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Abstract. Current service discovery systems fail to span across the globe and
they use simple attribute-value pair or interface matching for service description
and querying. We propose a global service discovery system, GloServ, that uses
the description logic Web Ontology Language (OWL DL). The GloServ archi-
tecture spans both local and wide area networks. It maps knowledge obtained by
the service classification ontology to a structured peer-to-peer network such as
a Content Addressable Network (CAN). GloServ also performs automated and
intelligent registration and querying by exploiting the logical relationships within
the service ontologies.
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1 Introduction

GloServ [3] [4] is a global service discovery architecture that addresses the need for
wide area service discovery for ubiquitous and pervasive computing. It operates on
wide area as well as local area networks. There are many types of services that can be
registered within GloServ. A partial list of these include events-based, physical location-
based, communication, e-commerce or web services. The main motivation for designing
a global service discovery architecture using a description logic ontology such as OWL
DL [1] is to provide scalability and logical service descriptions. Services, should be
searchable from any location and should also be described in enough detail so that
gueries can be specific to a user’s context. This is the primary challenge in pervasive
and ubiquitous computing technologies and GloServ provides the means to accomplish
these tasks.

The service discovery problem can be split into three main components: server boot-
strapping, automated and intelligent routing and matching of service registrations and
queries. These need to occur in a robust and scalable environment. Services can also be
expressed in greater detail using OWL DL, which is a description logic ontology that
uses first order predicate logic that describes relationships between services. GloServ
addresses these issues by using the benefits of these logical descriptions, within the
service classification ontology, to solve the three main service discovery problems.

In [3] we gave an initial outline of GloServ and in [4] we described how services are
described using OWL in greater detail. The details of the solutions to the system are fine
tuned in this paper. GloServ classifies services using OWL DL which defines classes of
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services and their relationships with other services and properties. We have designed a
hybrid hierarchical and peer-to-peer network that exploits the knowledge obtained by
this classification ontology as well as the content of specific service registrations. The
hierarchical network is formed by connecting the nodes between the high-level services
within the service classification. On the other hand, the peer-to-peer network is created
between equivalent or related services by analyzing the content of registered services
and mapping combinations of properties and values to keys which identify nodes within
a Content Addressable Network (CAN) [16]. We also provide algorithms for automated
and intelligent routing and matching of service registrations and queries by exploiting
the logical relationships between concepts within the ontologies. Current service dis-
covery systems fail to solve all of the above problems due to limited scalability and lack
of detailed service descriptions. We address these issues in this paper.

Below we present our global service discovery system and discuss each of the prob-
lems and their corresponding solutions. Section 2 gives an overview of current service
discovery systems. We describe the ontological engineering approach used in Section
3. Sections 4, 5 and 6 discuss the architecture, querying and registration mechanisms of
GloServ respectively. The implementation of the system is described in Section 7 and
finally we conclude in Section 8.

2 Background and Related Work

2.1 Overview of OWL

The World Wide Web Consortium has recently approved OWL [1] as a standard for the
Semantic Web. OWL builds on Resource Description Framework (RDF) [2] and RDF
Schema [6] and adds more vocabulary for describing properties and classes such as: re-
lations between classes, cardinality, equality, richer typing of properties, characteristics
of properties, and enumerated classes. Below we give an overview of the sublanguages
of OWL and the characteristics of OWL Classes and Properties.

There are three sublanguages in OWL: OWL Lite, OWL DL and OWL Full. OWL
Lite is the least expressive of the three sublanguages. Although it is a bit more expres-
sive than RDFS that in addition to supporting a classification hierarchy, it also provides
simple constraints of classes and properties. OWL DL is modeled after description log-
ics and supports maximum expressiveness while retaining computational completeness
(all conclusions are guaranteed to be computable) and decidability (all computations
will finish in finite time). OWL DL includes all OWL language constructs. OWL Full is
the most expressive of the three sublanguages. The main difference between OWL DL
and OWL Full is that in OWL DL, a class is only expressed as a collection of individu-
als and can not be regarded as an object in and of itself. However, in OWL Full, a class
can be treated simultaneously as a collection of individuals and as an individual in its
own right. Due to this difference, OWL Full can not be completely supported by OWL
Description Logic Reasoners to check for soundness. We have chosen to use OWL DL
for two reasons: 1)a service class will only represent a collection of individuals and
does not need to be an individual in its own right and 2)we would like to use OWL DL
reasoners such as Racer to check for the soundness of OWL documents.



2.2 Related Work

There are a few service discovery protocols in use today. Most service discovery mech-
anisms are localized and use attribute-value pairs for service descriptions. Below we
describe each of these and compare them to GloServ.

SLP [12] and Jini [15] are both similar in that they have agents that manage services,
users and directories of services. Agents advertise each others’ presence to each other
using either multicast or unicast. In SLP, service registration and queries are broadcast
to the directory agents or directly between the service and user agents depending on if
the directory agents are present. In Jini, however, a client downloads the service proxy
and invokes through Java RMI in order to access the service through a discovery pro-
cess. Service descriptions in SLP are done in simple attribute-value pairs whereas Jini
matches interfaces. SLP is mainly used in local area networks. Jini and a scalable ver-
sion of SLP, Mesh-enhanced SLP (mSLP) [20], can span to a larger enterprise networks.

UPNP [9] differs from SLP and Jini in that it doesn’t have a central service registry
but services just multicast their announcements to control points that are listening to
these messages. Control points can also multicast discovery messages and search for
devices within the system. XML describes the services in greater detail. UPnP is ap-
propriate for home or small office networks. Unlike SLP and Jini, UPnP provides more
descriptive queries through XML.

The Universal Description, Discovery and Integration (UDDI) [7] specification is
used to build discovery services on the Internet. UDDI provides a consistent publish-
ing interface and allows programmatic discovery of services. Services are described in
XML and published using a Publisher’s APl. Consumers access services by using the
Programmer’s API built on top of SOAP. Services in UDDI are stored in a centralized
business registry. The main drawback of UDDI is that it has a centralized architecture
and does not span to a global area.

Recently there have been developments in wide area service discovery. INS/Twine [5]
and Ninja [11] describe two such systems. Both systems use XML to describe ser-
vices. However, INS/Twine maps strands of hierarchically partitioned data to a struc-
tured peer-to-peer system such as Chord. Ninja, on the other hand, organizes servers
dynamically into hierarchies and issues upward queries using Bloom filters.

GloServ differs from all of these systems in that it is globally scalable by incorpo-
rating a hybrid hierarchical and structured peer-to-peer architecture. It also has greater
logical capabilities in its use of OWL-DL for its architectural design and service de-
scriptions. The main difference between using OWL and any other attribute-value or
XML description mechanism is that OWL not only classifies services hierarchically but
also allows logical restrictions on class relationships. By using OWL, the relationships
of the services to each other are known. According to these classifications, the service
discovery architecture is constructed. The logical capabilities of OWL aid in finding
the appropriate service classes within the system as well as in content distribution and
query propagation.
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3 Ontological Data

There are many ways to compose ontologies. [14] and [17] describe a few. [17] de-
scribes an ontological engineering method that provides a modularized approach to
classification and allows the most flexibility when combining various ontologies. It uses
an analogous method of database normalization in order to normalize ontologies. Gen-
eral domains (or classes), within in an ontology, are put in disjoint hierarchical trees,
which creates @rimitive skeletonThe main goals of normalization are to allow mod-

ules to be re-used and separated from the whole and to evolve independently of each
other. These characteristics are necessary in any ontological-based system. We have
chosen this method for service classification and describe the details of how services
are classified below.

The main features of OWL DL include primitive and defined classes (or concepts),
properties, restrictions and axioms. A primitive class is one that is described by neces-
sary conditions whereas a defined class is described by necessary and sufficient condi-
tions. Practically, this means that primitive classes are in a hierarchical class/subclass re-
lationship, while defined classes describe equivalences. Properties relate classes to each
other and can themselves be hierarchical as well. Restrictions quantify the property-
class pair and axioms declare classes disjoint or imply other classes.

These features can be used in a variety of ways in order to produce meaningful on-
tologies. However, as described in [17], the best approach to identify modules is to first
create a primitive tree which is a hierarchical tree of primitive concepts. The primitive
skeleton resides on the top level of the ontology and is constructed in such a way that
each concept has only one parent and disjoint siblings. Once this primitive skeleton has
been formed, descriptions and definitions are created to express the relations between
those primitives.

Primitive skeletons should also distinguish two types of concepddf-standing
conceptsand Partitioning conceptsSelf-standing concepts include “things” that are
part of the physical world such as “animals” or “organizations”. Partitioning concepts,
on the other hand, are values that partition self-standing concepts such as “small, medium,
large”. By using primitive skeletons, the evolution, sharing and re-use of ontologies is
greatly simplified.

Figure 1 shows an example of a classification ontology that has been converted to a
primitive skeleton. In the original hierarchy there are certain concepts suBedapple
that is both a child ofAppleandRed However, in the normalized skeleton, there are
two skeletons: &elf-Standing Entitgnd aRefiner In this way,RedApplés split so that
Appleis a child ofFruit and a subclass @&ppleis created with d&asColor property of
Red FurtherBigAppleis refined to be a subclass Applewith a hasSize property of
Big from theRefiner Skeletan

Thus, normalizing an ontology provides better modularization. The separation of
the self-standing and refiner ontologies allows other systems to re-use parts of these
ontologies. Such classifications will not change frequently over time and thus can be
distributed and cached periodically across many servers within the GloServ network.
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Fig. 1. Original classification ontology converted to corresponding primitive skeleton

4 GloServ Architecture

4.1 Motivation

The GloServ architecture consists of servers connected as a hybrid network of hierar-
chical and peer-to-peer nodes. The high-level services are established in a hierarchical
format. The hierarchical primitive skeleton ontology is used for separating these high-
level services. Since it is expected that there will be a limited number of high-level
servers, each will know about other high-level servers. By using the primitive ontology
model, any server will be able to get to its children as well as to those servers that are
disjoint from it very quickly. Disjoint servers are those that handle a service classes that
are completely unrelated to each other.

Besides organizing high-level servers, we need to establish servers that are related
to each other. Servers who hold information about the same or equivalent service class,
will be connected to each other in a peer-to-peer network. The motivation for using
a peer-to-peer network is for load distribution during query processing. Querying is
faster when the data is distributed according to content and each server handles a set
of information. In general, there are several ways to do load distribution. If you repli-
cate the registrations across all servers, there is no need for a structured peer-to-peer
system. However, the servers will hold so much content that query processing will be
slow for a single server. Thus, a peer-to-peer network establishes a robust and scalable
environment for querying. Figure 2 shows a partial view of the GloServ architecture.
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Fig. 2. GloServ architecture

4.2 Elements within a gloserver

Gloservers within the network have three types of information: a service classification
ontology, a thesaurus ontology and a CAN lookup table. The service classification on-
tology is similar to the one seen in Figure 1. As mentioned above, this classification is
not prone to frequent changes and thus can be distributed and cached across the GloServ
network. Each high level service will have a set of properties that will be inherited by

all of its children. As the subclasses are constructed, the properties become specific to
the particular service type

Hotel

inn boarding public rooming lodging motel
house house

Fig. 3. Partial view of a thesaurus graph containing synonyms of “hotel”



The second piece of information is a thesaurus ontology. The thesaurus ontology
maps synonymous words to each of the service terms in the service classification on-
tology. This results in a greater degree of accuracy in finding the correct server and
information for registration and querying. Synonyms of every class within the service
classification hierarchy will be stored. Figure 4 gives an example of the partial graph of
the synonyms oHotel within the thesaurus ontology. This, too, will not change often
and thus can be distributed and remain in each of the servers.

The third component within each gloserver is a CAN lookup table which is con-
structed according to the data within each class. In this case, data is an actual instance
of aclass. Each instance represents a registered service. The CAN table connects servers
of the same type to each other in a peer-to-peer network. We use a novel mapping algo-
rithm that combines the benefits of OWL and CAN to map content of service instances
to nodes in a peer-to-peer network. Although there are other types of structured peer-to-
peer networks such as Pastry [18] and Chord [19], we have elected to use CAN because
it fits best with our ontology-based service discovery model. Section 4 explains why we
have elected to use CAN over the other structured peer-to-peer networks.

4.3 Server Bootstrapping

When service providers register or users query for services, a gloserver is found using
DNS lookup and contacted. The first piece of information a user needs to provide the
appropriate gloserver is the type of service it is looking for either in registration or
querying. Let's assume a user is querying. When the user enters théwgttte initial

server processing the query will first map the word inn to a synonymous term within
the service classification ontology. In this case, it is mappétbtel. The server locates

hotel in the primitive service classification ontology and determines the domain name
in either of two ways described below.

The first way would be to store a snapshot of the whole primitive classification in
every server. This classification not only gives the relationships of each of the service
classes, but also holds the domain name information of the main high-level server to
contact. This method is plausible only because we expect the order of service types to
be in the 100s. This expectation comes from realizing that the average number of words
known by a human is around 20,000 words which causes us to conclude that the number
of words within the classification is much less than 20,000. The other possibility is that
servers only have information about their disjoint siblings, a parent and child. Using
this method, there is a way of getting to another node within the classification ontology.

Each of these methods have benefits and drawbacks. The main benefit of the first
method is that since it is expected that there will not be a large number of points within
the primitive skeleton, storing a snapshot of the network reduces the look-up time to
O(1). The drawback however is that every time a server’s domain name is changed, the
other nodes need to be notified. Although this may pose a problem, it can be reduced to
a simpler one by allowing each server to periodically cache a new snapshot rather than
have a node notify all other nodes of its updates. The second method solves the problem
of updating domain names during changes in the network. However, since the domain
name of each server is not expected to change frequently, caching is the viable solution
in order to save in lookup time.



Once the hotel node’s domain name is determined, it is contacted with the user’s
query. The hotel node will have service registrations stored in it. These are actual in-
stances of the hotel class. Many instances of hotels are stored here and thus the infor-
mation will have to be distributed across other hotel servers that are connected to each
other in a peer-to-peer fashion. This is where CAN is used.

The main high-level hotel server that is initially contacted (which is the supernode in
the peer network of hotel servers) will present the user with the hotel ontology skeleton.
Using a web-based form is one method, however, the form is converted to an OWL file
in the end. Thus, any automated program can query by requesting the OWL template
from a server and automatically creating an OWL file and sending it in for querying
or registration. This is constructed using information from its class properties. Some
hotel properties properties may b&sLocation, hasAccommodation, hasActivity.

The user fills out the mandatory property values (if there are any) and possibly other
values. At this point, since there are many hotel servers that store similar information,
again there are a two possible ways of issuing the query. One way is for the query to be
sent to all of the peer nodes. This is inefficient considering some nodes may not contain
any of this information and thus sending it to those servers is futile. A better way is to
convert the query data to a key and look up the server within a CAN network. We adopt
the latter approach and discuss it below. Figure 6 gives an overview of the steps to find
the main high-level server.
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4.4 Analyzing OWL Instances

We have developed an algorithm for converting the OWL instance data to keys that map
to servers in CAN. Similar to INS/Twine [5], we manipulate the property-value pairs
of the instances. However, INS/Twine hashes simple XML attribute-value pairs onto a
Chord ring whereas GloServ exploits the logical benefits of OWL DL in converting the
data to a key within CAN. We analyze the properties and their values so that instances
that contain similar information will migrate together. There are two basic types of
properties in OWL: object properties and datatype properties. Object properties have
ranges that are other classes. Thus the object property maps two classes together either
unidirectionally or bidirectionally depending on the property. A datatype property on
the other hand, maps classes to traditional datatypes such as strings and integers.

First we deal with object properties. These properties are separated into mandatory
and optional categories. If a property is mandatory, an instance of this class must have
this property populated. Otherwise, this property may or may not be populated. Since
mandatory properties will always have a value, we know that the only distinguishing
characteristic of the keys generated with these properties is the value of the property.
Optional object properties may or may not be populated which gives an added distinc-
tion to the property characteristic.

Next, we analyze the datatype properties. Datatype properties are used in a limited
way. Since datatype properties can have any value, it results in an unbounded limit
to the number of keys that can be generated. Thus, the only way we include datatype
properties in the key generation is to see if an optional datatype property is populated.
The presence or absence of this datatype property can be part of the key value. We do
not include mandatory datatype properties since these will always be present and thus
there is no need to include this in the key generation process. Including the unstructured
values of datatype properties in the key generation is an area of future research we are
looking into.

We analyze all the possible combinations of the three types of properties: manda-
tory object properties, optional object properties and optional datatype properties. The
number of possible values of mandatory object properties is the product of their car-
dinalities. For optional object properties, the cardinality is incremented by one due to
the possible blank value. However, for the optional datatype properties, since there is
no concrete value of cardinality, the only part that counts is whether or not it is present.
Thus, if we letp; be the number of possible values for i property and there are
mandatory object propertias,optional object properties amdbptional datatype prop-
erties, then the total number of combinations of property values is:

m

1
Hpi : H(pz +1)-2".
=1

i=1

These values give us a way to organize the data in such a way that keys will be
generated for every possible combination and mapped to a server in CAN. The fact that
the data distribution is based on content is an added benefit since the propagation of the
query becomes limited to a cluster of servers that know about each other. The next two
sections describes how these keys are devised and mapped onto CAN.
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4.5 Converting OWL Instances to Vector Keys

As discussed above, there are a set number of property combinations the OWL instance
can have. Every data object property will have a class as its range. The range of val-
ues can be enumerated into number values. By enumerating the range of values, the
combinations of values entered in a query or registration can be converted to a vector
key. For instance, if the property FmsActivity and the class Activity has the follow-

ing subclasses: Sports, Adventure, Hiking, Sightseeing, then the ontology will specify a
numeric value for all of these as well vidnasKey property. The following OWL code
shows this.

<owl:Class rdf:ID="Sports">
<rdfs:subClassOf rdf:resource="#Activity"/>
<hasKey>1</hasKey>

</owl:Class>

<owl:Class rdf:ID="Adventure">
<rdfs:subClassOf rdf.resource="#Activity"/>
<hasKey>2</hasKey>

</owl:Class>

<owl:Class rdf:ID="SightSeeing">
<rdfs:subClassOf rdf:resource="#Activity"/>
<hasKey>3</hasKey>

</owl:Class>

This will be done for all the object properties in the class. For example, let us assume
we are dealing with mandatory object properties, then ifidmActivity object property

op1 has three possible values and tiesState object propertyp, has fifty possible
values then you can generate the vectofi;, opo> whereop; represents the key of that
particular property. For this case, we §ét3 = 150 possible values. Figure 5 gives an
overview of the whole key generation process. For optional object properties, a 0 key is
added to represent the blank value which resultgind = 204 keys and the vector set
includes the additional values &f0,0>, <0,1>, <0,2>, <0,3>,<1,0>,<2,0>,...<50,0>.

4.6 Mapping Vector Keys to CAN

We found that CAN was the most appropriate peer-to-peer network to use for our sys-
tem. Both exact and approximate matching are possible by using CAN. The generated
vector keys, are distributed in a CAN. However, instead of using random keys for each
dimension, we use the generated keys by using a property per dimension fér the
dimension key, wheré defines the CAN structure.

When vector keys are mapped to CAN, both approximate and partial querying is
simplified. For example, in d-dimensional CAN network, if a user enters in the fol-
lowing keys: x=1, z=17 and y=blank where X, y and z represent object properties, the
node at x=1 and z=17 is located and the query then propagates to all nodes in the y
dimension. If y is a datatype property, then all the data within the node where x=1 and
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Fig. 5. Keys generated by properties

z=17 is queried for with the condition that x=1 and z=17. If there is no result from this
search, then classes that are ontologically related to 1 and 17, which may be outside of
the CAN, are searched. If x and z are both datatype properties then all the nodes within
CAN are searched up to a threshold value.

We expect that the number of servers for every service type will be at most in the
100s since the peer-to-peer network of servers is handling one service type. CAN has a
runtime of O(n'/¢) which works well with our model considering that each class will
have the number of properties in the order of 10s and maximum 100s. Figure 6 shows
how servers are distributed in a CAN using the generated keys. We make a CAN using
the example above and focus on a 2-property class for simplicity. The grid is partitioned
into various spaces where each server handles a particular property combination.

5 GloServ Querying

When a user issues a query in GloServ, the query will be first handled by any gloserver.
As mentioned above, the user will first choose the type of service it is looking for. Once
the server that is most likely to have the service the user is searching for is contacted,
the query is distributed among the peer servers of that service type according to the key
values. Below we describe the query propagation in greater detail.
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5.1 Query Propagation

When the correct gloserver is contacted, it obtains the user query. Query input is guided
by the service class’'s OWL ontology. As mentioned before, query input can be done
either through a user form, or by automatically filling out an OWL ontology skeleton.
We anticipate that GloServ will be used in context-aware and pervasive computing en-
vironments where a user’s preferences can be detected and user input can be relied on
in order to get an accurate query. Thus, we employ a similar method to OWL-QL [8]
where the user can indicate when it is satisfied with the query results. If it is satisfied,
the query propagation terminates. Otherwise, it continues sending either the same or
modified query until all results are found. If the query is not human-centric, then query
propagation automatically travels to all possible routes up to a threshold value.

If the user was querying for hotels, the hotel server would send a form of all its
properties so that the user could specify values it is querying for. If the hotel server is
a leaf node within the service classification hierarchy, then it is apparent that the query
will only remain in its immediate peer network of other hotel servers. However, if it has
further children or related siblings that hold similar information to it, the query is sent
to these related nodes as well. This is described in greater detail in Section 6.1 where
service registration is discussed.
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The user will fill out any number of fields in the form. The general fields that are
filled out are object properties such as the location or the activity. As long as users
specify a few object properties, then the query will be directed to the correct server in
the CAN peer-to-peer network. Otherwise, if only datatype properties are issued, then
all servers within the CAN network will be contacted.

When the hotel server receives the data, it analyzes the property-value pairs that
have been filled out and generates a set of keys that evaluate to the query’s combination.
It then looks up the keys and maps them in CAN to find the servers that may be able to
handle this query or have information on another server.

5.2 Query Matching

Once the appropriate server for the query is found, the query is analyzed by first looking
at all the properties that have been populated. The exact query combination is generated
as well as all possible combinations. For instance if a user is queryiggfotsactivity

in Arizonathen the following is generated3,1>. This key is mapped to the server that

will handle these properties. If a result isn’t found, then approximate matching is done.
Keys of geographically nearby locations and related activities to sports are generated.
All combinations of these are queried for to give the user an approximate result. Related
keys are obtained by finding all classes that are related to the property value being
queried for. This is described in greater detail in Section 6.1.

The algorithm first performs an exact matching and then further filters this by the
matching the datatype values in the query by using text matching. It presents the data
to the user in the order of most to least accurate. If the user is still not satisfied, the
query continues to propagate to all related servers until either the number of servers are
exhausted or the user is satisfied. As mentioned above, if the mode of operation is not
in a human-centric interface, then the query propagation will end after a threshold value
of n servers have been searched. The pseudocode below goes through these steps:

Query Matching Algorithm
Store the populated properties in a liskdtdame,Value pairs
Generate keys for the property-value combinations
/* Exact Matching */
Send the query to the server that contains an exact key matching
for all instances that match exactly with the object propedies
Filter further by text-matching the data type properties
end for
Prioritize query results in order of most to least accurate
Send results to user
if user satisfiethen
end query propagation
else
[*Approximate matching */
Evaluate all combinations of keys of related values to the query
while (user is not satisfied) and (there are keys to proaiss)
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Send query to a server that matches the key
for all instances that match exactly with the object propedies
Filter by text-matching the data type properties

end for
Prioritize query results in order of most to least accurate
Send results to user and obtain response

end while

end if

6 GloServ Registration

Registration of services is similar to the processes mentioned above. The first problem
is finding the appropriate server to register in. The user contacts the nearest gloserver
and as mentioned above, enters a type of service it wants to register for. The term is
mapped to the synonymous term in the network and the domain name of the high-level
server of that service term is obtained and contacted. If the node contacted is a leaf node,
the service will only be registered at that node. Otherwise, the user will be presented
with the option of registering simultaneously in nodes that are similar to the initial node
contacted.

6.1 Determining class of servers

For registration in a leaf node, the process of registering a service is very similar in
the query propagation section. The user’s registration form is processed and keys are
generated according to the user’s input. This information is distributed to the nodes
that carry related information. If registration is done in a node that is not a leaf node
within the network, this means that a reference to the registration instance may need to
propagate to other related servers such as the node’s children or related siblings.

If the service class within the ontology has children, then it may also have gloservers
that represent some of the children. Each class of servers has a specific ontology that
specifies the domain names of its relatives: related siblings and children. Child servers
represent subclasses within the ontology and they inherit all the properties from the
parent server. They may also have restrictions on the inherited properties or have ad-
ditional properties of their own. In order to determine if the registered service belongs
in a subclass or a sibling class server, the values of the properties are analyzed to see
if they match any of the restrictions of these nodes. If they do then a reference to that
service is sent to these nodes. This is determined through the following algorithm:

Registration Matching Algorithm
for all populated properties in the registration fodm
if the value entered is within a restricted property range of a particular subclass
then
send a link of this service to that subclass
else ifthe value matches a sibling with a similar property ratigs
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send a link of this service to the sibling
end if
end for

Example We will discuss an example shown through Venn Diagrams in Figure 5.
The clasPestinationspecifies possible travel destinations. It has the subclaBaek:

BudgetAccommodation oneStar
twoStar

BedAndBreakfast
SightSeeing

Sports
U
BackPackersDestination ture

BudgetHotel Destination

hasRating

Class: Accomomdation
Properties: hasRating

| Hotel

Class:Destination
Properties:
hasAccommodation
hasActivity
hasContact

Fig. 7. Related classes and their properties

packersDestinatioandBudgetHotelDestinatiarThe asserted necessary and sufficient
conditions of théBackpackersDestinatiorlass are the following:

Destination = BackpackersDestination
Jhas Accommodation(Budget Accommodation)
JhasActivity(Sports U Adventure)

Similarly, the necessary and sufficient condition8afigetHotelDestinatioare:

Destination = Budget Hotel Destination
JhasAccommodation( Budget Accommodation N Hotel)
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It can be seen that tHeasAccommodation property values oBackpackersDesti-

nation may contain some elements from the property valueBuafgetHotelDestina-

tion since there may be budget hotels in a backpacker destination. Also, since there is
no restriction on thdnasActivity property in theBudgetHotelDestinationlass, there

may be some budget hotels that also offer sports and adventure activities. In this case,
these instances will also be registered urBlackpackersDestinatiomhus, services

that intersect these two classes will be registered at BattkpackersDestinatioand
theBudgetHotelDestinatioservers. The benefits of using the logical information of the
ontology are that service instances are classified more accurately and query propagation
time is saved due to this accuracy.

6.2 Instantiating a Registration

A service registration is an actual instance of a particular OWL class. The instance need
not have all the properties populated. Thus, when determining how to instantiate the
registration, as in the case above, a few methods may be used. One method is storing the
instances in both servers. This is not efficient because if the service description changes,
all servers holding an instance of that service need to be contacted. A better way of
instantiating the services is to analyze the service instance and store it in the server
whose class is the most restrictive. This server holds a copy of the service instance and
the one that has least restriction will have a pointer to this service instance.

Example We will continue looking at the example in Figure 7. When a travel destina-
tion service registers, it is presented with all of these properties. The values of each of
these are then analyzed and instantiated accordingly. Let us assume a service registra-
tion yields the following properties:

<hasAccommodation>
<Hotel rdf:ID="BudgetHotel">
<hasRating rdf:resource="#OneStarRating"/>
</Hotel>
</hasAccommodation>
<hasActivity rdf:resource="#hiking"/>

We see that this service is part of the clékstel and it has the accommodation rating
set to one star. Since tiBudgetAccommodatiariass is restricted to accommodations
that have one or two star ratings, this hotel is also a paBuzfgetAccommodation
Next, we naotice that it also has an activity that is listed under the 8pests Since this
service satisfies botBudgetHotelDestinatioand BackPackersDestinatioclasses, it

will be listed under both. However, we will instantiate it in tBackPackersDestination
server and have thBudgetHotelDestinationeference this instance instead of storing
the complete OWL file. Thus, logically distributing the data creates an efficient and
automated environment.
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7 Implementation and Future Work

Currently, we are implementing a prototype of GloServ using Protege [10] and Racer [13].
Protege is an open-source development environment for ontologies and knowledge-
based systems. The OWL Plugin is an extension of Protege that supports OWL. The
Protege OWL Plugin provides a user-friendly environment to edit and visualize OWL
classes and properties. It also has a graphical user interface that allows users to define
logical class characteristics in OWL and execute description logic reasoners such as
Racer. Protege’s flexible architecture makes it easy to configure and extend the tool.
Protege has an open-source Java API for the development of custom-tailored user inter-
face components or arbitrary Semantic Web services.

The registration component of GloServ has been completed. We have created our
own service classification ontology, but are using a sample travel ontology provided,
by the Protege group, to register travel services. We have created a primitive skeleton
service classification ontology as well as a thesaurus ontology to map equivalences to
the high-level services. Equivalence ontologies map various words to the main high-
level servers accurately and services are registered under the correct class according
to their registration description. We plan on completing the implementation on service
querying in order to better test how accurate services are registered and queried for in
GloServ.

Once the first phase of the GloServ prototype is completed, we plan on designing
the second phase of the GloServ. Our focus will be on creating extensions for accessing
services, having a service rating system, policy establishment, and security guidelines.

8 Conclusion

We have described a hybrid hierarchical and peer-to-peer global service discovery sys-
tem using OWL DL. GloServ functions both on an wide area as well as a local area
network. It applies to a broad range of services that are defined flexibly using OWL on-
tologies. Logic capabilities in OWL are used to distribute service content across nodes
connected in a CAN peer-to-peer network. Service registration and querying are also
done with greater speed and accuracy.
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