
Static Deadlock Detection in SHIM with an Automata Type Checking System

Dave Aaron Smith Nalini Vasudevan Stephen Edwards

das2169@columbia.edu naliniv@cs.columbia.edu sedwards@cs.columbia.edu

Abstract

With the advent of multicores, concurrent programming

languages are become more prevelant. Data Races and

Deadlocks are two major problems with concurrent pro-

grams. SHIM is a concurrent programming language that

guarantees absence of data races through its semantics.

However, a program written in SHIM can deadlock if not

carefully written.

In this paper, we present a divide-and-merge technique

to statically detect deadlocks in SHIM. SHIM is asyn-

chronous, but we can greatly reduce its state space without

loosing precision because of its semantics.

Keywords: SHIM, Concurrency, Deadlock, Static Analy-

sis, Automata

1 Introduction

SHIM is a deterministic concurrent language. SHIM

is a combination of Kahn’s network and Hoare’s CSP

rendezvous style of communication. It is guaran-

teed to be deterministic: a program written in SHIM

has the same input/output behavior regardless of non-

deterministic scheduling choices of the run-time environ-

ment.

Although, SHIM is asynchronous, the semantics simpli-

fies the verfication process. SHIM does not require a pow-

erful model checker like SPIN. SPIN considers all inter-

leavings in a concurrent model. We can use synchronous

abstractions for SHIM because of SHIM’s scheduling in-

dependence. If a program deadlocks with one particular

schedule of the run-time environment, then it also dead-

locks with any other schedule. This property greatly re-

duces the state space in our verification model.

In this paper, we propose a new technique that builds the

automaton of every task in the program. We merge au-

tomata using SHIM’s semantic rules. By merging, we

build the combined behavior of two or more concurrent

tasks. When there is a conflict while merging, we report

a deadlock. We abstract the data values in the program.

If our verifier reports the absence of a deadlock, then the

program is guaranteed to be deadlock free, however the

converse is not true because of data abstraction.

We describe the SHIM language and show how to build

the abstracted automaton for individual tasks in the pro-

gram. Then we describe our merge algorithm and prove it

is correct. Finally, we conclude by saying that a design in

the language can greatly simplify concurrent programming

verification challenges.

2 Related Work

Many static techniques have been proposed to find dead-

locks and dataraces in concurrent program. SPIN is one

tool that can be used to model check interleaved concur-

rency models. It checks for all possible interleavings in a

program. In SHIM, this is not required therefore making

the state space of the problem small and hence verification

easy.

3 The SHIM Programming Language

SHIM is an imperative language. It is C-like with addi-

tional constructs for concurrency. p par q runs statements

p and q in parallel, and waits for both p and q to terminate

before proceeding. next c is a blocking communication

operator that sends or receives data overa communication

channel depending on the context in which it occurs.

Tasks in SHIM run asynchronously, however they syn-

chronize whenever data has to be shared and this happens

explicitly through communication. The communication is

through multiway rendezvous: there can be multiple re-

ceivers at a time.

In Figure 1, a and b are two channel shared by task 1 and

task 2. Both the tasks run concurrently because of the

par statement. The next a in task 1 is on the left hand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


void main()
{
chan int a, b;
{

// Task 1
next a = 5; // Send 5 on a (wait for task 2)
// a = 5 here
next b; // Receive b (wait for task 2)
// b = 10 here

} par {
// Task 2
next a; // Receive a (wait for task 1)
// a = 5 here
next b = 10;// Send 10 on b (wait for task 1)
// b = 10 here

}
}

Figure 1. A SHIM program in which two tasks

communicate on channels a and b

void main() {
chan int a, b;
{

// Task 1
next a = 5; // Deadlocks here
next b = 10;

} par {

// Task 2
next b; // Deadlocks here
next a;

}
}

Figure 2. A SHIM program that deadlocks

side of the assignment and therefore the SHIM compiler

interprets it as send. The next a in task 2 is a receive. The

two tasks rendezvous at the next a statements, exchange

data and proceed to rendezvous at next b. On channel b,

task 2 is the sender and task 1 is the receiver.

In Figure 2, the two tasks attempt to communicate again on

channels a and b. However, task 1 attempts to synchornize

on a expecting task 2 to also synchronize on a, while task

2 tries to synchronize on b causing a deadlock.

void main() {
int i;
chan int a, b;
{

for (i = 0 ; i < 100 ; i++) {
if (i % 10)

next a = 1;
else

next a = 0;
next b = 10;

}
} par {

next a;
next b;

}
}

Figure 3. A deadlock-free SHIM program

with a loop, conditionals, and a task that ter-

minates

4 Abstracting SHIM programs

We follow the same abstraction technique used by Vasude-

van and Edwards. Since tasks synchronize only when they

communicate, we can abstract any computation in a task.

We also assume that both branches of a conditional state-

ment can be taken with equal probability. This gives us

the flexibility to abstract away data values and hence re-

duce the state space. This abstraction may however lead to

false positives that we discuss later.

5 The Algorithm

First we will construct automata for individual tasks in a

SHIM program. Then we will select parallel tasks, and

merge them into unified sub-automata that describes the

combined behaviour of both automata. We will work our

way up from leaf tasks, with the goal of unifying the entire

program automaton. If we can accomplish such a task, we

can conclude that our program is guaranteed to be dead-

lock free.

We run our algorithm through Figure 3. The example in

Figure 3 starts two tasks that communicate through chan-

nels a and b. The first task communicates on channels a

and b 100 times. The second task communicates on a and

b once. Once task 2 terminates, task 1 does not wait for

task 2 to terminate. During the first cycle of communica-

tion, task 1’s communication pattern meshes with task 2.

Therefore, the program does not deadlock.



5.1 Automata Construction

Our algorithm creates an automaton that models the con-

trol and communication behavior for every task in SHIM.

We have shown the automata for Figure 3 in Figure 4. The

first value, Si in each state is a unique label. The main

program goes to the par state from its start state and then

exits. Task 1 can take two transitions upon start. It can

either take the if branch or the else branch and wait on a.

Finally, it waits on b. We have represented wait on a as

two distinct nodes in the graphs, because they occur at dif-

ferent places in the control flow of the program. There is a

loop back from b to both the a’s representing the for loop

in Figure 3.

5.2 Representation

Our automata have several different kinds of nodes, so

our algorithm will describe how to combine every possi-

ble type of pairs of nodes. First, we will define every type

of node.

For convinience, we use a triangle to represent a subgraph

in an automata. For eg., the subgraph starting from state

10 in Figure 4 is shortly represented as a triangle as shown

in Figure 5. We label triangles with the unique label of the

top node.

Rectangles represent machine decisions. Therefore, out-

going edges on rectangles represent branches in code. We

take a pessimistic approach to machine decisions, and in-

sist that all possible machine decisions remain valid. We

assume that all outgoing edges occur with equal probabil-

ity. A rectangle may contain a channel, representing com-

munication along that channel. A rectangle may represent

start state or exit (null) state.

In the context of two tasks, a rectangle that indicates a

blocking action on a channel c is an internal node of one

task if c does not belong to the other task; otherwise we

call it a external node. Internal and external nodes have

meaning with respect to two tasks while merging. The

representations of these nodes are shown in Figure 6. In

Figure 3, both a and b are external nodes with respect to

tasks 1 and 2.

We also introduce a new environment node as ellipse while

merging that we represent as shown in Figure 7. SHIM

is a partial ordered system. The ordering between two

nodes of two different task may be unclear when we try

to merge them. In such cases, we create a new environ-

ment node with outgoing transitions as possible orderings.

Ellispes appear when we merge automata. We take an op-

timistic approach to environment decisions, and assume

main

S1

start

S2

par

S3

exit

task 1

S4

start

S5

a

S6

a

S7

b

S8

exit

task 2

S9

start

S10

a

S11

b

S12

exit

Figure 4. The automata for the example in

Figure 3. The compiler broke the main func-

tion into three tasks.



S10

a

S11

b

S12

exit

S10

Figure 5. Representing a sub-automaton

Si

c
Sj

c

Internal node External node

Figure 6. Internal and external nodes

that the environment will make a valid decision if one ex-

ists. Therefore, as it becomes necessary, we can remove

up to all but one outgoing edges from circles.

Sk

Si Sj

Figure 7. Environment node

5.3 Selecting tasks to merge

First we choose which automata to merge. We start by con-

sidering parallel tasks that are siblings. We merge children

tasks before merging parent tasks. Now consider two au-

tomata whose intersection of channels is small compared

to the number of channels. The product of such a pair

would tend to expand according to the product of the num-

ber of channels. Accordingly, we should pick pairs of au-

tomata with a large overlap. The heuristic we use is as

follows: choose the pair of automata that maximize the

number of overlapping channels minus the smaller number

of non-overlapping channels found in one of the automata.

For eg., suppose we have two tasks, each containing 10

and 15 channels respectively, out of which 5 is common.

Then our heuristic function returns 5−10 =−5. We calcu-

late this heuristic function for all possible pairs of siblings

and choose the pair that returns the highest value. The

highest value it can take is 0 when the channel list of one

task is a subset of the other. Once we form the product of

two automata, we must recompute the heuristic.

5.4 The Product Machine

Consider the two subautomata you wish to productize.

Each should begin at a blank start node and end with a

node marked as the null node. We start at the top blank

nodes and combine them according to the rules that fol-

low. This will cause you to recurse through the automata

to create a new automaton. If we are unable to produce a

product automaton, then you have encountered a potential

deadlock. If we can form the product, then the two original

tasks represented by the original automata are guaranteed

to be deadlock free. We can now represent them with our

single product automaton.

While merging nodes, we maintain a hash table and add a

pointer to each of the newly merged nodes into the hash ta-

ble. While merging, if we encounter a node that is already

in the hash table, we do not repeat the merge operation

again. Therefore if task 1 has M nodes and task 2 has

N nodes, the product automata will have atmost O(M*N)

nodes.

In the following sections, we discuss the merge techniques

based on the type of nodes merged.

5.4.1 Merging two external nodes

Consider Figure 8. If c1! = c2, then we have a deadlock,

so we label the node which represents the product of Si and

S j as X , a dead node. If c1 = c2, then we label the product

node as S1 · S2. We create new child nodes for every pair

of subtrees under Si and S j.

5.4.2 Merging two internal nodes

Consider figure 2. c1 is present in the first task but absent

in the other. c2 is in the second task but absent in first.

After combining them, either c1 can come first or c2.



Si

c1

Sp Sq

.

Sj

c2

Sm Sn

=

Si.Sj

X

Figure 8. Merging two external nodes, c1! =

c2

Si.Sj

c1

Sp.Sm Sp.Sn Sq.Sm Sq.Sn

Figure 9. Merging two external nodes, c1 = c2

Si

c1

Sp Sq

.

Sj

c2

Sm Sn

=

Si.Sj

Su

c1

Sv

c2

Sp.Sj Sq.Sj Sm.Si Sn.Si

Figure 10. Merging two internal nodes

5.4.3 Merging an internal node with an external node

Let c1 be an internal node and c2 be an external. Accord-

ingly, it doesn’t make any sense to rendezvous on c2 first

and c1 second as communication on c2 is blocking, since

both automata must communicate on c2 simultaneously.

The result of the merge turns out to be Figure 11

5.4.4 Merging two environment nodes

Consider Figure 12. The output of two environment nodes

is simply a new environment with one outgoing edge for

every pair of outgoing sub-automata.

5.4.5 Merging an environment node with an internal

or external node

In Figure 13, Sj can either be an external or internal node.

Each child of the environment node Si is merged with Sj.



Si

c1

Sp Sq

.

Sj

c2

Sm Sn

=

Si.Sj

c1

Sp.Sj Sq.Sj

Figure 11. Merging an internal node with an

external node

Si

Sp Sq

.

Sj

Sm Sn

=

Si.Sj

Sp.Sm Sp.Sn Sq.Sm Sq.Sn

Figure 12. Merging two environment nodes

Si

Sp Sq

.

Sj

c2

Sm Sn

=

Si.Sj

Sp.Sj Sq.Sj

Figure 13. Merging an environment node

with an internal or an external node

5.4.6 Merging two start nodes

When we merge, two start nodes, we end up with Fig-

ure 14.

5.4.7 Merging with a null node

Null Nodes are identity nodes. That is to say, Si · S2 =

S j ·Si = S j when Si = Null.

5.4.8 Merging with a dead node

Si ·S j = S j ·Si = Dead when either Si or S j is a dead node.

5.5 Simplification

As we are interested in deadlocks caused by blocking co-

munication along channels, we can simplify away much of

the automaton which is a result of control structure.

• Once we merge two automata, we simply remove all

start nodes, except for one, at the beginning of the au-

tomata. Since start nodes are just empty transitions,



Si

start

Sp Sq

.

Sj

start

Sm Sn

=

Si.Sj

start

Sp.Sm Sp.Sn Sq.Sm Sq.Sn

Figure 14. Merging two start nodes

we connect every incoming edge to an start node, di-

rectly to the start node’s successors.

• Once we have merged all child nodes at a particular

par statement, then we replace the par statement with

this new merged automata. We also get rid of the

start node that occurs at the beginning of the merged

automaton, since the latter now is a part of the parent

automata and does not stand alone.

• We can also remove all internal/external nodes whose

channels are only local to the newly formed automata.

The transitons affected by the removal should be up-

dated though.

• If two states in an automata, have the same value and

same output transitions, then we can merge the two

states together, representing one state.

5.6 Finding deadlocks

Dead nodes occur as we form the product of automata and

encounter deadlocks. Once we encounter a dead node, we

propogate the death up the graph. We mark the predeces-

sor of a dead node as also dead, provided the predecessor is

not an environment node. Since environment nodes force

any one of the outgoing transitions to be valid, an envi-

ronment node dies only if all its children die. At the end

of our merging procedure, if the automaton vanishes to a

dead node, then we have encoutered a deadlock, else if an

void main() {
int i;
chan int a, b;
{

for (i = 0 ; i < 100 ; i++) {
if (i % 10)

next b = 1;
else

next a = 0;
next b = 10;

}
} par {

next a;
next b;

}
}

Figure 15. Modification of Figure 15

automaton can be formed representing all the tasks in the

system, then the program is deadlock safe.

6 The Example

S1

start

S2
S3

a

S4

b

S5

a

S6

b

S7

b

null

Figure 16. The automata for the example in

Figure 15.

Figure 15 is a modification of Figure 3. We have replaced

the first next a of Figure 3 with next b. Since we are

abstracting the data values, there is equal probability of

which branch is taken in the in statement. This program

should report a deadlock, because there is a path in the



S1

start

S2.S3

S4.S3

X

S5.S3

a

S6.S7

b

S2

S4

b

S5

a

S7

b

NULL

Figure 17. The automata from Figure 16 after

merging.

program that deadlocks, although in reality the else branch

is executed and the program does not deadlock during run-

time.

7 Conclusions

We present a divide-and-conquer static deadlock detection

technique for the SHIM concurrent language. We have ex-

panded each SHIM program into a tree of tasks. We have

abstracted each task as an automaton. We abstract data val-

ues. Then we combine tasks using our merge algorithm.

Whenever merge fails, it signifies a deadlock path.

Since we abstract data-dependent control statements to re-

duce the state space, our algorithm can lead to false posi-

tives. We believe this is not a big limitation because pro-

grams can be rewritten with slight modifications to make it

insensitive to data. Also, we have presented a technique to

report inevitable deadlocks i.e, when a program can never

escape from a deadlock.

We would like to build a tool for our algorithm and make

it a standard part of the compilation process. We would

also want to experimently compare our algorithm with the

existing algorithm and report the pros and cons.

Tardieu and Edwards recently added exceptions to SHIM.

We do not take them into account. This is a safe decision,

because we may report a program as erroneous that throws

exception to avoid a deadlcock but we never generate a

false negative.

References

[1] S.A. Edwards, SHIM: A Language for Hardware/-

Software Integration. In Proceedings of Synchronous

Languages, Applications, and Programming (SLAP).

[2] S. A. Edwards and O. Tardieu, SHIM: A Determinis-

tic Model for Heterogeneous Embedded Systems, In

Proceedings of the ACM Conference on Embedded

Software (Emsoft), Jersey City, NJ, September 2005.

[3] O. Tardieu and S.A. Edwards. R-SHIM: Determin-

istic Concurrency with Recursion and Shared Vari-

ables. In Proceedings of the 4rd International Con-

ference on Formal Methods and Models for Codesign

(MEMOCODE)


