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Abstract

Response time is one of the most important factors for
the overall usability of a computer system. We present
RSIO, a processor scheduling framework for improv-
ing the response time of latency-sensitive applications by
monitoring accesses to I/O channels and inferring when
user interactions occur. RSIO provides a general mech-
anism for all user interactions, including direct interac-
tions via local HCI devices such as mouse and keyboard,
indirect interactions through middleware, and remote in-
teractions through networks. It automatically and dy-
namically identifies processes involved in a user inter-
action and boosts their priorities at the time the inter-
action occurs to improve system response time. RSIO
detects processes that directly handle a user interaction
as well as those indirectly involved in processing the in-
teraction, automatically accounting for dependencies and
boosting their priorities accordingly. RSIO works with
existing schedulers, processes that may mix interactive
and batch activities, and requires no application modifi-
cations to identify periods of latency-sensitive applica-
tion activity. We have implemented RSIO in Linux and
measured its effectiveness on microbenchmarks and real
applications. Our results show that RSIO is easy to use
and can provide substantial improvements in system per-
formance for latency-sensitive applications.

1 Introduction

Rapid advances in hardware technology have enabled
computers to accumulate an increasingly wide range of
uses and applications, including web surfing, playing
movies, software development, email, telephony, docu-
ment processing, and financial bookkeeping, among oth-
ers. Recent trends in virtualization and server consolida-
tion have expanded the number of applications with dif-
ferent resource requirements and quality-of-service de-
mands being run on the same system. Furthermore, vir-
tual desktop infrastructure, terminal services, and web-
based office applications are just a few examples of desk-
top computing requirements extending beyond the desk-
top to servers as well.

Users expect computers not only to run many different
applications, but to be able to run them all at the same

time. A key challenge is how to ensure that the system
provides acceptable interactive responsiveness to users
while multiplexing resources among a diverse collection
of applications. It is particularly important that activi-
ties which are more latency-sensitive receive acceptable
response time from the system while sharing system re-
sources with other activities.

Since processor scheduling determines when a process
can run, system designers have long recognized that good
scheduling mechanisms are essential to support the re-
quirements of latency-sensitive applications. To achieve
quick response time for latency-sensitive processes in
a system shared with non-latency-sensitive processes,
a common practice is to delay the execution of non-
latency-sensitive processes in favor of latency-sensitive
ones. However, identifying latency-sensitive processes
is difficult for several reasons.

First, latency-sensitive applications used in modern
computers have a wide range of functions and often have
very different execution behavior. Traditional desktop
office productivity tools have very different resource de-
mands than multimedia applications. Multimedia appli-
cations have very different resource demands from e-
commerce applications. All of these applications have
latency-sensitive requirements. As a result, commonly
used approaches in commodity operating systems which
detect interactive latency-sensitive processes based on
processor resource usage and sleeping behavior are gen-
erally ineffective across this broad range of applica-
tions [10, 18, 5, 19].

Second, latency-sensitive applications often involve
human-computer interactions that occur in many dif-
ferent ways. An interactive latency-sensitive process
may interact with users directly through local human-
computer interaction (HCI) devices such as mice, key-
boards, and audio/video devices. It may interact with
users indirectly via middleware such as X Windows. It
may also interact with users remotely via the network.
Existing approaches in commodity operating systems
only detect interactions through the window system by
tracking input focus [14, 6, 5]. As a result, they are
ineffective at identifying latency-sensitive applications
across the broad range of interaction types commonly
found on modern computers.

Third, human-computer interactions on modern com-
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puters are often handled not just by one process, but by a
collection of processes. For example, processing a typed
character in Emacs on a Linux system requires not just
the Emacs application, but the window manager and X
server as well. To deliver fast response time, it is crucial
for a system to identify dynamic dependencies among
processes that arise in handling a latency-sensitive re-
quest and account for those relationships in scheduling
processes. However, commodity operating systems pro-
vide little if any support for identifying such dependen-
cies, much less mechanisms for using that information
for scheduling latency-sensitive processes.

Finally, the notion of a “latency-sensitive” process
is actually misleading because a process may switch
between executing latency-sensitive activities and non-
latency-sensitive activities dynamically during its lifecy-
cle. For example, MATLAB users first create programs
interactively during which they expect good system re-
sponsiveness, and then execute those programs to pro-
cess large amounts of numerical data during which they
typically expect to wait a while for the programs to com-
plete. The first phase is latency-sensitive; the second
phase is not. Given this dynamic behavior, users cannot
be expected to specify whether a process or an applica-
tion is latency-sensitive. Furthermore, any mechanism
that depends on the average behavior of such a process,
such as using the average sleep versus run ratio [10] of a
process, will be ineffective and miss transitions between
non-latency-sensitive and latency-sensitive activity.

To address these problems, we introduce RSIO (stands
for Response time Sensitive I/O), a processor scheduling
framework for improving the response time of applica-
tions during periods of latency-sensitive activity. RSIO
is based on the observation that latency-sensitive activ-
ities typically need to respond quickly to I/O involv-
ing user interactions, such as user input or certain kinds
of output. As a result, RSIO uses user I/O activity to
guide processor scheduling of processes with latency-
sensitive requirements, in contrast to other approaches
that only use processor activity for processor scheduling.
Using RSIO, operations on I/O channels involving user
interactions can be specified as being latency-sensitive.
RSIO then automatically and dynamically identifies the
processes that perform those operations on those I/O
channels as latency-sensitive when those operations oc-
cur. Unlike other approaches, RSIO does not specify
processes themselves as latency-sensitive, recognizing
that processes may execute latency-sensitive and non-
latency-sensitive activities at different times.

RSIO operates by directly monitoring accesses to I/O
channels that reflect interactions between users and ap-
plications. RSIO can monitor any I/O channel, including
those for direct HCI devices such as keyboard and mice,
via middleware such as the window system, and remote

I/O channels such as the network sockets. When RSIO
detects an operation on a given I/O channel that should
be considered latency-sensitive, it identifies the process
or group of processes performing that operation. RSIO
then prioritizes those processes ahead of other processes
that are not performing latency-sensitive activities. If the
processes performing those operations depend on other
processes, RSIO correctly accounts for those dependen-
cies to ensure that all processes involved in processing
a latency-sensitive operation are prioritized at the right
time. RSIO prioritizes processes in a manner dependent
on and compatible with existing schedulers in commod-
ity operating systems. For example, when used with a
priority scheduler, RSIO can simply boost the priority
value of a process to improve its response time.

We have implemented RSIO in Linux and measured
its performance on various benchmarks and real-world
applications. We show that RSIO is easy to use with
unmodified applications and describe the simple ways
in which a complete desktop environment can be con-
figured to take advantage of RSIO’s framework for im-
proving interactive performance. We measure RSIO per-
formance overhead and show that it is modest. We also
compare the performance of RSIO versus a vanilla Linux
system and demonstrate that RSIO can provide substan-
tial improvements in system response time for a wide
range of applications with latency-sensitive activities.

This paper presents the design, implementation, and
evaluation of RSIO. Section 2 discusses related work.
Section 3 describes the RSIO usage model. Section 4 de-
scribes how RSIO dynamically detects which processes
are performing latency-sensitive activities and when they
occur. Section 5 explains how RSIO uses that informa-
tion for processor scheduling. Section 6 presents exper-
imental results demonstrating the effectiveness of RSIO.
Finally, we present some concluding remarks and direc-
tions for future work.

2 Related Work

Many approaches to processor scheduling have been
considered for improving the performance of applica-
tions with latency-sensitive activities. Schedulers may
use processes or threads as the schedulable entity. For
simplicity and without loss of generality, we loosely re-
fer to the schedulable entity as a process in this paper.

Perhaps the most common approach used in commod-
ity operating systems is to schedule interactive applica-
tions based on their processor usage and sleeping behav-
ior. While different heuristics have been used, they are all
based on raising the priority of a process which has slept
for a longer period of time or has not used up its time
quantum before sleeping. For example, FreeBSD [8]
uses a multilevel feedback queue scheduler in which pro-
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cesses that block waiting for I/O for one or more seconds
are given a higher priority. Alternatively, the Linux 2.6
processor scheduler [10] attempts to identify interactive
processes as those that sleep longer and run less and gives
them higher priority. Several studies [18, 5, 19] have in-
dicated that this approach does not work well. Varia-
tions of these heuristics have been adopted for schedul-
ing other resources, such as the window system [14],
with similar limitations. The fundamental problem is that
processor usage behavior alone is a often a poor indica-
tor of interactivity given the resource intensive nature of
many modern interactive applications.

Another approach widely used in commodity operat-
ing systems is to schedule using window system input
focus. When using a GUI interface, users interact with
the application window which has input focus. To im-
prove system responsiveness, processor schedulers, such
as those used in Solaris [15] and Windows [17], raise the
priority of processes associated with a window that has
input focus. Input focus has also been used for schedul-
ing other system resources [19]. Using input focus can
often work well, but it may also unintentionally raise the
priority of non-interactive applications, for example, if
the user leaves the mouse focus on a window running a
compute-intensive batch application. More importantly,
it does not work for applications that do not use the local
GUI interface to interact with users, including console
applications and applications that interact with remote
users over a network. A key problem with using input
focus is accurately tracking not just the process that re-
ceives input from the window system, but other processes
involved in an interaction. This is not addressed in pre-
vious work [15, 6].

HuC [5, 6] introduces a novel approach to scheduling
interactive and multimedia applications based on display
output production. Processes are scheduled to equalize
display output rates across windows, where the rate is
based on the percentage of the window pixels that change
per second. This can be useful for video applications,
which results in all videos being displayed at the same
frame rate regardless of window system. However, a key
problem with this approach is that it results in undesir-
able behavior for mixes of interactive and non-interactive
applications if the latter generate lots of display output.

Some approaches have focused on improving schedul-
ing for interactive applications in the context of fair-share
schedulers. SMART introduced the idea of a bias on fair
scheduling to use the ability of batch processes to tolerate
more latency to allow other latency-sensitive processes
to run before them while preserving fair allocations [11].
However, the bias was set using processor usage behav-
ior, which may not be a good indicator of the interactiv-
ity of a process. Borrowed-Virtual-Time scheduling uses
the same idea [3], but requires users to specify appro-

priate bias values. RSIO is complementary to this work
and can be used as a mechanism for determining how to
dynamically adjust the bias of a process.

Several approaches to real-time scheduling have rec-
ognized that applications may have different latency re-
quirements during different periods of application exe-
cution. For example, SMART [11] allows application
developers to specify time constraints on sections of ap-
plication code, which the scheduler then uses in ordering
processes for execution. An application can have sec-
tions that are time-critical and sections that are not, en-
abling the scheduler to dynamically adjust the scheduling
criteria for a process instead of treating the process with
one set of static scheduling parameters. While this ap-
proach allows precise specification of time constraints on
portions of code, it requires application modifications to
do this. While RSIO does not focus on scheduling real-
time applications, it also enables parts of an application
execution to be treated as latency-sensitive. However, it
does not require application modifications because it de-
rives this behavior from I/O interactions.

While most related work has focused on the prob-
lem of scheduling once processes are assigned schedul-
ing parameters, another key issue is how those param-
eters should be propagated correctly in the presence of
process dependencies. Two areas in which this problem
arises are priority inversion and coscheduling. For ex-
ample, priority inheritance [7] is used to reduce priority
inversion when a high priority process is blocked on a
mutex resource by propagating the high priority value
to other processes that need to run to unblock the pro-
cess. SWAP [20] generalizes this work for dependencies
due to other operating system resources and works for
dynamic priorities. As another example, gang schedul-
ing [13] is used for coscheduling by scheduling cooper-
ating processes of a parallel application to run on differ-
ent processors at the same time so they can communi-
cate efficiently. Both priority inversion and coscheduling
differ from the process dependency problem that RSIO
addresses. Unlike the priority inversion problem, RSIO
seeks to identify all processes involved in a user inter-
action, whether or not such processes are blocked or
runnable. Unlike the coscheduling problem, RSIO sup-
ports cross-application dependencies and also deals with
dependencies for uniprocessor scheduling. Furthermore,
RSIO focuses on identifying cooperating processes, not
addressing the complementary issue of which scheduling
algorithm to use for running them.

3 RSIO Usage Model

RSIO is based on the observation that activities are of-
ten latency-sensitive because they are processing I/O due
to human-computer interactions, and those activities are
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more tied to the nature of the I/O than any particular pro-
cess being executed. Furthermore, a process may engage
in both latency-sensitive and non-latency-sensitive activ-
ities. In this context, specifying the priority or other
scheduling parameters of a process may not be useful
since how a process should be scheduled will change dy-
namically based on its I/O processing. Instead, RSIO
provides a usage model based on allowing users and ad-
ministrators to configure I/O channels. RSIO then auto-
matically and dynamically derives the scheduling char-
acteristics appropriate for processes based on their access
and usage of those I/O channels.

RSIO provides a command to configure I/O chan-
nels as being latency-sensitive. The command,
rsio config, takes three types of parameters: chan-
nel, operation, and user.Channelspecifies the I/O chan-
nel being configured. There are two types of channels,
files and sockets. A file channel is a persistent entity in
the file system that can be easily named. A socket is a
dynamically created entity that is most easily named by
referring to what the socket connects as opposed to the
socket itself. If the channel is a file, it is identified by
simply the filename. For example, if the I/O channel be-
ing identified is a mouse device, the channel name is the
device name,/dev/input/mice. If the channel is
a socket, it is identified both by the channel name and
its creation operation. For example, if the channel refers
to a network socket, the channel name is the destination
hostname and port number and its creation operation can
beconnect or accept. It is easy to distinguish be-
tween file and socket channel types since only the latter
includes a creation operation.

Operationspecifies the I/O channel operation that a
process performs to cause it to be flagged as a latency-
sensitive process. The operation can be read, write, or
both read and write. If the operation is a read, then any
type of read operation performed by a process on the I/O
channel will cause it to be flagged as a latency-sensitive
process. If the operation is a write, then any type of write
operation performed by a process on the I/O channel will
cause it to be flagged as a latency-sensitive process. Af-
ter performing a specified I/O channel operation, a pro-
cess remains marked as latency-sensitive until RSIO de-
termines that the relevant user interaction has completed.

Userspecifies for which user’s processes the I/O chan-
nel should be considered latency-sensitive. By default,
the channel is latency-sensitive for all users. If a specific
user identifier is provided, a process will only be flagged
as being latency-sensitive if it is owned by the given user
and accesses the I/O channel.

To illustrate how easy it is to use RSIO, Figure 1 shows
how a small number of RSIO configuration commands
can be used to set up a default configuration of a sys-
tem. For a Linux system, the startup script would go in

/etc/rc.local. It sets up a system to use RSIO once
the system is started using these commands.

----------------------------------
# tty devices
rsio_config READ /dev/tty0
rsio_config READ /dev/tty1
rsio_config READ /dev/tty2
rsio_config READ /dev/tty3
rsio_config READ /dev/tty4
rsio_config READ /dev/tty5
rsio_config READ /dev/tty6
rsio_config READ /dev/tty7

# mouse device
rsio_config READ /dev/input/mice

# audio device
rsio_config WRITE /dev/dsp

# network channels
rsio_config READ \

CONNECT webproxy.columbia.edu:8080
rsio_config READ \

ACCEPT mymachine.columbia.edu:22
-----------------------------------

Figure 1: Default RSIO Configuration

The startup script configures four classes of I/O chan-
nels, TTY devices, the mouse device, the audio de-
vice, and network channels. TTY devices are termi-
nal devices, including serial devices such as the original
character-based terminals, and virtual terminals, which
behave like character-based terminals from a program-
mer’s perspective and are used by various applications
such as the X window system for managing user in-
put and display output. A system has a default set of
TTY devices, which typically and in this case are repre-
sented by/dev/tty0 to /dev/tty7. A successful
read from a terminal device usually corresponds to user
keyboard input. As a result, RSIO configures any read
from a default TTY device as a latency-sensitive activity
to improve system responsiveness to user keyboard in-
put. Note that only terminal device reads are flagged as
latency-sensitive, not writes. A write to a terminal device
usually corresponds to application output to the display,
but not all display output is the result of interactive ac-
tivities. For example, a kernel compile generates lots of
display output but is not latency-sensitive.

The mouse device/dev/input/mice handles all
mouse events. A successful read from the mouse device
corresponds to a process receiving mouse events. As a
result, RSIO configures any read from a mouse device as
a latency-sensitive activity to improve responsiveness to
user mouse input. A system may have other user input
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devices such as a joystick or gamepad. These devices
can be treated in a similar way as the mouse device.

The audio device/dev/dsp is used for audio output.
A successful write to the audio device results in audio
output. Audio is latency-sensitive and delays in process-
ing audio can result in audible clicks and degradation of
audio quality. As a result, RSIO configures any write
to the audio device as a latency-sensitive activity to en-
sure good audio quality. Note that a write operation typi-
cally occurs after a particular audio sample has been pro-
cessed, so flagging a process as being latency-sensitive
after the write occurs does not help with processing the
just-written audio sample. However, audio processing is
typically periodic and repetitive in nature, so all subse-
quent processing of audio samples will be handled in a
latency-sensitive manner.

It is worth noting that this RSIO setup configures au-
dio output to be latency-sensitive, but does not config-
ure any display output to be latency-sensitive. Any ap-
proach that flags processes that generate display output
as latency-sensitive is problematic because many com-
mon applications that are not latency-sensitive can gen-
erate lots of display output, a kernel compile being just
one such example. On the other hand, many multime-
dia applications also generate lots of display output and
should be considered latency-sensitive. Furthermore,
multimedia applications can generate long periods of dis-
play output without any user input, so simply monitor-
ing keyboard or mouse input does not help. RSIO ad-
dresses this issue by observing that applications that do
not require much user input, generate display output,
and are latency-sensitive usually also generate audio out-
put. For example, movie players generate both video and
sound. On the other hand, non-latency-sensitive applica-
tions such as kernel compilation do not generate sound.
As a result, RSIO automatically delineates between these
two classes of applications by monitoring audio output
instead of display output.

Network channels are used for handling various
kinds of remote interactions. This example setup
shows two for illustrative purposes. The first network
channel is an outgoing connection to a web proxy,
webproxy.columbia.edu, at port number 8080. A
read on this channel corresponds to the local machine re-
ceiving data from a web server. As a result RSIO con-
figures any read on the network channel as a latency-
sensitive activity to improve system responsiveness when
processing a web page download so that web pages are
displayed faster. Note that a web page download could
instead be marked as latency-sensitive based on mouse
or keyboard input, but this RSIO configuration enables
faster web performance even in the absence of such in-
puts, such as for a scripted web page download. The sec-
ond network channel is an incoming connection to the

local machine’s port 22 where the SSH daemon is listen-
ing for connections. A read on this channel corresponds
to the local machine receiving data from a remote SSH
client, which typically corresponds to user input. As a
result RSIO configures any read on the network chan-
nel as latency-sensitive to improve system responsive-
ness when the user is remotely connected to the system.

The end result of this startup script is a set of RSIO
I/O channels that can be used to capture many latency-
sensitive activities in a standard desktop computer sys-
tem. The configuration of TTY devices and the mouse
device effectively provide a mechanism to track input
focus and treat processes receiving user input as be-
ing latency-sensitive only when such input is occurring.
The configuration of the audio device enables audio
applications and multimedia applications to be treated
as latency-sensitive. The configuration of the network
channels enable web applications and remote access ap-
plications to be treated as latency-sensitive during peri-
ods of user interaction. Furthermore, the user is not re-
quired to identify any application processes, or set and
tune any additional parameters such as shares or priori-
ties. This simple yet powerful usage model provides flex-
ibility and functionality not available with other process-
centric approaches.

These examples illustrate how RSIO enables users to
simply configure a small number of I/O channels to com-
pletely configure a system to use RSIO. Note that RSIO
is intended to be used to configure I/O channels that are
directly used by local or remote users. This is easy to
do because the number of such I/O channels is limited,
they are mostly created when the system is booted, and
the latency-sensitivity of these channels is easy to deter-
mine. There are many other I/O channels that are indi-
rectly used by users, such as IPC communication chan-
nels. Users are not expected to manipulate those chan-
nels. Instead, RSIO automatically handles those indirect
channels in a manner described below.

4 Latency-sensitive Process Detection

RSIO maintains some additional system state to identify
RSIO I/O channels and processes involved in user inter-
actions using those channels. Table 1 summarizes the
RSIO system state. These parameters and objects are
discussed in further detail below.

4.1 RSIO I/O Channel Instantiation

rsio config causes the instantiation of a RSIO I/O
channel. RSIO represents an I/O channel using anrchan-
nel. As shown in Table 1, an rchannel consists of three
components: an access type, a user identifier, and a list of
handlers, which will be described in more detail below.
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State Fields / Description

rchannel access type, uid,
handler list

handler id, process, access type,
access time, expiration time
confidence, cohandler list

max conf maximum confidence value
co conf cohandler confidence value

sys expire system expiration time
co delta cohandler time window
reader IPC reader process
writer IPC writer process

Table 1: RSIO System State

In a Unix-style system, this additional state is associated
with the in-memoryinode structure, which is used to
represent I/O channels. The state is created and deleted
as part ofinode creation and deletion. At creation, the
access type is blank, the user identifier is zero, and the
list of handlers is empty. RSIO state initialized in this
way has no effect on the behavior of the system. The
RSIO state only affects system behavior after the RSIO
state is configured by a configuration command.

The configuration of RSIO state is somewhat different
for the two types of I/O channels, files and sockets. For
file I/O channels, such as TTY devices, the correspond-
ing inode is created when the system boots and there-
fore exists by the time that arsio config command
is executed. When the configuration command executes,
RSIO simply finds the already createdinode and con-
figures its associated RSIO state. The access type is set to
read, write, or read-write according to whether the read
or write operations are used to activate this channel, and
the user identifier is set based on the user field of the
configuration command. This is implemented using the
ioctl system call.

For socket I/O channels, a correspondinginode is
also eventually created, but it is not created when the sys-
tem boots and therefore usually does not exist by the time
that arsio config command is executed. Instead, the
inode is created at later time when the socket is actually
created and used. To deal with this dynamic state, RSIO
defers the execution of RSIO configuration commands
on sockets and keeps a list of such commands. It then
monitors socket creation system calls such asconnect
andaccept and checks if any such creations matches
with a deferred RSIO command. For example, if a RSIO
command was deferred that is for accepting connections
to the SSH local port 22, RSIO will monitoraccept
system calls and check if any such calls are for port 22.
If such a system call is found, RSIO then identifies the
correspondinginode created by the system call and up-
dates its RSIO state in the same manner as discussed ear-

lier for file I/O channels. Note that deferred RSIO com-
mands remain in the deferred list since matching sockets
may be created at any time and each such creation re-
quires RSIO to update the respectiveinode state.

4.2 RSIO I/O Channel Activation

Given a set of RSIO-configured I/O channels, RSIO
needs to identify user interactions on those channels and
the processes involved in those interactions. For most
types of I/O, an application cannot communicate with
users directly, but instead does so through the operating
system via system calls. RSIO therefore monitors rele-
vant system calls that access RSIO configured I/O chan-
nels to detect such human-computer interactions.

RSIO monitors read and write operations that occur
through system calls to detect the start of a human-
computer interaction. Read operations include not only
read system calls, but also system calls such asreadv
andrecvmsg. Similarly, write operations include not
only write system calls, but also system calls such
aswritev andsendmsg. RSIO instruments each of
these system calls. When one of these system calls is
performed, RSIO uses the system call arguments, specif-
ically the file descriptor, to obtain the corresponding
inode and check its RSIO state. If both the read and
write flags are not set, the I/O channel has not been con-
figured as latency-sensitive and no further action is taken.

If the access type is read and a read operation is per-
formed, or the access type is write and a write operation
is performed, RSIO checks if the user identifier of the
calling process matches the RSIO state user identifier. If
it matches, RSIO considers this system call as the start
of a user interaction on a RSIO I/O channel. The call-
ing process is referred to as aprimary handlerfor this
interaction and RSIO activates the process so it is con-
sidered as being latency-sensitive. Section 5 describes
how latency-sensitive processes are scheduled. Note that
RSIO performs its monitoring after the actual system call
has successfully read or written I/O since there is no need
to perform any action if the operation was not successful.

RSIO currently only handles I/O through read and
write operations. It does not support user interactions
through memory mapped I/O channels. However, in our
experience, this is sufficient for most I/O channels of in-
terest. For example, while memory mapped file systems
are not uncommon, those forms of I/O are not typically
user interactions. Perhaps the most common instance of
memory mapped I/O that does involve user interactions
is through the display device. However, as discussed in
Section 3, RSIO does not typically treat that I/O chan-
nel as latency-sensitive since it is also commonly used
by non-latency-sensitive activities.

RSIO introduces ahandler to maintain state associ-

6



ated with a process that is a primary handler. As men-
tioned in Section 4.1, RSIO maintains a handler list for
each RSIO I/O channel. Whenever an interaction hap-
pens on a RSIO channel, RSIO checks the handler list
of the channel to see if the calling process is already in
the handler list. If the handler does not exist, a new han-
dler object is created and inserted into the list. As shown
in Table 1, a handler consists of seven components: an
id, a reference to the associated process, an access type,
an access time, an expiration time, a confidence value,
and a cohandler list. For a primary handler, the id is the
inode identifier of the corresponding I/O channel, the ac-
cess type is the access type of the I/O channel, and the
access time is the last time the process accessed the I/O
channel. The access type is not strictly necessary, but is
stored as part of the handler to avoid having to go back
to the corresponding rchannel to look it up. A process is
considered to have accessed a RSIO I/O channel if it per-
formed a read or write operation and the channel’s access
type matches the operation. The cohandler list is initially
empty. The expiration time, confidence value, and co-
handler list are described in further detail below. Note
that a process may access multiple RSIO I/O channels
and hence may have multiple handlers associated with it.
Handlers for a process will be deleted and removed from
all handler lists when the process exits.

After a primary handler is activated, RSIO needs to
determine when the handler should be deactivated and
no longer considered latency-sensitive. An interaction
usually finishes when an application outputs the result-
ing response to the user. RSIO could detect such output
by monitoring I/O channels for this purpose. However,
this would require users to specify which I/O channels
should be considered for user output, as output to I/O
channels such as disk should usually not be considered
as the end of a user interaction. Even if the user speci-
fies which I/O channels to monitor for user output, it is
generally difficult to know which output is the last one.
An application may generate a sequence of outputs in
response to an interaction, and it would be desirable to
maintain the processes involved in that interaction until
the output to the user is complete. As a result, the addi-
tional complexity involved in monitoring output may not
provide much benefit given the uncertainty in determin-
ing when the output is complete. Note that this problem
does not occur for determining the start of a user interac-
tion since it is easy to determine and desirable to use the
first I/O for that purpose.

RSIO approaches the problem of determining when a
handler should be deactivated from a different angle. We
observe that an interaction between an application and
a user typically continues for some period of time until
one of two things happens. First, the user could switch
from interacting with one application to interacting with

another. Second, the user could simply stop interacting
with the computer. RSIO uses a confidence model to
address the first case, and a timeout model to address the
second case.

RSIO detects when an interaction ends due to a user
switching interaction to another process using a confi-
dence model. As shown in Table 1, each handler includes
a field calledconfidence. The confidence value is used to
indicate how confident RSIO is that the given handler
is still involved in a user interaction. If a new handler
is created due to an interaction on a RSIO channel, its
confidence value is initialized to one. If an interaction
occurs and the handler already exists due to a previous
interaction, its confidence value is incremented by one.
For all other handlers in the handler list of the RSIO I/O
channel, their confidence values are each decremented
by one since they are not involved in the current inter-
action. Confidence values start at zero and can be in-
cremented up tomaxconf, the maximum allowable con-
fidence value. maxconf is configurable and is five by
default. If the confidence of a handler is decremented
to zero, the handler will be deactivated and no longer
considered latency-sensitive. Since a word is typically
assumed to be five to six characters on average [2, 1],
this default value of maxconf deactivates a process by
the time a user has typed one word worth of user inter-
actions into another process. A handler is deleted if its
confidence is zero and its cohandler list is empty. Cohan-
dlers will be discussed further in Section 4.3.

For example, if a user switches from interacting with
process A to process B, process B will become latency-
sensitive immediately. On each further interaction with
process B, process A’s confidence value will drop by one.
And after a number of interactions no more than the max-
imum confidence value, process A will be deactivated
because its confidence has dropped to zero. This mech-
anism enables RSIO to detect the end of an interaction
due to a user switching to interact with another process.

RSIO determines when a user has stopped interact-
ing with the computer system by using a simple time-
out model. If a user stops interacting with the computer,
there is no easy way to determine when that occurs. As
a result, RSIO associates a timeout with each handler for
this purpose, which is its expiration time, as shown in
Table 1. When a handler is activated, RSIO assigns it
an expiration time. A handler will be deactivated if that
process does not access a RSIO I/O channel before its ex-
piration time. RSIO assigns the expiration time by using
the handler’s access time and adding to it a system ex-
piration time,sysexpire. In other words, if a handler is
activated at timet, it will expire at timet + sysexpire.
sysexpire is configurable and is 2 seconds by default.
This default was selected based on previous research in-
dicating a 2 second response time limit for simple com-
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mands [16, 12].

4.3 Dependencies and Cohandlers

While the start of an interaction through a RSIO I/O
channel is caused by one calling process and therefore
one primary handler, multiple processes may be involved
in the processing required for such an interaction. If only
the primary handler is treated as latency-sensitive, it may
block waiting for another process that is involved indi-
rectly in the user interaction, resulting in a form of prior-
ity inversion. Even if the primary handler does not block,
other processes involved in the user interaction may be in
the critical path. If they are not treated as being latency-
sensitive, they can be delayed in being scheduled, result-
ing in degraded system responsiveness. Unfortunately,
while it is easy to determine the primary handler for a
user interaction, there is no general way to precisely de-
termine what other processes the primary handler may
depend upon in processing the interaction.

For example, consider a user typing into a text edi-
tor such as Emacs on a Linux system running X Win-
dows. Keyboard input occurs through a TTY device,
which is read by the X server. The X server then com-
municates with Emacs to pass along the keyboard input.
Since the X server process reads the I/O channel, it is the
primary handler of the interaction. However, Emacs is
the application actually doing the semantically interest-
ing processing of the keyboard input. If only the primary
handler is treated as latency-sensitive, system response
time may suffer because Emacs is also indirectly pro-
cessing the user input and is therefore latency-sensitive.
In this case, the X server will not block on Emacs, but
Emacs is in the critical path for generating a response.
Furthermore, the operating system has direct knowledge
that Emacs is involved in the user interaction. In this
particular case, the X server may be able to obtain this
information, but this is application-specific and does not
generalize to other non-X interactions. For example, if
the Emacs process then depends on another process to
handle the user interaction, the X server will not be able
to help with determining those dependencies.

RSIO automatically detects what processes a primary
handler depends upon by using a simple heuristic that
works quite well in practice. If a primary handler de-
pends on another process for handling a user interaction,
we observe that it is very likely for those processes to
communicate within a short period of time of when the
user I/O occurs. We refer to the user I/O as an activation
event, since it activates a process as a primary handler.
By monitoring the time proximity of activation events
and interprocess communication events, RSIO can de-
tect the processes indirectly involved in handling a user
I/O interaction without needing to know any application-

specific details.
RSIO refers to a process that a primary handler de-

pends upon as acohandler. RSIO reuses thehandlerob-
ject discussed in Section 4.2 in a different way to main-
tain state associated with a cohandler. RSIO considers
a process A as a possible cohandler for a process B if
process A communicates with process B after a handler
has been created for process B, and using the same ac-
cess type as process B’s handler. Recall that a process
will have a handler object if it has been previously acti-
vated as a primary handler. As shown in Table 1, RSIO
maintains a cohandler list for each handler. Whenever a
process A communicates with another process B that has
an associated handler with a corresponding access type,
RSIO checks the cohandler list of the handler to see if the
process A is already in the cohandler list. If the cohan-
dler does not exist, a new handler object is created and in-
serted into the list. For simplicity, we first assume that all
communications between processes match the respective
access type, and defer a discussion until Section 4.4 of
how to determine whether a communication is the right
access type.

The seven fields of the handler object are initialized
in a different way in the case of a cohandler versus a
primary handler. For a cohandler, theid is the pro-
cess identifier of the corresponding primary handler, the
access type is the access type of the primary han-
dler, the access time is the last time the cohan-
dler process communicated with the primary handler, the
expiration time is set equal to the expiration time
of the primary handler, the confidence value is initialized
to zero, and the cohandler list is initially empty. Note
that a process may serve as a cohandler for multiple other
processes, and hence may have multiple cohandler han-
dler objects associated with it. A process will be removed
from all cohandler lists when it exits. Since a process
generally does not communicate with many other pro-
cesses, the cohandler lists are typically short in practice.

Processes in a cohandler list are just potential cohan-
dlers. RSIO uses a confidence model to decide whether a
potential cohandler is an actual cohandler or not. When-
ever a handler is activated by accessing a RSIO I/O chan-
nel and its cohandler list is not empty, RSIO instanti-
ates a callback to occur after a time periodT to adjust
the confidence of the cohandlers. Suppose a handler for
process A has been activated at timet1. If process B
communicates with process A during the time periodt1
- T to t1 + T, the callback increments the confidence
value of process B by one. For all other cohandlers, the
callback decrements the confidence by one. A cohandler
B is activated and treated as an actual cohandler if its
confidence is larger than a confidence thresholdco conf,
which is listed in Table 1. coconf is configurable and is
two by default to set the confidence threshold to be one
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more than what is used for activating a primary handler.
The range of confidence values is limited by maxconf
just as for the primary handlers. The value ofT is set by
the parameterco delta in Table 1. It is configurable and
is 5 ms by default.

Figure 2 presents an example to illustrate the cohan-
dler confidence model for a processp. From timet1
to t11, processp was activated for 5 times, which hap-
pened at timet2, t4, t6, t8 andt11, respectively.
Suppose processp has two potential cohandlersp1 and
p2 in its cohandler list with initial confidence values of
zero. For interactiona1 at timet2, p1 has one interpro-
cess communication withp at timet1 which is withinT
ms oft2, so RSIO increasesp1’s confidence by 1. The
confidence ofp2 remains as 0. For interactiona2, pro-
cessp1 has another interprocess communication withp
within the expected threshold whilep2 has no such com-
munications, so the confidence values of(p1, p2) are
adjusted to be(2, 0). For interactiona3, p2 has an
interprocess communication within the expected thresh-
old whilep1 does not, so the confidence values of(p1,
p2) are adjusted to be(1, 1). p2 continues to com-
municate withp within the expected threshold for acti-
vation eventsa4 anda5 while p1 does not, so at the
end ofa5, the confidence values of(p1, p2) are ad-
justed to be(1, 3). At this point,p2 is treated as an
activate cohandler whilep1 is not. The example shows
how RSIO automatically detects the cohandler transition
from p1 to p2 based on its confidence model.

time

RSIO Accesses

IPC

p1 p1 p2 p2 p2

T

a1 a2 a3 a4 a5

t1

t2

t5 t7 t9 t10

t4 t6 t8 t11

(1, 0) (2, 0)

t3

p1

(1, 1) (1, 2) (1, 3)

Figure 2: Cohandler Detection

A cohandler may communicate with other processes
that should also be considered as latency-sensitive. Each
cohandler has its own cohandler list. Since each cohan-
dler process has an associated handler object, RSIO can
recursively identify potential cohandlers of cohandlers in
the same manner it identifies cohandlers of primary han-
dlers.

When a primary handler or cohandler process forks a
new process, the process creation is treated by RSIO as
a form of communication between the child and parent
processes. As a result, RSIO identifies the child process
has a potential cohandler and is added as a new cohan-
dler to the cohandler list of the parent process. RSIO’s

confidence model is again used to activate or deactivate
the child process as an actual cohandler based on result-
ing interprocess communications while the parent is pro-
cessing a user interaction.

4.4 Interprocess Communication Detec-
tion

To detect cohandlers, RSIO needs to monitor interpro-
cess communications and determine a notion of access
type for them. In a UNIX style system, processes can
communicate or synchronize with each other using var-
ious mechanisms, including pipes, sockets, pseudo ter-
minals, signals, futexes, IPC semaphores, file locks,
etc. RSIO monitors interprocess communications that
are commonly used for data communications to capture
communications that are used for passing data related
to user interactions. For this purpose, RSIO monitors
three types of interprocess communication mechanisms:
pipes, sockets, and pseudo terminals, the latter being
widely used by X window applications. Other mecha-
nisms are ignored because they are mostly used for syn-
chronization, instead of communication.

For pipes, sockets and pseudo terminals, RSIO needs
to determine the processes involved in an interprocess
communication using these mechanisms. It is easy to de-
termine one of the processes involved using these mech-
anisms by monitoring the system calls that use these
mechanisms and determining the calling process of the
system call. However, operating systems typically do not
provide a way to track the process involved in the other
end of such a communication at the time of the system
call. Since pipes, sockets, and pseudo terminals are all
represented asinodes in the kernel, RSIO associates
two additional fields with eachinode to track processes
at both ends of an interprocess communications.

As listed in Table 1, these two fields are areader
field and awriter field. Both fields are initially NULL
when theinode is created. Whenever a process suc-
cessfully accesses aninode using a read system call,
the reader field is updated to reference the calling
process. Similarly, whenever a process successfully ac-
cesses aninode using a write system call, thewriter
field is updated to reference the calling process. The lat-
est reader and writer is thus stored for eachinode. The
reader andwriter fields are reset to NULL when the
respective process closes the file descriptor correspond-
ing to this inode.

Whenever an interprocess communication of interest
occurs, RSIO identifies the calling process of the system
call and uses the reader and writer fields to determine
the other process involved. If one of the processes has
an associated handler because it is a primary handler or
cohandler, RSIO checks the access type of the handler
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to see if it matches the interprocess communication. For
example, if the calling process performs a read system
call to communicate with a process that has an associated
handler with a read access type, RSIO considers this a
match. Similarly, if the calling process performs a write
system call to communicate with a process that has an
associated handler with a write access type, RSIO con-
siders this a match. If a match occurs, RSIO proceeds
with the cohandler creation and update mechanism dis-
cussed in Section 4.3.

5 RSIO Scheduling

RSIO is a general mechanism that dynamically detects
whether processes are latency-sensitive by identifying all
activated primary handlers and cohandlers. This infor-
mation can be used by any processor scheduler to im-
prove the responsiveness of a system. For example, a
priority scheduler could use this information to boost
the priority of processes that have been marked latency-
sensitive. As another example, a fair-share scheduler
could use this information to increase the shares of pro-
cesses that have been marked latency-sensitive. Alterna-
tively, a multi-level feedback queue scheduler could use
a separate queue for processes that are marked latency-
sensitive and schedule processes from this queue ahead
of other queues. To illustrate further how RSIO can be
used in commodity operating systems for scheduling, we
describe one way in which RSIO can be used with the
Linux processor scheduler to improve the responsiveness
of a Linux system.

Linux uses a priority-based processor scheduler which
dynamically adjusts the priorities of processes based on
process usage and sleeping behavior. In Linux 2.6, a
process’s dynamic priority is decided by two compo-
nents, its nice value and a dynamically computed priority
bonus. The nice value is specified by the user and has
a range of [-20, 19]. A smaller nice value is translated
into a higher priority. The priority bonus has a range
of [-5, 5]. A process’s priority bonus is decided by its
sleep avg, which represents the sleep versus run ratio
of this process. Based on assumption that an interac-
tive process often spends much of its time sleeping, the
Linux 2.6 scheduler gives more priority bonus to pro-
cesses that have a largersleep avg. Processes with
more priority bonus will have higher priority and should
have better response time. However, previous work has
shown that predicting a process’s interactiveness based
on itssleep avg has various limitations [18, 5, 19].

Using RSIO, we change the way Linux computes a
process’s dynamic priority to take advantage of RSIO’s
ability to more accurately determine when processes are
performing latency-sensitive activities and need better
response time. We still use the same algorithm for com-

puting a process’s dynamic priority based on its nice
value and a priority bonus. However, the priority bonus
is instead determined simply based on whether RSIO has
indicated that the given process is latency-sensitive. By
default, a process is simply assigned a priority bonus of
0. If a process becomes an activated handler or cohan-
dler for a RSIO I/O channel, it is assigned a priority
bonus of 10 until it is deactivated. This maintains the
same dynamic range of priority values as used by the de-
fault Linux scheduler, but adjusts priority values within
that range in a manner that more accurately reflects when
processes are latency-sensitive. This change in behavior
is very simple and requires changing only a few lines of
code in the Linux processor scheduler.

6 Experimental Results

We have implemented a RSIO prototype in the Linux
2.6.19 kernel and modified the Linux scheduler to use
RSIO in the manner described in Section 5. To demon-
strate its effectiveness, we compare the performance of
RSIO versus vanilla Linux on several micro-benchmarks
and real-world interactive applications. We used appli-
cation workloads that represent a wide-range of differ-
ent usage scenarios, including (1) running a mix of in-
teractive and non-interactive applications from a local
console, (2) using a technical computing tool similar to
MATLAB which has periods of interactive use and back-
ground number crunching calculations, (3) web brows-
ing on a loaded machine, (4) multimedia video playback
on a loaded machine, and (5) supporting multiple re-
mote users engaged in periods of interactivity and long-
running computations. We also measure the performance
overhead of RSIO versus vanilla Linux. For RSIO, we
set up the system with default parameters and configured
I/O channels using the simple system configuration script
shown in Figure 1 and discussed in Section 3.

For most of our workloads, we measure response time
to quantify system performance. In particular, users of-
ten care about when the system is responding poorly as
opposed to just average response time. In fact, users are
typically unhappy with the responsiveness of a system if
it has good average response time but unexpectedly long
delays in system responsiveness some of the time. To
capture this notion, we report our results in terms of both
the 90th percentile response time performance and the
worst case response time performance.

The machine used for all our measurements is an HP
xw9300 PC with a 2.6 GHZ AMD Opteron processor
and 2 GB RAM. The server was running Ubuntu 6.06,
and the kernel used was Linux 2.6.19.

10



 1

 10

 100

 1000

 10000

0 4 8 16 32 64

Ti
m

e 
(m

s)

System Load

Linux
Linux (90%)

RSIO
RSIO (90%)

Figure 3: Active Console Benchmark

 0.1

 1

 10

 100

0 4 8 16 32 64

Ti
m

e 
(s

)

System Load

Linux
Linux (90%)

RSIO
RSIO (90%)

Figure 4: Octave Benchmark

 0.1

 1

 10

 100

0 4 8 16 32 64

Ti
m

e 
(s

)

System Load

Linux
Linux (90%)

RSIO
RSIO (90%)

Figure 5: Web Browsing Benchmark

6.1 Active Console Benchmark

The first scenario represents an active console in which
a local user is using a window system with multiple con-
sole windows open, one of which the user is actively us-
ing by typing and executing simple commands. Other
windows are being used to run non-latency-sensitive
batch jobs. For the user to receive good system response
time, the console window that the user is actively us-
ing, along with its associated commands being executed,
should be detected as performing latency-sensitive activ-
ities. Other batch jobs should be treated by the system as
non-latency-sensitive activities.

For this scenario, we constructed an active console
benchmark consisting of two GNOME terminal win-
dows. GNOME terminal is a pseudo terminal application
that allows users of the GNOME Linux desktop envi-
ronment to execute commands using a UNIX style shell
environment. In one terminal, a Linux kernel compila-
tion is executed, which is a long running batch job. In
the other terminal, a user types at the command prompt
“time ls” to execute the command to list the contents of
a directory and time its execution. Once the command
completes, the user repeats the same typing and com-
mand execution. The user repeated the command fifty
times, and we measured the elapsed time for executing
the command each time to quantify the response time of
the system. We also varied the load on the system due to
the Linux kernel compilation by allow the compilation to
be done in parallel with different numbers of processes.
This was done using the-j option to specify the number
of kernel compile processes to be generated. For exam-
ple, we use the commandmake -j 4 to start the Linux
kernel compile with 4 concurrent processes.

Figure 3 compares the response time of Linux versus
RSIO using the active console benchmark under differ-
ent system loads. We varied the system load imposed
by the kernel compilation from no load when no kernel
compilation processes were run, to allowing 64 concur-
rent processes to run to perform the kernel compilation.
When running without any background kernel compi-
lation workload, Linux and RSIO provide the same re-
sponse time of 10 ms for the interactive directory listing

command. However, as the load on the system increases,
the response time of vanilla Linux increases dramati-
cally. When 64 kernel compilation processes were run-
ning, the worst response time for Linux was 2.5 s, which
is a significant and noticeable delay for interactive ac-
tivities and makes typing and executing interactive com-
mands very unpleasant. Similarly, the 90th percentile re-
sponse time for Linux was over .5 s. The response time is
four times longer than the 100 ms response time thresh-
old [12] for having users feel that the system is reacting
instantaneously.

In contrast, RSIO correctly identifies the active con-
sole since keyboard input through the TTY device is
configured as a RSIO I/O channel, and any processes
involved in reading that keyboard input are marked as
latency-sensitive. As a result, the worst case response
time of RSIO is 28 ms even with 64 kernel compilation
processes running. This is a bit worse than the 10 ms
response time in the low load case, but almost an or-
der of magnitude better than Linux. The small perfor-
mance degradation is mostly caused by I/O contention
since both the background load and the interactive com-
mands exercise the file system. Furthermore, the 90th
percentile response time of RSIO is almost independent
of background load. The worst case and 90th percentile
response times of RSIO are well below the response time
threshold at which users can detect any response time de-
lays.

6.2 Octave Benchmark

The second scenario represents a remote user running an
application similar to MATLAB that has both latency-
sensitive and non-latency-sensitive phases while other
remote users are running other batch jobs. The latency-
sensitive phase corresponds to frequent user interactions.
The non-latency-sensitive phase corresponds to long run-
ning batch processing. For the user to receive good sys-
tem response time, the latency-sensitive phases of the
application should be detected when they occur. Other
non-latency-sensitive phases of the application and other
batch jobs should be treated by the system as non-
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latency-sensitive activities.
For this scenario, we constructed an octave benchmark

consisting of two SSH sessions representing two differ-
ent users connected to a server over the network. One
user is running a kernel compilation in the same manner
as discussed for the active console benchmark, but over
an SSH session instead of using a local GNOME termi-
nal. This is used to represent batch processing activity.
The other user is running Octave [4], a MATLAB-like
application that involves phases of interactive use and
long-running computations. In particular, the user runs
Octave by typing two sets of commands in the following
order:

tic; load A.dat; toc; (1)
for i=1:1000; X=A\A; end; (2)

The first set of commands consists of some timing
commands and obtaining input data. The commands
“tic” and “toc” are used to report the elapsed time of
the command executed between these two commands.
The command “load A.dat” loads data from a local file
“A.dat” to create a 200x200 two dimensional array. The
second set of commands is an iterative loop that per-
forms a set of long running computations on the two-
dimensional array. The first set of commands represent a
user interacting with the application to set up a computa-
tion to run and should be considered as latency-sensitive.
The second set of commands represent the long run-
ning computation itself and should not be considered as
latency-sensitive. Once the two sets of commands com-
plete, the user repeats the same typing and command ex-
ecution. The user repeated the commands ten times, and
we measured the elapsed time for executing the interac-
tive set of commands each time to quantify the response
time of the system.

Figure 4 compares the response time of Linux ver-
sus RSIO using the Octave benchmark under different
system loads. We varied the system load imposed by
the kernel compilation from no load when no kernel
compilation processes were run, to allowing 64 concur-
rent processes to run to perform the kernel compilation.
When running without any background kernel compi-
lation workload, Linux and RSIO provide the same re-
sponse time of 129 ms for the interactive phase of the Oc-
tave benchmark. However, as the load on the system in-
creases, the response time of vanilla Linux increases dra-
matically. When 64 kernel compilation processes were
running, the worst response time for Linux ballooned to
24.15 s, resulting in a completely unacceptable delay of
almost half a minute during the interactive phase of the
benchmark. Even the 90th percentile response time is
XXX, which is also an unacceptable delay. The perfor-
mance is horrible because the Octave benchmark does
not sleep much, and thus the Linux scheduler mistakenly

always considers the benchmark as a non-interactive pro-
cess since it only uses processor usage and sleep behavior
to determine interactivity.

In contrast, RSIO correctly identifies the SSH session
running the Octave benchmark as latency-sensitive when
it is receiving user input since the network channel for
SSH is configured as a RSIO I/O channel. As a result,
the worst case response time of RSIO is 130 ms even
with 64 kernel compilation processes running. This is
essentially identical to the response time for the bench-
mark in the low load case, and is more than two orders
of magnitude better than Linux. The worst case response
time of RSIO is independent of background load across
the range of system load considered. Furthermore, the
response time of RSIO is not much more than the re-
sponse time threshold at which users can detect any re-
sponse time delays. RSIO achieves this response time
performance even though users are connected to the ma-
chine remotely, demonstrating that RSIO can automat-
ically detect user interactions via SSH connections to
identify latency-sensitive phases of an application.

6.3 Web Browsing Benchmark

The third scenario represents a local user running a
web browsing application and downloading various web
pages while other batch jobs are running. For the lo-
cal user to receive good system response time, the web
browser that the user is using should be detected as per-
forming latency-sensitive activities. Other batch jobs
should be treated by the system as non-latency-sensitive
activities.

For this scenario, we constructed a web brows-
ing benchmark consisting of the Mozilla Firefox web
browser visiting a locally stored web page with two
frames. One frame runs a JavaScript program that con-
trols the reloading of web pages in the other frame.
The JavaScript program causes the other frame to reload
“http://news.google.com” repeatedly for five minutes.
This web page provides current news articles and is fre-
quently updated with different content. Each page reload
is done five seconds after the previous reload completes,
providing the user some time to view the contents of the
web page before reloading a new version. The JavaScript
program also reports the elapsed time from sending the
HTTP request until the web page is completely reloaded.
While the web browsing activity is occurring, another
user is remotely connected to the same machine and run-
ning a kernel compilation in the same manner as dis-
cussed for the Octave benchmark, representing batch
processing activity. Because the web browsing bench-
mark uses a JavaScript program to control the web page
reloading, there is no actual user input when running this
benchmark. However, users typically still expect good
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responsiveness for such web page viewing activities, as
scripted web page downloads are not uncommon in prac-
tice.

Figure 5 compares the response time of Linux versus
RSIO using the web browsing benchmark under different
system loads. We again varied the system load imposed
by the kernel compilation from no load when no kernel
compilation processes were run, to allowing 64 concur-
rent processes to run to perform the kernel compilation.
When running without any background kernel compila-
tion workload, Linux provides good response time, the
worst case being only .96 s to download the web page.
Usability studies have shown that web pages should take
less than one second to download for the user to ex-
perience an uninterrupted web browsing experience [?].
Thus, the .96 s response time for an unloaded system is
fast enough for an uninterrupted web browsing experi-
ence. However, as the load on the system increases, the
response time of vanilla Linux increases dramatically.
When 64 kernel compilation processes were running, the
worst case response time for Linux was 12.85 s, result-
ing in a completely unacceptable delay of almost half a
during the interactive phase of the benchmark. The 90th
percentile response time was 1.91 s, which is still twice
as slow as running the benchmark on an unloaded sys-
tem.

In contrast, RSIO correctly identifies the web browser
running the web browsing benchmark as latency-
sensitive when it is receiving web data from the Internet
since the network channel to the web proxy is configured
as a RSIO I/O channel. RSIO correctly identifies the web
browser activity as latency-sensitive even though there is
no actual user input when running the benchmark. As a
result, RSIO performed well under all different system
loads. The worst web page reloading time for even a
loaded system was only 0.84 s. This was even slightly
better than Linux’s web response time in the low load
case. While some variation in performance is possible
due to external factors from obtaining web data from a
live web site across the Internet, the slight improvement
can be also explained by the fact that even without the
background load, the system still runs many other pro-
cesses and any of those processes can affect the perfor-
mance of the web browsing benchmark if they have sim-
ilar priority as the web browser, as would be the case
for the vanilla Linux system. Overall, only RSIO was
able to consistently provide subsecond web page down-
load times that were fast enough for an uninterrupted web
browsing experience even when the system was loaded.

6.4 Media Player Benchmark

The fourth scenario represents a local user playing a
movie while other batch jobs are running. For the lo-

cal user to receive good playback quality, the media
player application that the user is using to play the movie
should be detected as performing latency-sensitive activ-
ities. Other batch jobs should be treated by the system as
non-latency-sensitive activities.

For this scenario, we constructed a media player
benchmark consisting of the MPlayer application playing
a locally stored 5.36 MB MPEG-1 video clip with 834
352x240 frames. The video was scaled to 800x600 dur-
ing playback, and the movie clip was played in a loop for
five minutes. While the movie playback activity is occur-
ring, another user is remotely connected to the same ma-
chine and running a kernel compilation in the same man-
ner as discussed for the Octave benchmark, representing
batch processing activity. Although media players of-
ten receive no user input while playing a movie, users
clearly expect good system responsiveness to deliver all
video frames and audio samples on time at the desired
playback rate. Slowing down the playback rate would be
undesirable and result in poor quality video and audio.
For this benchmark, we used frame rate as the measure
of performance. We logged the frame rate reported by
the application, and used the worst case frame rate and
the 90th percentile frame rate to quantify performance.

Figure 6 compares the video performance of Linux
versus RSIO using the media player benchmark under
different system loads. We again varied the system load
imposed by the kernel compilation from no load when
no kernel compilation processes were run, to allowing 64
concurrent processes to run to perform the kernel com-
pilation. When running without any background kernel
compilation workload, both Linux and RSIO are able
to provide perfect video playback at 24 frames/second
(fps). However, as the load on the system increases, the
frame rate using vanilla Linux gets progressively worse.
When 64 kernel compilation processes were running, the
worst case frame rate for Linux was less than 7 fps, less
than 30% of the desired frame rate. The 90th percentile
frame rate was less than 10 fps, which also provided
qualitatively poor video performance.

In contrast, RSIO correctly identifies the media player
playing the movie clip as latency-sensitive because it is
playing both audio and video and output to the audio de-
vice is configured as a RSIO I/O channel. As a result,
RSIO performed well under all different system loads
and was able to maintain the full 24 fps frame rate in all
cases. In fact, only results for the worst case are shown
for RSIO since if the worst case is already perfect, the
90th percentile results are the same. These results would
not be achievable by simply using input focus since it
is not uncommon for a user to watch a movie while in-
put focus may be somewhere else. Furthermore, these
results show that by identifying latency-sensitive activi-
ties, RSIO can also be used for applications with quality-
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Figure 7: Multi-User Benchmark
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Figure 8: Multi-User Benchmark (90%)

of-service requirements to improve performance without
requiring users to specify more complex scheduling pa-
rameters such as reservations or time constraints.

6.5 Multi-user Benchmark

The fifth scenario represents a system supporting mul-
tiple users, each of which is engaged in both latency-
sensitive and non-latency-sensitive activities. In con-
trast to the previous scenarios, this scenario involves
multiple interactive sessions competing for processor re-
sources. The latency-sensitive activities correspond to
users executing short and simple commands. The non-
latency-sensitive activities correspond to users running
batch jobs that require longer computations. For exam-
ple, consider a group of students sharing the same server
and using MATLAB to do their homeworks. Their MAT-
LAB usage consists of two phases: a command typing
phase and an execution phase. The first phase is inter-
active while the second phase is not. For the users to
receive good system response time, the latency-sensitive
activities should be detected when they occur, and peri-
ods of batch processing should be treated by the system
as non-latency-sensitive activities.

Since it is difficult to get multiple users to do repeat-
able activities that can be measured to capture this sce-
nario, we created a multi-user benchmark to emulate a set
of students on a set of client machines that are remotely
connected to a server and engaged in “typing then ex-
ecute” behavior. The benchmark runs remotely on the
client and creates a SSH connection to the server when
started. Once started, it alternates between a “typing”
phase and a “execution” phase in a loop. We emulate the
“typing” phase by writing a short running command and
a long running command to the SSH connection. After
receiving the command, the shell process running on the
server will execute the command and respond to the user
after the command finishes. The benchmark automati-
cally starts another round of measurement after receiving
the response for both commands. Since the server oper-
ating system cannot distinguish between whether an SSH
connection is generated by a real user or an application,

we simply run multiple instances of the benchmark on
a separate client machine to emulate the multi-user sce-
nario. For example, we run five instances of the bench-
mark to emulate five users. To measure system response
time, we report the elapsed time from sending the short
command to the server until receiving the response for
the command from the server. On an unloaded system,
the short command takes only a few milliseconds to com-
plete while the long command takes roughly ten minutes
to complete.

Figures 7 and 8 compares the response time of Linux
versus RSIO using the multi-user benchmark for differ-
ent numbers of emulated users. For comparison, we also
report the response time for Linux when boosting the
priority of all users usingnice -10, which we denote
as PRIO. In an unloaded system, the short command
takes 4.4 ms to complete for Linux, PRIO, and RSIO.
However, as the number of emulated users increases, the
response time of vanilla Linux increases dramatically.
When 20 emulated users were running, the worst re-
sponse time was over 5 s, more than three orders of mag-
nitude worse than when running on an unloaded system.
Similarly, the 90th percentile response time was over 2
s, which is still an unacceptable delay for interactive ac-
tivities. The performance is poor because Linux cannot
identify the latency-sensitive “typing” phase based just
on itssleep avg mechanism because it is short rela-
tive to the “execution” phase, resulting in any average-
based measures being unable to identify such transitions
between latency-sensitive and non-latency-sensitive ac-
tivities by the same process.

Figures 7 and 8 show that the response time is even
worse when all of the processes for all emulated users
were boosted to higher priority. When 20 emulated users
were running, the worst response time was over 10 s,
twice as bad as the response time of Linux when users do
not attempt to raise the priorities of any processes. This
is because higher priority processes in Linux receive a
large time quantum for execution, and processes at the
same priority are run in round-robin order. As a result,
all of the high priority processes have to wait their turn to
run, and each turn takes a longer period of time, resulting
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in longer delays and worse response times.
In contrast, RSIO correctly identifies the SSH sessions

as latency-sensitive when and only when they are receiv-
ing input since the network channel for SSH is config-
ured as a RSIO I/O channel. Although each SSH ses-
sion emulates a user with both latency-sensitive and non-
latency-sensitive activities, RSIO only boosts the prior-
ity of each process while it is performing the latency-
sensitive activity. As a result, the worst case response
time of RSIO is less than 500 ms, more than an order of
magnitude less than the response time for either of the
two configurations of vanilla Linux. Furthermore, the
worst case response time for 8 emulated users or less was
less than 8 ms. While the response time in all cases was
significantly better than Linux, there was some notice-
able variability in worst case response time across dif-
ferent numbers of users. This is largely due to multiple
processes being considered as interactive by RSIO at the
same time when 12 and 20 such emulated users were run-
ning concurrently. In this case, all of them are competing
for processor resources and all of them receive degraded
performance. Figure 8 shows that such contention does
not occur in most cases. The 90th percentile response
time was less than 100 ms in all cases, and less than 10
ms for 16 emulated users or less.

6.6 Overhead

To quantify the overhead of RSIO, we also compared
the performance of RSIO versus vanilla Linux running
LMbench [9], a popular tool for kernel overhead mea-
surements. Figure 9 shows the results for various LM-
bench measurements, which exercise various forms of
interprocess communication and system calls. The over-
head added by RSIO in each measurement was less than
.35 µs, representing less than 5% overhead in all cases.
These results show that RSIO incurs modest overhead for
this benchmark, which translates to negligible overhead
for real applications in practice that do not focus just on
exercising interprocess communication and system call
usage.
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While LMbench captures the overhead imposed by
RSIO for typical performance benchmarks, it is impor-
tant to note that, like other performance benchmarks,
LMbench is not designed as a latency-sensitive applica-
tion. It does not involve user interaction during its execu-
tion. As a result, LMbench by design does not access any
RSIO I/O channels and does not measure the overhead of
that aspect of RSIO. However, RSIO I/O channels are by
design accessed by applications that involve user inter-
actions. Such user interactions typically operate at user
time scales which are much slower than the time scales
measured by typical kernel performance benchmarks, so
the latter are not good indicators of RSIO I/O channel
performance. As shown in the five application scenar-
ios, the performance overhead of RSIO versus Linux was
negligible as quantified by application performance on
an otherwise unloaded system.

7 Conclusions and Future Work

RSIO introduces a new approach to processor schedul-
ing for latency-sensitive activities that handle user in-
teractions. RSIO monitors I/O channel usage instead
of processor usage for detecting and prioritizing pro-
cesses when they are handling latency-sensitive activi-
ties. It automatically tracks processes access I/O chan-
nels that handle user interactions, and detects communi-
cations among processes to determine processes involved
in a user interaction. This is accomplished in part by us-
ing a confidence model with parameters based on human
response time characteristics. RSIO’s mechanism works
with both local and remote I/O channels, and is compat-
ible with existing processor schedulers. Our experimen-
tal results show that RSIO can provide substantial im-
provements in system responsiveness for a wide-range
of applications, including console applications, applica-
tions that mix interactive and batch activities, common
web browsing and multimedia applications, remote ap-
plications, and multi-user scenarios.

RSIO focuses on detecting what and when processes
are latency-sensitive. When a system has many latency-
sensitive activities running at the same time, scheduling
them in a manner that is fair and provides good respon-
siveness is important. RSIO can serve as a basis for fu-
ture work in developing better schedulers for supporting
mixes of latency-sensitive activities.
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