
Querying Faceted Databases

Columbia University Technical Report CUCS-013-03

Kenneth Ross∗

Columbia University

kar@cs.columbia.edu

Angel Janevski

Columbia University

aj311@cs.columbia.edu

May 29, 2003

Abstract

Faceted classification allows one to model applications with complex classification hierarchies using
orthogonal dimensions. Recent work has examined the use of faceted classification for browsing and
search. In this paper, we go further by developing a general query language, called the entity algebra,
for hierarchically classified data. The entity algebra is compositional, with query inputs and outputs
being sets of entities. Our language has linear data complexity in terms of space and quadratic data
complexity in terms of time. We compare the entity algebra with the relational algebra in terms of
expressiveness. We also describe an implementation of the language in the context of two application
domains, one for an archeological database, and another for a human anatomy database.

∗This research was supported by NSF grant IIS-0121239.

0

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161437386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

A number of application domains require the mod-
eling of complex entities within classification hier-
archies. For many of these domains, the hierarchy
is where the main complexity of the domain is con-
centrated, with other features of the domain, such
as relationships between entities, being relatively
simple. We aim to develop a data model and a
query language appropriate for such domains.

A monolithic concept hierarchy is one in which
a single large classification tree is used to repre-
sent the application domain. Monolithic hierar-
chies have been criticised for “rigid hierarchical
and excessively enumerative subdivision that re-
sulted in the assignment of fixed ‘pigeonholes’ for
subjects that happened to be known or were fore-
seen when a system was designed but often left no
room for future developments and made no pro-
vision for the expression of complex relationships
and their subsequent retrieval.” [16]

A faceted classification, on the other hand, “does
not assign fixed slots to subjects in sequence, but
uses clearly defined, mutually exclusive, and col-
lectively exhaustive aspects, properties, or charac-
teristics of a class or specific subject. Such aspects,
properties, or characteristics are called facets of
a class or subject, a term introduced into clas-
sification theory and given this new meaning by
the Indian librarian and classificationist S.R. Ran-
ganathan and first used in his Colon Classification
in the early 1930s.” [16]

Computers can make faceted classifications work
for search [4, 5]. Once a domain has been classi-
fied into a number of orthogonal facets, users can
select values for one of more facets independently.
As the search progresses, the candidate set of an-
swers shrinks. The computer can give feedback to
the user on the current size of the candidate answer
set, and can update the search so that categories
with no answer candidates in them are not dis-
played. The user is relieved of knowing the exact
classification system used, and can find an object
by describing its properties. Systems implement-
ing document search for such data models include
Flamenco [3] and FacetMap [2]. A user study of
Flamenco is presented in [9].

Our aim is to go beyond a simple search facil-

ity for faceted hierarchies, and to provide a query
language for the formulation of more sophisticated
queries.

Relational query languages do not provide built-
in facilities for manipulating hierarchies. Hierar-
chies must be simulated. For example, if C1 is
a subclass of C2, one could store C1 and C2 as
separate relations R1 and R2, but then one needs
to keep extra information somewhere (perhaps in
a view) to indicate that members of C2 are also
members of C1. Alternatively, R1 could store all
information about members of C1 and C2 defined
for class C1, and R2 could store extra attributes
for entities also in C2. But then queries asking for
members of C2 need to perform a join. The com-
plexity increases as the depth of the hierarchy in-
creases. Alternative approaches are also possible,
but are cumbersome in other ways. In a sense, the
relational model uses one construct, i.e., the rela-
tion, to represent both relationships of entities to
one another, as well as the structure of the entities
themselves. In domains where the entity structure
is the dominant source of complexity, it is natural
to make a different design choice, namely to make
the “set of entities” the basic data structure. Re-
lated formalisms that also focus on sets of entities
are described in Section 2.10.

Our Approach

We start with faceted classification as our basis.
A domain expert provides the schema, i.e., a col-
lection of orthogonal classifications of the appli-
cation domain into moderately-sized hierarchies.
Our fundamental notion is the “entity set,” a col-
lection of (possibly heterogeneous) entities from
various classes in the hierarchy.

A query in our “entity algebra” takes entity-
sets as input, and produces an entity-set as out-
put. We thus achieve compositionality, meaning
that the inputs to a query and the output from a
query are of the same type, so that complex queries
can be build by composing simpler pieces. Since
entities of different classes may coexist in such
an entity set, the system must determine, from
a query expression and from the schema (but not
from the data; see Section 2.10), which attributes
are available in all entities in the result of a query

1



expression.
We are aiming for a language that, while al-

lowing most queries typical of our target domain,
possesses low data complexity. A benefit of our
approach is that we guarantee linear space com-
plexity and quadratic time complexity for all ex-
pressible queries. In contrast, the relational model
admits queries that can take polynomial time and
space, where the exponent of the polynomial can
be proportional to the number of operators in the
query.

The capacity of our system to write queries
whose answers represent general relationships is
limited. This is a deliberate choice. Our primary
goal is to make the data model and query language
conceptually simple and understandable to users.
Being able to represent complex relationships as
well as complex entity hierarchies would create a
much higher conceptual burden on users, as well
as a higher data complexity.

The system informs the user of all attributes
that are available for querying. This can require
some calculation in a faceted hierarchy, because (a)
attributes are inherited from multiple sources, and
(b) constraints may imply membership in a more
specific class whose attributes then become avail-
able. From the user’s point of view, this process is
transparent: the user is presented with the set of
available attributes for each query or subquery.

We compare the expressive power of the entity
algebra with the relational algebra. In general,
the expressiveness of the two algebras is incompa-
rable. If we focus on “flat” schemas and relational
queries that return just entity-IDs, we can quan-
tify exactly what kinds of relational queries we are
forgoing in order to get our complexity results.
The answer (projections, and joins with cyclic hy-
pergraphs) is reassuring, since such constructs are
typically not crucial for queries on complex hier-
archies.

Our design has been implemented in two pro-
totype systems. One system supports an archeo-
logical database of finds that are organized into a
varietly of categories. A second system supports a
database of human anatomy, that is classified into
hierarchies in various ways. Both systems share a
common infrastructure corresponding to the model
described here. They differ in the definition of

the hierarchies (i.e., the schema) and in the actual
data stored. Additional domains could easily be
incorporated given a schema and the correspond-
ing data.

In Section 2, we describe our framework, intro-
duce the entity algebra, and assess its complexity
and expressiveness. In Section 3 we describe an
implementation of our framework. We conclude in
Section 4.

2 Framework

2.1 Domain Model

The units of operation for our query language are
sets of entities. Each query operates on one or
more sets of entities and always returns a set of
entities. In the archaeology domain, for example,
all excavation finds are entities in the database.
Each find has many attributes and one of the at-
tributes is the entity type, which can be object, i.e.,
an artifact, or context, i.e., a characteristic region
of the excavation site.

Entity sets that have explicitly stored entities
in them are called classes. A schema defines a
finite set of classes. Classes have attributes asso-
ciated with them. An attribute has a name and a
data type. Each entity in a class must have a value
of the appropriate type for each attribute. An en-
tity may belong to multiple classes. For example,
an object can belong to the class “Pots” and the
class “My-Favorite-Objects” simultaneously. Such
an object provides values for all attributes of all
classes it belongs to. Note that we do not require
the creation of a subclass “My-Favorite-Pots” to
store favorite objects that happen to be pots. This
modeling style is what makes faceted classification
different from traditional object-oriented models
of hierarchies. If we did require such classes, there
would be too many of them, as each class could be
intersected with an arbitrary set of other classes.
Figure 1 shows a class hierarchy based on our arche-
ology application. Attributes are shown in square
brackets.

Classes may also have constraints attached to
them. For example, the class “Big-Pots” might
have a constraint on the capacity attribute of the
pots which can belong to that class. Note that

2



entity
[ID]

Context(type=context)

has-type
[type]

Pot (category=pot)
[capacity] Kiln (category=kiln)

[temperature]

Object (type=object)
[category, location]

has-culture

...

...

...

Roman
[emperor-style]

Greek ...

S (capacity=small)

M (capacity=medium)

L (capacity=large)

Figure 1: A Partial Archeology Schema

these are integrity constraints in the traditional
sense, and not view definitions. There may be
large pots in the database that, for some reason,
do not belong to the “Big-Pots” class. Additional
examples of contraints appear in round brackets
in Figure 1. The constraints imply that Pots and
Kilns are disjoint, while an entity may have both
Greek and Roman culture.

Classes are organized into a hierarchy. We
write C1 < C2 to mean that C1 is a subclass of
C2. This is graphically represented by drawing a
line with C2 above C1. The transitive closure � of
the subclass relationship is a partial order with a
single maximal element E, which denotes the class
of all entities. If C1 � C2 then all attributes of C2

are also attributes of C1. Similarly, all constraints
on entities in C2 also apply to entities in C1. The
maximal class E has a single attribute called “ID”.
All values of the ID attribute are unique. If an en-
tity in class “Pots” has ID 123, and an entity in
class “Roman objects” has ID 123, then they refer
to the same real-world artifact, namely a Roman
pot.

Since different classes may use the same name

for attributes, we disambiguate attributes by pro-
viding as a prefix the name of the class in the hi-
erarchy from which a class inherited the attribute.
So, if both C1 and C2 have an attribute style, and
C3 � C1 and C3 � C2, then C3 has two attributes
C1::style and C2::style. In principle, C3 could also
define its own version C3::style. There is no over-
riding of attributes. Also, an attribute that is in-
herited on multiple paths is not replicated.

While we have not explicitly represented rela-
tionships, we note that general relationships can be
simulated by thinking of tuples as entities. This is
the dual of the relational model, in which entities
are modeled as relations.

2.2 Constraints

We assume that a constraint language CL is given.
A typical constraint language may allow equalities
and inequalities over integers, reals, and strings.
Formulas in CL may use as free variables expres-
sions of the form S.A where S is an entity set, and
A is an attribute of S. The domain of S.A corre-
sponds to the type of A in S. We assume that CL

3



includes logical conjunction “∧” and disjunction
“∨”.

As mentioned above, integrity constraints from
CL may be placed on classes. We use the same
constraint language to define operators such as se-
lection; see Section 2.3.

We will say that a constraint language CL is
decidable if the satisfiability of sentences in CL is
decidable. Constraint language implementations
may benefit from the use of a constraint solving
system [11].

2.3 Operators and Queries

A query is formed by applying operators to entity
sets to form new entity sets. The user starts with
a collection of entity sets defined by the classes in
the schema. During a query session, the user can
refer to a previously defined entity set as a subex-
pression. The language defined by the operators
below is called the entity algebra.

If C is a class, then the query expression C

denotes all entities that are members of a class C ′

where C ′ � C. We allow the following operators
where E and E ′ are entity sets, θ is a constraint
with free variables ranging over attributes of E,
and θ′ is a constraint from CL with free variables
ranging over attributes of E and E ′.

• σθ(E) returns all entities from E that satisfy
the condition θ.

• EB<θ′E
′ returns all entities e from E for

which there is some entity e′ in E′ such that
(e, e′) satisfies θ′.

• E ∪ E′ returns all entities that are in either
E or E′; duplicates are omitted.

• E∩E′ returns all entities that are in both E

and E′.

• E −E′ returns all entities that are in E but
not in E′.

This definition of our operators is not quite
complete. If E is a class, then it is clear which
attributes are available for the conditions θ and θ ′

above. However, if E is itself an expression, we
have not yet explained how to determine the at-
tributes available from E. For example, we need to

know how to determine which attributes are avail-
able from the expression C1 ∪C2 which admits en-
tities belonging to two different classes. This issue
is addressed in Section 2.4.

We remark that having entities from different
classes poses no structural problem in our model.
A set of entities can contain entities of many types,
and each entity can have its own set of defined at-
tributes. When one wants to display the entities in
the result of a query, each entity can be displayed
in a way that is appropriate to its type(s). For our
application domains, this kind of result structure
is much more convenient than a relation. In or-
der to show all attributes of all result entities, a
relation would need to have an attribute for each
possible attribute of any entity in the result set,
with most attribute values being null.

2.4 Expression Types

The determination of which attributes are avail-
able from query expressions is not trivial. We
can state a semantic correctness criterion infor-
mally as follows: An attribute A is correct for a
query expression E if and only if, for every possi-
ble database instance, every entity in the result of
E possesses attribute A. This criterion needs to
be slightly refined to allow for the possibility that
a query expression is not well-formed. As a result,
we formulate a recursive formal definition.

Definition 2.1 If an entity set E is a class, then
the correct set of attributes for E is the set of at-
tributes defined for that class in the schema.

Let F be an operator on entity-sets E1, . . . , En,
and suppose that the correct set of attributes for
E1, . . . , En has been determined. Suppose that F

is well-formed, i.e., that conditions in F refer only
to attributes that are correct for E1, . . . , En. Then
an attribute A is correct for the query expression
F (E1, . . . , En) if and only if, for every possible
database instance, every entity in the result of the
query possesses attribute A.

Given this semantic correctness criterion, we
wish to determine syntactic methods for obtaining
the correct set of attributes. We emphasize that
it is up to the system, and not the user, to deter-

4



mine the correct set of attributes. As the user for-
mulates each subquery, the system gives the user
feedback about which attributes are available. We
illustrate some of the subtleties of determining the
correct set of attributes in the examples below.

Example 2.1 If E is an expression such as C−C

or σfalse(C) that is guaranteed to be empty, then
all attributes are correct for E. Thus, in order to
determine the correct attributes for σθ(C) we need
to know whether θ is satisfiable. Similarly, to de-
termine the correct attributes for C − σθ(C) we
need to know whether θ is a tautology. If class C

has an integrity constraint φ, then the above state-
ments apply to θ ∧ φ rather than just θ.

Example 2.2 If C1 and C2 are classes, then C1∩

C2 should include all attributes from both C1 and
C2. On the other hand, C1∪C2 should include only
attributes that are common to both C1 and C2, i.e.,
attributes that are inherited from a common ances-
tor in the hierarchy. Note that there may be more
than one “least” ancestor, because the hierarchy
is not necessarily a tree. A common ancestor is
guaranteed by the presence of the class E.

Example 2.3 In this example we show that cor-
rect attribute sets cannot be computed for each subex-
pression separately, and unioned or intersected in-
crementally.

Consider three classes S, M , and L represent-
ing “small,” “medium” and “large” pots, respec-
tively. Suppose that each such class is a subclass
of the class Pot, which has an attribute “capac-
ity”. Each subclass has a constraint on capacity.
For example, class S would have the constraint ca-
pacity=small. For the sake of argument, suppose
that each of S, M , and L has its own additional
attributes.

Consider the expression (S ∪ M) ∩ (M ∪ L).
The correct attributes of (S ∪M) would be the at-
tributes of class Pot. The same reasoning applies
to (M ∪ L). So it would seem that the attributes
of Pot are precisely the correct attributes of the
whole expression. This reasoning is fallacious. To
see why, let us rewrite the original expression as
the equivalent expression (S ∩M)∪ (S∩L)∪ (M ∩

M) ∪ (M ∩ L). The constraints on each subclass

mean that the only nonempty term in the union is
(M ∩M) = M . Thus, the correct set of attributes
are those of M , which is a strict superset of those
belonging to class Pot.

Example 2.3 shows that we cannot compute
the attribute sets via a function g with g(X∩Y ) =
g(X) ∪ g(Y ).

We now describe our initial typing algorithm
for queries involving selections, unions and inter-
sections.

Algorithm 2.1 We are given an entity algebra
query Q, using just selections, intersections and
unions. Compute an equivalent query T by (a)
pushing the selection conditions down to classes,
using the fact that selections distribute over unions
and intersections, and then (b) rewriting the result
in disjunctive normal form so that T is a union of
conjunctive queries. Replace instances of σθ(σφ(E))
by σθ∧φ(E). Suppose that T = T1 ∪ . . .∪Tn, where
each Ti is a conjunctive query.

For each Ti, do the following. Suppose that
Ti = σθ1

C1∧ . . .∧σθm
Cm, where each Cj is a class

and each θj is a (possibly trivial) condition. If the
constraints on the respective classes are φ1, . . . ,
φm, then determine whether φ1 ∧ . . . ∧ φm ∧ θ1 ∧

. . . θm is satisfiable. If so, compute the attribute
set Ai as the union of all attributes in C1, . . . , Cm.

Return the intersection of all computed attribute
sets Ai. If there were no such sets computed, re-
turn the universal set of all attributes.

Lemma 2.1 Suppose that the constraint language
is decidable. Then Algorithm 2.1 terminates, and
computes exactly the correct set of attributes for
query Q.

Proof. Given the decidability of the constraint
language, all steps of the algorithm terminate. To
show that the algorithm is sound, suppose that at-
tribute A is output by the algorithm. Then at-
tribute A is possessed by some class in each term
Ti that is satisfiable. Thus, every entity satisfying
Q has attribute A. To show completeness, suppose
that some correct attribute A was not output by the
algorithm. Then for some satisfiable term Ti, no
class in Ti has attribute A. Since Ti is satisfiable,
there exists a database instance in which there is

5



an entity belonging to all classes in Ti and satis-
fying the selection conditions of Ti, thus satisfying
Q. However, this entity does not possess attribute
A, contradicting the assumption that A was correct
for Q.

We can extend the algorithm and the correct-
ness result to queries with semijoins.

Definition 2.2 Consider a query E1B<θE2 where
E1 and E2 contain just selections, unions and in-
tersections. Using the construction of Algorithm 2.1,
we can obtain a query Q2 equivalent to E2 in dis-
junctive normal form. We abstract Q2 into a log-
ical formula by forming a logical disjunction of
terms, one per conjunctive term in Q2. Each term
consists of the conjunction of the θ and φ expres-
sions described in the construction. Let us call
the complete formula F2. We can then “abstract”
the semijoin, treating it as if it were a selection
σθ′(E1), where θ′ is defined as θ ∧ F2. In this for-
mula, free variables from E2 are assumed to be ex-
istentially quantified.

The abstracted semijoin removes the require-
ment that matching tuples actually exist in E2,
and replaces it with the broader criterion of whether
matching tuples could possibly exist in E2. The
transformation may introduce extra conjunctions,
disjunctions, and free variables, but the decidabil-
ity of satisfiability in the constraint language is not
compromised.

Example 2.4 Let class C1 have an attribute X,
and suppose classes C2 and C3 both have attributes
Y and Z. Suppose that C2 has an integrity con-
straint stating that Y = Z. Then

C1B<X=Y (C2 ∩ σZ<3(C3))

can be abstracted as σθ(C1), where θ is

∃Y,Z : (X = Y ) ∧ (Y = Z) ∧ (Z < 3)

which can be simplified to X < 3.

Lemma 2.2 A semijoin query is satisfiable if and
only if its abstracted semijoin query is satisfiable.
Further, the same assignments of values to the
variables of each query lead to satisfiability.

Proof. Suppose the semijoin query E1B<θE2 is
satisfied by tuples e1 and e2 in E1 and E2 respec-
tively in some database instance. Then e1 satisfies
the abstracted query, with e2 providing the satisfy-
ing values for the existentially quantified variables.
Conversely, suppose that the abstracted query is
satisfiable with tuple e1 being a satisfying assign-
ment for the variables of E1. Then construct a
tuple e2 in E2 by using a satisfying assignment
for the existentially quantified variable to gener-
ate values for the corresponding attributes in E2.
The construction ensures that e2 satisfies the in-
tegrity constraints of E2. Thus, for some database
instance, the original semijoin query is satisfiable.

The extension to Algorithm 2.1 involves first
applying the transformation of Definition 2.2 to
each semijoin in the query in a bottom-up order.
The transformed query contains only unions, in-
tersections and selections, and can be processed
through Algorithm 2.1 as before. The correctness
argument is a simple extension of Lemma 2.1 us-
ing Lemma 2.2, and the fact that semijoins are
monotonic in their inputs.

Subtraction seems intrinsically harder, due to
its nonmonotonicity. A corresponding abstraction
process requires a constraint language CL that
is closed under negation and universal quantifica-
tion. Further, we cannot analyze subexpressions
of a query independently, because one subexpres-
sion might require the absence of a certain tuple
for satisfiability, while another might require its
presence.

For subtraction we use a sound, but not nec-
essarily complete method for determining the at-
tribute set. For a query Q that includes subtrac-
tion, we form a query Q′ by eliminating all sub-
tractions from Q. Every subexpression of the form
E1 − E2 in Q is replaced simply by E1 in Q′. We
then compute the attributes of Q′ as above.

The query complexity of Algorithm 2.1 is at
least exponential in the size of the query, since
it has to perform a transformation into disjunc-
tive normal form. The complexity of satisfiablility
checking in CL also has obvious implications for
the complexity of Algorithm 2.1.1 Nevertheless,

1In the event that CL is not decidable, then we are forced

to settle for sound but incomplete satisfiability testing in

6



we expect queries to be short, and Algorithm 2.1
to be useful in practice. In Section 2.5 we show
that the language has low data complexity.

Example 2.5 Consider the schema of Figure 1
and suppose we wish to find all kilns located within
a certain distance t of any medium-sized Roman
pot. This kind of query cannot be answered by us-
ing a conventional search facility; a query language
is required. In the entity algebra, we could express
this query as

Kiln B<θ

(

σcapacity=medium(Pot ∩ Roman)
)

where θ is “d(Kiln.location,Pot.location) < t.” All
attributes of both Pot and Roman are available for
use in the selection and semijoin conditions.

2.5 Data Complexity

One of our initial goals was to choose a language
with low data complexity. In this section we demon-
strate that all entity algebra queries can be an-
swered in linear space complexity (with constant
of proportionality 1), and quadratic time complex-
ity.

Lemma 2.3 Entity algebra queries generate out-
put that is no larger than the total size of the union
of the input classes.

Proof. By induction, the output must be a sub-
set of the union of all inputs.

Lemma 2.4 Union-free entity-algebra queries gen-
erate output that is a subset of at least one of the
input classes.

Proof. By induction; this is a property of all
operators other than union.

Lemma 2.5 All entity algebra queries can be com-
puted in time at most quadratic in the total size of
the input.

Proof. Selection can be computed in linear time.
Union, intersection and difference can be computed
in O(n log n) time, where n is the total size of the
inputs. Semijoins can be computed in O(n2) time
by simply comparing all pairs of tuples. Given that

Algorithm 2.1.

the size of the output of a subexpression is bounded
by the size of its inputs (Lemma 2.3), the whole
query takes at most quadratic time.

2.6 Language Extensions

Because one of our initial goals was to obtain low
data complexity, we do not consider desirable lan-
guage extensions that increase the data complex-
ity. Similarly, our model is centered around the
notion of always returning a set of entities in re-
sponse to a query. An extension that broadened
the types of results, such as to return pairs of en-
tities, would weaken the model. We believe that
the uniformity and simplicity of input and out-
puts makes the conceptualization task easier for
the user.

Note that the model allows the representation
of relationships. These relationships can be mod-
eled via foreign keys. In the archeology domain, we
could have an entity called “discovery” with refer-
ences to both the artifact discovered and to the
person who made the discovery. Our emphasis on
entities over relationships means that relationships
are represented as entities. In a sense we make the
opposite choice from the relational model, which
represents entities as relations.

We discuss two language extensions that retain
the spirit of the entity algebra. The first is the ca-
pacity to define new attributes as views. For exam-
ple, suppose that each member of class object has
a recorded (x, y, z) position at which it was discov-
ered, in a local coordinate system. We could define
new global position attributes (gx, gy, gz) derived
from (x, y, z) and the reference point entity coordi-
nates. (Formally, this feature would entail a gen-
eralization of the semijoin operator.) These new
attributes would be available for all members of
class object, including members of its subclasses.
If the view was registered in the database schema,
then the set of available attributes for entities in
each class would be extended appropriately.

The second extension is a form of aggregation.
The idea is to allow a limited form of aggregation
that corresponds (in relational terms) to grouping
by the entity-ID. Thus we could define, for each
person working on the site, the number of discov-
eries made by that person. The result would be

7



represented as a view attribute on class person.
To achieve this functionality, we again extend the
semijoin operation to allow an optional aggregate
computation over the records of the second en-
tity set matching each entity in the first entity set.
Neither of these extensions change the asymptotic
space or time complexity of the language. They
also preserve the central theme of inputs and out-
puts being entity sets.

2.7 Expressive Power

The expressive power of the entity algebra is in-
comparable with relational algebra. Relational al-
gebra is capable of expressing queries that return
tuples of entities, which the entity algebra can-
not. Its space complexity and time complexity are
polynomial, as opposed to the linear space and
quadratic time complexity of the entity algebra.
On the other hand, relational algebra (without
nulls) is not capable of expressing a query anal-
ogous to Example 2.3 in which the attributes of
class M are available in the result.

Nevertheless, we can compare the expressive
power of the two languages in the context of a flat
hierarchy. Imagine each class as a relation, and
consider a query expressed in relational algebra
over those flat relations. For comparability, sup-
pose we limit ourselves to relational queries that
return a single column of entity-IDs. Under what
circumstances can such a query be expressed in our
language? The answer to this question will give us
a sense of what kinds of relational queries we are
giving up in order to obtain our more limited lan-
guage.

Lemma 2.6 Let S be a relational schema in which
every relation has a column named ID that is known
to be a key. Let Q be a relational algebra query that
involves only joins, and suppose R.ID is a column
of the output of Q, where R is a relation in S.
Then πR.ID(Q) is expressible in the entity algebra
if the join hypergraph [15] for Q is acyclic.

Proof. This result uses a result of Yannakakis
[17] (see also [15]). The joins can be ordered so
that “ears” [15] of the join hypergraph are removed
one by one, ending with R. Because of the special
form of the projection (one attribute from relation

R), no attributes from an inner subexpression are
needed in an outer subexpression, and joins can be
replaced with semijoins.

Lemma 2.6 suggests that the entity algebra
cannot express cyclic joins. The intuition is given
in Example 2.6. Since queries with cyclic hyper-
graphs are rare, this loss of power does not seem
like a major sacrifice.

Example 2.6 Consider the relational query

πR.ID(R ./(R.A=S.B)∧(R.C>T.D) (S ./S.F=T.G T )).

The join hypergraph is cyclic. There is no way to
express this query using only semijoins, because no
matter which pair of relations we semijoin first, we
need attributes from both in the remainder of the
query. If we include two semijoins, (e.g., SB<T

and TB<S) then we lose the association between
the S and T tuples.

Theorem 2.7 The entity algebra can express any
relational query that can be written as a combi-
nation, via the set operations union, intersection,
and difference, and via local selections, of queries
satisfying the conditions of Lemma 2.6.

Proof. Local selections can be pushed down to
base relations. Each component query can then be
expressed via semijoins as shown in Lemma 2.6.
The set operations operate on just IDs, and can be
simulated by corresponding set operations in the
entity algebra.

Since set operations distribute over joins, the
class of queries that can be written as described
in Theorem 2.7 is fairly broad. Conspicuously ab-
sent from Theorem 2.7 is the projection operator.
Example 2.7 shows an example where the entity al-
gebra cannot express a relational query involving
projection.

Example 2.7 Consider the relational query

πR.ID(R ./(R.C>F ) (πF S − πFT ))

where attribute F (belonging to S and T ) is dis-
tinct from ID. The entity algebra does not provide
facilities for projection, and difference can only be
applied to entity sets including an ID attribute.

8



Thus we cannot write a subexpression correspond-
ing to (πF S−πFT ). Such an expression would not
even be an entity set. Further, since RB<θ(S −

T ) is not, in general, equivalent to (RB<θS) −

(RB<θT ), we cannot write this expression as the
difference of expressions that include an ID at-
tribute.

The lack of a projection operator means that
all operations apply to entities “as a whole” and
not to arbitrary subsets of attributes. This is a
reasonable choice in our context, in which entities
are the central concept, and manipulations of at-
tributes without reference to their corresponding
entities is unlikely to be common.

2.8 Virtual Classes

Consider Example 2.3, and suppose that we wish
to insist that a pot must be classified as either
small, medium, or large. If we could represent such
information, then we should be able to infer that
the expression

σcapacity=medium(Pot)

has type M . Without the extra information, there
may be a pot with medium capacity in class Pot
(and not in its subclasses), meaning that the type
of the expression above would be Pot rather than
M .

The intuitive way to specify this extra infor-
mation would be to formulate a sentence in the
constraint language CL stating that any member
of class Pot must be in S ∪M ∪L. Because such a
constraint relates more than one class, it places ad-
ditional requirements on CL beyond those we have
assumed so far. Further, an explicit constraint re-
lating Pot with S ∪M ∪L is vulnerable to schema
changes. If another category “extra-large pots”
was to be added as a subclass of Pot, then the
constraint on Pot would also need to be changed.

Rather than requiring an extended constraint
language, we propose a simpler solution to repre-
sent the kind of constraint mentioned above. A
non-leaf class may be declared as virtual, which
means that it has no explicit members beyond those
of its subclasses. In order to achieve the correct
type for a query expression Q, we rewrite Q. A

virtual class C mentioned in Q is replaced by the
expression C1∪ . . .∪Ck, where the Ci are the sub-
classes of C. Subclasses that are themselves virtual
are recursively rewritten. The resulting query Q′

is equivalent to the original query Q on instances
in which virtual classes contain no members be-
yond those of their subclasses. We then type Q′

as described in Section 2.4.

Example 2.8 Consider the query Q given by

σcapacity=medium(Pot)

on the schema of Example 2.3, but in which we
declare class Pot as virtual. We rewrite Q as Q′,
i.e.,

σcapacity=medium(S ∪ M ∪ L).

According to Algorithm 2.1, the type of Q′ is M .

2.9 Presentation Layer

While writing queries using the entity algebra al-
lows one to define entity sets in a compositional
way, users may like to display an answer set us-
ing a more elaborate language. Entities should be
viewed in ways appropriate to their types. For ex-
ample, entities with image attributes could have
those images displayed. Entities with foreign keys
to other entities may have the referenced entity
displayed as a component of the original entity.
Entities belonging to multiple classes should have
the individual displays concatenated in some mean-
ingful way. Entities in an entity set may be hetero-
geneous; each entity in the set may be displayed
differently.

In principle, the presentation language may be
more expressive (and have higher complexity) than
the entity algebra. We are willing to accept this
dichotomy because (a) the presentation language
does not have to be compositional, (b) the pur-
pose of the presentation language is different from
the query language, and (c) the fundamental con-
structs of the language may be different. A famil-
iar example of such separation is the “order by”
clause in SQL, which can only be applied at the
top-level of a query. A relation is fundamentally an
unordered structure. Yet, for the purposes of pre-
sentation, users benefit from getting their answers

9



in a particular order. Geographical Information
Systems provide another example, where the ren-
dering of the query results is (largely) independent
of the definition of the query.

The presentation layer can be developed sepa-
rately from the query language. Custom presenta-
tions of entity sets can be applied at each point in a
sequence of intermediate queries, but they will not
affect the outcome of subsequent query operations
applied to these intermediate queries.

In Section 3 we describe an implementation
that makes particular choices about how entities
are presented. However, alternative presentation
language designs are possible.

2.10 Related Work

Our work is orthogonal to work that look at how
to model domain hierarchies using XML or some
other standard interchange format. In principle,
our query system could use any kind of hierarchy
representation, although it is likely to work best
for one that has a faceted organization.

In systems like Flamenco, there is no formal
schema. Entities are tagged with metadata de-
scribing their attributes. After a partial search
that results in some entity set S, each attribute
mentioned by some entity in S is available for
further querying. (When a user uses such an at-
tribute, he or she is implicitly limiting the result
set to entities having that attribute.) This kind
of approach is typical of Information Retrieval ap-
plications in which one does not have control over
the underlying data. It is also typical of semistruc-
tured data models and query languages, although
see [13, 14] for ways to infer an approximate schema
from semistructured data.

In contrast, we take an approach more typi-
cal of conventional structured databases, in which
there is a formal schema, and the integrity of the
data with respect to the schema can be ensured.
For us, an attribute cannot be accessed unless we
know that all entities in the underlying entity set
possess the attribute. Advantages of our approach
include:

• The correctness of a query statement can be
ensured at compile-time, without running in-
termediate queries. A single overall plan for

the final query can be generated, rather than
forcing a subexpression-by-subexpression eval-
uation.

• The structure of the output of a query does
not change in response to data updates. This
is particularly important for the correctness
of view definitions.

• Schema conflicts can be resolved. For exam-
ple, a schema-less system would have diffi-
culty disambiguating metadata tags that hap-
pened to share the same attribute name.

Note that we could simulate the Flamenco-style
approach by showing all attributes of all entities
as part of the presentation language; to process a
selection on an attribute A present in just some
members of an entity set S, the system can first
intersect S with the class defining attribute A.

Object-oriented models [12] organize the data
hierarchically, and make “objects” the central con-
cept. However, object-oriented models are usually
extensions of object-oriented programming languages,
in which an object has a single type. The only way
to obtain objects with the characteristics of multi-
ple types is to define new classes that inherit from
multiple parent classes (multiple inheritance). In
general, such an approach requires a combinato-
rial number of classes, corresponding to all seman-
tically possible combinations of classes.

Our work can be viewed as an algebraic for-
mulation of a limited description logic [6, 7, 8],
with roles being representable by the constraint
language. The algebraic formulation allows us to
explcitly compare the entity algebra with the re-
lational algebra, and to directly use database en-
gines that implement relational operations. Our
representation of hierarchies is similar to that of
description logics and conventional semantic data
models [10].

3 Implementation

We now give a brief overview of our implemen-
tation to demonstrate how it supports the entity
algebra. A more complete description of our im-
plementation will be presented elsewhere. We have

10



implemented two applications, one based on hu-
man anatomy and one based on an archeological
excavation. For brevity, we describe just the arche-
ology application, which is being used for a real
archeological excavation [1].

Our system stores its underlying information
in a special format using a commercial relational
database system. A query engine interacts with
the underlying database to implement the entity
algebra operations. A lightweight client, imple-
mented using Java Servlets, provides a user inter-
face that interacts with the query engine over the
Internet through a browser. Data within our sys-
tem cannot be directly updated; it may be periodi-
cally refreshed from the external source database(s).

The query engine takes a query formulated in
the entity algebra, expands all subexpressions, and
converts the entire query into an SQL query over
the stored data. The results of the query are re-
turned to the user interface. The current imple-
mentation uses a very simple constraint language:
a basic constraint is an equality between an at-
tribute value and a constant. Distinct constants
are not equal. Basic constraints can be combined
using conjunction and disjunction.

The user interface uses text to express query
operations rather than explicitly presenting the al-
gebra, so that users familiar with the application
domain (but not with the algebra) can use the sys-
tem effectively. The interface is designed so that
complex queries can be assembled from simpler
pieces, where each piece corresponds to a subex-
pression in an entity algebra query. Users have
access to past query results when formulating sub-
sequent queries. The user interface also supports
shortcuts, so that frequently accessed classes or
subexpressions are pre-loaded into the list of past
query results. Commonly used relationships are
also directly expressed. For example, if selecting
objects based on the distance between the object’s
location and some other location is a commonly
used operation, the distance function on points is
made available for use within semijoin operations.

The presentation layer is implemented through
code plug-ins. As the client application is imple-
mented using Java servlets, the details and style of
the presentation can include formatted text, im-
ages, audio, and video.

Figure 2 shows a screenshot of the current user
interface for the query system.

4 Conclusions

We have described the entity algebra, a query lan-
guage designed for posing queries over complex
faceted hierarchies. We have examined its com-
plexity and expressive power. It achieves linear
space and quadratic time data complexity. Yet it
retains most of the expressive power of the rela-
tional algebra for queries returning sets of entities;
only projections and joins with cyclic hypergraphs
are “excluded.” An implementation of the lan-
guage is described, with particular focus on an ap-
plication in archeology.

References

[1] The Amheida project.
http://www.mcah.columbia.edu/amheida.

[2] The FacetMap project. http://facetmap.com.

[3] The Flamenco project.
http://bailando.sims.berkeley.edu/flamenco.html.

[4] M. J. Bates. How to use controlled vocabular-
ies more effectively in online searching. On-
line, 12(6):45–56, 1988.

[5] M. J. Bates. Indexing and access for digital
libraries and the internet: Human, database,
and domain factors. Journal of the American
Society for Information Science, 49(13):1185–
1205, 1998.

[6] A. Borgida. Description logics in data man-
agement. IEEE Transactions on Knowledge
and Data Engineering, 7(5):671–682, 1995.

[7] A. Borgida, M. Lenzerini, and R. Rosati. De-
scription logics for databases. In The Descrip-
tion Logic Handbook, pages 472–494. Cam-
bridge University Press, 2002.

[8] D. Calvanese, G. De Giacomo, and M. Lenz-
erini. Description logics: Foundations for
class-based knowledge representation. In

11



managing and
selecting queries

display output

additional
information

(e.g. long query
description)

classes

temporary queries

saved queries

select presentation

query actions

tools

inferred types

class types

Figure 2: User interface screenshot

Proc. of the 17th IEEE Sym. on Logic in
Computer Science, pages 359–370, 2002.

[9] J. English et al. Flexible search and

navigation using faceted metadata. Sub-
mitted for publication; available from
http://bailando.sims.berkeley.edu/flamenco.html,
2002.

12



[10] R. Hull and R. King. Semantic database mod-
eling: Survey, applications, and research is-
sues. ACM Computing Surveys, 19(3):201–
260, 1987.

[11] J. Jaffar, S. Michaylov, P. J. Stuckey, and
R. H. C. Yap. The CLP(R) language and
system. ACM Transactions on Program-
ming Languages and Systems (TOPLAS),
14(3):339–395, 1992.

[12] A. Kemper and G. Moerkotte. Object-
Oriented Database Management. Prentice
Hall, 1994.

[13] S. Nestorov, S. Abiteboul, and R. Motwani.
Infering structure in semistructured data.
SIGMOD Record, 26(4):39–43, 1997.

[14] S. Nestorov, S. Abiteboul, and R. Motwani.
Extracting schema from semistructured data.
In Proceedings of the ACM SIGMOD confer-
ence, pages 295–306, 1998.

[15] J. D. Ullman. Principles of Database and
Knowledge Base Systems. Computer Science
Press, Rockville, MD, 1989. (Two volumes).

[16] B. S. Wynar. Introduction to Cataloging and
Classification. Libraries Unlimited, Inc., 8th
edition, 1992.

[17] M. Yannakakis. Algorithms for acyclic
database schemes. In Proceedings of the
VLDB conference, pages 82–94, 1984.

13


