
Using Runtime Testing to Detect Defects in Applications
without Test Oracles

Christian Murphy, Gail Kaiser
Dept. of Computer Science

Columbia University
New York NY 10027

{cmurphy, kaiser}@cs.columbia.edu

ABSTRACT
We address the testing of complex, highly-configurable sys-
tems - particularly those without test oracles - by testing in
the field using built-in oracles from functions’ metamorphic
properties.

1. PROBLEM STATEMENT
For large, complex software systems, it is typically impos-

sible in terms of time and cost to reliably test all configura-
tion options and all possible system states before releasing
the product into the field. Even given infinite time and re-
sources to test an application and all its configurations, once
a product is released, the other software packages on which
it depends (libraries, virtual machines, etc.) may also be up-
dated; therefore, it would be impossible to test these prior
to release, because they didn’t exist yet. Thus, we require a
testing approach that allows for the testing of such systems
in the context of all possible configuration options, execution
environments, and system states.

This problem is compounded by the fact that, even if it
were possible to test an application in all its possible con-
figurations, environments, and states, there still remains a
certain class of applications that can be called “non-testable
programs” [21] because there is no reliable“test oracle” to in-
dicate what the correct output should be for arbitrary input.
Machine learning applications (among others, such as simu-
lations and optimization algorithms) fall into this category.
Formal proofs of an ML algorithm’s optimal quality do not
guarantee that an application implements or uses the algo-
rithm correctly. Without an oracle, we cannot demonstrate
correctness of the implementation, but we need a testing ap-
proach that can at least demonstrate the presence of defects.

2. APPROACH AND HYPOTHESES
A solution to the problem described above would need

to address not only the issue of multiple possible configura-
tions, environments, and states, but for some applications,
the absence of an oracle as well.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE ’08 Atlanta, Georgia USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

2.1 Proposed Approach
There are two aspects of our proposed approach. First,

we suggest that continuing to execute tests in the field, af-
ter deployment, will reveal defects that are dependent on
configuration and the execution environment. More impor-
tantly, by executing tests from within the software while it
is running under normal operations and use, additional de-
fects that depend on the system state (or a combination of
state and environment) will also be revealed. This approach
requires the creation of a new type of test that is designed
to be run from within the application, as it is executing.
These are tests that ensure that properties of the applica-
tion hold true no matter what the application’s state is, and
regardless of its configuration or runtime environment.

An example can be found in Mozilla Firefox 2.0. One of
the known defects is that attempting to close all other tabs
from the shortcut menu of the current tab may fail with an
error message on Mac OS X when there are more than 20
tabs open1. In this case, a test designed to run in the field
would be one that calls the function to close all other tabs,
then checks that no other tabs are open; this sequence should
always succeed, regardless of how many tabs were open or
what operating system is in use. Particular combinations of
execution environment and state may not always be tested
in development prior to release of the software, and one way
to fully explore whether this property holds in all cases is to
test it in the field, as the application is running.

The second aspect of our approach considers applications
that depend heavily on configuration, environment, and state
but in particular have no test oracle. Although it may be
impossible to know if the output of the application is correct
for arbitrary input, often these applications exhibit proper-
ties such that if the input or system state is modified in a
certain way, it should be possible to predict the new output,
given the original output. This approach is a variant of what
is known as “metamorphic testing” [1].

For example, anomaly-based network intrusion detection
systems often build up a model of “normal” behavior based
on what has previously been observed; this model may be
created, for instance, according to the byte distribution of
incoming network payloads. When a new payload arrives,
its byte distribution is then compared to that model, and
anything deemed anomalous causes an alert. For a particu-
lar input, it may not be possible to know a priori whether it
should raise an alert, since that is entirely dependent on the
model. However, if while the program is running we take the

1http://www.mozilla.com/en-
US/firefox/2.0.0.16/releasenotes/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

new payload and randomly permute the order of its bytes,
the result (anomalous or not) should be the same, since the
model only concerns the distribution, not the order. If the
result is not the same, then a defect must exist.

This approach does not require an oracle for the partic-
ular input; it only requires the software authors to specify
the function’s metamorphic properties. Moreover, this has
all the benefits of testing in the field: the tests are con-
ducted within the context of the runtime environment, but
also within the context of the application’s state, in this
case the model that has been created over time. The use of
such an approach in the development environment may not
reveal defects if the initial test inputs are not sufficient, or
if the functions rely on application state or execution envi-
ronments that were not or could not have been tested prior
to deployment. However, when we use this approach in the
field, we will get a wide range of input values that represent
actual usage, as opposed to a smaller set of test cases that
are conjured up by developers in the lab.

2.2 Hypotheses
Two main hypotheses will thus be investigated. First, that

executing tests within the context of an application running
in the field can reveal defects that would not ordinarily oth-
erwise be found. Second, that this approach can further be
extended to applications for which there is no test oracle by
using a variant of metamorphic testing at runtime. That
is, the approach can reveal defects that would not be found
using metamorphic testing prior to deployment.

3. MODEL
This section provides more detail about our approach.

Here we identify the types of tests that we propose, and
a framework that is used to execute these tests from within
the running application.

3.1 In Vivo Tests
We first identify a new type of tests, called in vivo tests,

that are designed to be executed in the context of the run-
ning application. In object-oriented programming languages
(Java, C#, etc.), for example, these tests would reside in the
same class as (or a subclass of) the class whose methods they
are testing, so that objects can be tested“from within”, using
their current accumulated state, as opposed to testing from
a clean or constructed state, as is typical in unit testing [12].
In vivo tests go beyond program invariants or assertions [5],
and focus more on sequences of actions for which the correct
response or final state is expected to hold, regardless of the
state of the application or the environment.

It is important to note that in vivo tests are not intended
to replace unit or integration tests, but rather to enhance
them by making it possible to check for correct behavior
within the context of an application running in the field,
which may be in a previously untested or unanticipated
state. In fact, in vivo tests could be used in the develop-
ment environment as well, and the creation of these tests
may aid in the creation of further unit tests.

3.2 Metamorphic In Vivo Tests
Next, to address the absence of a test oracle, we will cre-

ate tests called metamorphic in vivo tests that are to be
executed in the running application, using the arguments
to selected functions as they are called. The arguments are

modified according to the specification of the metamorphic
properties, and the output of the function with the original
input is compared to that of the modified input; if the results
are not as expected, then a defect has been exposed. This
will allow us to not only execute tests in the field, within the
context of the running application, but also to test those ap-
plications without a test oracle, by using the metamorphic
tests themselves as built-in “pseudo-oracles” [7].

3.3 In Vivo Testing Framework
A testing framework that supports these tests has two pri-

mary requirements: execute the tests from within the con-
text of the running application; and do so without affecting
the user’s application state, so that the user does not see the
results of the test code rather than of his own actions.

Figure 1: Testing Framework Model

In our model of the testing framework, tests are logically
attached to the functions that they are designed to test.
Thus, prior to a function’s execution, the framework invokes
the corresponding test with some probability. In order not
to have the user see the effects of the test, the testing frame-
work will execute the in vivo test in a separate process, so
that any changes to the state are not reflected in the original
process. This also means that the two processes execute in
parallel: the in vivo test does not preempt the execution of
the application code, which can continue as normal. Fig-
ure 1 demonstrates the model we will use for conducting in
vivo tests. To ensure that the in vivo test does not make
any changes to the file system, external databases, network
traffic, etc., we have begun to investigate integration with
DejaView [14], an application which creates a virtual execu-
tion environment that isolates the process running the test.

The testing framework is also configurable, for instance to
allow a developer to specify the probability with which in
vivo tests will be run, on a per-method basis. To address
some of the performance concerns with conducting tests
from within a running application, the framework configu-
ration can also specify the maximum number of concurrent
test processes that are allowed to run simultaneously. The
framework can also take advantage of multi-processor/core
architectures by assigning the test process to a separate pro-
cessor/core, so as to further reduce overhead. All configu-
ration can be done by the software vendor or a system ad-
ministrator prior to deployment.

4. FEASIBILITY
In [16] we describe a Java implementation of our in vivo

testing framework, called Invite, which uses AspectJ to in-
strument the code at compile time. Here we summarize
additional experiments and results evaluating the feasibility
of using the in vivo testing approach, and also explore the
performance impact of our approach.

4.1 Detecting Software Defects
We have investigated OSCache 2.1.1 [18], which contained

three known defects that we speculated could be detected
with the in vivo testing approach. These defects included
one that only appeared when the application was in a cer-
tain state, one that depended on the system configuration,
and another that only appeared intermittently; these are
the exact types of defects that in vivo testing is designed to
detect.

Unfortunately the unit tests that are distributed with that
version of OSCache do not cover the methods in which those
defects are found, so to show that“traditional testing”would
not detect the defects, we created our own unit tests that
would reasonably exercise those parts of the application.
Those tests passed (i.e. did not reveal the defect) in the de-
velopment environment during traditional unit testing, pri-
marily because we had created the tests assuming a clean
state which we could control (which, we feel, is a reasonable
and common assumption [12]).

We then developed in vivo tests, using those unit tests as
a starting point; it took less than one hour to complete this
task. Next we instrumented the corresponding classes in OS-
Cache with the Invite framework, and created a test applica-
tion that randomly added and removed elements of random
size from the cache, and randomly flushed the cache. All
three defects were revealed by Invite in less than two hours.
A similar experiment was also conducted with Apache JCS
version 1.3, and we are now implementing a Java version of
a framework to support metamorphic in vivo testing.

4.2 Performance Testing
We have conducted tests to determine the additional over-

head introduced by the Invite framework. For our perfor-
mance testing, we used the Ashes Fast Fourier Transform
benchmark on Java 1.6.0 on a Linux Ubuntu 2.7.1 system
with a quad-core 2.4GHz CPU and 1 GB of memory. We
configured the framework so that it would only run one test
at a time, and also so that the main process would run on
one core and the test would run on another.

Our results indicate that incurring an overhead of just 5%
(which we believe is typically less than what is noticeable
to a human user) still achieves almost 700,000 tests per day,
and an overhead of 10% achieves over four million tests per
day. Although more investigation is still needed, this exper-
iment demonstrates that it is possible to gain the benefits
of in vivo testing with limited performance overhead.

In [4], we also investigated a distributed approach to in
vivo testing and demonstrated that distributing the testing
load would reduce performance overhead to an expected de-
gree, but maintain the same global number of tests.

5. METHODOLOGY
Now that the feasibility of our approach has been demon-

strated, we are in the process of proving our two hypothe-
ses through a number of experiments. To demonstrate that
in vivo testing can reveal defects that would not ordinarily
otherwise be found, we will identify and then test a non-
trivial application (we are considering some in the domains
of scientific calculation and computer supported coopera-
tive work) for which we have access to its unit tests, and
demonstrate that these tests would not detect some (known)
defects through traditional unit testing. We will then cre-
ate a suite of new in vivo tests and then use them during

the program’s execution in a simulated live environment to
show that the defects can, however, be revealed with our
approach. Moreover, to show that in vivo testing advances
the state of the art, we will compare it to a system such
as DIDUCE [10], which detects and then performs runtime
checks of program invariants. We will demonstrate that in
some cases there are certain defects that cannot be revealed
using only invariants, and that in other cases in vivo tests
are more efficient and reveal the defects more quickly.

Next, to prove that runtime metamorphic testing is a fea-
sible way of revealing defects in applications for which there
is no test oracle, we will select one or more machine learn-
ing applications (we already have candidates from the fields
of intrusion detection systems and computational biology),
identify their metamorphic properties, and instrument them
with the framework. We will then conduct runtime meta-
morphic testing on these applications as they run under nor-
mal operation in the field, and we expect that we will reveal
new defects that were not previously known; we will also
show that these defects would not have been detected by
using metamorphic testing prior to deployment. And, as
above, we will demonstrate that program invariants alone
are not expressive enough to reveal these defects.

6. RELATED WORK
While the idea of “self-checking software” is by no means

new [22], our work is principally inspired by the notion of
“perpetual testing” [19], which suggests that analysis and
testing of software should not only be a core part of the
development phase, but also continue into the deployment
phase and throughout the entire lifetime of the application.
The in vivo testing approach is a type of perpetual testing
in which the tests are executed from within the context of
the running application and do not alter the state of that
application from the users’ perspective.

The Skoll project [13] takes a similar approach of extend-
ing testing into the deployment environment by the execu-
tion of tests at distributed installation sites, and then gath-
ering the results back at a central server; to date this has
mostly focused on acceptance testing of compilation and in-
stallation on different target platforms. Other approaches to
testing software in the field include the monitoring, analy-
sis, and profiling of deployed software, as surveyed in [8].
One of these, the Gamma system [17], uses software to-
mography for dividing monitoring tasks and reassembling
gathered information; this information can then be used for
onsite modification of the code (for instance, by distributing
a patch) to fix defects. Liblit’s work on Cooperative Bug
Isolation [15] enables large numbers of software instances in
the field to perform analysis on themselves with low perfor-
mance impact, and then report their findings to a central
server, where statistical debugging is then used to help de-
velopers isolate and fix defects. All of these strategies could
make use of in vivo testing as part of their implementation.

As the in vivo tests themselves can be considered extended
program invariants, these are also similar to algebraic speci-
fications [6]. Others have looked at the automatic detection
of these specifications [11] and of detecting invariants in gen-
eral (e.g. DIDUCE [10], Daikon [9], etc.), and then check-
ing them at runtime [20]. We are considering the automatic
generation of in vivo tests and of metamorphic properties,
though this is outside the scope of our current work.

Applying metamorphic testing to situations in which there

is no test oracle has been studied in great detail by Chen et
al., e.g. [3]. Our work builds on theirs by applying metamor-
phic testing to the runtime environment, instead of using it
to create new test cases prior to deployment. Additionally,
whereas their work has primarily focused on functions with
simple numerical input domains [2], we are working with
inputs that consist of larger, alphanumeric data sets, as a
result of the types of applications we are investigating.

Last, although there has been much work that applies ma-
chine learning techniques to software engineering in general
and software testing in particular, there has thus far been
very little published work in the reverse sense: applying
software testing techniques to ML applications that have no
reliable test oracle. Most so-called “testing frameworks” and
reusable data sets in this domain are focused on comparing
the quality of the results, i.e. how well the algorithm learns,
and not evaluating the “correctness” of the implementations.

7. EXPECTED CONTRIBUTIONS
The contributions of this thesis are anticipated to include:

1. A new type of test called in vivo tests, which are state-
based tests that ensure that properties of the applica-
tion hold true no matter the application’s state. These
tests are designed to be executed from within the ap-
plication, i.e. the application launches its own tests,
within its current context.

2. A variation of these tests called metamorphic in vivo
tests. These are similar to in vivo tests in that they ex-
ecute within the application’s current state, but they
also test an application’s metamorphic properties and
thus are model-based as well. Unlike in vivo tests,
these do not require an oracle upon their creation;
rather, the properties act as built-in test oracles.

3. An in vivo testing framework, which supports the ex-
ecution of the different types of tests from within the
context of the running application, either in the devel-
opment environment or the deployment environment.
The testing framework will ensure that the execution
of the tests does not affect the state of the original
application process.

8. REFERENCES
[1] T. Y. Chen, S. C. Cheung, and S. Yiu. Metamorphic

testing: a new approach for generating next test cases.
Technical Report HKUST-CS98-01, Department of
Computer Science, Hong Kong University of Science
and Technology, 1998.

[2] T. Y. Chen, F.-C. Kuo, T. H. Tse, and Z. Q. Zhou.
Metamorphic testing and beyond. In Proc. of the
International Workshop on Software Technology and
Engineering Practice (STEP), pages 94–100, 2004.

[3] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Fault-based
testing without the need of oracles. Information and
Software Technology, 44(15):923–931, 2002.

[4] M. Chu, C. Murphy, and G. Kaiser. Distributed in
vivo testing of software applications. In Proc. of the
First International Conference on Software Testing,
Verification and Validation, April 2008.

[5] L. A. Clarke and D. S. Rosenblum. A historical
perspective on runtime assertion checking in software

development. ACM SIGSOFT Software Engineering
Notes, 31(3):25–37, May 2006.

[6] W. J. Cody Jr. and W. Waite. Software Manual for
the Elementary Functions. Prentice Hall, 1980.

[7] M. D. Davis and E. J. Weyuker. Pseudo-oracles for
non-testable programs. In Proc. of the ACM ’81
Conference, pages 254–257, 1981.

[8] S. Elbaum and M. Hardojo. An empirical study of
profiling strategies for released software and their
impact on testing activities. In Proc. of ISSTA 2004,
pages 65–75, 2004.

[9] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely
programming invariants to support program evolution.
In Proc. of the 21st International Conference on
Software Engineering (ICSE), pages 213–224, 1999.

[10] S. Hangal and M. S. Lam. Tracking down software
bugs using automatic anomaly detection. In Proc. of
the 24th International Conference on Software
Engineering (ICSE), pages 291–301, 2002.

[11] J. Henkel and A. Diwan. Discovering algebraic
specifications from Java classes. In Proc. of the 17th
European Conference on Object-Oriented
Programming ECOOP, 2003.

[12] JUnit Cookbook.
http://junit.sourceforge.net/doc/cookbook/cookbook.htm.

[13] A. Krishna et al. A distributed continuous quality
assurance process to manage variability in
performance-intensive software. In 19th ACM
OOPSLA Workshop on Component and Middleware
Performance, 2004.

[14] O. Laadan, R. A. Baratto, D. B. Phung, S. Potter,
and J. Nieh. Dejaview: a personal virtual computer
recorder. In Proceedings of twenty-first ACM SIGOPS
symposium on operating systems principles (SOSP),
pages 279–292, 2007.

[15] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan. Public deployment of cooperative bug
isolation. In Proceedings of the Second International
Workshop on Remote Analysis and Measurement of
Software Systems, pages 57–62, May 2004.

[16] C. Murphy, G. Kaiser, and M. Chu. The in vivo
approach to testing software applications. Technical
Report CUCS-007-08, Department of Computer
Science, Columbia University, 2008.

[17] A. Orso, T. Apiwattanapong, and M.J. Harrold.
Leveraging field data for impact analysis and
regression testing. In Proc. of the 9th European
Software Engineering Conf., pages 128–137, 2003.

[18] OSCache. http://www.opensymphony.com/oscache.

[19] L. Osterweil. Perpetually testing software. In The
Ninth International Software Quality Week, May 1996.

[20] S. Sankar. Run-time consistency checking of algebraic
specifications. In Proceedings of the 1991 international
symposium on software testing, analysis, and
verification, pages 123–129, 1991.

[21] E. J. Weyuker. On testing non-testable programs.
Computer Journal, 25(4):465–470, November 1982.

[22] S. S. Yau and R.C. Cheung. Design of self-checking
software. In Proc. of the International Conference on
Reliable Software, pages 450–455, 1975.

