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Abstract time. A key challenge is how to ensure that the system

R . . f th ) ¢ ¢ provides acceptable interactive responsiveness to users
esponse time Is one of the most important factors fol ;e myltiplexing resources among a diverse collection

the overall usability of a computer system. We_presentof applications. It is particularly important that activi-
RSIO, a processor scheduling framework for improv-ies \which are more latency-sensitive receive acceptable

ing the response time of latency-sensitive applications b¥esponse time from the system while sharing system re-
monitoring accesses to I/O channels and inferring Whe%ources with other activities.

r interaction r. RSIO provi neral mech- . . .
use teractions occu .S o pro dgs a general mech- g, 0 processor scheduling determines when a process
anism for all user interactions, including direct interac-

i . . an run, system designers have long recognized that good
tions via local HCI devices such as mouse and keybOardgcheduling mechanisms are essential to support the re-

|nd|re§:t interactions through middleware, E.ind remote In'quirements of latency-sensitive applications. To achieve
teractions through networks. It automatically and dy-

namically identifies processes involved in a user interqUiCk response time for latency-sensitive processes in
X y processes . . a system shared with non-latency-sensitive processes,
action and boosts their priorities at the time the inter-

action occurs to improve system response time. RSI common practice is to delay the execution of non-
P y P : . Tatency-sensitive processes in favor of latency-semsitiv

o5, ; g »
- ) . . . es. However, identifying latency-sensitive processes
as well as those indirectly involved in processing the in-; fying 4 P

. . . X is difficult for several reasons.
teraction, automatically accounting for dependencies and _. o L .
. L . . First, latency-sensitive applications used in modern
boosting their priorities accordingly. RSIO works with ; ;
o L . computers have a wide range of functions and often have
existing schedulers, processes that may mix interactive

and batch activities, and requires no application mo difi-very different execution behavior. Traditional desktop

cations to identify periods of latency-sensitive applica_of“flce productivity tools have very different resource de-

tion activity. We have implemented RSIO in Linux and mands than mu|t|meQ|a applications. Multimedia appl

. . . cations have very different resource demands from e-
measured its effectiveness on microbenchmarks and red 7 S
commerce applications. All of these applications have

. L ) ?atency-sensitive requirements. As a result, commonly
and can provide substantial improvements in system per-

formance for latency-sensitive applications. used approach_es n commodlty_c_)peratlng systems which
detect interactive latency-sensitive processes based on

processor resource usage and sleeping behavior are gen-
1 Introduction erally ineffective across this broad range of applica-

tions [10, 18, 5, 19].
Rapid advances in hardware technology have enabled Second, latency-sensitive applications often involve
computers to accumulate an increasingly wide range ohuman-computer interactions that occur in many dif-
uses and applications, including web surfing, playingferent ways. An interactive latency-sensitive process
movies, software development, email, telephony, documay interact with users directly through local human-
ment processing, and financial bookkeeping, among otheomputer interaction (HCI) devices such as mice, key-
ers. Recent trends in virtualization and server consolidaboards, and audio/video devices. It may interact with
tion have expanded the number of applications with dif-users indirectly via middleware such as X Windows. It
ferent resource requirements and quality-of-service demay also interact with users remotely via the network.
mands being run on the same system. Furthermore, vifExisting approaches in commodity operating systems
tual desktop infrastructure, terminal services, and webonly detect interactions through the window system by
based office applications are just a few examples of deskracking input focus [14, 6, 5]. As a result, they are
top computing requirements extending beyond the deskineffective at identifying latency-sensitive applicaiso
top to servers as well. across the broad range of interaction types commonly

Users expect computers not only to run many differentfound on modern computers.

applications, but to be able to run them all at the same Third, human-computer interactions on modern com-
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puters are often handled not just by one process, but by HO channels such as the network sockets. When RSIO
collection of processes. For example, processing a typedetects an operation on a given I/O channel that should
character in Emacs on a Linux system requires not jusbe considered latency-sensitive, it identifies the process
the Emacs application, but the window manager and Xor group of processes performing that operation. RSIO
server as well. To deliver fast response time, it is cruciathen prioritizes those processes ahead of other processes
for a system to identify dynamic dependencies amonghat are not performing latency-sensitive activitieshi t
processes that arise in handling a latency-sensitive rgarocesses performing those operations depend on other
guest and account for those relationships in schedulingrocesses, RSIO correctly accounts for those dependen-
processes. However, commodity operating systems prazies to ensure that all processes involved in processing
vide little if any support for identifying such dependen- a latency-sensitive operation are prioritized at the right
cies, much less mechanisms for using that informatiortime. RSIO prioritizes processes in a manner dependent
for scheduling latency-sensitive processes. on and compatible with existing schedulers in commod-
Finally, the notion of a “latency-sensitive” process ity operating systems. For example, when used with a
is actually misleading because a process may switchpriority scheduler, RSIO can simply boost the priority
between executing latency-sensitive activities and nonvalue of a process to improve its response time.
latency-sensitive activities dynamically during its lfg- We have implemented RSIO in Linux and measured
cle. For example, MATLAB users first create programsits performance on various benchmarks and real-world
interactively during which they expect good system re-applications. We show that RSIO is easy to use with
sponsiveness, and then execute those programs to prgnmodified applications and describe the simple ways
cess large amounts of numerical data during which theyn which a complete desktop environment can be con-
typically expect to wait a while for the programs to com- figured to take advantage of RSIO’s framework for im-
plete. The first phase is latency-sensitive; the secong@roving interactive performance. We measure RSIO per-
phase is not. Given this dynamic behavior, users canndormance overhead and show that it is modest. We also
be expected to specify whether a process or an applic&sompare the performance of RSIO versus a vanilla Linux
tion is latency-sensitive. Furthermore, any mechanisnsystem and demonstrate that RSIO can provide substan-
that depends on the average behavior of such a proced#l improvements in system response time for a wide
such as using the average sleep versus run ratio [10] of &nge of applications with latency-sensitive activities.
process, will be ineffective and miss transitions between This paper presents the design, implementation, and
non-latency-sensitive and latency-sensitive activity. evaluation of RSIO. Section 2 discusses related work.
To address these problems, we introduce RSIO (Stam@ection 3 describes the RSIO usage model. Section 4 de-
for Response time Sensitive 1/0), a processor schedulin§cfibes how RSIO dynamically detects which processes
framework for improving the response time of applica- ar¢ performing latency-sensitive activities and when they
tions during periods of latency-sensitive activity. RSIO 0ccur. Section 5 explains how RSIO uses that informa-
is based on the observation that latency-sensitive actiion for processor scheduling. Section 6 presents exper-
ities typically need to respond quickly to /O involv- imental results demonstrating the effectiveness of RSIO.
ing user interactions, such as user input or certain kind§inally, we present some concluding remarks and direc-
of output. As a result, RSIO uses user /O activity to tions for future work.
guide processor scheduling of processes with latency-
sensitive requirements, in contrast to other approache Related Work
that only use processor activity for processor scheduling.
Using RSIO, operations on I/O channels involving userMany approaches to processor scheduling have been
interactions can be specified as being latency-sensitivesonsidered for improving the performance of applica-
RSIO then automatically and dynamically identifies thetions with latency-sensitive activities. Schedulers may
processes that perform those operations on those 1/@se processes or threads as the schedulable entity. For
channels as latency-sensitive when those operations ogimplicity and without loss of generality, we loosely re-
cur. Unlike other approaches, RSIO does not specifyfer to the schedulable entity as a process in this paper.
processes themselves as latency-sensitive, recognizing Perhaps the most common approach used in commod-
that processes may execute latency-sensitive and noiity operating systems is to schedule interactive applica-
latency-sensitive activities at different times. tions based on their processor usage and sleeping behav-
RSIO operates by directly monitoring accesses to I/Qior. While different heuristics have been used, they are all
channels that reflect interactions between users and ajpased on raising the priority of a process which has slept
plications. RSIO can monitor any I/O channel, including for a longer period of time or has not used up its time
those for direct HCI devices such as keyboard and micequantum before sleeping. For example, FreeBSD [8]
via middleware such as the window system, and remote@ises a multilevel feedback queue scheduler in which pro-



cesses that block waiting for I/O for one or more secondsriate bias values. RSIO is complementary to this work
are given a higher priority. Alternatively, the Linux 2.6 and can be used as a mechanism for determining how to
processor scheduler [10] attempts to identify interactivedynamically adjust the bias of a process.
processes as those that sleep longer and run less and givesSeveral approaches to real-time scheduling have rec-
them higher priority. Several studies [18, 5, 19] have in-ognized that applications may have different latency re-
dicated that this approach does not work well. Varia-quirements during different periods of application exe-
tions of these heuristics have been adopted for schedutution. For example, SMART [11] allows application
ing other resources, such as the window system [14]developers to specify time constraints on sections of ap-
with similar limitations. The fundamental problem is that plication code, which the scheduler then uses in ordering
processor usage behavior alone is a often a poor indicgrocesses for execution. An application can have sec-
tor of interactivity given the resource intensive nature oftions that are time-critical and sections that are not, en-
many modern interactive applications. abling the scheduler to dynamically adjust the scheduling
Another approach widely used in commodity operat-criteria for a process instead of treating the process with
ing systems is to schedule using window system inpuPne set of static scheduling parameters. While this ap-
focus. When using a GUI interface, users interact withproach allows precise specification of time constraints on
the application window which has input focus. To im- portions of code, it requires application modifications to
prove system responsiveness, processor schedulers, sudh this. While RSIO does not focus on scheduling real-
as those used in Solaris [15] and Windows [17], raise thdime applications, it also enables parts of an application
priority of processes associated with a window that hagxecution to be treated as latency-sensitive. However, it
input focus. Input focus has also been used for schedudoes not require application modifications because it de-
ing other system resources [19]. Using input focus carfives this behavior from I/O interactions.
often work well, but it may also unintentionally raise the ~While most related work has focused on the prob-
priority of non-interactive applications, for example, if lem of scheduling once processes are assigned schedul-
the user leaves the mouse focus on a window running &g parameters, another key issue is how those param-
compute-intensive batch application. More importantly,eters should be propagated correctly in the presence of
it does not work for applications that do not use the localprocess dependencies. Two areas in which this problem
GUI interface to interact with users, including console arises are priority inversion and coscheduling. For ex-
applications and applications that interact with remoteample, priority inheritance [7] is used to reduce priority
users over a network. A key problem with using input inversion when a high priority process is blocked on a
focus is accurately tracking not just the process that remutex resource by propagating the high priority value
ceives input from the window system, but other processe#0 other processes that need to run to unblock the pro-
involved in an interaction. This is not addressed in pre-cess. SWAP [20] generalizes this work for dependencies
vious work [15, 6]. due to other operating system resources and works for
HuC [5, 6] introduces a novel approach to schedulingdynamic priorities. As another example, gang schedul-
interactive and multimedia applications based on display"d [13] is used for coscheduling by scheduling cooper-
output production. Processes are scheduled to equaliZing processes of a parallel application to run on differ-
display output rates across windows, where the rate i§Nt processors at the same time so they can communi-
based on the percentage of the window pixels that changgate efficiently. Both priority inversion and coscheduling
per second. This can be useful for video applicationsdiffer from the process dependency problem that RSIO
which results in all videos being displayed at the sameddresses. Unlike the priority inversion problem, RSIO
frame rate regardless of window system. However, a key€eks to identify all processes involved in a user inter-
problem with this approach is that it results in undesir-action, whether or not such processes are blocked or
able behavior for mixes of interactive and non-interactiverunnable. Unlike the coscheduling problem, RSIO sup-
applications if the latter generate lots of display output. POrts cross-application dependencies and also deals with

Some approaches have focused on improving SChe(mxjependencies for gniprpc_essor schedgling. Furthermore,
ing for interactive applications in the context of fair-sha 1O focuses on identifying cooperating processes, not

schedulers. SMART introduced the idea of a bias on fai2ddressing the complementary issue of which scheduling
scheduling to use the ability of batch processes to tolerat@/90rithm to use for running them.

more latency to allow other latency-sensitive processes

to run before them while preserving fair allocations [11]. 3 RSIO Usage M odel

However, the bias was set using processor usage behav-

ior, which may not be a good indicator of the interactiv- RSIO is based on the observation that activities are of-
ity of a process. Borrowed-Virtual-Time scheduling usesten latency-sensitive because they are processing I/0O due
the same idea [3], but requires users to specify approto human-computer interactions, and those activities are



more tied to the nature of the 1/O than any particular pro-/ et ¢/ r c. | ocal . It sets up a system to use RSIO once
cess being executed. Furthermore, a process may engatie system is started using these commands.
in both latency-sensitive and non-latency-sensitvevacti =~~~
ities. Ir_l this context, specifying the priority or other tty devices
scheduling parameters of a process may not be usefylsj 5" config READ /dev/tty0
since how a process should be scheduled will change dy-sj o_confi g READ /dev/ttyl
namically based on its /O processing. Instead, RSIQ si o _config READ /dev/tty2
provides a usage model based on allowing users and adsi o_confi g READ /dev/tty3
ministrators to configure I/O channels. RSIO then auto+ si o_confi g READ /dev/tty4
matically and dynamically derives the scheduling char-f si o_config READ /dev/tty5
acteristics appropriate for processes based on theirsccessi 0_config READ /dev/tty6
and usage of those 1/O channels. rsio_config READ /dev/tty7
RSIO proyldes a command_ _to configure 110 chan-# mouse devi ce
nells as b(_amg latency-sensitive. The command, ; o_config READ /dev/input/nice
rsi o.confi g, takes three types of parameters: chan-
nel, operation, and useChannelspecifies the I/O chan- # audi o devi ce
nel being configured. There are two types of channels;si o_confi g WRI TE / dev/ dsp
files and sockets. A file channel is a persistent entity in
the file system that can be easily named. A socket is # network channels
dynamically created entity that is most easily named by si o_confi g READ \
referring to what the socket connects as opposed to the CONNECT webpr oxy. col unbi a. edu: 8080
socket itself. If the channel is a file, it is identified by "Si 0_config READ \ .
simply the filename. For example, if the I/O channel be- ACCEPT nymachi ne. col unbi a. edu: 22
ing identified is a mouse device, the channel nameisthe T
device name/ dev/ i nput/ m ce. If the channel is
a socket, it is identified both by the channel name and Figure 1: Default RSIO Configuration
its creation operation. For example, if the channel refers
to a network socket, the channel name is the destination Tpe startup script configures four classes of /0 chan-

hostname and port number and its creation operation Caflels, TTY devices, the mouse device, the audio de-
beconnect oraccept . Itis easy to distinguish be- yice and network channels. TTY devices are termi-
tween file and socket channel types since only the lattep| devices, including serial devices such as the original
includes a creation operation. character-based terminals, and virtual terminals, which
Operationspecifies the 1/O channel operation that apehave like character-based terminals from a program-
process performs to cause it to be flagged as a latencyner's perspective and are used by various applications
sensitive process. The operation can be read, write, a§uch as the X window system for managing user in-
both read and write. If the operation is a read, then anyyyt and display output. A system has a default set of
type of read operation performed by a process on the I/GrTy devices, which typically and in this case are repre-
channel will cause it to be flagged as a latency-sensitivgented by dev/tty0 to/dev/tty7. A successful
process. If the operation is a write, then any type of writeread from a terminal device usually corresponds to user
operation performed by a process on the I/O channel wilkeyhoard input. As a result, RSIO configures any read
cause it to be flagged as a latency-sensitive process. Afrom a default TTY device as a latency-sensitive activity
ter performing a specified 1/O channel operation, a proto improve system responsiveness to user keyboard in-
cess remains marked as latency-sensitive until RSIO deput. Note that only terminal device reads are flagged as
termines that the relevant user interaction has completeqatency-sensitive, not writes. A write to a terminal device
Userspecifies for which user’s processes the I/O chanusually corresponds to application output to the display,
nel should be considered latency-sensitive. By defaultbut not all display output is the result of interactive ac-
the channel is latency-sensitive for all users. If a specifidivities. For example, a kernel compile generates lots of
user identifier is provided, a process will only be flaggeddisplay output but is not latency-sensitive.
as being latency-sensitive if it is owned by the given user The mouse devicédev/ i nput / m ce handles all
and accesses the I/O channel. mouse events. A successful read from the mouse device
To illustrate how easy itis to use RSIO, Figure 1 showscorresponds to a process receiving mouse events. As a
how a small number of RSIO configuration commandsresult, RSIO configures any read from a mouse device as
can be used to set up a default configuration of a sysa latency-sensitive activity to improve responsiveness to
tem. For a Linux system, the startup script would go inuser mouse input. A system may have other user input



devices such as a joystick or gamepad. These devicdecal machine’s port 22 where the SSH daemon is listen-
can be treated in a similar way as the mouse device. ing for connections. A read on this channel corresponds
The audio devicé dev/ dsp is used for audio output. to the local machine receiving data from a remote SSH
A successful write to the audio device results in audioclient, which typically corresponds to user input. As a
output. Audio is latency-sensitive and delays in process¥esult RSIO configures any read on the network chan-
ing audio can result in audible clicks and degradation ofmel as latency-sensitive to improve system responsive-
audio quality. As a result, RSIO configures any write Ness when the user is remotely connected to the system.
to the audio device as a latency-sensitive activity to en- The end result of this startup script is a set of RSIO
sure good audio quality. Note that a write operation typi-1/O channels that can be used to capture many latency-
cally occurs after a particular audio sample has been prosensitive activities in a standard desktop computer sys-
cessed, so flagging a process as being latency-sensiti¥ém. The configuration of TTY devices and the mouse
after the write occurs does not help with processing thedlevice effectively provide a mechanism to track input
just-written audio sample. However, audio processing igocus and treat processes receiving user input as be-
typically periodic and repetitive in nature, so all subse-ing latency-sensitive only when such input is occurring.
quent processing of audio samples will be handled in a’he configuration of the audio device enables audio
latency-sensitive manner. applications and multimedia applications to be treated
It is worth noting that this RSIO setup configures au-2aS latency-sensitive. The configuration of the network
dio output to be latency-sensitive, but does not config-channels enable web applications and remote access ap-
ure any display output to be latency-sensitive. Any ap-Plications to be treated as latency-sensitive during peri-
proach that flags processes that generate display outp@s of user interaction. Furthermore, the user is not re-
as latency-sensitive is problematic because many confluired to identify any application processes, or set and
mon applications that are not latency-sensitive can gentune any additional parameters such as shares or priori-
erate lots of display output, a kernel compile being justti€s. This simple yet powerful usage model provides flex-
one such example. On the other hand, many multimelbility and functionality not available with other process
dia applications also generate lots of display output andentric approaches.
should be considered latency-sensitive. Furthermore, These examples illustrate how RSIO enables users to
multimedia applications can generate long periods of disSimply configure a small number of I/O channels to com-
play output without any user input, so simply monitor- Pletely configure a system to use RSIO. Note that RSIO
ing keyboard or mouse input does not help. RSIO adiS intended to be used to configure I/O channels that are
dresses this issue by observing that applications that ddirectly used by local or remote users. This is easy to
not require much user input, generate display outputdo because the number of such I/O channels is limited,
and are latency-sensitive usually also generate audio outbey are mostly created when the system is booted, and
put. For example, movie players generate both video ané€ latency-sensitivity of these channels is easy to deter-
sound. On the other hand, non-latency-sensitive applicaline. There are many other I/O channels that are indi-
tions such as kernel compilation do not generate sound€ctly used by users, such as IPC communication chan-
As aresult, RSIO automatically delineates between thesBels. Users are not expected to manipulate those chan-

two classes of applications by monitoring audio outputn€ls. Instead, RSIO automatically handles those indirect
instead of display output. channels in a manner described below.

Network channels are used for handling various
kinds of remote interactions. This example setup4 L atency-sensitive Process Detection
shows two for illustrative purposes. The first network
channel is an outgoing connection to a web proxy,RSIO maintains some additional system state to identify
webpr oxy. col unbi a. edu, at port number 8080. A RSIO I/O channels and processes involved in user inter-
read on this channel corresponds to the local machine reactions using those channels. Table 1 summarizes the
ceiving data from a web server. As a result RSIO con-RSIO system state. These parameters and objects are
figures any read on the network channel as a latencydiscussed in further detail below.
sensitive activity to improve system responsiveness when
processing a web page download so that web pages a1 RSIO I/O Channd Instantiation
displayed faster. Note that a web page download could
instead be marked as latency-sensitive based on mousesi o_conf i g causes the instantiation of a RSIO I/0O
or keyboard input, but this RSIO configuration enableschannel. RSIO represents an I/O channel usinglaan-
faster web performance even in the absence of such imel. As shown in Table 1, an rchannel consists of three
puts, such as for a scripted web page download. The secomponents: an access type, a user identifier, and a list of
ond network channel is an incoming connection to thehandlers, which will be described in more detail below.



| State [Fields / Description l lier for file 1/O channels. Note that deferred RSIO com-

rchannel |access type, uid, mands remain in the deferred list since matching sockets
handl er |i st may be created at any time and each such creation re-
handl er |id, process, access type, quires RSIO to update the respectiveode state.

access tine, expiration tine

confi dence, cohandler list
max_conf |mexi mum confi dence val ue 4.2 RSIO I/O Channd Activation
co_conf |cohandl er confidence val ue

sys_expirelsystemexpiration time

Given a set of RSIO-configured I/O channels, RSIO

codelta lcohandl er time W ndow needs to identify user interactions on those channels and

reader || PC reader process the processes involved in those interactions. For most
witer |[IPCwiter process types of 1/0O, an application cannot communicate with

users directly, but instead does so through the operating

Table 1: RSIO System State system via system calls. RSIO therefore monitors rele-

vant system calls that access RSIO configured 1/0O chan-
nels to detect such human-computer interactions.

In a Unix-style system, this additional state is associated RSIO monitors read and write operations that occur
with the in-memoryi node structure, which is used to through system calls to detect the start of a human-
represent I/O channels. The state is created and deletedmputer interaction. Read operations include not only
as part ofi node creation and deletion. At creation, the r ead system calls, but also system calls such eadv
access type is blank, the user identifier is zero, and thandr ecvnsg. Similarly, write operations include not
list of handlers is empty. RSIO state initialized in this only wri t e system calls, but also system calls such
way has no effect on the behavior of the system. Theaswri t ev andsendnsg. RSIO instruments each of
RSIO state only affects system behavior after the RSIGhese system calls. When one of these system calls is
state is configured by a configuration command. performed, RSIO uses the system call arguments, specif-

The configuration of RSIO state is somewhat differentically the file descriptor, to obtain the corresponding
for the two types of I/O channels, files and sockets. Foii node and check its RSIO state. If both the read and
file 1/0 channels, such as TTY devices, the correspondwrite flags are not set, the I/O channel has not been con-
ing i node is created when the system boots and therefigured as latency-sensitive and no further action is taken.
fore exists by the time thatesi o_conf i g command If the access type is read and a read operation is per-
is executed. When the configuration command executegormed, or the access type is write and a write operation
RSIO simply finds the already createdode and con- is performed, RSIO checks if the user identifier of the
figures its associated RSIO state. The access type is settalling process matches the RSIO state user identifier. If
read, write, or read-write according to whether the readt matches, RSIO considers this system call as the start
or write operations are used to activate this channel, andf a user interaction on a RSIO I/O channel. The call-
the user identifier is set based on the user field of theng process is referred to aspaimary handlerfor this
configuration command. This is implemented using theinteraction and RSIO activates the process so it is con-
i oct| system call. sidered as being latency-sensitive. Section 5 describes

For socket 1/0 channels, a correspondingode is  how latency-sensitive processes are scheduled. Note that
also eventually created, but it is not created when the sysRSIO performs its monitoring after the actual system call
tem boots and therefore usually does not exist by the timéas successfully read or written I/0O since there is no need
that ar si o_conf i g command is executed. Instead, the to perform any action if the operation was not successful.
i node is created at later time when the socketis actually RSIO currently only handles 1/O through read and
created and used. To deal with this dynamic state, RSIGvrite operations. It does not support user interactions
defers the execution of RSIO configuration commandghrough memory mapped 1/0 channels. However, in our
on sockets and keeps a list of such commands. It theaxperience, this is sufficient for most I/O channels of in-
monitors socket creation system calls sucltasnect terest. For example, while memory mapped file systems
andaccept and checks if any such creations matchesare not uncommon, those forms of /O are not typically
with a deferred RSIO command. For example, if a RSIOuser interactions. Perhaps the most common instance of
command was deferred that is for accepting connectionsiemory mapped /O that does involve user interactions
to the SSH local port 22, RSIO will monit@ccept is through the display device. However, as discussed in
system calls and check if any such calls are for port 22Section 3, RSIO does not typically treat that 1/O chan-
If such a system call is found, RSIO then identifies thenel as latency-sensitive since it is also commonly used
corresponding node created by the system call and up- by non-latency-sensitive activities.
dates its RSIO state in the same manner as discussed earRSIO introduces dandlerto maintain state associ-



ated with a process that is a primary handler. As menanother. Second, the user could simply stop interacting
tioned in Section 4.1, RSIO maintains a handler list forwith the computer. RSIO uses a confidence model to
each RSIO I/O channel. Whenever an interaction hapaddress the first case, and a timeout model to address the
pens on a RSIO channel, RSIO checks the handler lissecond case.
of the channel to see if the calling process is already in  RSIO detects when an interaction ends due to a user
the handler list. If the handler does not exist, a new hanswitching interaction to another process using a confi-
dler object is created and inserted into the list. As shownjence model. As shown in Table 1, each handler includes
in Table 1, a handler consists of seven components: ag field calledconfidence The confidence value is used to
id, a reference to the associated process, an access typedicate how confident RSIO is that the given handler
an access time, an expiration time, a confidence valugs still involved in a user interaction. If a new handler
and a cohandler list. For a primary handler, the id is thejs created due to an interaction on a RSIO channel, its
inode identifier of the corresponding 1/O channel, the acconfidence value is initialized to one. If an interaction
cess type is the access type of the 1/O channel, and théccurs and the handler already exists due to a previous
access time is the last time the process accessed the ligteraction, its confidence value is incremented by one.
channel. The access type is not strictly necessary, but isor all other handlers in the handler list of the RSIO 1/O
stored as part of the handler to avoid having to go backhannel, their confidence values are each decremented
to the corresponding rchannel to look it up. A process ishy one since they are not involved in the current inter-
considered to have accessed a RSIO I/0 channel if it pefaction. Confidence values start at zero and can be in-
formed aread or write operation and the channel's accessremented up tmaxconf the maximum allowable con-
type matches the operation. The cohandler list is initiallyfidence value. maxonf is configurable and is five by
empty. The expiration time, confidence value, and codefault. If the confidence of a handler is decremented
handler list are described in further detail below. Noteto zero, the handler will be deactivated and no longer
that a process may access multiple RSIO 1/O channelgonsidered latency-sensitive. Since a word is typically
and hence may have multiple handlers associated with iassumed to be five to six characters on average [2, 1],
Handlers for a process will be deleted and removed fromhis default value of maxonf deactivates a process by
all handler lists when the process exits. the time a user has typed one word worth of user inter-
After a primary handler is activated, RSIO needs toactions into another process. A handler is deleted if its
determine when the handler should be deactivated andonfidence is zero and its cohandler list is empty. Cohan-
no longer considered latency-sensitive. An interactiondlers will be discussed further in Section 4.3.
usually finishes when an application outputs the result- For example, if a user switches from interacting with
ing response to the user. RSIO could detect such outpysrocess A to process B, process B will become latency-
by monitoring I/0O channels for this purpose. However, sensitive immediately. On each further interaction with
this would require users to specify which I1/O channelsprocess B, process As confidence value will drop by one.
should be considered for user output, as output to I/QAnd after a number of interactions no more than the max-
channels such as disk should usually not be considereidhum confidence value, process A will be deactivated
as the end of a user interaction. Even if the user specibecause its confidence has dropped to zero. This mech-
fies which I/O channels to monitor for user output, it is anism enables RSIO to detect the end of an interaction
generally difficult to know which output is the last one. due to a user switching to interact with another process.
An application may generate a sequence of outputs in RS|O determines when a user has stopped interact-
response to an interaction, and it would be desirable tgng with the computer system by using a simple time-
maintain the processes involved in that interaction untiloyt model. If a user stops interacting with the computer,
the output to the user is complete. As a result, the addithere is no easy way to determine when that occurs. As
tional complexity involved in monitoring output may not a result, RSIO associates a timeout with each handler for
provide much benefit given the uncertainty in determin-this purpose, which is its expiration time, as shown in
ing when the output is complete. Note that this problemTaple 1. When a handler is activated, RSIO assigns it
does not occur for determining the start of a user interacan expiration time. A handler will be deactivated if that
tion since it is easy to determine and desirable to use thprocess does not access a RSIO I/O channel before its ex-
first 1/O for that purpose. piration time. RSIO assigns the expiration time by using
RSIO approaches the problem of determining when ahe handler’s access time and adding to it a system ex-
handler should be deactivated from a different angle. Wepiration time,sysexpire In other words, if a handler is
observe that an interaction between an application andctivated at time, it will expire at timet + sysexpire.
a user typically continues for some period of time until sysexpire is configurable and is 2 seconds by default.
one of two things happens. First, the user could switchThis default was selected based on previous research in-
from interacting with one application to interacting with dicating a 2 second response time limit for simple com-



mands [16, 12]. specific details.

RSIO refers to a process that a primary handler de-
pends upon aseohandler RSIO reuses thkandlerob-
ject discussed in Section 4.2 in a different way to main-
While the start of an interaction through a RSIO /0O tain state associated with a cohandler. RSIO considers

channel is caused by one calling process and therefor@ process A as a possible cohandler for a process B if
one primary handler, multiple processes may be involvedrocess A communicates with process B after a handler
in the processing required for such an interaction. If onlyhas been created for process B, and using the same ac-
the primary handler is treated as latency-sensitive, it magess type as process B’s handler. Recall that a process
block waiting for another process that is involved indi- Will have a handler object if it has been previously acti-
rectly in the user interaction, resulting in a form of prior- vated as a primary handler. As shown in Table 1, RSIO
ity inversion. Even if the primary handler does not block, maintains a cohandler list for each handler. Whenever a
other processes involved in the user interaction may be ifProcess A communicates with another process B that has
the critical path. If they are not treated as being latency-2n associated handler with a corresponding access type,
sensitive, they can be delayed in being scheduled, resulRSIO checks the cohandler list of the handler to see if the
ing in degraded system responsiveness. Unfortunatelyrocess A is already in the cohandler list. If the cohan-
while it is easy to determine the primary handler for adler does not exist, a new handler object is created and in-
user interaction, there is no general way to precisely deserted into the list. For simplicity, we first assume that all

termine what other processes the primary handler mayommunications between processes match the respective
depend upon in processing the interaction. access type, and defer a discussion until Section 4.4 of

For example, consider a user typing into a text edi-how to determine whether a communication is the right

tor such as Emacs on a Linux system running X Win-aCCess type.
dows. Keyboard input occurs through a TTY device, The seven fields of the handler object are initialized
which is read by the X server. The X server then com-in a different way in the case of a cohandler versus a
municates with Emacs to pass along the keyboard inpuprimary handler. For a cohandler, the is the pro-
Since the X server process reads the I/0 channel, it is theess identifier of the corresponding primary handler, the
primary handler of the interaction. However, Emacs isaccess type is the access type of the primary han-
the application actually doing the semantically interest-dler, theaccess time is the last time the cohan-
ing processing of the keyboard input. If only the primary dler process communicated with the primary handler, the
handler is treated as latency-sensitive, system respongxpi rati on ti ne is set equal to the expiration time
time may suffer because Emacs is also indirectly pro-of the primary handler, the confidence value is initialized
cessing the user input and is therefore latency-sensitivd0 zero, and the cohandler list is initially empty. Note
In this case, the X server will not block on Emacs, butthat a process may serve as a cohandler for multiple other
Emacs is in the critical path for generating a responseprocesses, and hence may have multiple cohandler han-
Furthermore, the operating system has direct knowledgdler objects associated with it. A process will be removed
that Emacs is involved in the user interaction. In thisfrom all cohandler lists when it exits. Since a process
particular case, the X server may be able to obtain thigjenerally does not communicate with many other pro-
information, but this is application-specific and does notcesses, the cohandler lists are typically short in practice
generalize to other non-X interactions. For example, if Processes in a cohandler list are just potential cohan-
the Emacs process then depends on another processdiers. RSIO uses a confidence model to decide whether a
handle the user interaction, the X server will not be ablepotential cohandler is an actual cohandler or not. When-
to help with determining those dependencies. ever a handler is activated by accessing a RSIO I/O chan-
RSIO automatically detects what processes a primaryiel and its cohandler list is not empty, RSIO instanti-
handler depends upon by using a simple heuristic thaates a callback to occur after a time peribdo adjust
works quite well in practice. If a primary handler de- the confidence of the cohandlers. Suppose a handler for
pends on another process for handling a user interactiomrocess A has been activated at time. If process B
we observe that it is very likely for those processes tocommunicates with process A during the time petidd
communicate within a short period of time of when the- Ttot1l + T, the callback increments the confidence
user 1/O occurs. We refer to the user I/O as an activatiorvalue of process B by one. For all other cohandlers, the
event, since it activates a process as a primary handlecallback decrements the confidence by one. A cohandler
By monitoring the time proximity of activation events B is activated and treated as an actual cohandler if its
and interprocess communication events, RSIO can dezonfidence is larger than a confidence threslooldonf,
tect the processes indirectly involved in handling a usewhich is listed in Table 1. c@onf is configurable and is
I/O interaction without needing to know any application- two by default to set the confidence threshold to be one

4.3 Dependenciesand Cohandlers



more than what is used for activating a primary handlerconfidence model is again used to activate or deactivate
The range of confidence values is limited by n@onf  the child process as an actual cohandler based on result-
just as for the primary handlers. The valu€elofs set by  ing interprocess communications while the parent is pro-
the parameteco_deltain Table 1. It is configurable and cessing a user interaction.
is 5 ms by default.

Figure 2 presents an example to illustrate the cohanz,r 4
dler confidence model for a procegs From timet 1 )
tot 11, procesp was activated for 5 times, which hap-

pened at timet 2, t4, t6, t8 andt 11, respectively. g detect cohandlers, RSIO needs to monitor interpro-
Suppose procegs has two potential cohandlepsl and  cess communications and determine a notion of access
p2 in its cohandler list with initial confidence values of type for them. In a UNIX style system, processes can
zero. Forinteractionl attimet 2, p1 has one interpro- - communicate or synchronize with each other using var-
cess communication with at timet 1 which is withinT  jos mechanisms, including pipes, sockets, pseudo ter-
ms oft 2, so RSIO increasgsl’s confidence by 1. The  mingls, signals, futexes, IPC semaphores, file locks,
confidence op2 remains as 0. For interacti@®, pro-  etc. RSIO monitors interprocess communications that
cesspl has another interprocess communication With  are commonly used for data communications to capture
within the expected threshold whit2 has no such com- - communications that are used for passing data related
munications, so the confidence valueg pfl, p2) are g yser interactions. For this purpose, RSIO monitors
adjusted to bg 2, 0). For interactiona3, pZ has an  three types of interprocess communication mechanisms:
interprocess communication within the expected threshpipeS, sockets, and pseudo terminals, the latter being
old whilep1 does not, so the confidence valueg pfl,  idely used by X window applications. Other mecha-
p2) are adjusted to b1, 1). p2 continuesto com- pisms are ignored because they are mostly used for syn-
municate withp within the expected threshold for acti- cnronization, instead of communication.

vation eventsa4 anda5 while p1 does not, so at the  por pipes, sockets and pseudo terminals, RSIO needs
end ofas, the confidence values ¢pl1, p2) are ad- g determine the processes involved in an interprocess
justed to be( 1, 3). Atthis point,p2 is treated as an  communication using these mechanisms. Itis easy to de-
activate cohandler whilp1 is not. The example shows ermine one of the processes involved using these mech-
how RSIO automatically detects the cohandler transitionynisms by monitoring the system calls that use these

Interprocess Communication Detec-
tion

from p1 to p2 based on its confidence model. mechanisms and determining the calling process of the
system call. However, operating systems typically do not
L RSIO Accesses provide a way to track the process involved in the other
al T2 a3 o a5 | end of such a communication at the time of the system
§ I I P I I § I . call. Since pipes, sockets, and pseudo terminals are all
fu o] (sl o i ag | fme represented asnodes in the kernel, RSIO associates

two additional fields with eachnode to track processes
at both ends of an interprocess communications.

pL Pl |pl | p2 p2 P2 As listed in Table 1, these two fields are aader
(10 (20 (€9h) 12 1.3 fieldand anri t er field. Both fields are initially NULL
IPC when thei node is created. Whenever a process suc-
Figure 2: Cohandler Detection cessfully accesses amode using a read system call,

the r eader field is updated to reference the calling

A cohandler may communicate with other processegprocess. Similarly, whenever a process successfully ac-
that should also be considered as latency-sensitive. Eaatesses annode using a write system call, ther i t er
cohandler has its own cohandler list. Since each coharfield is updated to reference the calling process. The lat-
dler process has an associated handler object, RSIO cast reader and writer is thus stored for eadwde. The
recursively identify potential cohandlers of cohandlersi r eader andwr i t er fields are reset to NULL when the
the same manner it identifies cohandlers of primary hanrespective process closes the file descriptor correspond-
dlers. ing to this inode.

When a primary handler or cohandler process forks a Whenever an interprocess communication of interest
new process, the process creation is treated by RSIO axcurs, RSIO identifies the calling process of the system
a form of communication between the child and parentcall and uses the reader and writer fields to determine
processes. As a result, RSIO identifies the child procesthe other process involved. If one of the processes has
has a potential cohandler and is added as a new cohaan associated handler because it is a primary handler or
dler to the cohandler list of the parent process. RSIO’scohandler, RSIO checks the access type of the handler



to see if it matches the interprocess communication. Foputing a process’s dynamic priority based on its nice
example, if the calling process performs a read systenvalue and a priority bonus. However, the priority bonus
call to communicate with a process that has an associatdd instead determined simply based on whether RSIO has
handler with a read access type, RSIO considers this mdicated that the given process is latency-sensitive. By
match. Similarly, if the calling process performs a write default, a process is simply assigned a priority bonus of
system call to communicate with a process that has af. If a process becomes an activated handler or cohan-
associated handler with a write access type, RSIO condler for a RSIO I/O channel, it is assigned a priority
siders this a match. If a match occurs, RSIO proceeddonus of 10 until it is deactivated. This maintains the
with the cohandler creation and update mechanism dissame dynamic range of priority values as used by the de-

cussed in Section 4.3. fault Linux scheduler, but adjusts priority values within
that range in a manner that more accurately reflects when
5 RSIO Scheduling processes are latency-sensitive. This change in behavior

is very simple and requires changing only a few lines of

RSIO is a general mechanism that dynamically detect§°d€ in the Linux processor scheduler.
whether processes are latency-sensitive by identifying al

activated primary handlers and cohandlers. This infor-

mation can be used by any processor scheduler to im-

prove the responsiveness of a system. For example, @ Experimental Results

priority scheduler could use this information to boost

the p_ri_ority of processes that have bee_n marked Iatencwve have implemented a RSIO prototype in the Linux
sensitive. A_‘S _another_exam_ple, a fair-share schedule g 19 kernel and modified the Linux scheduler to use
could use this information to increase the shares of prong|g in the manner described in Section 5. To demon-
cesses that have been marked latency-sensitive. Altern@g e its effectiveness, we compare the performance of
tively, a multi-level feedback queue scheduler could usez g yersus vanilla Linux on several micro-benchmarks

a separate queue for processes that are marked latencysy rea1world interactive applications. We used appli-
sensitive and schedule processes from this queue ahegdyjo, workloads that represent a wide-range of differ-

of other queues. To illustrate further how RSIO can beent usage scenarios, including (1) running a mix of in-

used in commodity operating systems for scheduling, W§e 5 ctive and non-interactive applications from a local
describe one way in which RSIO can be used with the,,ng1e (2) using a technical computing tool similar to

Linux processor scheduler to improve the responsivenesgat| aAB which has periods of interactive use and back-

of a Linux system_. . __ground number crunching calculations, (3) web brows-
L|nu>_< uses a_pnonty-bas_ed_processor scheduler Whlcrilng on a loaded machine, (4) multimedia video playback
dynamically adjusts the pr!orltles of processes based °8n a loaded machine, and (5) supporting multiple re-
process usage and sleeping behavior. In Linux 2.6, @,4te ysers engaged in periods of interactivity and long-
process’s dynamic priority is decided by two COMPO- nning computations. We also measure the performance
nents, its nice value and a dynamically computed priority,erhead of RSIO versus vanilla Linux. For RSIO, we
bonus. The nice value is specified by the user and hag, up the system with default parameters and configured

a range of [-20, 19]. A smaller nice value is translated ;5 channels using the simple system configuration script
into a higher priority. The priority bonus has a range shown in Figure 1 and discussed in Section 3.

of [-5, 5]. A process’s priority bonus is decided by its )
sl eep_avg, which represents the sleep versus run ratio FOr most of our workloads, we measure response time

of this process. Based on assumption that an interad® quantify system performance. In particular, users of-
tive process often spends much of its time sleeping, th&&N care about when the system is responding poorly as
Linux 2.6 scheduler gives more priority bonus to pro- opposed to just average response time. In fact, users are
cesses that have a larger eep_avg. Processes with .typ|cally unhappy with the responsiveness of a system if
more priority bonus will have higher priority and should It Nas good average response time but unexpectedly long
have better response time. However, previous work hag€lays in system responsiveness some of the time. To
shown that predicting a process’s interactiveness basegfPture this notion, we report our results in terms of both
onitssl eep_avg has various limitations [18, 5, 19]. the 90th percentile response time performance and the
Using RSIO, we change the way Linux computes aVOrst case response time performance.
process’s dynamic priority to take advantage of RSIO’s The machine used for all our measurements is an HP
ability to more accurately determine when processes arew9300 PC with a 2.6 GHZ AMD Opteron processor
performing latency-sensitive activities and need bettetand 2 GB RAM. The server was running Ubuntu 6.06,
response time. We still use the same algorithm for comand the kernel used was Linux 2.6.19.
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Figure 3: Active Console Benchmark  Figure 4: Octave Benchmark Figure 5: Web Browsing Benchmark

6.1 Active Console Benchmark command. However, as the load on the system increases,
The fi . ) le in whi the response time of vanilla Linux increases dramati-
e first scenario represents an active console in w ICIaally. When 64 kernel compilation processes were run-

a Iocalluser IS using a window _system with .’““'“P'e con- ning, the worst response time for Linux was 2.5 s, which
;olebW|ndqws opzn, one o.f Wh'.Ch tlhe useris aé:tlveg ;]Js"ls a significant and noticeable delay for interactive ac-
N9 dy typing in. execugn? simpie COTn;nan S t_t_ertivities and makes typing and executing interactive com-
windows aré beling used 1o run non-latency-sensiiVé,,a4s very unpleasant. Similarly, the 90th percentile re-
batch jobs. For the user to receive good system respon%%onse time for Linux was over .5 s. The response time is

yme, lthe co_n;ple wmdgw tdhat the usder t;s.actlvely US“four times longer than the 100 ms response time thresh-
Ing, along with its associated commands being executed [12] for having users feel that the system is reacting

should be detected as performing latency-sensitive actiVe, tantan eously.

ities. Other batch jobs should be treated by the system as In contrast, RSIO correctly identifies the active con-

non-latency-sensitive activities. . sole since keyboard input through the TTY device is
For this scenario, we constructed an active console

L . . configured as a RSIO I/O channel, and any processes
zg\r/]v(;hrg?\lrgl\;céntselrsrﬂ?r?alci); ;WC;eild\loot'(\aArlrEnitne;Imal nallicvg,'[irgninvolved in reading that keyboard input are marked as
that éllows users of the GNpOME Linux desk?(?p onvi latency-sensitive. As a result, the worst case response

. " time of RSIO is 28 ms even with 64 kernel compilation
ronment to execute commands using a UNIX style shelf ro?:eosseg r?miinS 'Is'h?seis a Lit?/vor:e 51;: thF:a itooms
environment. In one terminal, a Linux kernel compila- Ees onse time inq{'he low load case. but almost an or-
tion is executed, which is a long running batch job. In P '

the other terminal. a user tvoes at the command orom er of magnitude better than Linux. The small perfor-
. ' yP . PrOMPL ance degradation is mostly caused by I/O contention
time Is” to execute the command to list the contents of

. . . . ince both the background load and the interactive com-
a directory and time its execution. Once the commanoS 9

. mands exercise the file system. Furthermore, the 90th
completes, the user repeats the same typing and com-

, -.. percentile response time of RSIO is almost independent
mand execution. The user repeated the command fift .
times. and we measured the elapsed time for executin f background load. The worst case and 90th percentile
the C(;mmand each time to uantip;y the response time ot sponse times of RSIO are well below the response time
tod P threshold at which users can detect any response time de-
the system. We also varied the load on the system due

the Linux kernel compilation by allow the compilation to

be done in parallel with different numbers of processes.

This was done using thg option to specify the number g2 Octave Benchmark

of kernel compile processes to be generated. For exam-

ple, we use the commamdhke -j 4 tostartthe Linux The second scenario represents a remote user running an

kernel compile with 4 concurrent processes. application similar to MATLAB that has both latency-
Figure 3 compares the response time of Linux versusensitive and non-latency-sensitive phases while other

RSIO using the active console benchmark under differremote users are running other batch jobs. The latency-

ent system loads. We varied the system load imposedensitive phase corresponds to frequent user interactions

by the kernel compilation from no load when no kernel The non-latency-sensitive phase corresponds to long run-

compilation processes were run, to allowing 64 concurning batch processing. For the user to receive good sys-

rent processes to run to perform the kernel compilationtem response time, the latency-sensitive phases of the

When running without any background kernel compi- application should be detected when they occur. Other

lation workload, Linux and RSIO provide the same re- non-latency-sensitive phases of the application and other

sponse time of 10 ms for the interactive directory listingbatch jobs should be treated by the system as non-
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latency-sensitive activities. always considers the benchmark as a non-interactive pro-
For this scenario, we constructed an octave benchmarkess since it only uses processor usage and sleep behavior

consisting of two SSH sessions representing two differto determine interactivity.

ent users connected to a server over the network. One In contrast, RSIO correctly identifies the SSH session
user is running a kernel compilation in the same mannerunning the Octave benchmark as latency-sensitive when
as discussed for the active console benchmark, but ovét is receiving user input since the network channel for
an SSH session instead of using a local GNOME termi-SSH is configured as a RSIO 1/O channel. As a result,
nal. This is used to represent batch processing activitthe worst case response time of RSIO is 130 ms even
The other user is running Octave [4], a MATLAB-like with 64 kernel compilation processes running. This is
application that involves phases of interactive use andssentially identical to the response time for the bench-
long-running computations. In particular, the user runsmark in the low load case, and is more than two orders
Octave by typing two sets of commands in the following of magnitude better than Linux. The worst case response
order: time of RSIO is independent of background load across
the range of system load considered. Furthermore, the
response time of RSIO is not much more than the re-
sponse time threshold at which users can detect any re-

The first set of commands consists of some timin95ponse time delays. RSIO achieves this response time

commands and obtaining input data. The command®erformance even though users are connected to the ma-
“tic” and “toc” are used to report the elapsed time of chine remotely, demonstrating that RSIO can automat-

the command executed between these two commandiSally detect user interactions via SSH connections to
The command “load A.dat” loads data from a local file identify latency-sensitive phases of an application.
“A.dat” to create a 200x200 two dimensional array. The
second set of command; is an iteratiye loop that perg 3 \Web Browsi ng Benchmark
forms a set of long running computations on the two-
dimensional array. The first set of commands represent &he third scenario represents a local user running a
user interacting with the application to set up a computaweb browsing application and downloading various web
tion to run and should be considered as latency-sensitivgpages while other batch jobs are running. For the lo-
The second set of commands represent the long rursal user to receive good system response time, the web
ning computation itself and should not be considered adrowser that the user is using should be detected as per-
latency-sensitive. Once the two sets of commands comforming latency-sensitive activities. Other batch jobs
plete, the user repeats the same typing and command eghould be treated by the system as non-latency-sensitive
ecution. The user repeated the commands ten times, aragttivities.
we measured the elapsed time for executing the interac- For this scenario, we constructed a web brows-
tive set of commands each time to quantify the responséng benchmark consisting of the Mozilla Firefox web
time of the system. browser visiting a locally stored web page with two
Figure 4 compares the response time of Linux ver-frames. One frame runs a JavaScript program that con-
sus RSIO using the Octave benchmark under differentrols the reloading of web pages in the other frame.
system loads. We varied the system load imposed byhe JavaScript program causes the other frame to reload
the kernel compilation from no load when no kernel “http://news.google.com” repeatedly for five minutes.
compilation processes were run, to allowing 64 concur-This web page provides current news articles and is fre-
rent processes to run to perform the kernel compilationquently updated with different content. Each page reload
When running without any background kernel compi-is done five seconds after the previous reload completes,
lation workload, Linux and RSIO provide the same re- providing the user some time to view the contents of the
sponse time of 129 ms for the interactive phase of the Ocweb page before reloading a new version. The JavaScript
tave benchmark. However, as the load on the system inprogram also reports the elapsed time from sending the
creases, the response time of vanilla Linux increases drad TTP request until the web page is completely reloaded.
matically. When 64 kernel compilation processes weréWhile the web browsing activity is occurring, another
running, the worst response time for Linux ballooned touser is remotely connected to the same machine and run-
24.15 s, resulting in a completely unacceptable delay ohing a kernel compilation in the same manner as dis-
almost half a minute during the interactive phase of thecussed for the Octave benchmark, representing batch
benchmark. Even the 90th percentile response time iprocessing activity. Because the web browsing bench-
XXX, which is also an unacceptable delay. The perfor-mark uses a JavaScript program to control the web page
mance is horrible because the Octave benchmark doegloading, there is no actual user input when running this
not sleep much, and thus the Linux scheduler mistakenlypenchmark. However, users typically still expect good

tic; load A dat; toc; (1)
for i=1:1000; X=A\A; end; (2)
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responsiveness for such web page viewing activities, asal user to receive good playback quality, the media
scripted web page downloads are not uncommon in praglayer application that the user is using to play the movie
tice. should be detected as performing latency-sensitive activ-
Figure 5 compares the response time of Linux versusties. Other batch jobs should be treated by the system as
RSIO using the web browsing benchmark under differenton-latency-sensitive activities.
system loads. We again varied the system load imposed For this scenario, we constructed a media player
by the kernel compilation from no load when no kernel benchmark consisting of the MPlayer application playing
compilation processes were run, to allowing 64 concur-a locally stored 5.36 MB MPEG-1 video clip with 834
rent processes to run to perform the kernel compilation352x240 frames. The video was scaled to 800x600 dur-
When running without any background kernel compila-ing playback, and the movie clip was played in a loop for
tion workload, Linux provides good response time, thefive minutes. While the movie playback activity is occur-
worst case being only .96 s to download the web pagering, another user is remotely connected to the same ma-
Usability studies have shown that web pages should takehine and running a kernel compilation in the same man-
less than one second to download for the user to exner as discussed for the Octave benchmark, representing
perience an uninterrupted web browsing experieffte [ batch processing activity. Although media players of-
Thus, the .96 s response time for an unloaded system ign receive no user input while playing a movie, users
fast enough for an uninterrupted web browsing expericlearly expect good system responsiveness to deliver all
ence. However, as the load on the system increases, thddeo frames and audio samples on time at the desired
response time of vanilla Linux increases dramatically.playback rate. Slowing down the playback rate would be
When 64 kernel compilation processes were running, th@indesirable and result in poor quality video and audio.
worst case response time for Linux was 12.85 s, resultFor this benchmark, we used frame rate as the measure
ing in a completely unacceptable delay of almost half aof performance. We logged the frame rate reported by
during the interactive phase of the benchmark. The 90thhe application, and used the worst case frame rate and
percentile response time was 1.91 s, which is still twicethe 90th percentile frame rate to quantify performance.
as slow as running the benchmark on an unloaded sys- Figure 6 compares the video performance of Linux
tem. versus RSIO using the media player benchmark under
In contrast, RSIO correctly identifies the web browserdjfferent system loads. We again varied the system load
running the web browsing benchmark as latency-imposed by the kernel compilation from no load when
sensitive when it is receiving web data from the Internetng kernel compilation processes were run, to allowing 64
since the network channel to the web proxy is configurectoncurrent processes to run to perform the kernel com-
as aRSIO I/O channel. RSIO correctly identifies the webpilation. When running without any background kernel
browser activity as latency-sensitive even though there igompilation workload, both Linux and RSIO are able
no actual user input when running the benchmark. As ao provide perfect video playback at 24 frames/second
result, RSIO performed well under all different system (fps). However, as the load on the system increases, the
loads. The worst web page reloading time for even &rame rate using vanilla Linux gets progressively worse.
loaded system was only 0.84 s. This was even slightlyvhen 64 kernel compilation processes were running, the
better than Linux's web response time in the low loadworst case frame rate for Linux was less than 7 fps, less
case. While some variation in performance is possiblehan 30% of the desired frame rate. The 90th percentile
due to external factors from obtaining web data from aframe rate was less than 10 fps, which also provided
live web site across the Internet, the slight improvementualitatively poor video performance.
can be also explained by the fact that even without the |, contrast, RSIO correctly identifies the media player
background load, the system still runs many other prop|aying the movie clip as latency-sensitive because it is
cesses and any of those processes can affect the perfjiaying both audio and video and output to the audio de-
mance of the web browsing benchmark if they have simyjice is configured as a RSIO 1/0 channel. As a result,
llar priority as the web browser, as would be the casérg|o performed well under all different system loads
for the vanilla Linux system. Overall, only RSIO was ang was able to maintain the full 24 fps frame rate in all
able to consistently provide subsecond web page downeases. In fact, only results for the worst case are shown
load times that were fast enough for an uninterrupted welly, RS|O since if the worst case is already perfect, the
browsing experience even when the system was loadedgoth percentile results are the same. These results would
not be achievable by simply using input focus since it
6.4 MediaPlayer Benchmark is not uncommon for a user to watch a movie while in-
put focus may be somewhere else. Furthermore, these
The fourth scenario represents a local user playing a@esults show that by identifying latency-sensitive aetivi
movie while other batch jobs are running. For the lo-ties, RSIO can also be used for applications with quality-
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Figure 6: Media Player Benchmark Figure 7: Multi-User Benchmark Figure 8: Multi-User Benchmark (90%)

of-service requirements to improve performance withoutwe simply run multiple instances of the benchmark on
requiring users to specify more complex scheduling paa separate client machine to emulate the multi-user sce-

rameters such as reservations or time constraints. nario. For example, we run five instances of the bench-
mark to emulate five users. To measure system response

] time, we report the elapsed time from sending the short

6.5 Multi-user Benchmark command to the server until receiving the response for
the command from the server. On an unloaded system,

The fifth scenario represents a system supporting muLEhe short command takes only a few milliseconds to com-

tiple users, each of which is epgaged n pOth IatenCy'plete while the long command takes roughly ten minutes
sensitive and non-latency-sensitive activities. In con-

X . . T to complete.
trast to the previous scenarios, this scenario involves P

multiple interactive sessions competing for processor re- Figures 7 and 8 compares the response time of Linux
sources. The latency-sensitive activities correspond ty€rsus RSIO using the multi-user benchmark for differ-
users executing short and simple commands. The norfnt numbers of emulated users. For comparison, we also
latency-sensitive activities correspond to users running€Port the response time for Linux when boosting the
batch jobs that require longer computations. For exampriority of all users usingni ce -10, which we denote
ple, consider a group of students sharing the same serv@® PRIO. In an unloaded system, the short command
and using MATLAB to do their homeworks. Their MAT- takes 4.4 ms to complete for Linux, PRIO, and RSIO.
LAB usage consists of two phases: a command typind"OWGVer: as the number of emulated users increases, the
phase and an execution phase. The first phase is intef@Sponse time of vanilla Linux increases dramatically.
active while the second phase is not. For the users t§/hen 20 emulated users were running, the worst re-
receive good system response time, the latency-sensiti&P0nse time was over 5 s, more than three orders of mag-
activities should be detected when they occur, and periditude worse than when running on an unloaded system.

ods of batch processing should be treated by the systeimilarly, the 90th percentile response time was over 2
as non-latency-sensitive activities. s, which is still an unacceptable delay for interactive ac-

Since it is difficult to get multiple users to do repeat- fivities. The performance is poor because Linux cannot
able activities that can be measured to capture this scddentify the latency-sensitive “typing” phase based just
nario, we created a multi-user benchmark to emulate a s&" 1S S| €ep.avg mechanism because it is short rela-

of students on a set of client machines that are remoteljV€ 0 the “execution” phase, resulting in any average-
connected to a server and engaged in “typing then ext ased measures being unable to identify such transitions

ecute” behavior. The benchmark runs remotely on thd>etween latency-sensitive and non-latency-sensitive ac-

client and creates a SSH connection to the server wheflVities by the same process.

started. Once started, it alternates between a “typing” Figures 7 and 8 show that the response time is even
phase and a “execution” phase in a loop. We emulate thevorse when all of the processes for all emulated users
“typing” phase by writing a short running command and were boosted to higher priority. When 20 emulated users
a long running command to the SSH connection. Afterwere running, the worst response time was over 10 s,
receiving the command, the shell process running on théwice as bad as the response time of Linux when users do
server will execute the command and respond to the usearot attempt to raise the priorities of any processes. This
after the command finishes. The benchmark automatiis because higher priority processes in Linux receive a
cally starts another round of measurement after receivingarge time quantum for execution, and processes at the
the response for both commands. Since the server opesame priority are run in round-robin order. As a result,
ating system cannot distinguish between whether an SSHll of the high priority processes have to wait their turn to
connection is generated by a real user or an applicatiorrun, and each turn takes a longer period of time, resulting

14



in longer delays and worse response times. While LMbench captures the overhead imposed by
In contrast, RSIO correctly identifies the SSH sessiondRSIO for typical performance benchmarks, it is impor-
as latency-sensitive when and only when they are receivtant to note that, like other performance benchmarks,
ing input since the network channel for SSH is config-LMbench is not designed as a latency-sensitive applica-
ured as a RSIO I/O channel. Although each SSH sestion. It does not involve user interaction during its execu-
sion emulates a user with both latency-sensitive and nortion. As a result, LMbench by design does not access any
latency-sensitive activities, RSIO only boosts the prior-RSIO I/O channels and does not measure the overhead of
ity of each process while it is performing the latency- that aspect of RSIO. However, RSIO I/O channels are by
sensitive activity. As a result, the worst case responselesign accessed by applications that involve user inter-
time of RSIO is less than 500 ms, more than an order ofictions. Such user interactions typically operate at user
magnitude less than the response time for either of théime scales which are much slower than the time scales
two configurations of vanilla Linux. Furthermore, the measured by typical kernel performance benchmarks, so
worst case response time for 8 emulated users or less wélse latter are not good indicators of RSIO 1/0 channel
less than 8 ms. While the response time in all cases wagerformance. As shown in the five application scenar-
significantly better than Linux, there was some notice-ios, the performance overhead of RSIO versus Linux was
able variability in worst case response time across difnhegligible as quantified by application performance on
ferent numbers of users. This is largely due to multiplean otherwise unloaded system.
processes being considered as interactive by RSIO at the
same time when 12 and 20 such emulated users were ru%- Conclusions and Future Work
ning concurrently. In this case, all of them are competing
for processor resources and all of them receive degradeﬂ

performance. Figure 8 shows that such contention doesSIO introduces a new apprqa_tch to processor sche.dul—
ing for latency-sensitive activities that handle user in-

not occur in most cases. The 90th percentile respons : : .
. : ractions. RSIO monitors 1/O channel usage instead
time was less than 100 ms in all cases, and less than 1 : S

of processor usage for detecting and prioritizing pro-

ms for 16 emulated users or less. : o o
cesses when they are handling latency-sensitive activi-
ties. It automatically tracks processes access I/O chan-

6.6 Overhead nels that handle user interactions, and detects communi-
cations among processes to determine processes involved

To quantify the overhead of RSIO, we also comparedp 5 user interaction. This is accomplished in part by us-

the performance of RSIO versus vanilla Linux running jng a confidence model with parameters based on human

LMbench [9], a popular tool for kernel overhead mea- response time characteristics. RSIO’s mechanism works

surements. Figure 9 shows the results for various LM'\N'th both local and remote I/O Channe|S, and is Compat_

bench measurements, which exercise various forms ghje with existing processor schedulers. Our experimen-

interprocess communication and system calls. The overy) results show that RSIO can provide substantial im-

head added by RSIO in each measurement was less th@'f'ovements in system responsiveness for a wide-range

.35 s, representing less than 5% overhead in all casegf gpplications, including console applications, applica

These results show that RSIO incurs modest overhead fajons that mix interactive and batch activities, common

this benchmark, which translates to negligible overheadyep prowsing and multimedia applications, remote ap-
for real applications in practice that do not focus just onpjications, and multi-user scenarios.

exercising interprocess communication and system call Rs|0 focuses on detecting what and when processes

usage. are latency-sensitive. When a system has many latency-
sensitive activities running at the same time, scheduling
Wl el them in a manner that is fair and provides good respon-
6703 siveness is important. RSIO can serve as a basis for fu-
8.444 . . .
s o 7511 ture work in developing better schedulers for supporting
A 6753855 5 aoe mixes of latency-sensitive activities.
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