theminimum average probabil-
ity of a correct result (MAPC). MAPC is based on a
set of timer valuesTtmr,i ∈ S< such thatTtmr,i < Tgen (in
which case an alarm should be generated), and a set of timer

5

1. Addτi(ki) to buffer the buffer for calibration patterni.
2. Removeτi(ki − N) from bufferi
(N is the size of the buffer.)
3. ∆i(ki) = middle value of bufferi.

Figure 6. Operation of the Adaptive Control Algorithm.

valuesTtmr,j ∈ S> for which Ttmr,j > Tgen (and hence
no alarm should be generated). We useAvgCorrectgen

to denote the average probability of a correct result in the
first case, andAvgCorrectnogen to denote this metric in
the second case.

MAPC = min[AvgCorrectgen, AvgCorrectnogen] (1)

Here, AvgCorrectgen =

Average
(

∑

Ttmr,i∈S<

∑

k{τi(k + 1) > ∆i(k)}
)

,

AvgCorrectnogen =

Average
(

∑

Ttmr,j∈S>

∑

k{τj(k + 1) < ∆j(k)}
)

, and

{x < y} ∈ {0, 1} depending on whether the inequality
is false or true. Note that sinceMAPC is an average of
probabilities,0 ≤ MAPC ≤ 1, with MAPC = 1 being a
perfect control algorithm.

Figure 5 displays MAPC values in the titles of the
three plots. In the first plot,P (Correct) ≈ 1 except
at δ = 0, in which caseP (Correct) ≈ 0.5. Consis-
tent with this, theMAPC is 0.97 ≈ 1. In the second
plot, P (Correct) is low for δi > 0. As a result, its
MAPC = 0.44. In the third plot, slack time is adjusted
to better balanceP (Correct|Alarm should be generated)
and P (Correct|Alarm should not be generated). Here,
MAPC = 0.75.

The goal of our adaptive control algorithm is to
maximize MAPC. Our intuition from Figure 5
is that this is achieved if slack time is chosen so
as to balanceP (Correct|Alarm should be generated) and
P (Correct|Alarm should not be generated). More specifi-
cally, from the first and third plots in Figure 5, we want
P (Correct) ≈ 0.5 if δi = 0. This observation al-
lows us to characterize slack times. Specifically, we want
P (τi(k) > ∆i(k) + δi|δi = 0) = 0.5. And soP (τi(k) >

∆i(k)|δi = 0) = 0.5. That is, slack time should be chosen
to be the median of the distribution of propagation skews.
We note in passing that it may be that undetected alarms
are more costly than false alarms, or the reverse. Hence,
we might want to adjust the desired probability of an alarm
whenδi = 0. This in turn means that the control algorithm
estimates a different percentile of the skew distribution to
compute slack time.

We compute slack time by using a non-parameteric pro-

cedure for estimating the median of the distribution of prop-
agation skews [10]. By non-parameteric, we mean that the
procedure makes no assumption about the distribution of
the propagation skews (which is clearly an advantage for an
environment that experiences considerable change). How-
ever, the procedure does assume that propagation skews are
independent and identically distributed. Figure 6 provides
the details. Our algorithm retains the lastN propagation
skews in a buffer. The median is the middle value of the
sorted list.

The only parameter of the adaptive control algorithm
is the buffer sizeN . For stationary skew distributions, a
largerN reduces the variance of the estimate of the median
and hence results in a higher probability of a correct result.
However, non-stationarities arise if a file transfer is started
that increases network delays or administrative tasks begin
execution on the management station. In these cases a larger
N is a disadvantage in that it takes longer for the buffer to
be populated entirely by observations from the new distrib-
ution.

4. Experimental Results

We developed a testbed system based on the architecture
depicted in Figure 3 in which the Management Station ex-
tends the Event Distiller [5] and the event transport is the
Siena Publish/Subscribe bus [3]. We study a situation in
which there are two event sources, both on the same sys-
tem (so that we have very accurate measurements of pat-
tern generation times), and the Management Station is on
the same LAN as the event sources. Two configurations are
considered. In theunloaded configuration, there are sepa-
rate machines for Event Distiller and Siena. In theloaded
configuration, Event Distiller and Siena are co-located on
the same machine. In the experiments reported here, the
pattern generation time is 2 seconds, and the Calibration
Probes run on an AMD Anthlon XP 1800 with 1 GB RAM.
The management station is a 3 GHz P4 running Windows
XP with 1 GB RAM. In the unloaded configuration, Siena
runs on a 1 GHz P3 with 512MB RAM and RedHat Linux
2.4.20.

Figure 7 reports data from two runs on our testbed, one
for an unloaded configuration and the second for a loaded
configuration. In the unloaded case, we see that the propa-
gation skews are tightly clustered around 0, although there
are a few large spikes. The second plot in the top row is the
cumulative distribution function (CDF), which reinforces
the view that values are tightly clustered. Also plotted are
the autocorrelations between propagation skews. Note that
all autocorrelations lie within the dashed lines, indicating
that they are not statistically significant as determined by
the Bartlett Test [2]. This fact bodes well for our use of non-
parameteric statistics that require independent observations.

6

−1

−0.5

0

0.5

1

1.5

2

unloaded

P
ro

pa
ga

tio
n

S
ke

w
 (

se
c)

0

0.2

0.4

0.6

0.8

1

CDF

−1

−0.5

0

0.5

1
AutoCorr

0 250
−1

−0.5

0

0.5

1

1.5

2

loaded

Observation

P
ro

pa
ga

tio
n

S
ke

w
 (

se
c)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

CDF

Propagation Skew (sec)

0 50
−1

−0.5

0

0.5

1

Lags

AutoCorr

Figure 7. Characteristics of the propagation skew data for
unloaded and loaded configurations. CDF is the empirical
cumulative distribution, and AutoCorr is the autocorrelation
for a stationary segment of the propagation skews.

The bottom row of Figure 7 reports results from a loaded
configuration. Here, propagation skews are much more
variable and considerably larger, a fact that is reflected in
the CDF plot. We also see substantial autocorrelations (pos-
sibly due to periodic activities), a fact that undermines the
assumption of independence of the propagation skews that
the controller algorithm relies on.

Figure 8 assesses the effectiveness of using fixed slack
times for the unloaded and loaded configurations reported
in Figure 7. In all of the plots, the horizontal axis is the slack
time∆ and the vertical axis is Minimum Average Probabil-
ity of a Correct result (MAPC). We see that largeMAPC

values are achieved with a fixed slack time near 0 in the
unloaded cases. However, for the loaded configurations,
MAPC is maximized at larger fixed slack times. This can
be explained by looking at the distribution of propagation
delays. For example, the “unloaded 1” plot corresponds to
the data plotted in the top row of Figure 7. We see that the
median of this distribution (the skew value corresponding to
the 50-th percentile) is approximately 0, which is the fixed
slack time at whichMAPC is maximized. Similarly, the
“loaded 1” plot corresponds to the bottom row of Figure 7.
Here, the median of the skew distribution is a little more
than 0.2 seconds, which is whereMAPC is maximized for
these data.

The solid line in Figure 8 plots theMAPC values

0
 0.2
 0.4

0

0.2

0.4

0.6

0.8

1

unloaded 1

M
A

P
C

0
 0.2
 0.4

0

0.2

0.4

0.6

0.8

1

unloaded 2

0
 0.2
 0.4

0

0.2

0.4

0.6

0.8

1

loaded 1

M
A

P
C

Fixed Slack Time (sec)

0
 0.2
 0.4

0

0.2

0.4

0.6

0.8

1

loaded 2

Fixed Slack Time (sec)

Fixed
Adaptive

Figure 8. Evaluation of fixed slack times (dashed line)
and the adaptive control algorithm forstationarypropaga-
tion skews. The horizontal axis is the value of the fixed
slack time, and the vertical axis is the minimum average
probability of a correct test result (MAPC). The adaptive
control algorithm consistently does as well as the best fixed
slack time.

7

0

0.5

1

Case 1

0

0.5

1

0

0.5

1

Case 2

0

0.5

1

0
 200
 400

0

0.5

1

Observation

P
ro

p
a

g
a

ti
o

n
 S

k
e
w

 (
s
e

c
)
 Case 3

0
 0.2
 0.4

0

0.5

1

M

A
P

C

Fixed Slack Time (sec)

Fixed
Adaptive

Figure 9. Evaluation of fixed slack times (dashed line)
and the adaptive control algorithm fornon-stationaryprop-
agation skews. The plots in the first column are the prop-
agation skews. The second column are plots that evaluate
MAPC in the same way as Figure 8.

achieved by our adaptive control algorithm (N = 5) that
is described in Figure 6. We see that in all cases, the adap-
tive control algorithm selects slack times that are very close
to the value of fixed slack time that maximizesMAPC.
This is impressive in two respects. First, we did not have to
parameterize or train the controller. That is, slack times are
selected in a self-managing way. Second, we achieve near
optimal results in the loaded configuration even though the
data have significant autocorrelations, a situation that vio-
lates the independence assumption of the technique we use
to estimate the median of the propagation skew distribution
in the adaptive control algorithm.

Next, we consider situations in which the distribution of
propagation skews changes. The data we use are synthe-
sized by alternating between propagation skews obtained in
our testbed for loaded and unloaded configurations. Fig-
ure 9 consists of six plots organized into two columns with
three rows. Plots in the first column are propagation skews
used to drive a simulated Management Station. The second
column reportsMAPC for both fixed slack times and the
adaptive control algorithm. We see that the adaptive algo-
rithm consistently does better than the best setting of fixed
slack time.

Last, we evaluate the impact on MAPC of the controller
buffer sizeN . Figure 10 contains ten plots organized into

0

0.5

1 Case A

0.7

0.8

0.9

0

0.5

1 Case B

0.7

0.8

0.9

0

0.5

1 Case C

0.7

0.8

0.9

0

0.5

1

P
ro

pa
ga

tio
n

S
ke

w
 (

se
c)

Case D

0.7

0.8

0.9

0 200 400
0

0.5

1

Observation

Case E

10 20 30 40 50
0.7

0.8

0.9

Buffer Size (N)

M
A

P
C

Figure 10. Effect on MAPC ofN , the size of the buffer
used in the adaptive control algorithm. The plots in the first
column are the propagation skews, and the second column
plotsMAPC for different buffer sizes.

two columns with five rows. As in Figure 9, the first column
are synthesized traces of propagation skews from our exper-
imental runs that are constructed by alternating blocks of
data from different experiments. In case A, there are many
changes in the distribution of propagation skew. Here, the
optimal buffer size is small. The reason for this is that a
smaller buffer size means there is less history and hence
adaptation occurs faster. On the other hand, when changes
in the skew distribution are infrequent (i.e., Case E), the op-
timal buffer size is larger. The insight here is that a larger
buffer size provides a lower variance estimate of the median
of the skew distribution. However, the reduction in variance
itself declines rapidly asN increases. As a result, there is
little value in having a buffer size much larger than 5 or 7,
even for stationary data.

5. Conclusions

Distributed systems often require that events be corre-
lated from multiple systems using temporal patterns. This
paper addresses how to specify timer values for temporal
patterns in distributed systems so as to manage the trade-
off between false alarms and undetected alarms. A central
concern is addressing the variability in event propagation
times due to contention for network and server resources
and other factors. We propose an approach that makes Man-
agement Stations more autonomic by avoiding the need for

8

manual adjustments to timer values. Further, studies of a
testbed system suggest that our approach produces results
that are at least as good as an optimal fixed adjustment in
timer values.

Our results are in three areas. First, we describe the
problem of propagation skew for temporal event correlation
in distributed systems, including measurements of propaga-
tion skew for a testbed system. These measurements show
that propagation skews can be substantial, on the order of
50% of the pattern generation time in our testbed experi-
ments. Second, we introduce an architecture that uses dy-
namically computed slack times to compensate for propa-
gation skews. The architecture includes Calibration Probes,
Probe Monitors, and a Controller. Last, we develop an adap-
tive control algorithm for computing slack times, and we
assess the algorithm in terms of the probability of a correct
result. Our measurements suggest that the algorithm adapts
well to changes in propagation skews, typically doing better
than the best result achieved by a fixed slack time.

Our future work will involve more extensive measure-
ments of propagation skews and extensions to more com-
plex temporal patterns.

Acknowledgements

Kaiser’s Programming Systems Lab is funded in part by
National Science Foundation grants CNS-0426623, CCR-
0203876 and EIA-0202063.

References

[1] A. Adi, A. Biger, D. Botzer, O. Etzion, and Z. Sommer. Con-
text awareness in amit. InAutonomic Computing Workshop,
2003, pages 160–166. IEEE Press, June 2003.

[2] G. E. P. Box and G. M. Jenkins.Time Series Analysis Fore-
casting and Control. Prentice Hall, 1976.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service.ACM
Trans. Comput. Syst., 19(3):332–383, 2001.

[4] G. Jiang and G. Cybenko. Temporal and spatial distributed
event correlation for network security.

[5] G. E. Kaiser, J. Parekh, P. Gross, and G. Valetto. Kines-
thetics extreme: An external infrastructure for monitoring
distributed legacy systems. InActive Middleware Services,
pages 22–31, 2003.

[6] A. Konstantinou, D. Florissi, and Y. Yemini. Towards self-
configuring networks. InDARPA Active Networks Confer-
ence and Exposition (DANCE). IEEE Press, 2002.

[7] D. Luckham. The Power of Events. Addison–Wesley, 75
Arlington Street,Suite 300, Boston, MA 02116, first edition,
2002.

[8] K. Milliken, A. Cruise, R. Ennis, A. Finkel, J. Heller-
stein, D. Loeb, D. Klein, M. Masullo, H. V. Woerkom, and
N. Waite. YES/MVS and the autonomation of operations
for large computer complexes.IBM Systems Journal, 25(2),
1986.

[9] O. C. O. Systems. Rootcause: Using a flight recorder to
speed remote debugging and problem resolution.

[10] A. Walker. A note on the asymptotic distribution of sample
quantiles.Journal of the Royal Statistical Society, 30:570–
575, 1968.

[11] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie.
High speed and robust event correlation.IEEE Communica-
tions Magazine, 34(5):82–90, 1996.

9

