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Abstract

We propose a new storage model called MBSM (Multi-
resolution Block Storage Model) for laying out tables on
disks. MBSM is intended to speed up operations such as
scans that are typical of data warehouse workloads. Disk
blocks are grouped into “super-blocks,” with a single record
stored in a partitioned fashion among the blocks in a super-
block. The intention is that a scan operation that needs to
consult only a small number of attributes can access just
those blocks of each super-block that contain the desired
attributes. To achieve good performance given the physical
characteristics of modern disks, we organize super-blocks
on the disk into fixed-size “mega-blocks.” Within a mega-
block, blocks of the same type (from various super-blocks)
are stored contiguously. We describe the changes needed
in a conventional database system to manage tables using
such a disk organization. We demonstrate experimentally
that MBSM outperforms competing approaches such as
NSM (N-ary Storage Model), DSM (Decomposition Storage
Model) and PAX (Partition Attributes Across), for I/O bound
decision-support workloads consisting of scans in which
not all attributes are required. This improved performance
comes at the expense of single-record insert and delete
performance; we quantify the trade-offs involved. Unlike
DSM, the cost of reconstructing a record from its partitions
is small. MBSM stores attributes in a vertically parti-
tioned manner similar to PAX, and thus shares PAX’s good
CPU cache behavior. We describe methods for mapping
attributes to blocks within super-blocks in order to optimize
overall performance, and show how to tune the super-block
and mega-block sizes.

1 Introduction

The I/O behavior between main-memory and secondary
storage is often a dominant factor in overall database system
performance. At the same time, recent architectural ad-
vances suggest that CPU performance on memory-resident
data is also a significant component of the overall perfor-

mance [17, 2, 3, 10]. In particular, the CPU cache miss
penalty can be relatively high, and can have a significant
impact on query response times [2]. Therefore, modern
database systems should be designed to be sensitive to both
I/O performance and CPU performance.

In this paper, we focus in particular on the storage model
used to place data from relational tables on disk. Our
goal is to create a scheme that yields good performance
for workloads in which operations such as table scans are
frequent relative to single-record insertions and deletions.

I/O transfers between memory and disk are performed
in units of blocks (sometimes also calledpages). I/O
volume, measured in blocks, is a simple measure of an
algorithm’s I/O complexity. More detailed cost models take
into account the physical characteristics of disk devices. For
example, sequential I/O is faster than random I/O because
the disk head usually does not need to seek.

Relational DBMSs typically pack records into slotted
disk pages using the N-ary Storage Model (NSM). NSM
stores records contiguously starting from the beginning of
each disk page, and uses an offset (slot) table at the end of
the page to locate the beginning of each record [13]. Given
access to the page identifier (say via an index), a record can
be retrieved using a single page of I/O. On the other hand,
scans that access just a few columns must retrieve from
the diskall blocks of the table, even though most of the
transferred data is not relevant to the query. NSM has poor
cache behavior because it loads the cache with unnecessary
data [1].

The Decomposition Storage Model (DSM) [4] was pro-
posed to minimize unnecessary I/O for those queries which
only use a small number of attribute values in each record.
DSM vertically partitions ann-attribute relation inton sub-
relations, each of which is accessed only when the corre-
sponding attribute values are needed. An extra record-id
field (surrogate) is needed in each component sub-relation,
so that records can be pieced together. Sybase-IQ uses
vertical partitioning combined with bitmap indices for data
warehouse applications [12]. For table scans involving just
a few attributes, DSM requires considerably less I/O than
NSM. On the other hand, queries that involve multiple
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attributes from a relation must spend additional time to
join the participating sub-relations together; this additional
time can be significant [1]. Single-record insertions and
deletions also require many pages of I/O rather than one
for NSM (assuming no overflow).

Recent research [17, 2, 3] has demonstrated that modern
database workloads are also impacted by delays related to
the processor. Data requests that miss in the cache hierarchy
are a key memory bottleneck. Loading the cache with use-
less data wastes bandwidth, pollutes the cache, and possibly
forces replacement of information that may be needed in the
future.

To address the issue of low cache utilization in NSM,
Ailamaki et al. introduce Partition Attributes Across (PAX),
a new layout for data records [1]. Unlike NSM, within each
page, PAX groups all the values of a particular attribute to-
gether on a minipage. During a sequential data access, PAX
fully utilizes the cache resources, because only a number
of the required attribute’s values are loaded into the cache.
However, compared with DSM, PAX doesn’t optimize the
I/O between disk and memory. Like NSM, PAX loads all
the pages belonging to the relation into the memory for
scans, regardless of whether the query needsall or only
several of the attributes. Unnecessary attributes’ values
waste the I/O bandwidth between disk and memory and
decrease the efficiency of database buffer pool management.
The challenge is to design a storage model with better I/O
performance without compromising the nice cache behav-
ior.

In this paper, we introduce a new storage model called
MBSM (Multi-resolution Block Storage Model) which
takes care to address both the I/O performance and cache
utilization in main-memory. It is similar to PAX in that
attributes are stored columnwise as physically contiguous
array segments. As a result, it shares PAX’s good cache
behavior. It is different from PAX in that it only loads
pages with referenced attributes’ values from disk. It also
considers disk characteristics by placing the data carefully
on disk to facilitate fast sequential I/O.

Disk blocks are grouped into “super-blocks,” with a sin-
gle record stored in a partitioned fashion among the blocks
in a super-block. The intention is that a scan operation
that needs to consult only a small number of attributes can
access just those blocks of each super-block that contain the
desired attributes. To achieve good performance given the
physical characteristics of modern disks, we organize super-
blocks on the disk into fixed-size “mega-blocks.” Within a
mega-block, blocks of the same type (from various super-
blocks) are stored contiguously. The cost of reconstructing
a record from its partitions is small.

Experiments show that MBSM outperforms competing
approaches such as NSM, DSM and PAX, for I/O bound
decision-support workloads consisting of scans in which

not all attributes are required. The average scan query cost
for a workload based on the TPC-H benchmark is 70% less
with MBSM than with either PAX or NSM, and comparable
with DSM, which has high record reconstruction cost. For
insertions and deletions of single records into the Lineitem
table of TPC-H, the cost is 40% less for MBSM than for
DSM.

The rest of this paper is organized as follows. Sec-
tion 2 presents an overview of the related work and surveys
current disk technology. Sections 3 and 4 explain our
new storage model in detail and analyze it storage require-
ments. Section 5 lists the changes required of conventional
database systems to use MBSM. Section 6 evaluates MBSM
on both a synthetic workload and a workload based on the
the TPC-H decision-support benchmark. We conclude in
Section 7.

2 Related Work

This section describes the advantages and disadvantage
of three data placement schemes: NSM, DSM and PAX
(shown in Figure 1), and briefly outlines the disk technology
which is important to our design.

2.1 The N-ary Storage Model

Traditionally, a relation’s records are stored in slotted
disk pages [13] obeying the N-ary Storage Model (NSM).
NSM stores records sequentially on data pages. Each
record has a record header, offsets to the variable-length val-
ues, and other implementation-specific information. Fixed-
length attribute values are stored first, followed by an array
of offsets and a mini-heap containing the variable-length
attribute values. Each new record is typically inserted into
the first available free space starting at the beginning of the
page. Records may have variable lengths, and therefore a
pointer to the beginning of the new record is stored in the
next available slot from the end of the page. For fixed-sized
records, an array of bits, one per slot, is stored at the end of
the page to keep track of free slot information.

2.2 The Decomposition Storage Model

A “full DSM” method partitions ann-attribute relation
vertically into n sub-relations to improve the density of
relevant information for queries. Each sub-relation contains
two attributes, a logical record ID (orsurrogate) and an
attribute value. Sub-relations are stored as independent rela-
tions in slotted pages, enabling each attribute to be scanned
separately.

DSM exhibits high I/O and cache performance on deci-
sion support workloads known to utilize a small percentage
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Figure 1. Three Data Placement Schemes

of the attributes in a relation. Sybase-IQ uses vertical parti-
tioning combined with bitmap indices for data warehouse
applications [12]. In addition, DSM can improve cache
performance of main-memory database systems, assuming
that the record reconstruction cost is low [3]. For queries
that involve multiple attributes from each participating re-
lation, the database system must join each sub-relation on
the surrogate to reconstruct the partitioned records. The
time spent joining sub-relations increases with the number
of attributes in the result relation and can be significant [1].

An alternative “partial DSM” [4, 5] partitions each re-
lation based on an attribute affinity graph, which connects
pairs of attributes based on how often they appear together
in queries. Highly connected attributes are then stored in the
same partition (using NSM for each partition and requiring
one surrogate per partition).

2.3 The Partition Attributes Across Model

PAX vertically partitions the records within each page,
and groups values for the same attribute together in mini-
pages [1]. Compared with NSM, PAX demonstrates high
data cache performance because values from the same col-
umn are loaded together into each cache line. Compared
with DSM, PAX cache performance is better because there
are no surrogates stored along with attributes. PAX has low
record reconstruction cost after data is in memory. But,
like NSM, PAX incurs more disk accesses than DSM when
queries only involve a fraction of the attributes. Since the
information content of a PAX page is the same as that of
an NSM page, the effort required to reimplement an NSM-
based database system to use PAX is small.

2.4 Disk Technology

In this section, we begin with an overview of disk char-
acteristics that are helpful for our later design. For a detailed
introduction to disk drives, see [15, 9].

Access timeis the metric that represents the composite
of all specifications reflecting random performance posi-
tioning in the hard disk. The most common definition
is that access time is the sum ofcommand overhead time,
seek time, settle timeandrotational latency. TheTrack-to-
Track Seek Timeis the amount of time that is required to
seek between adjacent tracks. It is much smaller than the
Average Seek Timefrom one random track (cylinder) to any
other.

A seek is composed of aspeedup, where the arm is
accelerated until it reaches half of the seek distance or a
fixed maximum velocity, acoastfor long seeks, where the
arm moves at its maximum velocity, aslowdown, where the
arm is brought to rest close to the desired track. The settle
time refers to the amount of time required, for the heads to
stabilize sufficiently for the data to begin to be read. The
rotational latency is the waiting time for the desired block
to rotate under the head. Very short seeks are dominated by
the settle time. Short seeks (less than 200 – 400 cylinders)
spend almost all of their time in the constant-acceleration
phase, and their time is proportional to the square root of the
seek distance plus the settle time. Long seeks spend most
of their time moving at a constant speed, taking time that is
proportional to distance plus a constant overhead. As disks
become smaller and track densities increase, the fraction of
the total access time attributed to the settle phase increases.

Seagate Cheetah Quantum Atlas
Capacity (GB) 18.35 36.7

RPM 15K 10K
Avg. Rot. Latency (ms) 2 3
Avg. Seek Time (ms) 3.9 4.7

Adjacent Track Seek (ms) 0.5 0.6

Table 1. Disk Specifications

For the experimental results in this paper, we are using
two state-of-the-art SCSI Ultra160 disks: the Seagate Chee-
tah X15 and the Quantum Atlas 10K II. Table 1 lists some
of the specifications of both disks. Detailed descriptions can
be found in [16, 11].



3 Super-Blocks

In this section, we introduce our new strategy for placing
tables on disk for fast I/O performance. The idea is to
partition a relation intoSuper-Blocks. Each super-block
consists of a fixed number of pages. Values for one attribute
go into only some of a super-block’s pages, not into all of
the pages. This facilitates queries which involve just a few
attributes of the relation because only the pages which really
store those attributes’ values are required, thus incurring
fewer I/O requests than NSM or PAX. The values for the
same attribute are placed contiguously in each page within
a super-block. So our new storage model has similar cache
behavior to PAX. On the other hand, there are no DSM-
like surrogates within each page. The cost of reconstruction
of the partitioned records is low. All the attributes for one
record can be found in one super-block. To take advantage
of the high speed of disk sequential I/O, we group super-
blocks into Mega-Blocks. Pages, from different super-
blocks, which store values for the same attribute(s) are
placed contiguously within mega-blocks. Mega-blocks will
be discussed in Section 4.

We assume we have a relation withn attributes, each
attribute having sizesi; 1 � i � n. We assume for now that
each attribute is fixed-sized. We will discuss variable-sized
attributes in Section 3.3 and Section 7.

Within each page in a super-block, the page structure is
the same as PAX’s. Attributes are stored in a partitioned
fashion, in contiguous array segments called minipages.
When dealing with just fixed-sized attributes, we can cal-
culate exact offsets for the minipages so that each minipage
holds exactly the same number of records when the page
is filled to capacity. Page reorganization does not occur,
and we do not even need to store explicit pointers to the
minipages in the page header.

3.1 A First Step

As a starting point, imagine that we use a super-block
with n component pages, one attribute per page. We place
values for an attribute in one and only one of then pages.
Within each page, the values are stored contiguously, with
an array of bits stored at the end of the page to keep track
of free slots. The page structure is similar to a fixed-sized
DSM page, except that we don’t have surrogates for records.
The record reconstruction cost is low since matching at-
tributes can be found from their offsets, and there is no
join needed. We stop inserting new records into a super-
block once one of the component pages is full. Figure 2(a)
shows a filled four-page super-block for a relation with four
attributes. The shaded region represents empty space and
the dashed lines within a page represent value boundaries.
The super-block contains 3 records. The super-block is

full only because the first page, which stores the largest
attribute, is full.

Pages in a super-block can be accessed independently.
With proper information, the database can access only the
pages for the required attributes. The super-block has good
cache behavior due to the high value density. The record
reconstruction cost is low since matching attributes can be
found from their offsets, and there is no join needed.

We measure the quality of this solution in terms of the
average query time and the space needed to represent the
relation. The spaceoverheadis easily measured as the
proportion of wasted space in a page that is lost due to
fragmentation. In Figure 2(a), suppose we haveR records
to store. Then the space needed for the whole table is4R=3
pages. Since the data can actually fit in3R=4 pages without
fragmentation (Figure 2(c)), the fragmentation overhead is
4R=3� 3R=4 = 7R=12 pages total, and the fragmentation
constitutes7=16 of each super-block.

The query time depends on the query workload. In Fig-
ure 2(a), a scan of any single attribute requires the reading
of one quarter of all pages, i.e.,R=3 pages. A scan ofk
attributes requireskR=3 pages in this scheme,1 � k � 4.

Note that the fragmentation and the query time are posi-
tively correlated. Although disk space is cheap these days,
the issue is that the extra space resulting from fragmentation
consumes precisous I/O bandwidth. If there is a lot of
fragmentation, queries that read pages having wasted space
need to read more pages. As a result, we expect that a
solution with small average query time (our primary goal)
will also have small fragmentation overhead (our secondary
goal), and vice-versa.

3.2 A Second Step

The method of Section 3.1 works whensi is roughly the
same for alli. If not, it could yield a large fragmentation
within many blocks of each super-block. For example, if
si + sj � sk, it would better to put both theith andjth
attributes’ values in one page and construct a super-block
with n� 1 pages.

As shown in Figure 2(b), the reorganized super-block has
less fragmentation. In particular, the fragmentation now
constitutes just1=4 of each super-block. This reorgani-
zation does not change the time required for any single-
attribute queries. However, a query that requires both at-
tributes 2 and 3 is now significantly cheaper. For example,
the scan query asking for exactly attributes 2 and 3 now
takesR=3 pages rather than2R=3 pages.

At this point, we are able to formulate an optimization
problem. For simplicity, we phrase the optimization prob-
lem as trying to minimize fragmentation. In later sections,
we will reformulate the problem as one of minimizing av-
erage query time. Suppose thatp is the number of pages
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Figure 2. Super-Block Structure

available in a super-block. The optimization problem is
“Given different si, how does one place attribute values
into ap-page super-block in a balanced way to get the least
fragmentation?”. Unfortunately, this is a well-known NP-
complete problem. For a givenp, this problem is usually
referred to as parallel machine scheduling [7] (the attributes
are jobs, the attribute sizes are processing time, the goal
is to minimize the schedule length). There are several
approximation algorithms for this problem. If we greedily
place an arbitrary attribute on the least loaded page, we
get a 2-approximation [6], i.e., an approximation that is
guaranteed to be within a factor of 2 of optimal. If we first
sort the attributes (largest size first), and repeatedly place
the next attribute on the least loaded page, we get a 4/3-
approximation [8]. Note that in addition to performing the
optimization described above, we are also able to optimize
p to find a good layout scheme. We defer the discussion
of how to choosep until Section 4. We remark that even
when the number of attributesu is small, exhaustive search
takes time of the order ofmin(u; p)u, which is likely to be
infeasible; when we consider splitting attributes in the next
section, the search space becomes even larger.

In subsequent sections, we use this 4/3-approximation
algorithm as the basis for a heuristic attribute placement
method. As our optimization criteria become more com-
plex, it becomes much more difficult to give theoretical
bounds on the quality of the solutions. Our expectation
is that even though the optimization criteria become more
complex, the underlying nature of the optimization remains
the same, and so extensions of the 4/3-approximation algo-
rithm will generate good solutions.

3.3 A Third Step

If one attribute size is much larger than the total size of
the rest of the attributes, even the optimal placement can not
guarantee small fragmentation. For example, in the TPC-H
database benchmark [18], some relations have very large
“comment” attributes. In Figure 2(b), the first attribute size

is large, meaning that when the first page is full, there is still
much empty space in the rest of the pages.

In this case, we may choose to place the largest at-
tribute’s value in more than one page in a super-block. Our
revised algorithm is given below:

� For a givenp andS =
Pn

i=1 si, divide any attribute
whose size is larger thanS

p
into severaldS

p
e-sized

sub-attributes, plus one extra smaller sub-attribute if
necessary.

� Use the 4/3-approximation algorithm to place the re-
sulting attributes.

Although we split large attributes into small sub-
attributes in choosing plans, the real attribute values are not
split vertically. Those pages which are designed to store an
attribute’s values are filled in order. During the insertion,
the attribute’s values are first placed into the first page until
it is full, then we move to the next page, and so on. The
order is important. As we will discuss in Section 5, the
database uses the order information to compute in which
page a specific record’s attribute is stored.

Figure 2(c) shows the results of the previous relation
after such a reorganization. The first attribute’s values are
stored in the first two pages (the first page is filled first).
The super-block now stores four records, instead of three.
As a result, there is zero fragmentation overhead. A scan
of attribute 4 now takesR=4 pages rather thanR=3, and
a similar observation holds for a query that scans both
attributes 2 and 3. On the other hand, a query that scans
attribute 1 becomes more expensive, requiringR=2 pages
rather thanR=3, since both pages 1 and 2 need to be
consulted. The net effect on average query time depends
on the query workload. We will formulate average query
time as our optimization criterion in Section 3.4.

For variable-length attributes, we choose the largest pos-
sible size as the size of the attribute, since we don’t have any
prior-knowledge of its size distribution. By using the largest
sizes of variable-length attributes, we know in advance how



many records will be placed in each super-block, and we
can avoid having to deal with overflows. On the other hand,
we waste some space when variable-length attributes are
large and are often smaller than their maximum size.

3.4 Cost-Based Super-Block

We now change our optimization criterion from frag-
mentation to average query time. For decision-support
applications, we can optimize the super-block placement
based on known workloads. Existing algorithms [4, 5]
partition each relation based on an attribute affinity graph,
which connects pairs of attributes based on how often they
appear together in queries. The affinity of two attributes is
defined as the number of queries in the workload in which
both attributes are referenced. These algorithms cannot be
used directly to guide our super-block placement because
they may generate sub-relations of different size, thus in-
curring much fragmentation in a super-block. Sometimes, it
is impossible to compose a plan with both optimal attribute
affinity and optimal fragmentation. Instead, we use attribute
affinity heuristics to guide our partition.

First we develop a score function for each placement
plan for the given workload. We assume that the work-
load consists of queries whose access patterns amount to
scans of the referenced tables for the referenced attributes.
This choice is reasonable for a decision-support application,
where such queries are common, and are generally the most
expensive. Suppose the cost of sequential data access is
proportional to the number of disk pages read. Given the
number of records in the relation, the total cost to read one
page from each super-block is given by

disk pagesread =
total number of records

records per page

records per page =
page size

maxi(
P

attribute sizes in pagei)

We defineM as the maximum sum of the attribute sizes
in any page of a super-block. The total I/O cost is thus
M multiplied by the number of pages required from each
super-block.

Let qi equal the number of pages in a super-block ref-
erenced by theith query in the workload. If one attribute’s
values are stored in more than one page, all the pages should
be counted. Letpi equal the probability of theith query in
the workload. The score function is defined as:

Score = M �
X

i

(qi � pi)

Note that bothM andqi vary as the placement scheme
varies. Our revised algorithm is given below:

� We define a affinity threshold. Any pair of attributes
having affinity larger than the threshold are merged
into a larger attribute with the size of the sum of the
two attributes’ sizes. More than two attributes may be
merged in this way.

� Use the 4/3-approximation method to place attributes
for eachp (the range ofp is discussed in Section 4.2).

� Split large attributes as described in Section 3.3. How-
ever, if an attribute actually consists of several at-
tributes merged using the affinity criterion, and it is
too big, undo one step of the merge procedure for this
attribute, and rerun the placement algorithm.

� Choose the plan with minimal score.

4 Mega-Blocks

How do we organize the super-blocks on disk? Our aim
is to support the claim that performance can be proportional
to the number of pages needed for scan operations.

Suppose we have a single-attribute scan query and the
referenced attribute values are all in the first page of a super-
block. If we place super-blocks contiguously, the database
needs to read a page in one super-block, skip anotherp� 1
pages, then read a page and so on. What is the disk
performance for this kind of access method, compared with
sequential access?
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We simulate this kind of interleaved reading on the
Seagate Cheetah X15 disk1 when p = 4. We define a
reading-block as the number of blocks read per sequential
access. The simulation reads a reading-block, skips another
3 reading-blocks, then reads a reading-block and so on. The
simulation varies the reading-block size from 1 disk page to
100 disk pages, but the total number of pages read is kept
the same. Figure 3 shows the results for reading 10,000
blocks. For reference, it takes 2 seconds to sequentially read
10,000 blocks.

1Similar results were obtained for the Quantum disk.



When the reading-block size is one disk page, we are
simulating the case of a single-attribute scan over a 4-
page super-block. The time taken is only a little less than
sequentially reading all of the super-blocks. The time drops
significantly when the reading-block is larger than one track
(about 20 pages in this case). This is because when the
reading-block is smaller than one track, the dominant cost
is rotational latency; we have lost the benefit of sequential
I/O optimization. As the reading-block size increases, the
number of skip operations decreases and there is more
sequential readingwithin each reading-block, so the time
drops.

page p

page 2

page 1 page 1
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page 1
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Figure 4. Mega-Block Structure

As we see, it is not a good idea to place super-blocks
contiguously on disk. Instead, we group super-blocks into
a mega-block. Corresponding pages are stored in one con-
tiguousrun. Figure 4 shows the structure of a mega-block.
The size of a run isr disk pages. As we see in Figure 3 a
lower bound on the run length should be the track size. The
total size of a mega-block isp � r disk pages.

If one attribute is stored in more than one page in a
super-block, we try to arrange these pages in adjacent runs
so that a single-attribute scan query can be answered by
sequentially reading one or more runs in each mega-block.
We also define the affinity of any two distinct pages in a
super-block as the largest affinity of any two attributes, one
from each of the two pages. A pair of pages with higher
affinity are more likely to be accessed in the same query.
Thus, we also try to arrange such pages into adjacent runs.

A subtle point about this ordering of runs is that we can
sometimes get I/O transfer units larger thanr. For example,
if p is large, an attribute might be split across several (say
k) pages within a super-block, and be the only attribute on
all (or all but one) of those pages. A scan of the relation to
get that attribute can perform a sequential I/O request fork
contiguous runs, meaning that the I/O unit is actuallyk � r.

4.1 Mega-Block Performance Issues

Disk Prefetching. Consider a query which involves a
few (more than one) attributes. Database systems typically
require that all the referenced attributes for the same record
are available before performing any operations. A naive
scan operator would have some drawbacks. For example,
a two-attribute scan operator might first get the first block
in the first run which stores the first required attribute, then
seek to the first block in the second run which stores the
second required attribute. After that, the scan operator goes
back to the first run and reads the second block there. The
disk headthrashingdamages the performance.

Disk prefetching in buffer pool management can be use-
ful in this case. During a sequential read, when we come
to the first super-block of a mega-block, all blocks in the
current run, instead of just one block, are read each time
and buffered in memory. Disk heads move to the other run
(or somewhere else) only after reading one run of blocks.

Updates and Lookups. Modifying a single attribute
under MBSM requires onerandomdisk write for the block
containing the attribute value. Inserting or deleting a record
requiresmin(u; p) block writes, whereu is the number of
attributes in the relation. Those blocks belong to a single
super-block and are stored on different runs of a mega-
block. Fortunately, runs on a mega-block are close to each
other, within a few tracks. Thus the update cost is 1random
disk write plusmin(u; p) � 1 nearbydisk writes. Under
DSM, inserting or deleting a record requiresu randomdisk
writes because different sub-relations are not necessarily
stored in an interleaved fashion. Note that MSBM handles
bulk appends efficiently, since many records can be placed
into a super-block, and data may be written one run at a
time.

Lookups of a single record under MBSM require a num-
ber of page reads that depends on the number of attributes
required. Lookups for a single attribute require one page
of I/O. Lookups forv attributes require at mostmin(v; p)
pages, and even fewer if several of the requested attributes
reside on the same page within a super-block.

4.2 Choosingp and r

We defined the size of a mega-block asr � p (r is the
size of a run andp is the size of a super-block). It is
tempting to make mega-blocks large in order to get better
performance. However, we will be forced to allocate disk
space in mega-block sized units. The allocation unit on disk
cannot be arbitrarily large, since disk fragmentation will
result. Further, a large mega-block means that more disk
pages have to be prefetched during sequential data access,
which increases the memory requirements and decreases the
efficiency of database buffer pool management. Different



NSM DSM PAX MBSM
I/O volume for
scan

full table read columns + surro-
gate overhead

full table read columns + overhead due
to fragmentation

Space overhead small internal
fragmentation

surrogates small internal
fragmentation

small internal fragmentation
plus overhead for variable-
sized attributes

Update a single
attribute

one random I/O one random I/O one random I/O one random I/O

Insert/delete a
record

one random I/O many random I/Os one random I/O one random I/O, many
“nearby” I/Os

Cache behavior poor: useless data
in cache

moderate: surrogate
overhead

good: single-col
values in cache

good: single-col values in
cache

Record
reconstruction

none potentially expensive cheap cheap

Table 2. NSM, DSM, PAX and MBSM Comparison

systems may have different mega-block sizes, according to
their resources. Within a single system, the mega-block size
may be different for different tables. In our experiments, we
set 4 MBytes as the upper bound for mega-block size.

A larger run sizer improves sequential I/O performance.
The minimumr should be larger than a disk track size,
as suggested by Figure 3. A larger super-block sizep
gives more opportunities for attribute placement, potentially
improving query time and/or fragmentation. But increasing
p increases the cost of insertion or deletion (untilp ex-
ceeds the number of attributes, at which point the cost of
insertions and deletions remains constant). Given the upper
bound onr � p, there is a trade-off in choosingr andp.

In our experiments, we are considering a decision-
support workload, which would have relatively few single-
record insertions and deletions. Considering that different
disk zones have different track sizes, we chooser as 30
disk pages, a little more than the average track size (23 disk
pages). This gives an upper bound onp of 17 pages. We
varyp from 1 to 17, and choose the plan of placement with
minimum score. Ties are broken by choosing the plan with
smallerp.

Table 2 summarizes and compares the characteristics of
NSM, DSM, PAX and MBSM.

5 Database Implementation

Conventional database systems use a layout based on
NSM. We describe in this section how components of such
a database would need to be modified to use MBSM. The
changes are more extensive than those required by PAX.
Nevertheless, we believe that the changes needed are rela-
tively manageable.

Under MBSM, a record is identified by using the pair
< superblock id, offset>, instead of using the pair<

page id, offset> in conventional database systems. A
super-block is identified by the page id of its first block.
Given the super-block sizep and the run sizer of the mega-
block which stores it, thep blocks in a super-block are
addressed bypageidfirst block + i � r, (0 � i � p � 1).
These numbersp andr are stored in the catalog for each
table that uses the MBSM format. Since the super-block id
itself is a page-id, the query execution engine doesn’t have
to change record representations. All the address mapping
happens in a layer just above the buffer manager. Layers
above this address mapping are essentially unchanged; they
simply have the illusion of a larger “page” size equal to the
super-block size. The buffer manager itself still deals with
pages. Indexes can also be built using MBSM addresses
without knowing the mapping.

When an operator opens an MBSM-organized table for
subsequent access, it is provided with adescriptor. In ad-
dition to the conventional arguments toopen , the operator
supplies a list of attributes to be referenced, and a flag to
indicate whether the operator is performing a scan (or scan-
like, sequential) operation. The descriptor remembers the
flag. The descriptor also records the set of pages within each
super-block that are needed to include all of the requested
attributes. (This information is derived from the catalog.)

Subsequent operator requests include the record identi-
fier (pg; offset) together with the descriptord. If d indicates
a sequential operation, andpg is the first super-block in
the mega-block, then all runs for the pages identified ind
are read into the buffer sequentially. (If those pages are
already in the buffer, no actual I/O happens.) Otherwise,
just the pages for the single super-block corresponding to
the required pages specified ind are read into the buffer.

A subtle point in this latter operation is that there may be
several pages in the super-block containing attribute values
specified in theopen operation. In that case,d records
the offset boundaries corresponding to switches from one



page to the next. The value ofoffsetis compared against
these boundaries to locate the single page containing the
attribute for the requested record. Note how important
the assumption of fixed-size attributes is for this operation.
With variable-sized attributes, there would be no simple
way to uniquely determine which of several pages contained
the right record.

Many database operators expect records to be stored in
memory as (nonpartitioned) records. To use such operators,
a mapping function that takes the required attributes and
creates a contiguous record would be required. A similar
mapping is needed for PAX [1].

Unlike the improved version of DSM [14], our method
can support query plans involving the intersection of physi-
cal pointers (ie.< superblock id, offset>). Such plans are
often useful when multiple indexes are available.

We now describe additional changes in behavior of other
components of a database system.

Buffer Manager. There is little change in the buffer
manager. The request to the buffer manager is still the
page id. Under MBSM, the buffer manager needs to be able
to allocate at least one mega-block to the scanned table to
avoid thrashing. A buffer replacement policy that was aware
of sequential MBSM access patterns would be desirable.

Disk Space Manager.The disk space manager needs to
respond to requests for allocations of mega-blocks at a time.
Note that not all tables need to use MBSM, so the disk space
manager may be allocating space at several granularities.
Mega-blocks should be allocated in a contiguous sequence
where possible, but this is not required. MBSM can adapt
itself to data striping (such as RAID) by increasing the run
size. Operations on each data disk in the array still maintain
good sequential I/O performance.

Lock and Recovery Manager. Attributes of a record
are stored in different pages in a super-block. Traditional
page-level locking could become super-block-level locking
under MBSM. Generally, under MBSM, updates on records
touch more pages because attributes are stored across pages.
Thus, there might be less concurrency under page-level
locking. (This issue is relatively unimportant for data ware-
housing workloads.)

Query Optimizer. The cost model should be revised,
considering the efficiency of sequential scans under MBSM.
Catalog information can be used during optimization. The
I/O cost is (essentially) the cost of retrieving just the refer-
enced pages.

6 Experimental Evaluation

In this section, we evaluate and compare four data place-
ment schemes: MBSM, NSM, DSM and PAX on both
synthetic and TPC-H based workloads. We conduct the
experiments on a Dell Precision 330 PC, with a 1.8Mhz

Pentium 4 CPU and 1G Rambus Memory. This computer
is running the RedHat Linux 7.1 operating system. We treat
the two SCSI disks as raw devices. Our experiments read
or write directly from or directly to the devices independent
of the filesystem. Before operations, we clear both the disk
cache and the operating system buffer caches. The size of a
memory page and a disk page is 8KB.

MBSM stores attributes in a vertically partitioned man-
ner similar to PAX, and thus shares PAX’s good CPU cache
behavior (which is thoroughly studied in [1]). PAX saves
at least 75% of NSM’s cache stall time, and it is also better
than DSM. Due to space limitations, we do not show cache-
related experiments. [1] also demonstrates that DSM incurs
high reconstruction cost. Our experiments directly simulate
the I/O behavior by generating I/O operations on raw disk
devices; we do not employ a database system.

6.1 Projectivity Analysis

To demonstrate how MBSM works for different query
projectivity, we create a workload consisting of one relation
R and variations of queries which involve different numbers
of attributes. RelationR contains eight 8-byte attributes and
is populated with 10 million records. The super-block in
MBSM has eight pages. Values for one attribute go to one
page in a super-block. This is a synthetic “best-case” for
MBSM because there is no fragmentation. This example is
used for illustration of the potential performance benefits.
More realistic workloads are considered in Section 6.2.

We vary the query projectivity from one attribute to
all eight attributes. Figure 5(a) shows the disk volume
requested to answer different queries. MBSM has the least
disk volume requested for each query. For NSM and PAX,
all the disk pages must be requested for all the queries.
DSM has the most disk volume request when the query
involves more than six out of eight attributes. Note that the
final columns of Figure 5(a) show the disk space used for
each scheme. DSM uses the most space because there is a 4-
byte logical record ID for each record in every sub-relation.
Our scheme used slightly less space than PAX because we
save the space of pointers to minipages within PAX pages.

To gain better I/O performance, we assume both NSM
and PAX pages are stored contiguously on disk. For DSM,
each sub-relation is stored as a contiguous big file and sub-
relations are stored one after another. This disk organization
actually favors DSM. In practice, DSM sub-relations can
be stored at different locations on disk. MBSM stores the
records in mega-blocks of size 4 MB, which translates into a
run lengthr of 64 pages. Figure 5(b) compares the speed of
four schemes as a function of the number of attributes in the
query for an implementation on the Seagate disk. Although
MBSM requests the fewest disk pages for all the queries,
it is about the same as DSM at first. This is because for
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Figure 5. Synthetic Workloads

the first query, all the pages requested for DSM are from
one sub-relation and that sub-relation is stored contiguously
and is accessed sequentially. In MBSM, records are stored
in mega-blocks. It reads one run in a mega-block, skips
the remaining runs and goes to the next mega-block and so
on. This slows the throughput of the disk slightly. As the
number of attributes increases, MBSM reads more tracks
in a mega-block and the speed overhead is less important
than the fewer disk pages transferred. (Similar results were
observed on the Quantum disk.) We don’t include the
record reconstruction cost for DSM in the comparison. As
the number of attributes increases, we expect the overall
cost of DSM to be much higher [1].

Figure 5(c) compares the performance of inserting or
deleting a record in the four schemes. We assume that
before the update, the disk head is located at the beginning
of the corresponding disk file. Under NSM and PAX, only
one random disk write for the block containing the new
or old record is required. Both MBSM and DSM require
eight disk writes. However, the performance is different in
that MBSM has one random disk write and the remaining
writes are in adjacent or nearby tracks. The results shown
are favorable to DSM since sub-relation files are stored
together. If sub-relation files are located at different places
on the disk, the cost can be much higher. A random write
on this disk takes about 10 milliseconds.

6.2 TPC-H Workloads

This section compares the different storage models when
running a decision-support workload based on TPC-H. We
conducted experiments on a factor 1 TPC-H database, gen-
erated using thedbgensoftware distributed by the TPC
[18]. The database includes attributes of type integer,
floating point, date, fixed-length string and variable-length
string. We convert variable-length attributes to fixed-length
attributes by allocating space equal to their maximum size.
The workload consists of all 22 TPC-H queries and we
assume each of them has the same probability of execution.

We do not actually execute the 22 queries. Instead,
we reformulate the actual queries into “abstract” queries.
This reformulation allows us to focus on the aspects of
the query most relevant to MBSM, namely which rela-
tions are scanned, and which attributes are accessed in
the same query. An abstract query is a set of entries of
the form “table-name.column-name”. (We omit the table
name when the table is clear.) For a TPC-H query, every
column syntactically mentioned in the query is part of this
set. For example, Query Q14 from TPC-H (given in Ap-
pendix A) is reformulated asfp type, ppartkey, lpartkey,
l extendedprice, ldiscount, lshipdateg.

We interpret an abstract query as requiring a single scan
through all records in the referenced tables, accessing at
least the attributes mentioned in the set. That the queries re-
quire scans is reasonable since we are assuming a decision-
support workload in which a large fraction of all records
are touched by most queries. Index-based access is usually
not competitive due to random I/O. That the queries require
single scans is an approximation. It is conceivable that
the data is sufficiently large that multiple scans would be
required for hash joins, for example. Nevertheless, we
believe that abstract queries are sufficiently descriptive to
capture important aspects of the workload.

We generate the attribute affinity for each relation from
the workload. The attribute affinity threshold is set empir-
ically as 4: if any two attributes from the same relation
appear together in more than 4 out of the 22 queries, we
try to assign them into one page in the super-block. For
variable-length attributes, we use their maximum size as the
attribute size. Table 3 shows the super-block sizep chosen
by the optimization algorithm for the six largest TPC-H ta-
bles. (The tables NATION and REGION are too small to be
partitioned further.) Recall that we variedp from 1 to 17, as
discussed in Section 4.2. Details of some of the assignments
can be found in Appendix A. The fragmentation represents
the total proportion of wasted space, not including wasted
space due to variable-length attributes being smaller than
their maximum size.



0

20

40

60

80

100

120

140

160

PART

SUPPLI
ER

PARTSUPP

CUSTOM
ER

ORDERS

LI
NEIT

EM

T
ho

us
an

ds

D
is

k 
S

pa
ce

 R
eq

ui
re

d 
(d

is
k 

pa
ge

s)

NSM DSM PAX MBSM

0

20

40

60

80

100

120

140

160

Query 1 Query 6 Query 12 Query 14

T
ho

us
an

ds

D
is

k 
V

ol
um

e 
R

eq
ue

st
ed

 (
di

sk
 p

ag
es

)

NSM DSM PAX MBSM

(a) Disk Space Used (b) Disk Volume Requested Per Query

Figure 6. Storage Performance for TPC-H Workloads

Table Columns Pages per Frag.
Super-Block Overhead

PART 9 17 3.53%
SUPPLIER 7 17 4.62%
PARTSUPP 5 11 0.45%

CUSTOMER 8 13 4.7%
ORDERS 9 15 4.67%

LINEITEM 16 17 5.27%

Table 3. TPC-H Table Partitions

Figure 6(a) shows the disk space required for the six
largest TPC-H tables in the different storage models. DSM
uses significantly more space than the others for table
LINEITEM because the table consists of 16 relatively small
attributes, so the 4-byte surrogate overhead cannot be ig-
nored. Our scheme uses a little more space than NSM
and PAX for two reasons. First, there could be some
fragmentation within the super-blocks because we cannot
guarantee each page within a super-block is exactly full.
Second, we use the maximum possible size for variable-
length attributes. The actual average size is smaller than the
maximum size, and all of PAX, DSM and NSM use only
the space required by the actual attribute value.

The layouts of Table 3 are optimized for the overall
workload of all 22 queries. We choose four TPC-H queries,
Q1, Q6, Q12 and Q14, as examples to demonstrate indi-
vidual query performance on this layout. Queries 1 and 6
are range queries on the LINEITEM table, with multiple
aggregates and predicates. Queries 12 and 14 are equijoins
of LINEITEM with another table; they involve additional
selection predicates, and they compute conditional aggre-
gates.

Figure 6(b) shows the disk volume requested for the four
queries in the different schemes. Figure 7(a) shows the I/O
elapsed time for the four queries. Figure 7(c) shows the
average I/O elapsed time for the 22 queries. Both DSM and
MBSM read fewer disk pages and perform faster, compared
to NSM and PAX. While DSM looks competitive, remem-
ber that we have excluded the record reconstruction cost.
If this cost is included, the overall cost of DSM is much
higher than MBSM. Figure 7(b) shows the performance

of single-record insert/delete operation on the biggest table
LINEITEM. Both NSM and PAX requires only one block
write, while DSM and MBSM each require for 16 block
writes. MBSM is faster than DSM due to the proximity of
the block that need to be written.

Figure 7(d) shows how the quality of the layout varies
as we adjustp andr, keepingp � r (i.e., the mega-block
size) bounded by 4MB. Given a run size, the y-axis shows
the workload average I/O elapsed time for the best table
layouts. With largerr, the potential I/O speed increases.
But smallerp means that more attributes could be stored in
one page in a super-block. Queries which involve only a
few attributes may end up requiring more disk pages than
necessary. As we can see,r = 30 seems to balance the
competing aims; this is the value used for the previous
experiments.2

As a final note, we observed that for largep, the use
of attribute affinity for designing a super-block becomes
relatively unimportant, because most of the pages store at
most one attribute.

7 Conclusion and Future Work

We have proposed a new storage model called MBSM,
which stores records in a partitioned way in a super-blocks,
and then organizes super-blocks on disk into mega-blocks.
MBSM is most suitable for decision-support workloads that
frequently execute table scans.

� Compared to NSM and PAX, MBSM requests fewer
disk pages and uses 70% less I/O processing time
for a decision-support workload involving table scans.
MBSM shares PAX’s good CPU cache behavior.

� Compared to DSM, MBSM’s scan performance is
comparable. However, MBSM’s cache performance is
better because no surrogates are involved and MBSM

2The results were qualitatively similar for the Quantum disk, but a
larger value ofr was optimal.
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Figure 7. Performance for TPC-H Workloads

has better insert/update I/O performance. Further,
MBSM doesn’t require a join to reconstruct the records
while DSM has high reconstruction cost [1].

We plan to investigate several directions in future re-
search. Queries seldom use large variable-length attributes,
such as “comment” etc. It could be a better idea to store
these attributes separately in DSM, and to use MBSM for
the fixed-sized attributes (with one surrogate). Alterna-
tively, one could store variable-length attributes in a pointer-
based way using a heap to avoid wasted space. For this sec-
ond option, one needs a method to handle page overflows,
and one may not be able to uniquely identify the physical
page containing the required attribute. It is conceivable that
a probabilistic analysis of attribute size and query reference
patterns could do a reasonable job of ensuring good perfor-
mance without wasting space.

Another direction for future work is disk page compres-
sion. Systems such as Sybase IQ actively use compression
to reduce I/O in a DSM-like setting. We could apply similar
techniques, compressing at the run level. Dealing with
variable-sized mega-blocks would then become an issue.
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A TPC-H Layout under MBSM

For reference, TPC-H query Q14 is given below.

select 100.00 * sum(case
when p_type like ’PROMO%’
then l_extendedprice*(1-l_discount)
else 0 end) /
sum(l_extendedprice * (1 - l_discount))
as promo_revenue

from lineitem, part
where l_partkey = p_partkey

and l_shipdate >= date ’[DATE]’
and l_shipdate < date ’[DATE]’ +

interval ’1’ month;

Table 4 shows how the LINEITEM table was divided
among 17 pages. The rows are the attributes, and the
columns are page numbers within a super-block. For an
attribute of sizes, an entry ofb means thatb=s of the
attribute values are stored in that page. (The rows should
add tos.)

Table 5 shows the same LINEITEM table divided instead
among 9 pages. This scheme corresponds to the best allo-
cation for the pointr = 50 in Figure 7(d).



Page Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
l orderkey 4
l partkey 4
l suppkey 4

l linenumber 4
l quantity 8

l extendedprice 8
l discount 8

l tax 8
l returnflag 1
l linestatus 1
l shipdate 10

l commitdate 10
l receiptdate 10
l shipinstruct 10 10 5
l shipmode 10
l comment 10 10 10 10 4

total 10 10 9 8 8 9 9 10 10 10 10 8 10 10 10 10 8

Table 4. LINEITEM Attribute Placement (17-Page Super-Block)

Page Number 1 2 3 4 5 6 7 8 9
l orderkey 4
l partkey 4
l suppkey 4

l linenumber 4
l quantity 8

l extendedprice 8
l discount 8

l tax 8
l returnflag 1
l linestatus 1
l shipdate 10

l commitdate 10
l receiptdate 10
l shipinstruct 18 7
l shipmode 10
l comment 8 18 18

total 18 18 18 18 18 18 16 18 17

Table 5. LINEITEM Attribute Placement (9-Page Super-Block)


