
DEUX: Autonomic Testing System for Operating System Upgrades

Leon Wu Gail Kaiser Jason Nieh Christian Murphy
Department of Computer Science

Columbia University
New York, NY 10027, USA

{leon, kaiser, nieh, cmurphy}@cs.columbia.edu

Abstract

Operating system upgrades and patches sometimes
break applications that worked fine on the older version.
We present an autonomic approach to testing of OS updates
while minimizing downtime, usable without local regression
suites or IT expertise. DEUX utilizes a dual-layer virtual
machine architecture, with lightweight application process
checkpoint and resume across OS versions, enabling simul-
taneous execution of the same applications on both OS ver-
sions in different VMs. Inputs provided by ordinary users
to the production old version are also fed to the new ver-
sion. The old OS acts as a pseudo-oracle for the update,
and application state is automatically re-cloned to continue
testing after any output discrepancies (intercepted at sys-
tem call level) - all transparently to users. If all differences
are deemed inconsequential, then the VM roles are switched
with the application state already in place. Our empiri-
cal evaluation with both LAMP and standalone applications
demonstrates DEUX’s efficiency and effectiveness.

1. Introduction

Computer operating system developers launch newer
versions of the operating system or patches on a regular
basis in order to support some new or improved features,
fix some security or stability issues, or simply implement
a better or trendy software design. Having encountered
many problems such as application incompatibility, appli-
cation malfunction, and even system crashes caused by op-
erating system upgrades in the past, end-users are getting
more and more reluctant to be the first victim of an oper-
ating system upgrade. Many experienced corporate system
administrators often wait a long time after most initial is-
sues have been fixed and potential problems have surfaced
and been analyzed before deployment of a major operating
system upgrade in order to reduce the risk and possibility of
service disruption [3].

To lessen the problem, software vendors, distributors,
and open source developers employ beta testing and pack-
age management systems to improve the upgrade quality.
However, it is simply impossible for vendors to anticipate
and test their upgrades for all the applications and config-
urations that may be affected by the upgrades at the end-
users’ machines [10]. Also, package management systems
are based on software dependency, which does not take into
consideration completely independent third party software
that the end-users may be using.

We have therefore designed, implemented and evaluated
an approach that focuses on autonomic support for time-
consuming and error-prone operating system upgrading and
patching activities that typically make applications unavail-
able to end-users by automatically testing new versions
based on normal end-user activities with the old produc-
tion version (while sandboxing the new version such that it
is invisible to those end-users). The prototype implementa-
tion of the autonomic testing system, named DEUX, auto-
mates testing of operating system updates while minimiz-
ing downtime, usable without local regression suites or IT
expertise. It also enables fast switchover of the new op-
erating system into production, leaving the older operating
system running unnoticeably in parallel if testing needs to
continue, without having to install the new operating sys-
tem twice. An alternative approach would be to place the
new version into production immediately, e.g., in the case
of urgent security patches, and run the old version as the
sandboxed second instance (i.e., to receive the cloned in-
puts, with output comparison and logging). Then if the new
version proves too buggy, the old version is ready to resume
production status with minimal loss of users’ work. DEUX
can also be useful to beta test installations, to isolate the
new beta-test version from the old production version that
continues to support end-users.

An autonomic testing system for this purpose must sat-
isfy the following requirements. First, it should not require
the existing operating system to be modified and currently
running applications to be changed. This requirement en-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sures that the existing system and applications will run as
usual. Second, the operating system upgrade should be ap-
plied to a second sandboxed environment and applications
must be tested in this new environment. It would reduce
hardware requirements if the sandboxed environment can
be created in a virtual machine. Third, it should be easy to
compare the application behaviors between the existing sys-
tem and the sandboxed environment, and the results should
be logged and reports should be generated. Fourth, when
discrepancies or errors happen in the sandboxed environ-
ment, the system state must be saved and sandboxed envi-
ronment stopped and then restarted so that it restarts from
the existing system’s current state. Finally, the overhead
and efficiency of the testing system should be acceptable.

To address these requirements, our approach includes
a virtual machine environment, a checkpoint and restart
mechanism, autonomic and simultaneous execution of user
applications, and logging and reporting functions. Our
approach also takes advantage of “pseudo-oracle” testing:
identical user inputs are supplied to two copies of the same
application, one running on the old operating system and
one running on the new, and the resulting outputs are com-
pared [12]. In general, if the results are semantically differ-
ent, then a defect must exist in the operating system and/or
the application. We cannot yet address intentionally non-
deterministic applications. The applications in both envi-
ronments run in parallel transparently to the user, and the
virtual machine environment can be constructed without re-
quiring new hardware. Also, both running systems can take
checkpoints and save their state information as two sepa-
rate physical files, and either system can then be restarted
using the checkpoint snapshot file the other system gener-
ated. Furthermore, the input, output and other results can
be logged and used to generate reports. After testing for a
sufficient time as determined by the administrators or com-
puter owners, the decision of committing to the operating
system upgrade or staying with the older one can be made.
The end-users of the system do not even need to know about
the testing or the cloned applications running in the second
virtual machine.

The rest of paper is organized as follows. Section 2
presents our motivation, limitations of existing approaches,
and overview of our approach. Section 3 depicts the de-
sign including architecture and key components: the vir-
tual machine environment, checkpoint and restart mecha-
nisms, autonomic and simultaneous execution, and logging
and reporting. Section 4 describes the implementation, and
Section 5 evaluates the system with test cases, experimen-
tal results and performance metrics. Section 6 analyzes the
related work, and lastly Section 7 concludes and outlines
future work.

2. Motivation and Approaches

2.1. Motivation

Operating system failures and incompatibilities are some
of the major causes of application malfunction and system
downtime. As is the case with other software, operating
systems and operating system upgrades come with defects.
According to prior research, defects remain in the Linux
kernel an average of 1.8 years before being fixed [8].

Large corporations and government agencies spend a
huge amount of resources each year dealing with operating
system upgrades and maintenance [9]. System adminis-
trators in these organizations often set up sophisticated lab
environments to test operating system upgrades for a long
period of time before actual roll-out to make sure the up-
grade has minimal impact on in-house applications.

In some small or medium companies or organizations
with limited resources, however, upgrading the operating
system can be a daunting task. For instance, a small non-
profit charity organization with just a few non-technical
staff may only have one computer to manage all their
fundraising activities, human resources, and accounting
records. If a new upgrade is available and urgent, they may
go ahead with the installation, but a defect in the upgrade
may render their system unstable and break some applica-
tions. The higher risk is that the system crashes or applica-
tions can’t be used at all. In that case, it is often needed to
revert to an old version of the OS, which might be a chal-
lenging task for non-technical personnel. A user-friendly
and effective autonomic testing system that does not re-
quire extra hardware resources and sophisticated computer
knowledge to operate would solve the problem and allevi-
ate people’s fear of upgrading their operating system. Such
a system would swap in the new operating system version
when all seems to be working correctly, so the new OS ver-
sion has to be installed only once - and there is essentially
no application downtime.

2.2. Limitations of Existing Approaches

There are certain common limitations in existing beta
testing and package management systems approaches we
studied.

The first limitation is that the existing approaches are not
comprehensive and do not cover end-users’ environments
and the applications of their specific interest. For exam-
ple, although beta testing before an operating system re-
lease and package management systems improve the quality
of the release, they do not provide a comprehensive testing
mechanism to encompass end-users’ specific environments
and applications. Some users may have proprietary or third
party software applications to which only they have access.

Package management systems will not ensure that these ap-
plications work well after an operating system upgrade.

The second limitation is that the existing approaches re-
quire extra resources such as new computer hardware. For
a corporate IT department, it is very common to have some
extra idle machines in a lab for testing the new operating
system or operating system upgrade. A more advanced data
center operator usually has a high-end deployment and test-
ing management system along with different kinds of run-
ning environments to perform testing. These kinds of test-
ing labs are expensive to set up and operate, and small or
medium businesses and home users may find the approach
beyond their budget and time. They often trust the operating
system developers blindly and install the operating system
upgrade at their own risk, without any testing.

The third limitation is that the existing approaches are
usually manual. They require human operators to test the
applications in the newly upgraded operating system. In or-
der to have better testing results, the human operators have
to first record the functionalities commonly used in the old
operating system and perform functionality testing in the
new operating system. Then they have to perform other test-
ing such as compatibility, performance and security testing
manually. Some big data centers or corporations might have
specialized software to automate these tasks. But these soft-
ware are usually very expensive and out of reach of normal
users.

2.3. Our Approach

We present an automated testing system named DEUX
that provides autonomic support for local testing of oper-
ating system upgrades while minimizing application down-
time, intended for small-scale IT operations without a dedi-
cated IT staff or the resources to construct a local regression
test suite. DEUX utilizes an architecture based on a virtual
machine (VM) environment, with a second level of lighter-
weight virtualization supporting the checkpointing, migra-
tion, and resuming of application process across minor op-
erating system versions, enabling simultaneous execution
of the same application on both old and new versions of the
OS in different VMs. The input provided by ordinary users,
continuing to use the production application on the old OS
version, is fed to the new version. Any output discrepan-
cies are logged, with the old version effectively acting as
a pseudo-oracle for the new version. The application state
is then automatically cloned again to continue testing; this
is all transparent from the users’ perspective. If after some
period of usage all output discrepancies between the two
versions are deemed inconsequential (or if the new version
fixes known flaws in the old version), then the VM roles are
switched - putting the new OS version into production with
the application state already in place.

Our approach overcomes the above mentioned limita-
tions. First of all, our approach gives the end-users the tools
and flexibility to run tests on the applications they choose
and the functionality they choose. In this way, there is no
need to worry about the testing being comprehensive be-
cause end-users can try all the applications as they normally
use the computer. For other applications and functionality
they do not use, testing would not be required.

Second, our approach takes advantage of the virtual ma-
chine environment. The parallel testing of the new oper-
ating system along with the old operating system can run
inside the same computer. End-users do not need to ac-
quire extra hardware for testing the operating system up-
grade. The virtual machine environment also provides iso-
lation and protection of the applications running in the pro-
duction mode in the existing operating system from the ap-
plications running in the testing mode in the new operating
system.

Third, our approach automates the testing using auto-
nomic and simultaneous parallel execution. The end-users
do not need to redo the actions of providing input for the
application instances running inside the new operating sys-
tem, which is in turn running inside the virtual machine.
After launching, the end-users can perform their usual tasks
in the existing operating system. The applications would
run in parallel inside the virtual machine and accept user
input transparently.

Fourth, our approach does not require special knowledge
of software testing. The end-users don’t even know the au-
tonomic testing is happening. DEUX requires that admin-
istrators or computer owners be able to look at the discrep-
ancy reports and determine whether any differences matter
or not, but this does not affect the end-users.

3. Design

3.1. Overview

As illustrated in Figure 1, DEUX consists of two virtual
machines, one shared directory, a mutual client, and a host
machine. The current prototype system is implemented for
the Linux environment.

The two virtual machines, VM1 and VM2, run the old
operating system, namely OS1, and new operating system,
namely OS2, respectively. Inside each virtual machine,
there is a PrOcess Domain (POD). The POD architec-
ture was originally designed and implemented by Columbia
University researchers using Zap, a system for migrating
computing environments [23]. A POD provides a group of
processes with a private namespace that presents the pro-
cess group with the same virtualized view of the system.
This virtualized view associates virtual identifiers with op-
erating system resources such as process identifiers and net-

VM1

OS1

IP:192.168.117.128

VM2

OS2

IP:192.168.117.129

HOST

IP:192.168.117.1

Applications

POD p0

IP:192.168.117.128

Applications

POD p0

IP:192.168.117.129

Shared Directory

NFS HOST:/vmshare

CLIENT

Figure 1. DEUX architecture

work addresses. This decouples processes in a POD from
dependencies on the host operating system and from other
processes in the system [23]. The user applications run as
processes inside each POD.

Why do we need both PODs and VMs? The main point
is that PODs support migration across different OS versions
[23], while doing a checkpoint of a VM would include the
entire OS and thus there would be no way to switch OS ver-
sions. The POD, in contrast, takes only the applications and
a thin virtualization layer, and can be resumed on a different
OS version.

The shared directory, e.g. Host:/vmshare in the diagram,
is for easier file sharing between the host and the two vir-
tual machines. One type of important file for sharing is the
checkpoint snapshot file. VM2 needs to access the check-
point snapshot files that VM1 generated in order to quickly
restart its state to match up the environment of VM1. Some
read-only files can also be easily shared between the host
machine and two virtual machines.

The client is for the administration of the testing, so that
the end-user does not notice the existence of the testing and
applications running inside the POD of VM2. It has access
to the host machine and two virtual machines. When the
client gives any input to VM1, the input is also replicated to
VM2. In this way, applications running inside OS1 and OS2
in different virtual machines are given synchronized inputs
to enable comparison of the respective outputs.

An alternate architecture of DEUX is illustrated in Figure
2. This architecture is a simplified version of the architec-
ture previously described. The difference is that this archi-
tecture uses only one virtual machine. The host machine
runs the old operating system OS1, while the single virtual
machine runs the new operating system OS2. Although it is

VM

NEW OS

IP:192.168.117.129

HOST

IP:192.168.117.1

Applications

POD p0

IP:192.168.117.1

Applications

POD p0

IP:192.168.117.129

Shared Directory

NFS HOST:/vmshare

CLIENT

Figure 2. Alternate DEUX architecture

simpler, it does not provide the flexibility of comparing op-
erating systems besides the one being used by the host ma-
chine. The absence of the first virtual machine also makes
it impossible to swap production and testing VM roles. It
means if the testing of the new OS goes well, there is no
immediate switchover that can be done to make the new OS
the production OS, thus reducing the downtime and OS up-
grade installation time.

Of course it is possible that a defect on the OS may pre-
vent DEUX from running in the first place. If the new OS
has a defect that prevents DEUX from operating, then we
know it has a defect and don’t have to do anything further
(except maybe log the defect and report it to the vendor).
The testing ends here. If DEUX runs fine, then we need to
try each of the user applications, to see if any of them trig-
gers a defect. If none of them causes a defect, then we put
the new OS version in production. So defects that prevent
DEUX from running aren’t an issue.

3.2. Virtual Machine Environment

The use of a virtual machine provides a key virtual exe-
cution environment for the new and old operating systems
in DEUX. There are several advantages of utilizing virtual
machines in the design. One obvious advantage is that a vir-
tual machine reduces the hardware resource cost. The vir-
tual machines are easy to be integrated and different com-
ponents can communicate with each other in various ways
such as directory sharing, SCP or SSH. Furthermore, the
virtual machine provides better isolation and protection be-
cause the applications running inside are limited to the re-
sources and abstractions provided by the virtual machine.

There are many different virtual machine products avail-

able. We used VMware Server [28] for Linux in the pro-
totype implementation. In order to optimize the system
performance in the POD, DEUX employs a copy-on-write
(COW) technique as described in [19]. From the virtual
file system perspective, directories and files are categorized
as either Read Only or Read/Write. The Read Only directo-
ries and files are shared and linked each time the new POD
is created, while the Read/Write directories and files are
POD-specific with each POD having its own Read/Write
directories to store specific information for that POD.

3.3. Checkpoint and Restart

A checkpoint is a mechanism to save a snapshot of state
information of the running process or process group into a
persistent format, so that it is possible to later revive the ses-
sion. The checkpoint does not require complete termination
of the current process or process group: it can either pause
or kill the process or group. The restart is a mechanism of
reviving a saved session with state and processes in either
the same environment or a different environment as if noth-
ing has happened in between, using the checkpoint snapshot
file.

The prototype implementation of DEUX uses the check-
point and restart technique employed by DejaView [19].
DejaView is the new improved version of Zap mentioned
previously. In the case of taking a checkpoint, the session is
quiesced and all its processes are forced into a stopped state,
to ensure that the saved state is globally consistent across all
processes in the session. Then the execution state of the vir-
tual execution environment and all processes is saved. Also,
a file system snapshot is taken to provide a version of the file
system consistent with the checkpointed process state.

Figure 3 illustrates DEUX’s checkpoint and restart algo-
rithm. As a typical scenario, first, the application has to
be started in VM1’s POD, and then it is paused and check-
pointed. Its checkpoint snapshot file is saved to a shared di-
rectory Host:/VMShare with file name vm1-ck0. VM2 can
then start a POD using snapshot file vm1-ck0; that is, the
application process is migrated to VM2. At the same time,
the POD in VM1 is resumed. This is the first clone phase.
The actions are also being logged into the database during
this process. After that initiation stage, the user can begin
to interact with the application as it runs in VM1. When an
input A is given to VM1 (OS1), it is passed to VM2 (OS2);
VM1 produces output A-1, and VM2 produces A-2. A-1 is
compared with A-2: if they are identical (in the case of de-
terministic testing), then DEUX does nothing and continues
to the next test.

However, if A-1 is different from A-2, first, the results
are logged into the database, then both PODs running in
VM1 and VM2 are checkpointed and the snapshot files are
saved as vm1-ck1 (from VM1) and vm2-ck1 (from VM2)

VM1 OS1 VM2 OS2

Input A

Output A-1 Output A-2

Compare A-1 with A-2

Same?

Yes.

Output is identical.

Do Nothing

Continue Testing

Checkpint VM1 POD1

Save snapshot file as

Host:/vmshare/vm1-ck1

Checkpint VM2 POD1

Save snapshot file as

Host:/vmshare/vm2-ck1

No.

VM1 OS1

Resume POD1

VM2 OS2

Restart POD1 using

Host:/vmshare/vm1-ck1

Continue Testing

VM1 OS1

App Starts in POD1

Checkpint VM1 POD1

Save snapshot file as

Host:/vmshare/vm1-ck0

VM2 OS2

Start POD1 using

Host:/vmshare/vm1-ck0

VM1 OS1

Resume POD1 First Clone Phase

Second Clone Phase

LOG DB

LOG DB

LOG DB LOG DB

Figure 3. Checkpoint and restart algorithm

respectively. The second clone phase begins when the POD
inside VM1 is resumed. At the same time, the vm1-ck1
snapshot file previously saved from VM1 is used to restart
the POD inside VM2, so that after restart, both PODs in
VM1 and VM2 are starting from the identical state. The ac-
tions are also logged into the database. Finally, the testing
continues until the satisfactory conclusion is reached. In the
case that the results are non-deterministic, human judgment
is needed to decide if application running on OS2 is actu-
ally deviated from application running on OS1. Future work
might include semi-automated analysis tool that is able to
aid human decision.

3.4. Autonomic and Simultaneous Execution

Autonomic execution means DEUX is capable of self-
execution and self-management without human interven-
tion. Simultaneous execution means the applications run
inside the two virtual machines in parallel and do not re-
quire the computer users to give input twice. The users only
need to focus on the applications running on the existing
operating system, which is inside the POD of VM1 (OS1).
The applications running inside the POD of VM2 with the
newer operating system OS2 would run in a mirrored and
autonomic fashion.

The passing of user input (or action) from POD of VM1
to POD of VM2 and vice versa is achieved via user interface
(UI) monitor daemon as illustrated in Figure 4. The mon-
itor daemon runs as a persistent service inside both PODs.
Whenever the user input is detected in one POD, the actions
can be synchronized to the other POD by passing through
the client, who administrates the testing. The client acts as a
console to control the direction of the input synchronization
and also can initiate actions such as checkpoint and restart.

VM1

OS1

IP:192.168.117.128

VM2

OS2

IP:192.168.117.129

HOST

IP:192.168.117.1

Applications

POD p0

IP:192.168.117.128

Applications

POD p0

IP:192.168.117.129

CLIENT

Monitor

Daemon

Monitor

Daemon

Figure 4. UI monitor daemon

It is possible to utilize THINC visual display architecture
[2] and Dejaview to record display and contextual informa-
tion by capturing the name and type of the application that
generated the text, window focus, special properties about
the text, and all text that is displayed on the screen [19].
In our prototype implementation, the application output dis-
crepancies require intervention from administrators or com-
puter owners, but not end-users.

One advantage of autonomic and simultaneous execution
is ease of testing. End-users do not need special technical
knowledge or extra time in designing different test cases.
They can just run the applications as they normally use

the computer. DEUX would provide the necessary testing
mechanism along the way.

Another advantage is the better accuracy of the testing
because the application running in the old version of the OS
is used as a pseudo-oracle for the application running in the
new version. Testing is time sensitive. Simultaneous pro-
cessing of input, output and other functions are crucial for
determining the quality and performance of the applications
and the underlying operating systems.

3.5. Logging and Reporting

In order to keep records of the testing procedures, results,
checkpoint and restart times, and error messages, DEUX
provides logging and reporting functionality by saving the
testing information into a lightweight database running on
the host machine.

As described in Table 1, the main tables of the database
include OS, Application, Test, Checkpoint, and Restart.

Table 1. Database tables
Table Name Description
OS OS version information
Application Applications being tested
Test Testing sequence with timestamp
Checkpoint Checkpoint file, source VM and time
Restart Restart snapshot used, VM and time

The entire process is meant to be transparent to the end-
users, but the computer owners or administrators would
need to look at the application along the way to get an
idea when to end testing. Alerts could be generated after
some discrepancies have occurred, however, to tell com-
puter owners or administrators to look at the database. They
can review the historic information logged in the database
and generate reports based on the data saved in order to
make better decisions on whether the operating system up-
grade should be performed.

4. Prototype Implementation

The prototype DEUX system is implemented on an HP
Proliant DL 360 G3 server. The server has a single In-
tel Xeon 3GHz CPU, 4GB RAM, and a 36GB SCSI Hard
Drive.

The host operating system is Ubuntu Linux version
7.10 (Gutsy Gibbon). The virtual machine environment is
VMware Server version 1.0.3 for Linux. The checkpoint
and restart software is DejaView (with version April 2008)
[19] and Zap (with version February 2007) [23].

The shared directory is set up using an NFS shared folder
/vmshare on the host machine and Read/Write access from
VM1 and VM2 is enabled.

The programming languages employed include C, shell
scripts and SQL. DEUX has around 20K lines of new code
on top of the software employed.

5. Evaluation

We evaluated the DEUX system using different test cases
and performance metrics. In all our test environments, OS1
is the old operating system on which applications work cor-
rectly, and OS2 is the upgraded operating system that we
want to test. In our prototype implementation, the operating
system for the host machine is Ubuntu Linux version 7.10
with Linux Kernel version 2.6.22. OS1 is Debian Linux
with Kernel version 2.6.11, and OS2 is a higher version,
2.6.12.

The first test case is the testing of a LAMP (Linux,
Apache, MySQL, PHP/Python/Perl) server application. We
tested DEUX using one specific example: phpBB, which
is an online bulletin board application using LAMP tech-
nologies. The version of phpBB tested is 2.0.22-2 (Debian).
The second test case is the testing of a standalone applica-
tion: we tested DEUX using Mozilla Firefox. The version
of Firefox tested is 1.5.0.3.

The performance metrics we employed include resource
consumption such as memory and CPU usage, time latency
because of checkpoint and restart, and hard drive storage
requirements.

5.1. Test LAMP Server Application phpBB

phpBB is a popular open source LAMP server applica-
tion that enables Internet users to post and share messages
in an online forum environment and also provides manage-
ment functionality for administrators.

In order to better resemble end-user activities in the real
world, we designed and categorized our test cases into dif-
ferent functional tasks: user login/logout, posting a mes-
sage, replying to a message, editing a profile, administrator
login/logout, configuring the forum settings, user manage-
ment, sending group email, backup and restore, etc. These
are representative of what real end-users would actually do
in their regular activities when phpBB is deployed in the
field.

In all test cases, virtual machine VM1 runs operating
system OS1 and virtual machine VM2 runs operating sys-
tem OS2. The standard testing procedure is as follows: first,
phpBB is started in the POD of VM1. Then VM1 is paused
and checkpointed. The POD of VM2 is started using the
checkpoint snapshot file saved by VM1. At the same time,
VM1 is resumed. Second, end-users perform functional
tasks as described above. When phpBB running on OS2 has
a different output than phpBB running on OS1, or phpBB
running on OS2 has an error message while phpBB running

Figure 5. phpBB

on OS1 has no error, the system performs a checkpoint of
the POD on VM1 to vm1-ck1 and a checkpoint of the POD
on VM2 to vm2-ck2. Both vm1-ck1 and vm2-ck2 are saved
to the shared directory /vmshare of the host machine. Ac-
tions and checkpoint-related information are also logged to
the database. The POD in VM1 is resumed and the POD
in VM2 is restarted using vm1-ck1 simultaneously. Finally,
end-users continue to the next test case and run the tests
until all their normal activities in using the application are
covered.

5.2. Test Standalone Application Mozilla Firefox

Mozilla Firefox is a popular open source cross-platform
Internet browser. Along with traditional web browsing
functionality, Firefox also provides a built-in news feed
reader that supports RSS (Really Simple Syndication), an
XML-based data feed format. Furthermore, Firefox is a pio-
neer in incorporating a search tool box into the user-friendly
interface.

Figure 6. Mozilla Firefox

Web browsers including Firefox provide simple and
commonly used functionalities such as web browsing, news
feed reading, bookmarking favorite web pages, etc. Since
there are not many different functional tasks, we developed
test cases covering the different components of the applica-
tion itself, such as tab browsing, opening and saving files of
different formats, changing preferences, searching, creating
bookmarks, etc. These are normal user activities in the real
world.

Similar to the testing of phpBB, in all test cases, vir-
tual machine VM1 runs operating system OS1 and virtual
machine VM2 runs operating system OS2. The standard
testing procedures are the same for those of phpBB, as de-
scribed above.

5.3. Experimental Results and Analysis

In the testing of phpBB as an example of a server ap-
plication, we identified one defect, which is related to the
email functionality. One manifestation of this defect occurs
when the administrator logs in, goes to the Administration
Panel, and tries to compose and send a group email using
the Mass Email form. The error message was “General Er-
ror Failed sending email :: PHP :: DEBUG MODE Line
: 234 File : emailer.php”. As reported in the phpBB Bug
tracker, this is a known defect [25] that only occurred in
VM2/OS2, but did not occur in VM1/OS1. This defect also
occurred on other occasions when an email was supposed
to be generated and sent, such as right after registration,
posting a message to a bulletin board, or sending a private
message. After further investigation, we verified that the de-
fect is indeed caused by the operating system upgrade. The
direct cause was the upgrade of the /usr/sbin/sendmail pro-
gram. Sendmail is a mail transfer agent responsible for han-
dling mail in most variants of UNIX operating systems. It is
a popular target for network intruders. Due to the prolifer-
ation of the Internet security breaches, Sendmail is updated
frequently and the operating system upgrade often comes
with a newer version of Sendmail. In this case, DEUX was
able to detect a defect that only revealed itself when using
the new version of the OS.

In the testing of Mozilla Firefox as an example of stan-
dalone application, we also identified one defect that ap-
peared in VM2/OS2 but did not occur in VM1/OS1. When
Firefox displayed a web page with a Flash plugin for a
given period of time, Firefox suddenly crashed and ex-
ited. Further study of the problem confirmed that the op-
erating system upgrade in OS2 contains a newer library of
libnss3, which caused Firefox to run in an unstable condi-
tion. The libnss3 library and its newer generations are net-
work security service libraries that support security-enabled
client/server applications. In this test, the conflict between
Firefox and the newer version of the OS library caused Fire-

fox to crash, and this defect was detected using DEUX. Fur-
ther investigation shows that this is a confirmed known bug
of Firefox [22].

On the other hand, it is possible that OS2 might fix de-
fects in OS1, and so it would be expected that the results
are different. One such case in the testing of Mozilla Fire-
fox showed that the newer operating system OS2 fixed a
defect that only appeared in the old operating system OS1.
This defect is related to the mime-support system package.
The newer version of the mime-support package includes
support for more and newer file formats and file name ex-
tensions. In this case, DEUX proved that OS2 has advantage
over OS1 and the user should upgrade to OS2 if there are no
other issues.

The above experimental results show that the DEUX sys-
tem is effective in helping the end-users to test the operat-
ing system upgrade with no additional operational burden
on their part. DEUX is not only able to detect defects that
only appear in the newer operating system, but it can also
show defects that have been fixed by the operating system
upgrades.

5.4. Performance Metrics and Evaluation

To better evaluate the DEUX system, we also measured
the system performance using metrics of resource consump-
tion such as memory usage, CPU consumption, time latency
due to taking checkpoints and restarting, and hard drive
storage usage.

Table 2. Memory usage
Services Memory Used (MB)
OS 1328
OS+App running on host 1354
OS+single VM 1449
OS+two VMs 1589
OS+DEUX (two VMs+two PODs) 2371
OS+DEUX+App running in PODs 2641

Table 3. CPU consumption
Services CPU used (in %)
OS 3.5
OS+App running on host 5.3
OS+single VM 6.1
OS+two VMs 10.2
OS+DEUX (two VMs+two PODs) 11.3
OS+DEUX+App running in PODs 30.5

In Tables 2 and 3, the application used for measurement
is the Mozilla Firefox web browser. DEUX includes two

VMs, each running a POD. The Linux command used for
capturing memory usage information is ($ free -t -m). The
system utility used for getting CPU consumption informa-
tion is ($ top) and ($mpstat -P ALL). The CPU usages are
volatile with some spike during application startup or shut-
down. The numbers in the Table 3 are average numbers of
five trials.

Table 2 shows that DEUX adds around 782MB of mem-
ory usage on top of the VMs. This memory is mostly con-
sumed by the PODs, inside which the user applications are
running. For our testing system with 4GB memory, the
memory usage of DEUX is acceptable. Table 3 shows that
the CPU usage of the PODs themselves is around 1.1% of
the total CPU. Given the fact that CPU usages fluctuates
drastically among processes, this number is negligible.

In terms of hard drive storage usage, each of the VMs in
the prototype implementation occupies around 8.5GB disk
space mainly because they are self-contained virtual ma-
chines. The disk space usage varies based on the applica-
tions that need to run and sizes of the user files.

Table 4. Checkpoint time
Command Time (in seconds)
CK empty POD Real 0.678 User 0.000 Sys 0.013
CK POD with
browser running

Real 1.154 User 0.000 Sys 0.683

CK POD with
Emacs running

Real 0.969 User 0.000 Sys 0.568

Table 5. Restart time
Command Time (in seconds)
RS empty POD Real 0.391 User 0.000 Sys 0.016
RS POD with
browser running

Real 0.450 User 0.000 Sys 0.013

RS POD with
Emacs running

Real 0.502 User 0.000 Sys 0.027

We also used the system command ($ time command) to
obtain the timing statistics. The results are shown in Table
4 and 5. In the tables, Real means the elapsed real time be-
tween invocation and termination, User means the user CPU
time, and Sys means the system CPU time. From the tables,
the checkpoint and restart time are mostly in the range of
less than one second.

Laaden et al. measured the detailed latency of the check-
point and restarts, using the same mechanism DEUX uses,
when applied to different applications [19]. According to
their results, the latency of taking a checkpoint is less than a
few milliseconds, and the latency of performing a restart is
less than a few seconds. The latencies are short comparing
to functional operations of a lot of user applications. And

they do not happen very often. Thus, the end-users would
not see the latencies caused by DEUX as an issue.

The above results show the DEUX system is efficient and
does not consume significant system resources.

6. Related Work

In [26], Qin et al. proposed a technique to rollback the
program to a recent checkpoint upon a software failure, and
then re-execute the program in a modified environment in
order to quickly recover programs from many types of soft-
ware defects. In their implementation, the checkpoint and
rollback features were also used. However, there are funda-
mental differences between their approach and DEUX. First
of all, the purpose of the system is different. Qin et al.
aimed to solve the problem of recovering programs while
removing the so-called “allergens”, which are the cause of
the defects. The checkpoint and rollback mechanisms are
used as a way to revive programs. DEUX’s goal is to provide
an intuitive and effective end-user tool for non-technical
users to test the operating system upgrade in their context.
The checkpoint and rollback technique used by DEUX is
for pausing, stopping and synchronizing the PODs, inside
which user applications run as processes.

In [10], Crameri et al. proposed Mirage, a dis-
tributed framework for integrating upgrade deployment,
user-machine testing, and problem reporting into the over-
all upgrade development process. Their work was moti-
vated by the results of a survey of 50 system administrators.
Their focus is on how to better design a deployment sys-
tem with various different subsystems. On the other hand,
DEUX does not aim to improve the deployment or even the
operating system. DEUX specifically aims to help the end-
users, not the developers or vendors of the operating sys-
tems, although they can benefit from better user feedback
or they can use DEUX to test the operating system upgrade
themselves.

In [30], Yang et al. described EXPLODE, a system to
systematically check real storage systems for errors. EX-
PLODE uses checkpoint and restore states to explore and
exhaust the choices for one choice point in storage check-
ing. There are at least three differences between EXPLODE
and DEUX. First, EXPLODE uses a comprehensive, heavy-
weight formal verification technique based on model check-
ing to make its checking more systematic. DEUX does not
use any formal verification technique in the design. Sec-
ond, during checkpoint and restart, EXPLODE uses compu-
tation rather than copying to recreate states; on the other
hand, DEUX takes advantage of the Copy-on-Write file sys-
tem migration and the states are being saved and exchanged
through physical checkpoint snapshot files. Third, EX-
PLODE and DEUX aim to solve different problems with EX-
PLODE focusing on finding serious storage system errors

while DEUX provides an automated testing system for op-
erating system upgrades.

In [27], Su et al. proposed a configuration management
tool named AutoBash that uses operating system causality
analysis and OS-level speculative execution to try possible
configuration actions, examine their effects, and roll them
back when necessary. Its goal is to automate the search
for solution of the configuration problem. DEUX does not
aim to find a solution of the OS upgrade problems. In-
stead, DEUX provides the techniques for identifying the
issues caused by the operating system upgrades. Further-
more, their system architecture and fundamental methods
are different. AutoBash uses causality analysis, search and
speculative execution. While DEUX uses lightweight POD
running in virtual machines, checkpoint, restart, logging,
and autonomic and simultaneous execution.

7. Conclusion and Future Work

DEUX provides a new approach that may be applicable to
other software quality assurance implementations as well.
One possible direction for future work would be incorpo-
rating a copy-on-write database into the design of DEUX.
The prototype implementation described in this paper does
not handle Read Only and Read/Write data of the user appli-
cation databases separately. In practice, this might require
more storage space and be less efficient, however. Further
investigation may also look into better ways of automat-
ing the process and reducing the required human interven-
tions, such as developing a semi-automated analysis tool for
checking the discrepancies of applications. Another future
work may include automated construction of local regres-
sion test suites from normal user activities, with recording
of production inputs and outputs, to enable testing of new
versions ”offline”, e.g., while the production version is idle.
There is also possible future work for researchers who are
interested in applying similar technologies to Windows or
other operating systems.

In this paper, we have presented DEUX, a technology
that automates operating system testing using normal user
activities as part of its pseudo-oracle approach, while min-
imizing application downtime caused by operating system
upgrade and patching. Our contribution is an approach and
a prototype implementation that enables ordinary users to
transparently test software applications of their own inter-
est in the new operating system in parallel with the exist-
ing operating system transparently, without requiring the
end-user to be technology savvy or have knowledge of soft-
ware testing. The empirical evaluation of the system using
test cases of different applications and performance metrics
shows that DEUX is efficient and effective.

8. Acknowledgments

The authors thank Oren Laadan and Shaya Potter for
their assistance. Wu, Kaiser, and Murphy are members
of the Programming Systems Laboratory, funded in part
by NSF CNS-0717544, CNS-0627473, CNS-0426623 and
EIA-0202063, and NIH 1 U54 CA121852-01A1. Nieh is a
member of the Network Computing Laboratory, funded in
part by NSF CNS-0717544 and CNS-0426623.

References

[1] S. Ajmani, B. Liskov, and L. Shrira. Scheduling and sim-
ulation: How to upgrade distributed systems. In In Ninth
Workshop on Hot Topic in Operating Systems (HotOS-IX,
pages 43–48, 2003.

[2] R. A. Baratto, L. N. Kim, and J. Nieh. Thinc: a virtual dis-
play architecture for thin-client computing. In SOSP ’05:
Proceedings of the twentieth ACM symposium on Operating
systems principles, pages 277–290, Brighton, United King-
dom, 2005. ACM.

[3] C. Barker. Gartner: Ignore vista until 2008. available at
http://news.cnet.com/, 2005.

[4] A. Baumann, G. Heiser, J. Appavoo, D. D. Silva, O. Krieger,
R. W. Wisniewski, and J. Kerr. Providing dynamic update in
an operating system. In ATEC ’05: Proceedings of the an-
nual conference on USENIX Annual Technical Conference,
pages 32–32, Anaheim, CA, 2005. USENIX Association.

[5] K. Buchacker and V. Sieh. Framework for testing the fault-
tolerance of systems including os and network aspects. In
HASE ’01: The 6th IEEE International Symposium on High-
Assurance Systems Engineering, pages 95–105. IEEE Com-
puter Society, 2001.

[6] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot a technique for cheap recovery. In
OSDI 04: 6th Symposium on Operating Systems Design and
Implementation, pages 31–44, San Francisco, CA, USA,
December 2004. USENIX Association.

[7] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew. Polus: A
powerful live updating system. In ICSE ’07: Proceedings of
the 29th international conference on Software Engineering,
pages 271–281. IEEE Computer Society, 2007.

[8] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating systems errors. SIGOPS Oper.
Syst. Rev., 35(5):73–88, 2001.

[9] A. L. Couch, N. Wu, and H. Susanto. Toward a cost model
for system administration. In 19th Large Installation System
Administration Conference (LISA 05), pages 125–141, San
Diego, CA, 2005. USENIX Association.

[10] O. Crameri, N. Knezevic, D. Kostic, R. Bianchini, and
W. Zwaenepoel. Staged deployment in mirage, an integrated
software upgrade testing and distribution system. In SOSP
’07: Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, pages 221–236, Stevenson,
Washington, USA, 2007. ACM.

[11] M. d’Amorim, S. Lauterburg, and D. Marinov. Delta execu-
tion for efficient state-space exploration of object-oriented

programs. In ISSTA ’07: Proceedings of the 2007 interna-
tional symposium on Software testing and analysis, pages
50–60, London, United Kingdom, 2007. ACM.

[12] M. D. Davis and E. J. Weyuker. Pseudo-oracles for non-
testable programs. In Proc. of the ACM ’81 Conference,
pages 254–257, 1981.

[13] R. Griffith and G. Kaiser. A runtime adaptation framework
for native c and bytecode applications. Autonomic Com-
puting, 2006. ICAC ’06. IEEE International Conference on,
pages 93–104, June 2006.

[14] P. Gross, S. Gupta, G. Kaiser, G. S. Kc, and J. J. Parekh.
An Active Events Model for Systems Monitoring. In Work-
ing Conference on Complex and Dynamic Systems Architec-
tures, 2001.

[15] G. Kaiser, P. Gross, G. S. Kc, J. J. Parekh, and G. Valetto.
An Approach to Autonomizing Legacy Systems. In Work-
shop on Self-Healing, Adaptive and Self-MANaged Systems,
2002.

[16] G. Kaiser, J. J. Parekh, P. Gross, and G. Valetto. Kinesthet-
ics eXtreme: An External Infrastructure for Monitoring Dis-
tributed Legacy Systems. In Autonomic Computing Work-
shop, 2003.

[17] A. D. Keromytis, J. J. Parekh, P. Gross, G. Kaiser, V. Misra,
J. Nieh, D. Rubenstein, and S. J. Stolfo. A Holistic Approach
to Service Survivability. In ACM Workshop on Survivable
and Self-Regenerative Systems, 2003.

[18] N. P. Kropp, P. J. K. Jr., and D. P. Siewiorek. Automated
robustness testing of off-the-shelf software components. In
Symposium on Fault-Tolerant Computing, pages 230–239,
1998.

[19] O. Laadan, R. A. Baratto, D. B. Phung, S. Potter, and
J. Nieh. Dejaview: a personal virtual computer recorder. In
SOSP ’07: Proceedings of twenty-first ACM SIGOPS sym-
posium on Operating systems principles, pages 279–292,
Stevenson, Washington, USA, 2007. ACM.

[20] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A tool
for finding copy-paste and related bugs in operating system
code. In OSDI 04: 6th Symposium on Operating Systems
Design and Implementation, pages 289–302, San Francisco,
CA, USA, December 2004. USENIX Association.

[21] S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and
D. Marinov. Parallel test generation and execution with ko-
rat. In ESEC-FSE ’07: Proceedings of the the 6th joint
meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of
software engineering, pages 135–144, Dubrovnik, Croatia,
2007. ACM.

[22] Mozilla. Bugzilla@mozilla. available at
https://bugzilla.mozilla.org, 2008.

[23] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design
and implementation of zap: A system for migrating com-
puting environments. In OSDI 02: 5th Symposium on Op-
erating Systems Design and Implementation, Boston, MA,
USA, December 2002. USENIX Association.

[24] J. J. Parekh, G. Kaiser, P. Gross, and G. Valetto. Retrofitting
Autonomic Capabilities onto Legacy Systems. Journal on
Cluster Computing, 9(2):141–159, 2006.

[25] phpBB Group. phpbb bug tracker. available at
http://www.phpbb.com/bugs, 2008.

[26] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: treating
bugs as allergies—a safe method to survive software fail-
ures. In SOSP ’05: Proceedings of the twentieth ACM sym-
posium on Operating systems principles, pages 235–248,
Brighton, United Kingdom, 2005. ACM.

[27] Y.-Y. Su, M. Attariyan, and J. Flinn. Autobash: improving
configuration management with operating system causality
analysis. In SOSP ’07: Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, pages
237–250, Stevenson, Washington, USA, 2007. ACM.

[28] VMware. Vmware products. available at
http://www.vmware.com/products, 2008.

[29] L. Wu, G. Kaiser, J. Nieh, and C. Murphy. Deux: Auto-
nomic testing system for operating system upgrade. Tech-
nical Report CUCS-037-08, Department of Computer Sci-
ence, Columbia University, 2008.

[30] J. Yang, C. Sar, and D. Engler. Explode: A lightweight,
general system for finding serious storage system errors. In
OSDI 06: 7th USENIX Symposium on Operating Systems
Design and Implementation, pages 131–146, Seattle, WA,
USA, November 2006. USENIX Association.

[31] J. Yang, P. Twohey, and D. Engler. Using model checking
to find serious file system errors. In OSDI 04: 6th Sym-
posium on Operating Systems Design and Implementation,
pages 273–288, San Francisco, CA, USA, December 2004.
USENIX Association.

[32] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iwatcher:
Efficient architectural support for software debugging. In
ISCA ’04: Proceedings of the 31st annual international sym-
posium on Computer architecture, page 224, München, Ger-
many, 2004. IEEE Computer Society.

