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Abstract. Web pages often contain clutter (such as unnecessary images and extraneous links) around the 
body of an article that distracts a user from actual content. Extraction of “useful and relevant” content 
from web pages has many applications, including cell phone and PDA browsing, speech rendering for 
the visually impaired, and text summarization. Most approaches to making content more readable 
involve changing font size or removing HTML and data components such as images, which takes away 
from a webpage’s inherent look and feel. Unlike “Content Reformatting”, which aims to reproduce the 
entire webpage in a more convenient form, our solution directly addresses “Content Extraction”. We 
have developed a framework that employs an easily extensible set of techniques. It incorporates 
advantages of previous work on content extraction. Our key insight is to work with DOM trees, a W3C 
specified interface that allows programs to dynamically access document structure, rather than with raw 
HTML markup. We have implemented our approach in a publicly available Web proxy to extract 
content from HTML web pages. This proxy can be used both centrally, administered for groups of users, 
as well as by individuals for personal browsers. We have also, after receiving feedback from users about 
the proxy, created a revised version with improved performance and accessibility in mind. 

Categories and Subject Descriptors.1I.7.4 [Document and Text Processing]: Electronic Publishing; 
H.3.5 [Information Storage and Retrieval]: Online Information Services – Web-based Services 

General Terms. Human Factors, Algorithms, Standardization. 

Keywords. DOM trees, content extraction, reformatting, HTML documents, accessibility, speech 
rendering, text summarization. 
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1. Introduction 

Web pages are often cluttered with distracting features around the body of an article that distract 
the user from the actual content they’re interested in. These “features” may include pop-up ads, flashy 
banner advertisements, unnecessary images, or links scattered around the screen. Automatic extraction 
of useful and relevant content from web pages has many applications, ranging from enabling end users 
to accessing the web more easily over constrained devices like PDAs and cellular phones to providing 
better access to the web for the visually impaired.  

Most traditional approaches to removing clutter or making content more readable involve 
increasing font size, removing images, disabling JavaScript, etc., or a combination of these methods, all 
of which eliminate the webpage’s inherent look-and-feel. Examples include WPAR [18], Webwiper [19] 
and JunkBusters [20]. All of these products involve hardcoded techniques for certain common web page 
designs as well as fixed “blacklists” of advertisers. This can produce inaccurate results if the software 
encounters a layout that it hasn’t been programmed to handle. Another approach has been content 
reformatting which reorganizes the data so that it fits on a PDA; however, this does not eliminate clutter 
but merely reorganizes it. Opera [21], for example, utilizes their proprietary Small Screen Rendering 
technology that reformats web pages to fit inside the screen width. We propose a “Content Extraction” 
technique that can remove clutter without destroying webpage layout, making more of a page’s content 
viewable at once. These techniques should also work on web pages made up of multiple content bodies, 
even if they are separated by the distracting features or with them interspersed within the different 
sections of content. 

Content extraction is particularly useful for the visually impaired and blind [48]. A common 
practice for improving web page accessibility for the visually impaired is to increase font size and 
decrease screen resolution; however, this also increases the size of the clutter, reducing effectiveness. 
Screen readers for the blind, like Hal Screen Reader by Dolphin Computer Access [46] or Microsoft’s 
Narrator [47], don’t usually automatically remove such clutter either and often read out full raw HTML. 
Webaim Screen Reader [49] and IBM Homepage Reader [50] do attempt to enhance usability by 
pruning out duplicate pieces of information however they tend to be slow and do not give enough 
control to the user in directly selecting what a user may be interested in [48]. Therefore, both groups 
benefit from extraction, as less material must be read to obtain the desired results.  

Natural Language Processing (NLP) and information retrieval (IR) algorithms can also benefit 
from content extraction, as they rely on the relevance of content and the reduction of “standard word 
error rate” to produce accurate results [13], where the error rate is number of words incorrectly 
processed from the original format. Content extraction allows the algorithms to process only the 
extracted content as input as opposed to cluttered data coming directly from the web [14]. Currently, 
most NLP-based algorithms require writing specialized extractors for each web domain [14][15]. While 
generalized content extraction is less accurate than hand-tailored extractors, they are often sufficient [22] 
and reduce labor involved in adopting information retrieval systems. 

While many algorithms for content extraction already exist, it appears that few working 
implementations can be applied in a general manner. Our solution employs a series of techniques that 
address the aforementioned problems, and makes it easy to implement and experiment with additional 
algorithms. 
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In order to analyze a web page for content extraction, we pass web pages through an open source 
HTML parser, which creates a Document Object Model (DOM) tree, an approach also adopted by Chen 
et al. [56]. The Document Object Model (www.w3.org/DOM) is a standard for creating and 
manipulating in-memory representations of HTML (and XML) content. By parsing a webpage's HTML 
into a DOM tree, we can not only extract information from large logical units similar to Buyukkokten’s 
“Semantic Textual Units” (STUs, see [3][4]), but can also manipulate smaller units such as specific links 
within the structure of the DOM tree. In addition, DOM trees are highly transformable and can be easily 
used to reconstruct a complete webpage. Finally, increasing support for the Document Object Model 
makes our solution widely portable. 

One caveat is important to note: Determining the specific content that an arbitrary author 
intended to portray or, more significantly from our perspective, which an arbitrary user prefers to read, 
is very hard. Crunch extracts the “content” heuristically, with heuristics customizable by an 
administrator and/or by a savvy user; there is probably no precise “one size fits all” algorithm that could 
achieve this goal. In particular, we do not attempt to model either author or user tasks, nor their 
corresponding context or intentions, but any non-intrusive approach to doing so would also likely be 
heuristic and thus also imprecise. Therefore, one of the limitations of our framework is that Crunch may 
remove items from the web page that the user may be interested in, and may present content that the user 
is not particularly interested in. One way to ameliorate this restriction may be to summarize all removed 
materials in meaningful chunks, and produce this information in another pane or at the bottom of the 
page; another approach may be to “learn” on a per-user and/or per website basis, e.g., from data 
gathered via user studies like the one we report. 

In section 2, we discuss the existing solutions out there. In sections 3 and 4, we describe our 
approach at an abstract level and addressing system implementation issues, respectively. Section 5 
presents the initial findings from our ongoing user study. We consider potential future work in section 6, 
finally concluding in section 7. The appendices present additional materials for interested readers. 

2. Related Work 

 There is a large body of related work in content identification and information retrieval that 
attempts to solve similar problems using various other techniques. Finn et al. [1] discuss methods for 
content extraction from “single-article” sources, where content is presumed to be in a single body. The 
algorithm tokenizes a page into either words or tags; the page is then sectioned into 3 contiguous 
regions, placing boundaries to partition the document such that most tags are placed into outside regions 
and word tokens into the center region. This approach works well for single-body documents, but 
destroys the structure of the HTML and doesn’t produce good results for multi-body documents, i.e., 
where content is segmented into multiple smaller pieces, common on Web logs (“blogs”) like Slashdot 
(http://slashdot.org). In order for content of multi-body documents to be successfully extracted, the 
running time of the algorithm would become polynomial time with a degree equal to the number of 
separate bodies, i.e., extraction of a document containing 8 different bodies would run in O(N8), N being 
the number of tokens in the document. 

McKeown et al. [8][15] similarly use semantic boundaries to detect the largest body of text on a 
webpage (by counting the number of words) and classify that as content. This method works well with 
simple pages. However, this algorithm produces noisy or inaccurate results handling multi-body 
documents, especially with random advertisement and image placement. 



Automating Content Extraction of HTML Documents 

 4

Rahman et al. [2] propose another technique that uses structural analysis, contextual analysis, 
and summarization. The structure of an HTML document is first analyzed and then decomposed into 
smaller subsections. The content of the individual sections can then be extracted and summarized. 
Contextual analysis is performed with proximity and HTML structure analysis in addition to “natural 
language processing involving contextual grammar and vector modeling” [2]. However, this proposal 
has yet to be implemented. Furthermore, while the paper lays out prerequisites for content extraction, it 
doesn’t propose methods to do so. 

Many approaches have been suggested for formatting web pages to fit on the small screens of 
cellular phones and PDAs. For instance, the Opera browser [16] uses the handheld CSS media type. 
Bitstream ThunderHawk [17] uses intelligent font resizing: “[It] renders the text using the Kaasila 
family of fonts, fine tunes images using ThunderHawk’s graphic scaling, compacts the data, and sends 
the page to the ThunderHawk client on the wireless device” [27]. The Skweezer Proxy [28] simply 
reorganizes the physical layout of the webpage retaining all original content. In general, the reformatting 
for small screens approaches basically end up only reorganizing the content of the webpage to better fit 
on the constrained device but still require a user to scroll and hunt for content. 

Buyukkokten et al. [3][10] define “accordion summarization” as a strategy where a page can be 
shrunk or expanded much like the instrument. They also discuss a method to transform a web page into 
a hierarchy of individual content units called Semantic Textual Units, or STUs. First, STUs are built by 
analyzing syntactic features of an HTML document, such as text contained within paragraph (<P>), 
table cell (<TD>), and frame component (<FRAME>) tags. These features are then arranged into a 
hierarchy based on the HTML formatting of each STU. STUs that contain HTML header tags (<H1>, 
<H2>, and <H3>) or bold text (<B>) are given a higher level in the hierarchy than plain text. This 
hierarchical structure is finally displayed on PDAs and cellular phones, but typically showing different 
content than the original work. In particular, once the STU has been identified, Buyukkokten, et al. 
[3][4] perform summarization on the STUs to produce the content that is then displayed on PDAs and 
cell phones. While Buyukkokten’s hierarchy is similar to our DOM tree-based model, DOM trees 
remain highly editable because they abstract the tags away from the content, unlike the STUs, but can 
easily be reconstructed back into a complete webpage – although summarization filters could similarly 
be applied to select subtrees. Further, DOM trees are a widely-adopted W3C standard, easing support 
and integration of our technology.  

Kaasinen et al. [5] discuss methods to divide a web page into individual units likened to cards in 
a deck. Like STUs, a web page is divided into a series of hierarchical “cards” that are placed into a 
“deck”. This deck of cards is presented to the user one card at a time for easy browsing. The paper also 
suggests a simple conversion of HTML content to WML (Wireless Markup Language), resulting in the 
removal of simple information such as images and bitmaps from the web page so that scrolling is 
minimized for small displays. The cards are created by this HTML to WML conversion proxy [5]. While 
this reduction has advantages, the method proposed in that paper shares problems with STUs. The 
problem with the deck-of-cards model is that it relies on splitting a page into tiny sections that can then 
be browsed as windows. But this means that it is up to the user to determine on which cards the actual 
contents are located, and since this system was used primarily on cell phones, scrolling through the 
different cards in the entire deck soon became tedious. 

Chen et al. [56] propose a similar approach to the deck of cards method, except in their case 
using the DOM tree for organizing and dividing up the document. They propose showing an overview of 
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the desired page so the user can select the portion of the page he/she is truly interested in. When 
selected, that portion of the page is zoomed into full view. One of their key insights is that their 
overview page is actually a collection of semantic blocks that the original page has been broken up into, 
each one color coded to show the different blocks to the user. This, very nicely, provides the user with a 
table of contents from which to select the desired section. While this is an excellent idea, it still involves 
the user clicking on the block of choice, and then going back and forth between the overview and the 
full view. 

None of these concepts solve the problem of automatically extracting just the content, although 
they do provide simpler means in which the content can be found. These approaches perform limited 
analysis of web pages themselves and in some cases information is lost in the analysis process. By 
parsing a webpage into a DOM tree, we have found that one not only gets better results but has more 
control over the exact pieces of information that can be manipulated while extracting content. 

3. Our Approach 

Our solution employs multiple extensible techniques that incorporate the advantages of the 
previous work on content extraction like accordion summarization and content discovery, and attempts 
to avoid the common pitfalls like noisy results and slow performance. Since a content extraction 
algorithm can be applied to many different applications, for example in the fields of NLP and IR, as well 
as assistive technologies like those that help the visually impaired, we implemented it so that it can be 
easily used in this variety of cases. Through an extensive set of preferences, the extraction algorithm can 
be highly customized for different uses. These settings are easily editable through the GUI, through 
method calls that have been exposed through a simple API, or direct manipulation of the settings file on 
disk. The GUI itself can also easily be easily integrated (as a Swing JPanel for Crunch 1.0 or as a 
standard widget for Crunch 2.0) into any Java project, or one can customize it directly. The content 
extraction algorithm is also implemented as an interface for easy incorporation into other programs. The 
content extractor’s broad set of features and customizability allow others to easily add their own version 
of the algorithm to any product. Further discussion on Crunch as a framework can be found in Section 
4.2. 

In order to analyze a web page for content extraction, the page is first passed through an HTML 
parser that creates a DOM tree representation of the web page. We use OpenXML [21] as our HTML 
parser in Crunch 1.0 and NekoHTML [23] in Crunch 2.0. One of the advantages of using these HTML 
parsers is that they take care of correcting the HTML. HTML on the Internet can be extremely 
malformed and most popular browsers like Internet Explorer and Mozilla are able to handle incorrect 
HTML by making the closest guess to what the HTML should be; however, DOM parsers are highly 
susceptible as parsing is usually done on a per tag basis. Since the parsers that we chose correct the 
HTML before forming the DOM tree, we do not have to deal with error resiliency. Once parsed, the 
resulting DOM document can be seamlessly shown as a webpage to the end-user by flattening the tree 
and producing back the HTML.  

This process accomplishes the steps of structural analysis and structural decomposition 
analogous to those done by several other techniques (see Section 2). The DOM tree is hierarchically 
arranged and can be analyzed in sections or as a whole, providing a wide range of flexibility for our 
extraction algorithm. Just as the approach mentioned by Kaasinen et al. modifies the HTML to 
restructure the content of the page, our content extractor navigates the DOM tree recursively, using a 
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series of different filtering techniques to remove and adjust specific nodes and leave only the content 
behind. In our first attempt, Crunch 1.0, we designed a one-pass system that extracted content by 
running a series on filters one after the other, i.e., the selected filters just ran sequentially on the output 
produced by the previous filters. This caused problems at times when parts of a webpage that the user 
wanted were removed. In Crunch 2.0, we amended this by making it a multi-pass system. Here we keep 
multiple copies of a webpage in memory and a filter checks for the optimal copy to work on. A large 
number of examples demonstrating the results of different filter settings are shown in Appendix A. 

Crunch as a framework handles the webpage, but the filters that are plugged into the framework 
make it dynamic and customizable. The framework defines a standard API, shown in Appendix B, 
which a programmer implements when creating a plug-in. The programmer also decides the order in 
which the filters are run in order to maximize the benefit of each one. An example construction of a 
Crunch 2.0 plug-in is given in Section 4.2. Each of the filters can be easily turned on and off either by 
the user, the administrator or the programmer, and can potentially be customized to a certain degree 
through a GUI if provided by the programmer. 

There are two sets of filters that we have implemented, with different levels of granularity, in 
both Crunch 1.0 and 2.0. The first set of filters simply ignores tags or specific attributes within tags but 
keep track of them in memory. With these filters, images, links, scripts, styles, and many other elements 
can be quickly removed from the web page. This process of filtering is similar to Kaasinen’s conversion 
of HTML to WML. However, the second set of filters is more complex and algorithmic, providing a 
higher level of content extraction. This set, which can be extended, currently consists of the 
advertisement remover, the link list remover, the removed link retainer and the empty table remover. In 
Crunch 2.0, we also added filters that allow the user to control the font size and word wrapping of the 
output, and heuristic functions guiding the multi-pass processor, to evaluate the acceptability of the 
output as each filter pass edits the DOM tree. This ensures that we don’t suffer from some of the pitfalls 
of version 1.0 where occasionally pages returned null outputs after passing through Crunch, e.g., link 
heavy pages like www.msn.com, as shown later in Figures 11 and 12. Finally, in the newer version, we 
have attempted to allow for greater control on most of the filters by adding supplementary options. For 
example, users now have the ability of controlling, at a finer granularity, complex web pages where 
certain HTML structures are embedded within others, e.g., within table cells. 

The advertisement remover uses a common and efficient technique to remove advertisements. As 
the DOM tree is parsed, the values of the “src” and “href” attributes throughout the page are surveyed to 
determine the servers to which the links refer. If an address matches against a list of common 
advertisement servers, the node of the DOM tree that contained the link is removed. This process is 
similar to the use of an operating systems-level “hosts” file to prevent a computer from connecting to 
advertiser hosts. Hanzlik [6] examines this technique and cites a list of hosts, which we use for our 
advertisement remover. In order to avoid the common pitfall of deploying a fixed blacklist of 
advertisers, our software also periodically updates the list from http://accs-net.com, a site that specializes 
in creating such blacklists. This is a technique employed by most ad blocking software. 

The link list remover employs a filtering technique that removes all “link lists”, which are bodies 
of content either in the page or within table cells for which the ratio of the number of links to the number 
of non-linked words is greater than a specific threshold (known as the link/text removal ratio). When the 
DOM parser encounters a table cell, the Link List Remover tallies the number of links and non-linked 
words. The number of non-linked words is determined by taking the number of letters not contained in a 
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link and dividing it by the average number of characters per word, which we preset as 5 (although it may 
be overridden by the user and could, in principle, be derived from the specific web page or web 
domain). If the ratio is greater than the user-determined link/text removal ratio (default ratio is set to 
0.35), the content of the table cell (and, optionally, the cell itself) is removed. This algorithm succeeds in 
removing most long link lists that tend to reside along the sides of web pages while leaving the text-
intensive portions of the page intact.  

After these steps, we have found that numerous tables that are either completely empty or have 
several empty cells take up large swaths of space remain on the webpage. The empty table remover 
removes tables that are empty of any “substantive” information. The user determines, through settings, 
which HTML tags should be considered to be substance and how many characters within a table are 
needed to be viewed as substantive, set much like the word size or link-to-text ratio settings set earlier. 
This does not require much prior knowledge of HTML since the syntax of the markup language is 
simple and matches words from the English language closely, e.g., table, form, etc. The table remover 
checks a table for substance after it has been parsed through the filter. If a table has either no substance 
or less than some user defined threshold, it is removed from the tree. This algorithm effectively removes 
any tables left over from previous filters that contain small amounts of unimportant information. This 
filter is typically run towards the end to maximize its benefit. 

While the above filters remove non-content from the page, the removed link retainer adds link 
information back at the end of the document to keep the page browsable. The removed link retainer 
keeps track of all the text links that are removed throughout the filtering process. After the DOM tree is 
completely parsed, the list of removed links is added to the bottom of the page. In this way, any 
important navigational links that were previously removed remain accessible, and since the parser had 
parsed them initially as separate units, each menu or navigational link is kept intact and they can all be 
viewed without any loss of original setup or style. 

After the entire page is parsed and modified appropriately, it can be output in either HTML or as 
plain text (filters could be added to translate to another output format such as WML). The plain text 
output removes all the tags and retains only the text of the site, while eliminating most white space. The 
result is a text document that contains the main content of the page in a format suitable for 
summarization, speech rendering or storage. This technique is significantly different from Rahman et al. 
[2], which states that a decomposed webpage should be analyzed using NLP techniques to find the 
content. It is true that NLP techniques may produce better results, but at the cost of far more time 
consuming processing. Our algorithm doesn’t technically find the content but instead eliminates likely 
non-content. In this manner, we can still process and return results for sites that don’t have an explicit 
“main body”. 

Crunch, however, does have some limitations: 

1) Crunch cannot filter non-HTML content like Flash. It allows a boolean choice of whether to keep or 
remove such structures but it can't help edit or filter within the animation itself. 

2) Dynamically generated pages often aren't filtered so nicely for the same reason as above. The script, 
whether it be javascript, ASP or JSP is either left completely disabled, causing dynamic pages to not 
load correctly, or left on which leaves all respective scripts active on the page. 
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3) Crunch does not distinguish between different users. There is only one set of options, whether an 
individual is using the proxy or whether it is set up as groupware. 

4) There are no artificially intelligent heuristics or machine learning algorithms implemented yet, e.g., to 
learn a user’s browsing patterns and change user (or group) settings dynamically. 

 

4. Implementation 

4.1 CRUNCH 1.0 

4.1.1. Overview 

In order to make our extractor easy to use, we implemented it as a web proxy (program and 
instructions are accessible at http://www.psl.cs.columbia.edu/proxy). The proxy can be used as a 
personal filter by individual users as well as a central system for groups of people. In the case where 
Crunch is set up as groupware, users can access the proxy by simply setting their browser to do so, as 
most modern browsers can now point to external proxies for filtering content. This allows an 
administrator to set up the extractor and provide content extraction services for a group. The proxy is 
coupled with a graphical user interface (GUI) to customize its behavior. The separate screens of the GUI 
are shown in Figures 1-3. Figure 1 shows the very broad options that can be turned off or on that ignore 
certain tags completely. Figure 2 has more advanced options that give more granular control, while 
Figure 3 show controls on output. The current implementation of the proxy is in Java for cross-platform 
support, and has been successfully tested on Windows, MacOS, Linux and Solaris. 

The Content Extraction framework itself has a complexity of O(N + P), where N is the number 
of nodes in the DOM tree after the HTML page is parsed and P is the sum of the complexities of the 
plug-ins; therefore the overall complexity is O(N) without plug-ins. Crunch 1.0 is implemented as a one-
pass system, so it is the plug-ins that truly determine the running time of the system. For example, the 
plug-in that edits tables has an algorithm whose worst case running time is O(M2) for complex nested 
tables; without such nesting, the typical running time is O(M), where M is the number of elements 
composing the table; so the overall running time of the system works out to be O(N + M2) with the table 
plug-in. During tests, the algorithm performs quickly and efficiently following proxy customization. The 
proxy can handle most web pages, including those with badly formatted HTML, because of the 
corrections automatically applied while the page is parsed into a DOM tree. However, sites that are 
extremely link heavy produce bad results; when the link to text ratio approaches 100%, we experienced 
anomalous behavior. 
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Figure 1                                                             Figure 2 

 
Figure 3 

Depending on the type and complexity of the web page, the content extraction suite can produce 
a wide variety of output. The algorithm performs well on pages with large blocks of text such as news 
articles and mid-size to long informational passages. Most navigational bars and extraneous elements of 
web pages such as advertisements and side panels are removed or reduced in size. Figures 4 and 5 show 
an example. 

 
When printed out in text format, most of the resulting text is directly related to the content of the 

page, making it possible to use summarization and keyword extraction algorithms efficiently and 
accurately. An example of text format extraction performed on the webpage in Figure 5 is shown in 
Figure 6. 
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Figure 4 – Before                                                       Figure 5 - After 

 
Figure 6 – Text Only 

 The initial implementation of the proxy was designed for simplicity in order to test and design 
content extraction algorithms. It spawns a new thread to handle each new connection, limiting its 
scalability. Most of the performance drop from using the proxy originates from the proxy’s need to 
download the entire page before sending it to the client.  

4.1.2. Illustrative examples 

 Figures 7 and 8 show an example of a typical page from www.spacer.com and a filtered version 
of that page, respectively. This is another good example of a site that is presented in a content-rich 
format. On the other hand, Figures 9 and 10 show the front page of www.planetunreal.com, a site 
dedicated to the Unreal Tournament 2003 first-person shooter game (www.epicgames.com), before and 
after content extraction. Despite producing results that are rich in text, screenshots of the game are also 
removed, which the user might deem relevant content.   
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Figure 7 – Before                                                Figure 8 - After 

     
Figure 9 – Before                                                 Figure 10 - After 

Figures 11 and 12 show www.msn.com in its pre- and post-filtered state. Since the site is a portal 
which contains links and little else, the proxy does not find any coherent content to keep. We 
investigated heuristics that would leave such pages either untouched, or alternatively employ only the 
most basic filters that only remove advertisements and banners, and implemented such techniques in 
Crunch 2.0 (see Section 4.2). 
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Figure 11 – Before                                                                                         Figure 12 - After 

From these examples one may get the impression that input fields are affected irregularly by our proxy; 
this is because the run-time decision of leaving them in or removing them from the page is dependent on 
the tables or frames they are contained in. Forms are handled as one semantic unit, where either a form 
is displayed or not based on the user setting. Additionally, we should mention that there isn’t any sort of 
preservation of objects that may be lost after the HTML is passed through our parser, except links can be 
retained as explained above. The user would have to change the settings of the proxy and reload the 
page to see the previously removed content.  However, a different set of filters could be developed to 
move rather than just remove content, for forms or other identifiable HTML elements or data.  

4.1.3. Implementation details 

The life cycle of the process that gets a page to the client’s browser through the proxy from a 
very high level is - the client passes a request for the webpage to the proxy which opens a socket, fetches 
the original content of the page, and parses the page to create a DOM tree representation. It is then 
passed through the different filters based on the settings set by the user. The edited DOM tree is then 
either flattened into the HTML form, and sent back to the client’s browser, or stripped of all HTML tags 
and only the text content is sent to the client for rendering. The architectural diagram of Crunch 1.0 is 
shown in Figure 13. 
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Figure 13. Architectural diagram of the system 

In more detail, in order to analyze a web page for content extraction, the page is passed through 
an HTML parser that creates a Document Object Model tree. The algorithm begins by starting at the root 
node of the DOM tree (the <HTML> tag), and proceeds by parsing through its children using a recursive 
depth first search function called filterNode(). The function initializes a Boolean variable 
(mCheckChildren) to true to allow filterNode() to check the children. The currently selected node is then 
passed through a filter method called passThroughFilters() that analyzes and modifies the node based on 
a series of user-selected preferences. At any time within passThroughFilters(), the mCheckChildren 
variable can be set to false, which allows the individual filter to prevent specific subtrees from being 
filtered. That is, certain filters can elect to produce the final result at a given node and not allow any 
other filters to edit the content after that. After the node is filtered accordingly, filterNode() is 
recursively called using the children if the mCheckChildren variable is still true.  

The filtering method, passThroughFilters(), performs the majority of the content extraction. It 
begins by examining the node it is passed to see if it is a “text node” (data) or an “element node” 
(HTML tag). Element nodes are examined and modified in a series of passes. First, any filters that edit 
an element node but do not delete it are applied. For example, the user can enable a preference that will 
remove all table cell widths, and it would be applied in the first phase because it modifies the attributes 
of table cell nodes without deleting them.  

The second phase in examining element nodes is to apply all filters that delete nodes from the 
DOM tree. Most of these filters prevent the filterNode() method from recursively checking the children 
by setting mCheckChildren to false. A few of the filters in this subset set mCheckChildren to true so as 
to continue with a modified version of the original filterNode() method. For example, the empty table 
remover filter sets mCheckChildren to false so that it can itself recursively search through the <TABLE> 
tag using a bottom-up depth first search while filterNode() uses a top-down depth first search. Finally, if 
the node is a text node, any text filters are applied (there are currently none, but there may be in the 
future). 
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4.2 CRUNCH 2.0 
 
4.2.1. Overview 

Crunch 1.0 nicely demonstrated the proof-of-concept design of the system as a framework, but 
certain problems needed to be addressed in order for Crunch to be widely used. Most notably, the 
HTML parser we were using, OpenXML, had serious performance problems and memory leaks, and 
was no longer under active development. We also wanted to move to a staged event architecture and 
asynchronous callbacks to avoid threading scalability issues. There were also unacceptable results when 
Crunch’s initial set of filters were applied to certain classes of websites, as exemplified by the link-
heavy MSN example above producing essentially a blank page. Further, the user interface for Crunch 
was not very friendly for administrators and probably inaccessible to typical end users. 

After releasing Crunch 1.0 in September 2002, we also received several suggestions from early 
users for additions and improvements. An informal user study of blindfolded students was conducted in 
May 2003 followed by a formal user study with blind and visually impaired users begun in December 
2003; the first results from the latter are discussed in Section 5. The NLP group at Columbia University 
tried using Crunch briefly for their Newsblaster [8][9] project, which is a system that automatically 
tracks, clusters and summarizes each day’s news programmatically. They used Crunch as their input 
mechanism in order to run their natural language processing algorithms on content extracted by Crunch 
rather than noisy data streams coming straight from the web.  

As indicated in section 3, Crunch 2.0 is similar to its predecessor. However, we spent time on 
improving its performance and user interface, and several changes were made in the supplied set of 
heuristic filters, e.g., to show more useful results for link-heavy pages. We optimized the content 
extractor filter even though function is inherently the same. Additional filters were added that allow the 
user to control the font size and word wrapping of the output. Perhaps most importantly, heuristic 
functions were added in the form of a multi-pass system that evaluates the output the DOM tree passed 
through each filter. This prevents link-heavy pages like www.msn.com from returning blank pages as 
output, as shown in Figures 11 and 12; with the new result-checking heuristics of Crunch 2.0, we instead 
got the better results shown in Figures 14 and 15 for a link-heavy page. 

 
Figure 14 - Example of a link-heavy page    Figure 15 - Output from Crunch 1.0 Figure 16 - Output from Crunch 2.0 
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Finally, in the newer version, we have attempted to allow for greater flexibility to most of the 
filters by adding supplementary options to each. For example, users now have the ability of controlling, 
at a finer granularity, complex web pages where certain HTML structures are embedded within others, 
like having the ability to control not only the content on the entire page but also within table cells. The 
filters in Crunch 2.0, we find, also work better because of the improvements in parsing, mainly due to 
the replacement in our HTML parser from OpenXML [21] to NekoHTML [23]. Appendix A show 
several suites of screenshots with different sets of Crunch 2.0 filters applied. 
 
 Like Crunch 1.0, the complexity of the newer version remains at O(N+P); however, the worst 
case running time increases to O(N*P), where N is the number of nodes in the DOM tree after the 
HTML page is parsed and P is the complexity of the plug-ins with highest running time. The increase in 
worst case complexity is due to the fact that we have switched to a multi-pass system. Therefore, in case 
of a bad result, a filtered webpage may have to revert to a previous state and re-run through the proxy 
with a different set of options; this may happen for any number of nodes in the DOM tree. 
 
4.2.2. Technical improvements in version 2 
 

Even though the basic architecture of the system is the same as shown in Figure 13, there are 
some notable changes. Besides those discussed below, Appendix C shows some important differences in 
the internal coding of the proxy and plug-ins. 
 
1) Replaced OpenXML with NekoHTML 

 
The original version of Crunch used OpenXML [21] as the HTML parser. OpenXML had 

problems with efficiency, which didn’t seem likely to be fixed since OpenXML is apparently no longer 
an active project. So we switched the HTML parser to NekoHTML [23]. NekoHTML is an HTML 
scanner and tag balancer that parses HTML for Xerces, an XML implementation that is part of the 
Apache project [51]. It has many benefits, most notably the increased speed, but a key longer-term 
benefit is that we are now using a parser that is under active development. NekoHTML currently has 
some problems parsing some pages, most notably the output not always rendering the same as the input, 
e.g., with certain complex nested tables and some CSS pages. However, most of these errors are minor 
cosmetic ones that our proxy attempts, usually successfully, to fix in the multi-pass scheme. 
Additionally, the developers of NekoHTML are apparently working on this problem. 
 
2) Performance tuning 

 
As mentioned above, a speed improvement was achieved through switching to NekoHTML. The 

other major contributor to increased speed was the optimization of Crunch’s networking code. The code 
was originally written using the Java IO package. Switching to the Java NIO package was considered 
and we wrote a small testbed, but ran into excessive complications using NIO’s asynchronous callbacks. 
Therefore, we instead optimized the Java IO code by collapsing multiple writes and reads into fewer 
writes and reads, dealing with timeouts more efficiently, and removing unnecessary or redundant calls in 
the transfer loops.  Server performance and bandwidth utilization now seems adequate, but we have not 
yet conducted a performance study with large loads. 
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We moved to the staged event architecture and asynchronous callbacks to avoid threading 
scalability issues. The concept of the staged event architecture was introduced formally by Welsh [55] 
for performance gains in highly concurrent server applications, so that they are able to “support massive 
concurrency demands” [55]. We took the same concept and extended it in our framework so that Crunch 
can meet the demands of several parallel requests in a groupware setup. 
 
3) Switch to SWT 

 
The Java Swing GUI was replaced with SWT, IBM's Standard Widget Toolkit [24]. This was 

done to enhance the user interface for ease of administration. SWT is highly responsive, partially due to 
its use of JNI and native routine calls that can take advantage of the operating system's built-in 
optimizations. It also uses native GUI widgets to provide a look and feel consistent with that of the 
operating system, while remaining operating system independent. Not only does the GUI match the 
operating system's theme, SWT generally looks much better than Java's AWT and Swing. As an added 
benefit, SWT allows the program to be compiled into a binary executable, resulting in a faster startup 
time, a smaller distribution, less memory used, and an easier installation for novice users. 
 
 The resulting user interface was redesigned to be more responsive, perform faster and generally 
be more user friendly, whether for the administrator or for the end user. Screenshots of the proxy are 
shown in Figures 17-22, where we see the basic settings and the available plug-ins in Figures 17-19 and 
the actual plug-in setting controls in Figures 20-22. 
 

 
Figure 147                                          Figure 18                                           Figure 19 

The User Interface for Crunch 2.0: The three basic tabs viewing activity, changing basic settings, and viewing the plug-ins available 
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Figure 20                                          Figure 21                                           Figure 22 

The Advanced User Interface for Crunch 2.0: The options available to customize the current plug-ins 

4) Accessibility 
 

Of the plethora of benefits to using SWT, many of which are mentioned above, the most 
important is accessibility. One of Crunch’s purposes is to assist disabled persons in browsing the web, 
yet the previous version of Crunch itself, i.e., the actual application and the administrative user interface, 
were highly inaccessible. 
 

There are three basic categories of accessibility support: mobility enablement, visual 
enhancement, and screen readers [25]. Mobility enablement is provided in that all settings can be easily 
accessed through the keyboard without any assistance through the mouse. SWT provides keyboard 
accelerators in the API, as well as intelligently supporting tabbing through GUI components. SWT uses 
the operating system’s theme for its look and feel, which means that the operating system is allowed to 
handle usability and visual enhancements. The best example of this is Window’s accessibility features 
[25], such as large fonts and high contrast themes, being incorporated into the GUI. SWT also supports 
Microsoft Active Accessibility Support (MAAS) [26], so by default there is support for screen readers 
that read content from the window with focus and its associated widgets. 
 

Usually a person requiring a screen reader will not be able to position a mouse pointer finely 
enough to successfully use a mouse [25], so it is important that mobility enhancement features coincide 
nicely with screen readers. Since SWT uses native APIs, screen readers and other accessibility options 
are able to work nicely together to provide the disabled with a viable way of configuring Crunch 2. As 
an added benefit to Windows users, SWT can use Windows themes in the same way that it uses 
accessibility feature of the operating system [25]. Examples screenshots of the proxy in the high contrast 
scheme are shown in Figures 23-29. Note that Figure 29 shows how the user can also adjust the font size 
of the website text from within the proxy. 
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Figure 23                                          Figure 24                                           Figure 25 

The Basic User Interface for Crunch 2.0 in high contrast format 

 
Figure 26                                          Figure 27                                           Figure 28 

 
Figure 29 

The Advanced User Interface for Crunch 2.0in high contrast format 

 
4.2.3. Example plug-ins for PDAs 
 

One very important requirement is that Crunch is able to support other people’s heuristics, 
following a modular approach, so more features can easily be added as plug-ins. The extension APIs for 
both Crunch 1.0 and 2.0 are shown in Appendix B. 
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One common application for content reformatting and filtering is for Personal Digital Assistants. 
PDA’s have small screens that make viewing unmodified web pages very difficult. Most web pages are 
designed for resolutions upwards of 800x600 while a majority of PDA’s are only 240x320. There are 
several applications that try to solve this problem. 

 
Bitstream Inc. makes a browser called ThunderHawk (previously mentioned in Section 2). While 

it is easy to view content on ThunderHawk using Crunch, it is also possible to do very similar 
processing using a plug-in for Crunch. The resize algorithm was created to demonstrate this ability, 
showing that a plug-in that performs font replacement and element/image scaling is easy to integrate. 
Part of the integrated plug-in is shown in Figure 26 (there in high contrast format). Using this, Crunch is 
now able to give similar results as given by ThunderHawk itself.  

 
Another solution for modifying web pages for small PDA screens is the Skweezer Proxy [28]. 

Skweezer is implemented very similarly to Crunch in that it acts like a proxy and modifies the content of 
the webpage before sending it to the client. It reformats web pages such that they wrap intelligently, 
which prevents unnecessary side scrolling. Crunch can be set to co-exist with Skweezer by using 
Skweezer as proxy between Crunch and the Internet. Since Skweezer is not open-source, we were 
unable to integrate it as a plug-in but instead re-implemented a similar algorithm to Skweezer as a plug-
in test case. 
 

To implement Skweezer one would create a class that extends ProxyFilter (see Appendix B). The 
method that should do the actual processing is the process(Document, Document, Document) method. It 
should be thread safe because multiple threads can be accessing it at the same time. 
 
 public abstract Document process( 
  Document originalDocument, 
  Document previousDocument, 
  Document currentDocument); 
 

Crunch 2 can load the plug-in at initialization by editing the constructor of Crunch2.java to have 
the line  
 
  proxy.registerPlugin(new SkweezerPlugin()); 

 
appended to the already existing plug-ins. 
 
  proxy.registerPlugin(new ContentExtractor()); 
  proxy.registerPlugin(new SamplePlugin()); 
  proxy.registerPlugin(new SizeModifier()); 
 
The order these lines appear in is the order the plug-ins are applied to filtered content. In this manner, 
we can add any number of plug-ins. 
 

5. User Study: Web accessibility by visually disabled users 

5.1 INTRODUCTION: WEB ACCESSIBILITY 

Direct-manipulation graphical users interfaces (GUIs) are widely considered to be a major 
advance in human-computer interaction because they allow users to perform tasks in a safe, effective, 
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efficient, and enjoyable manner [29-30]. The popularization of GUIs is in part responsible for the rapid 
growth of computer and Internet technologies during the past decade. However, this trend threatens to 
create significant barriers to accessibility by visually disabled patients, who are unable to rely on the 
graphical cues and symbolic representations that are fundamental to GUIs [31-33].  

At the same time, the number of visually impaired users is expected to increase dramatically as 
the population continues to age; for example, it is estimated that the number of Americans over the age 
of 65 will double between 2000 and 2040 [34]. In 1997, the United States Census Bureau estimated that 
there were 7.7 million adults with “non-severe visual limitation,” which was defined as a self-reported 
or proxy-reported “difficulty with seeing words and letters, even with eyeglasses.” The Census Bureau 
similarly estimated that there were 1.8 million American adults with “severe visual limitation,” which 
was defined as the “inability to see words and letters, even with eyeglasses” [35]. For medical or legal 
purposes, visual disability is generally categorized using more formal criteria: “legal blindness” is 
defined by having visual acuity of 20/200 or worse in the better eye, or a visual field extent of less than 
20 degrees in diameter. Similarly, “visual impairment” is defined by having 20/40 or worse vision in the 
better eye even with eyeglasses. Patients with even minimal visual impairment are likely to encounter 
problems in everyday life. For example, people with vision worse than 20/40 cannot obtain an 
unrestricted driver’s license in most states, and may require assistive devices such as magnifiers for 
reading [52]. 

 The overall goal of visual assistive technology is to provide alternative, equivalent mechanisms 
for computer and Web accessibility. Screen readers translate text and graphical displays into auditory 
output, and have become a predominant assistive technology for users with severe visual disability [36]. 
However, the current quality of speech-based Web navigation is very limited. In particular, the large 
quantity of information on Web documents imposes an enormous cognitive load on visually disabled 
users who must rely on auditory transmission alone, compared to sighted users who are able to identify 
relevant information by visual scanning [37]. Content extraction from Web pages using Crunch provides 
an opportunity to provide filtered documents as input to screen readers. This may allow visually disabled 
users to understand the essential content of Web documents more quickly and effectively. 

 We performed a preliminary usability evaluation of Crunch 1.0 to supplement screen reading 
software for Web navigation by visually disabled users. The study design was based on previously 
established usability testing and cognitive analysis methodologies, in which subjects are asked to “think 
aloud” while performing representative computer-based tasks [38-40]. This process was captured with 
full video and audio recordings, providing a source of data rich in physical, temporal, and social context 
[41-42]. In particular, this usability study was intended to compare the quantitative and qualitative 
aspects of speech-based Web navigation by a completely blind user, both with and without Crunch. 

5.2 USABILITY STUDY METHODS 

5.2.1 Subject and software 

Full informed consent was obtained before inclusion of volunteers in this study. The subject for 
this usability evaluation was a 50 year-old woman who had been completely blind since birth. She had 
no light perception from either eye, and required a guide dog for mobility. She learned Braille as a child, 
finished a graduate school degree program, and was employed as a full-time teacher. The subject 
described herself as “comfortable” with computers and the Web, and used these regularly for work. She 
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was very familiar with assistive technologies such as screen readers, and was able to type over 20 words 
per minute using a standard QWERTY keyboard. 

A popular screen reading Web browser (IBM Homepage Reader®; IBM, White Plains, NY) was 
selected for this study because it was easy to install and integrate with Crunch. The study subject had 
used this particular screen reader in the past, and was asked to perform Web navigation until she felt 
comfortable using all basic commands. 

5.2.2 Design of Web-based tasks 

Two representative Web-based tasks were developed that satisfied three criteria: (1) Each task 
involved a website that was among the 50 most popular sites, based on the well-known PageRank 
algorithm [43-44]. This was to ensure that tasks were representative of common Web browsing 
procedures. (2) Each task was extensively bench-tested by the authors to ensure that it met a sufficient 
number of World Wide Web Consortium accessibility guidelines to be completed using speech-based 
navigation with a screen reader alone [45]. Many popular websites failed to satisfy this criterion. (3) 
Each task was extensively bench-tested to ensure that it functioned properly with Crunch 1.0, and that it 
could be completed by speech-based navigation using Crunch 1.0 together with screen reading software. 

Table 1 describes the two tasks. Each task was further bench-tested to determine the sequence 
and number of steps required for completion with screen reading software, both with and without 
Crunch. Additional testing was performed to determine the optimal Crunch system configuration 
settings that would allow all tasks to be completed. 

 
Table 1. Web-based tasks to be completed by subjects using screen reading software, with or without content 
extraction using CRUNCH proxy. 

Task (website)  Description 
 
A (www.usatoday.com)  Identify and read top story under “Sports” section 
B (www.cnn.com)  Identify and read top headline story 

5.2.3 Test protocol 

Approval for the study protocol was obtained by the Institutional Review Board at Columbia 
University Medical Center. The subject was asked to perform Task A using the screen reader alone, and 
then to perform Task B using Crunch 1.0 and the screen reader. During this process, the subject was 
instructed to “think aloud” and verbalize impressions while performing speech-based navigation. After 
completing the two tasks, the subject was asked to provide specific qualitative feedback about the testing 
procedure. A survey was used to rate various aspects of Web navigation on a five-point Likert scale, 
both with and without Crunch: (a) Usefulness of technology for performing the task. (b) Ease of 
deciding next step in navigation using technology. (c) Ease of understanding Web document layout with 
technology. (d) Ease of locating desired information of Web document using technology. (e) Overall 
satisfaction with technology. 
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While performing tasks, the study subject was videotaped and audiotaped using a portable 
usability engineering system [29, 41]. A video converter (Communication Specialties, Haupaugue, NY) 
converted the monitor display to a video signal (S-video) for capture on videotape using a digital video 
camera (Toshiba; New York, NY). A microphone provided audio input to the video camera, in order to 
record statements and questions, as well as the screen reader sounds. A cassette recorder was used to 
capture additional sounds. Finally, a standard 8 mm video camera was used to record keystrokes while 
the user interacted with the system. 

5.2.4 Data analysis 

Contents of videotapes and cassette tapes were transcribed verbatim, and annotated with time-
stamps. Tapes were then coded using a standard method adapted from previous studies, in order to note 
particular aspects of system usability [41]. User actions were described as an overall task, which was 
divided into goals and subgoals. Each subject action was coded either as a correct response, an error, or 
a correct response to an error. Errors were categorized into one of three groups: (1) Errors in 
understanding of the interface. This included selection of unintended links, incorrect interpretation or 
hearing of speech, and confusion with manipulation of GUI widgets or browser commands. (2) Errors in 
understanding of document layout or navigation.  This included any confusion caused by incorrect 
mental representation of documents, such as misunderstanding of navigation bars, or becoming “lost” 
while navigating within or between pages. (3) Errors in understanding caused by Web design or browser 
malfunctions. This included failure to comply with standard Web accessibility guidelines [45]. 

The total time required to complete each task was measured. This was used to calculate the time 
required to complete each step of the task, based on results from bench-testing. The causes of Web 
browsing errors were determined from detailed analysis of audiotapes and videotapes. Numerical ratings 
of Web browsing surveys were tabulated. 

5.3 RESULTS 

5.3.1 Bench-testing of tasks 

Each task was carefully reviewed to determine the sequence and number of steps required for 
completion, both without and with Crunch 1.0. Figure 30 demonstrates the results of this analysis for 
Task B, which required more steps without Crunch (65 steps) than with it (38 steps). Similarly, Task A 
required more steps without Crunch (73 steps) than with it (23 steps). This reduction of steps required 
for each task was because the content extraction process simplified direct access to the Web document 
contents by removing all navigation bar links. 
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5.3.2 Features of navigation 

Using a screen reader without Crunch, the subject did not complete Task A (“Go to 
www.usatoday.com and read the top Sports story”) successfully. After 21 minutes and 15 seconds, she 
began reading an incorrect story. Based on the fact that this task should have taken 73 steps to complete 
successfully, the subject required an average of 17.5 seconds per step without Crunch. Transcription and 
subsequent analysis of tapes revealed that the subject made a total of 31 cognitive errors during the 
navigation process for Task A. Based on the taxonomy described above, these errors were classified into 
three categories: (1) 11 errors in understanding or using the speech-based interface. For example, the 
subject attempted to use a “search” function, but was unable to properly enter the desired term into the 
text box. (2) 14 errors in document layout or navigation. For example, the web page layout caused the 
screen reader to announce the full navigation bar on every page (Figure 31). Even when the subject had 
already reached the correct “Sports” page, she became disoriented by hearing the navigation link lists. 
As a result, she mistakenly re-selected the “Sports” link nine additional times. When the subject finally 
reached the top sports story, she failed to recognize it as a story, apparently because the document made 
no announcement before beginning to read the story title. Therefore, she continued past the top story and 
eventually selected an incorrect link as the story to read. (3) 6 errors caused by Web design or browser 
malfunctions. For example, the subject mistakenly attempted to select a link to an advertisement banner, 
believing that it contained relevant information.  

Figure 30. Example of bench-testing to determine the sequence and number of steps required to complete tasks with screen 
reading software, both without and with CRUNCH 1.0. 

Task B: Go to www.cnn.com. Identify and begin reading top headline story. 

Using screen reader without CRUNCH 1.0: 

 (A) Open text box and go to website ! CNN homepage opens. 
 (B) Pass 2 lines. Select “Skip to main content” link. 

(C) Pass 9 lines. Select “Full Story” link ! Full Story page opens. 
 (D) Pass 2 lines. Select “Skip to main content” link. 
 (E) Pass 52 lines. Begin reading story text. 
 
Using screen reader with CRUNCH 1.0: 

 (A) Open text box and go to website ! CNN homepage opens. 
 (B) Pass 2 lines. Select “Skip to main content” link. 
 (C) Pass 8 lines. Select “Full Story” link ! Full Story page opens. 
 (D) Pass 2 lines. Select “Skip to main content” link. 
 (E) Pass 26 lines. Begin reading story text. 
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Figure 31. Navigation of Task A using screen reader without CRUNCH. Document layout forced announcement of 
navigation bar, even when subject was already on correct “Sports” page. This caused subject to become disoriented and select 
“Sports” navigation link nine additional times. 

Using the screen reader with Crunch, the subject completed Task B (“Go to www.cnn.com and 
read the top headline story”) successfully. After 2 minutes, she began reading the correct story. Based on 
the fact that this task should have taken 38 steps to complete successfully, the subject required an 
average of 3.2 seconds per step with Crunch. Transcription and subsequent analysis of tapes revealed 
that the subject did not make any cognitive errors during the navigation process. This was apparently 
because the main headline story was placed very near the beginning of the filtered document, without 
extraneous navigation bar or other link lists (Figure 32). 

 

  
5.3.3 Qualitative user evaluation 

Figure 32. Navigation of Task B using screen reader with CRUNCH. Subject made no cognitive errors in navigation,
apparently because headline story was placed near beginning of the filtered document. 



Automating Content Extraction of HTML Documents 

 25

After completing Tasks A and B, the subject was surveyed regarding attitudes toward various 
aspects of speech-based Web navigation without and with Crunch 1.0. Results are summarized in Table 
2. 

 
Table 2. Survey evaluation of subject’s attitudes toward speech navigation, without and with CRUNCH 1.0. 
Scores are based on Likert scale (1=Strongly agree, 2=Agree, 3=Neutral, 4=Disagree, 5=Strongly Disagree). 

 Score 
Aspect of navigation 

 Without CRUNCH With CRUNCH 
    

Useful to read Web pages  4 2 
Easy to decide next step  3 2 
Easy to understand Web layout  2 2 
Easy to locate information  4 3 
Overall satisfied with navigation  5 3 

    

5.4 DISCUSSION OF USABILITY STUDY 

This pilot evaluation employed a usability engineering approach to analyze the application of 
Crunch for speech-based Web navigation by a completely blind subject. It was designed as a paired 
study, in which the subject was asked to perform tasks without and with Crunch. Bench-testing 
confirmed that Tasks A and B required a similar number of steps for completion, suggesting that they 
were of comparable complexity. By transcribing, time-stamping, and coding the video and audio 
recordings of user interactions with the system, it was possible to measure the speed and error rate of 
Web navigation. In addition, it was possible to categorize the cause of each navigation error. 

Overall, the results of this preliminary user study suggest that Crunch has potential to provide 
advantages over conventional speech-based browsing in terms of speed, error rate, and qualitative 
satisfaction. This is primarily by removing extraneous content, and thereby simplifying the process of 
finding the important information on the page. Bench-testing also demonstrated that Tasks A and B both 
required fewer steps for completion with Crunch than without it. However, supplementation with 
content extraction is not clearly superior to conventional speech-based browsing. For example, by 
removing features such as link lists, Crunch has potential to cause new errors in understanding page 
layout and navigation. Similarly, Crunch inserts removed link lists at the end of the Web document, 
where they may be extremely difficult for users to navigate because of the lack of surrounding context. 
Finally, Crunch does not perform useful content extraction on all websites (e.g., see Figures 11 and 12), 
and it was difficult to develop a corpus of representative tasks for evaluation purposes. 

This preliminary usability evaluation has two important limitations: (1) It involved only one 
subject, and therefore could not include meaningful analysis for statistical significance or reproducibility 
among various users. (2) Because it involved only two standardized tasks, conclusions may not be 
generalizable to other Web-based tasks. These limitations are being addressed by ongoing usability 
studies that involve recruitment and testing of additional visually disabled subjects. Results of evaluation 
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studies will provide additional data for iterative design improvements to content extraction systems such 
as Crunch, and provide insight into the cognitive models used by visually disabled users for speech-
based Web navigation. 

6. Future Directions 

Crunch uses a third-party HTML parser to create DOM trees from web pages. We have switched 
to NekoHTML to resolve the problems with OpenXML. However, we still intend to support commercial 
parsers, such as Microsoft’s HTML parser (which is used in Internet Explorer), in the next revision. 
Integration will be accomplished by porting the existing Crunch proxy to C#/.NET, which will allow for 
easy integration with COM components (of which the MS HTML parser is one). 

We are continuing work towards improving the proxy’s performance; in particular, we aim to 
improve both latency and scalability, especially with the advent of browsers such as Avantbrowser [53] 
and Mozilla [54] that support tabbed browsing, i.e., treating multiple open web pages as part of the same 
session.  

We are also investigating supporting more sophisticated statistical, information retrieval and 
natural language processing approaches as additional heuristics to improve the utility and accuracy of 
our current system. 

Currently we do not do any form of learning of a user’s browsing habits. It may be possible to 
implement artificially intelligent heuristic algorithms, such as Bayesian learning or Markov Model 
creation, as a browser plug-in that reads metadata from the client about how to change the settings. Such 
a browser plug-in might provide an interface for the user to rate pages, that is, Crunch’s rendition of 
pages, and could update Crunch’s configuration via extra HTTP metadata. The improved Crunch 2.0 
plug-in interface is instrumental in allowing these kinds of heuristics because it allows programmatic 
changes to settings. With the addition of trainable filtering, Crunch could adapt to a particular user's or 
group’s preferences. Even basic control from the browser, without any AI, would enhance Crunch’s 
usability because the user wouldn't have to switch applications to change a setting or to enable or disable 
filtering.  

The user study with blind users is in its earliest stages, and will be reported more formally when 
completed. 

Finally, one of our main goals was to expose a simple API for programmers to extend, so that 
current and future natural language processing and information retrieval algorithms can easily be added 
to Crunch. This would allow users to truly be able to customize the content they would like to view on 
visited web pages.  Full evaluation of the API and plug-in framework will not be possible until sufficient 
outside developers have worked with Crunch. 

7. Conclusion 

Many web pages contain excessive clutter around the bodies of one or more articles, the actual 
content of the page. Although much research has been done on content extraction, and there are many 
special-case solutions to remove advertising (particularly pop-ups) or reformat for small screens, it is 
still a relatively new field where few general purpose tools are available so most researchers must 
construct their content extractors from scratch. Our approach, working with the Document Object Model 
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tree as opposed to raw HTML markup, enables us to apply in tandem an extensible collection of Content 
Extraction filters, and potentially other kinds of filters such as format translators and NLP summarizers. 
The heuristic filters that we have developed to date, though simple, are quite effective.  

Crunch has been implemented as a freely-available web proxy that anyone can use to extract 
content from HTML documents for their own purposes.  The second version of Crunch is fast and 
efficient, and allows for easy integration of third party filters as plug-ins. It also offers a simple, easy to 
use user interface for both administrators and end users. And perhaps most importantly, we have 
designed this system with accessibility in mind for the visually impaired, so as to facilitate the best 
possible web experience in conjunction with devices such as screen magnifiers and screen readers. 
 
 



Automating Content Extraction of HTML Documents 

 28

Appendix A – Example Screenshots 
 

 We show some examples of typical websites with different Crunch 2.0 options turned on. The point 
is to give the reader an idea of the degree of control a user can have over what he/she wants to see on a 
webpage. The websites we chose are: 

1) A typical article from www.spacedaily.com 

2) The front page of Voice of America - www.voanews.com 

3) The front page of a typical gaming news site - www.planetunreal.com 

4) An article from a link and script heavy site - www.msnbc.com 

5) An article from CNN – www.cnn.com 

6) The front page of the geek news site – www.slashdot.org 

7) The WWW2004 website frontpage – www2004.org 

Each following page has a set of images. The images start from a screenshot of the original site, followed 
by a gradual increase in the number of filters used, continuing to the screenshot that was taken of the site 
in text-only mode. We have created this anthology of images to help the user get an idea of how Crunch 
and its filters work on a given webpage.
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          Original                     Remove link lists        Remove non-link-list images   

 
          Remove Advertisements                All advanced filters on     Remove non-link-list tables   

 
          Ignore Scripts   Reduce link-to-text ratio     Ignore everything, text only   
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     Original             Remove link lists        Remove non-link-list images   

 
          Ignore scripts                     Remove Advertisements    Remove empty non-link-list tables   

 
          Ignore text links       Reduce link-to-text ratio     Ignore everything, text only   

 



Automating Content Extraction of HTML Documents 

 31

 
          Original                     Remove empty cells        Remove empty tables   

 
          Ignore image links                             Remove Advertisements   Reduce text-to-link ratio to 0.125   

 
          All advanced filters on                            Ignore scripts     Ignore everything, text only   
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          Original                    All advanced filters on                Ignore scripts         

 
Ignore everything, text only 
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          Original                    Ignore table widths       Remove forms   

 

 
          All advanced filters on          Reduce text-to-link ratio to 0.125    Ignore everything, text only   
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        Original    Ignore scripts                All advanced filters turned on         

 
          Font size -2 from original     Font size +2 from original    Ignore everything, text only   
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                  Original     All advanced filters turned on  

 

 
Ignore everything, text only
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Appendix B – Crunch 1.0 vs. Crunch 2.0 plug-in APIs 
 

ProxyFilter.java  
package psl.memento.pervasive.crunch; 
import java.io.*; 
public interface ProxyFilter { 
 public File process(File in) throws IOException; 
 public ProxyFilterSettings getSettingsGUI(); 
 public String getContentType(); 
} 

package psl.memento.pervasive.crunch2.plugins; 
import org.w3c.dom.Document; 
public abstract class ProxyFilter { 
 private boolean enabled = true; 
 
 public void getSettingsGUI() { 
  // no settings GUI is required 
 } 
 
 public boolean hasSettingsGUI() { 
  return false; 
 } 
 
 public abstract String getName(); 
 public abstract String getDescription(); 
 
 public void setEnabled(boolean b) { 
  enabled = b; 
 } 
 
 public boolean isEnabled() { 
  return enabled; 
 } 
 
 public abstract Document process( 
  Document originalDocument, 
  Document previousDocument, 
  Document currentDocument); 
} 

 
 

ProxyFilterSettings.java  
package psl.memento.pervasive.crunch; 
 
import javax.swing.JPanel; 
 
public abstract class ProxyFilterSettings extends JPanel { 
 public abstract void commitSettings(); 
 public abstract void revertSettings(); 
 public abstract String getTabName(); 
} 

package psl.memento.pervasive.crunch2.plugins; 
 
public interface ProxyFilterSettings { 
 public void set(String key, String value); 
 public String get(String key); 
 public void commitSettings(); 
 public void revertSettings(); 
} 
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Appendix C – Code differences between Crunch 1.0 and 2.0 
 
Typical Code Differences 
 

The original Crunch plug-in was required to implement the ProxyFilter interface. This interface 
consists of 3 methods. The first and most important method is the process method. It takes a file and 
returns a file. It does all the processing on html content that passes through the proxy. The second 
method is getSettingsGUI. It returns the settings GUI so that the settings for the plug-in can be changed. 
The third method is getContentType. It returns the content type of the output of the plug-in. 
 

The newer ProxyFilter was created as an abstract class. The new version is similar to the old one, 
but forces the plug-ins to works on the DOM documents rather than just plain files. It includes seven 
methods. One method is for filtering and the other methods are for GUI integration. To have the plug-in 
do processing on content, there is the process method. The process method takes 3 DOM documents for 
input. One is the document that should be processed and the other two are for reference. 
CurrentDocument is the document that should be processed. PreviousDocument is the output of the 
previous filter and is initially just a copy of currentDocument. PreviousDocument is used for rolling 
back changes or other analysis after changes to currentDocument have already been made. 
OriginalDocument represents the document as Crunch 2 has received it from the server. This allows for 
more advanced heuristics, quality checking, and even rollback of the processing. The methods 
hasSettingsGUI and getSettingsGUI are for determining if the plug-in has a settings dialog, and if it 
does, displaying it. Currently there is a button that can be clicked if the plug-in has a settings GUI that 
will display it. The methods isEnabled and setEnabled are for changing and checking the state of the 
plug-in. If the plug-in is disabled, it is skipped during processing of content and is shown grayed in the 
plug-ins tab of the main Crunch 2 window. The next two methods, getDescription and getName are used 
for displaying information about the plug-in and just return strings. Code details of ProxyFilter.java can 
be found in Appendix B. 

 
The original ProxyFilterSettings extends JPanel, which is inserted into the GUI. Each proxy filter 

had its own tab; unfortunately this forced the implementer to use Swing, which is not available in many 
versions of java, such as gcc-java, also known as gcj [57]. It also doesn’t unify the API for easy settings 
modification in the software, which is important for AI algorithms. It contains three methods: 
commitSettings, revertSettings, and getTabName. CommitSettings and revertSettings are for committing 
and reverting respectively, the settings that were made in the GUI. GetTabName is for naming the tab to 
put the panel in. This is usually the name of the plug-in. 

 
The new ProxyFilterSettings is not tied to a GUI at all. Its sole purpose is to programmatically 

allow for the editing settings. It has four functions - Get takes a string name of the setting and passes 
back the value as a string. Set takes a setting name and a value and sets the setting. CommitSettings and 
revertSettings save the settings to a file and load the settings from a file respectively. Code details of 
ProxyFilterSettings.java can be found in Appendix B. 
 

Notice the differences between the Crunch 1.0 and 2.0 implementations. The Crunch 2.0 plug-in 
implementation is now more flexible than the original. It is no longer Swing dependent. In fact, it no 
longer forces the user to have any sort of settings GUI. In Crunch 2.0, while no settings implementation 
is forced, one is provided so that all the plug-ins can have a common method of changing settings. This 
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will simplify the implementation of any filtering heuristics using AI algorithms that could produce better 
results, which may need to adaptively change the user settings based on the site and the user’s reaction 
to a given page. 
 
Methods that run filters over content 
 
ProxyThread.filter(HttpStream http) in Crunch 1.0 - In the original Crunch, the filter method inside 
ProxyThread is what passes content through the plug-ins. It works by downloading the http content to a 
file, and then it runs each filter on the file and updates the content type each time. After that, it replaces 
the content file in the http stream with the filtered file. 
 
 public void filter(HttpStream http) 
  throws IOException { 
  File workingFile = null; 
  workingFile = http.downloadToFile(); 
  while (filters.hasNext()) { 
   try { 
    ProxyFilter filter = 
     (ProxyFilter) (filters.next()); 
    System.out.println("Started filtering..."); 
    workingFile.deleteOnExit(); 
    workingFile = filter.process(workingFile); 
    workingFile.deleteOnExit(); 
    http.setAttribute( 
     "content-type", 
     filter.getContentType()); 
    System.out.println("Done filtering."); 
   } catch (Exception e) { 
    e.printStackTrace(); 
   } 
  } 
  http.replaceContentWithFile(workingFile); 
  System.out.println("content replaced"); 
 } 
 
PluginFilterRunner.process(File f) in Crunch 2.0 - In Crunch 2.0, the process method inside the 
PluginFilterRunner class is what runs all the plug-ins on the content. It takes a file as input. First it 
parses that file into xml, and then it gets a copy of that file and sets it as currentDocument. Next, it 
enters a loop that checks each plug-in for being enabled and, if so, rotates currentDocument and 
previousDocument, and then runs the plug-ins process method. After the loop, it writes the most current 
non-null document to a file. 
 
 public File process(final File f) { 
  // generate xml document from file 
  Document originalDocument = getXML(f); 
  Document previousDocument = null; 
  Document currentDocument = null; 
 
  currentDocument = copyDocument(originalDocument); 
 
  for (int i = 0; i < plugins.length; i++) { 
   ProxyFilter plugin = plugins[i]; 
   if (!plugin.isEnabled()) 
    continue; 
 
   if (currentDocument != null) 
    previousDocument = currentDocument; 
 
   if (previousDocument != null) 
    currentDocument = 
     copyDocument(previousDocument); 
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   currentDocument = 
    plugin.process( 
     originalDocument, 
     previousDocument, 
     currentDocument); 
  } 
 
  if (currentDocument == null) 
   currentDocument = previousDocument; 
  if (currentDocument == null) 
   currentDocument = originalDocument; 
 
  return xMLtoFile(currentDocument); 
 } 

 
Content Extractor Plug-in 

 
The Content Extractor Plug-in is the main filtering plug-in for Crunch 2.0. Its implementation is 

very similar to how it was in the original Crunch. This is possible even though quite a few things like the 
parser, etc were changed since it is all compliant with the W3C standards. The main changes were 
optimization, bug fixing, and working it into the new interface. 
 

When process(Document, Document, Document) is called on the content extractor plug-in, it 
creates a child ContentExtractor, and has that process the currentDocument. This allows the content 
extractor processing to be thread safe, which is important because the proxy is multithreaded. The 
processing begins with the filterNode(Node iNode) method being run on the document, which is the root 
node of the DOM tree. 
 
Content Extraction Plug-in filterNode method 

 
This is a typical set of recursive methods when working with DOM. Passing through every node 

is very simple. FilterNode(Node iNode) passes iNode through a set of filters. Then it determines 
whether to filter iNode’s children based on the mCheckChildren variable, which the method 
passThroughFilters sets. The filterChildren(Node iNode) method takes a node and runs filterNode on 
each of its children. Running filterNode on the root of a DOM tree will result in all the nodes being 
filtered recursively. This process was smoothed out in Crunch 2.0. 

 
 private void filterNode(final Node iNode) { 
  mCheckChildren = true; 
 
  passThroughFilters(iNode); 
 
  if (mCheckChildren) 
   filterChildren(iNode); 
 } 
 
 private void filterChildren(final Node iNode) { 
  if (iNode.hasChildNodes()) { 
   Node next = iNode.getFirstChild(); 
   while (next != null) { 
    Node current = next; 
    next = current.getNextSibling(); 
    filterNode(current); 
   } 
  } 
 } 
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Content Extraction Plug-in: Main Filtering Method - passThroughFilters method 
 
PassThroughFilters(Node iNode) takes a node and determines what filters in the content 

extractor plug-in to run on it. MCheckChildren is changed to tell the recursive method not to check a 
given node’s children. The first thing passThroughFilters(Node iNode) does is gather information about 
the node. Currently it gets the node’s type, parent, and attributes. Then it runs filters based on the node 
type. Currently the only node type that it runs filters on are element nodes. Element nodes represent tags 
such as <BR> and <FONT>. Element nodes are filtered in several stages. The first stage is more 
information gathering. The node is checked for being a link and then if it is an image. This information 
is recorded, and then the node is passed through a second set of filters. The second set of filters only 
modifies element attributes. Currently the attributes that are modified are the width attributes of tables 
and table cells, and the style attributes of div elements. After the attributes are modified, the element is 
passed through filters that can delete element nodes. An example of a node to delete is an ad link. This 
code sequence worked well in the previous version so we stayed with it. 

 
 private void passThroughFilters(final Node iNode) { 
  //Check to see if the node is a Text node or an element node and 
  //act accordingly 
  int type = iNode.getNodeType(); 
  Node parent = iNode.getParentNode(); 
 
  //Get the attributes of the node 
  NamedNodeMap attr = iNode.getAttributes(); 
 
  //Element node 
  if (type == Node.ELEMENT_NODE) { 
 
   String name = iNode.getNodeName(); 
   //================================================================ 
   // Set of conditions that just check the nodes without editing or 
   // deleting them 
   //================================================================ 
   //Any type of link is encountered 
   if (isLink(iNode)) 
    recordLink(iNode); 
   if (isImage(iNode)) 
    recordImage(iNode); 
 
   //================================================================ 
   // Set of conditions that edit the nodes but don't delete them 
   //================================================================ 
 
   //<TD|TABLE width=*> removes widths 
   if ((name.equalsIgnoreCase("TD") || name.equalsIgnoreCase("TABLE")) 
    && settings.ignoreCellWidth) { 
    if (hasAttribute(iNode, "width")) 
     removeAttribute(iNode, "width"); 
   } //if 
 
   //<DIV style=*> removes style 
   else if ( 
    name.equalsIgnoreCase("DIV") && settings.ignoreDivStyles) { 
    if (hasAttribute(iNode, "style")) 
     removeAttribute(iNode, "style"); 
   } //if 
 
   //================================================================ 
   //Set of conditionals determining what to ignore and not to ignore 
   // (Conditions that DELETE nodes from the DOM tree) 
   //================================================================ 
   if (isAdLink(iNode) && settings.ignoreAds) { 
    parent.removeChild(iNode); 
    mCheckChildren = false; 
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   } 
   //<TD> with Link/Text Ratio higher than threshold 
   else if (name.equalsIgnoreCase("TD") && settings.ignoreLinkCells) { 
    testRemoveCell(iNode); 
   } 
   //<A HREF> with no Images 
   else if (isTextLink(iNode) && settings.ignoreTextLinks) { 
    parent.removeChild(iNode); 
    if (settings.addLinksToBottom) 
     enqueueLink(iNode); 
    mCheckChildren = false; 
   } 
   //<BODY> 
   else if (name.equalsIgnoreCase("BODY")) 
    mBodyNode = iNode; 
  } //if (type == Node.ELEMENT_NODE) 
 } 

 
 
Example Check Methods 
 

• isLink(Node iNode): isLink checks to see if a Node is a link. First, it gets the node type and the 
node attributes. Then it checks to see if the node is an element and it contains an HREF attribute. 
If that is true, then it returns true indicating that the node is a link. Otherwise it returns false. 

 
 private boolean isLink(final Node iNode) { 
  int type = iNode.getNodeType(); 
 
  NamedNodeMap attr = iNode.getAttributes(); 
 
  if (type == Node.ELEMENT_NODE) { 
   String name = iNode.getNodeName(); 
   if (name.equalsIgnoreCase("A")) { 
    for (int i = 0; i < attr.getLength(); i++) { 
     if(attr.item(i). 
       getNodeName(). 
       equalsIgnoreCase("HREF")) { 
      return true; 
     } //if 
    } //for 
   } //else if 
  } //if 
 
  return false; 
 } 
 

• isImage(Node iNode): isImage checks to see if the node is an image.  
 
 private boolean isImage(final Node iNode) { 
  boolean image = false; 
 
  //Check to see if the node is an image 
  int type = iNode.getNodeType(); 
  if (type == Node.ELEMENT_NODE) { 
   if (iNode.getNodeName().equalsIgnoreCase("IMG")) 
    image = true; 
  } //if 
 
  return image; 
 } 
 

• isImageLink(Node iNode): This method checks to see if a node is a link with an image as the link 
or if the node is an image, it checks if it is a link. First, it checks to see if the node is a link, and 
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then it checks to see if any of its children are images. If that is true, then the method returns true, 
indicating the node is an image link. Second, it checks if the node is an image, and if its parent is 
a link. If this is the case, it will indicate that the node is an image link. Maps are also check for 
and treated as image links. Otherwise, it returns false. 

 
 private boolean isImageLink(final Node iNode) { 
  boolean imageLink = false; 
 
  //Check to see if the node is a link 
  if (isLink(iNode)) { 
 
   //Check to see if the children have an image in it 
   if (iNode.hasChildNodes()) { 
    Node next = iNode.getFirstChild(); 
 
    while (next != null && !imageLink) { 
     Node current = next; 
     next = current.getNextSibling(); 
     if (isImage(current)) 
      //imageLink = true; 
      return true; 
 
    } //while 
   } //if 
  } //if 
  //If the node is an image, check if its parent is a link 
  else if (isImage(iNode)) { 
   if (isLink(iNode.getParentNode())) 
    //imageLink = true; 
    return true; 
   else { 
    // check for image maps 
    if (nodeContainsAttribute(iNode, "usemap")) 
     //imageLink = true; 
     return true; 
   } 
 
  } //else if 
 
  return imageLink; 
 } //isImageLink 
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