
Secret Key Cryptography Using Graphics Cards

Debra L. Cook
Columbia University

dcook@cs.columbia.edu

John Ioannidis
Columbia University
ji@cs.columbia.edu

Angelos D. Keromytis
Columbia University

angelos@cs.columbia.edu

Jake Luck
10K Interactive
jake@10k.org

Technical Report, January 14, 2004

Abstract

One frequently cited reason for the lack of wide deployment of cryptographic protocols is the (per-
ceived) poor performance of the algorithms they employ and their impact on the rest of the system. Al-
though high-performance dedicated cryptographic accelerator cards have been commercially available
for some time, market penetration remains low. We take a different approach, seeking to exploit existing
system resources, such as Graphics Processing Units (GPUs) to accelerate cryptographic processing.

We exploit the ability for GPUs to simultaneously process large quantities of pixels to offload cryp-
tographic processing from the main processor. We demonstrate the use of GPUs for stream ciphers,
which can achieve 75% the performance of a fast CPU. We also investigate the use of GPUs for block
ciphers, discuss operations that make certain ciphers unsuitable for use with a GPU, and compare the
performance of an OpenGL-based implementation of AES with implementations utilizing general CPUs.
In addition to offloading system resources, the ability to perform encryption and decryption within the
GPU has potential applications in image processing by limiting exposure of the plaintext to within the
GPU.

Keywords: Graphics Processing Unit, Block Ciphers, Stream Ciphers, AES.

1 Introduction

In a large-scale distributed environment such as the Internet, cryptographic protocols and mechanisms play
an important role in insuring the safety and integrity of the interconnected systems and the resources that
are available through them. The fundamental building block such protocols depend on are cryptographic
primitives, whose algorithmic complexity often turns them into a (real or perceived) performance bottle-
neck to the systems that employ them [6]. To address this issue, vendors have been marketing hardware
cryptographic accelerators that implement such algorithms [8, 9, 11, 12, 14]. Others have experimented
with taking advantage of special functions, such as MMX instructions [5].

While the performance improvement that can be derived from accelerators is significant [10], only a
small number of systems employ such dedicated hardware. Unless the economics of security change dras-
tically, it is not clear why users would invest in such hardware. Thus, our approach is to exploit resources
typically available in most systems. We observe that the large majority of systems, in particular workstations
and laptops (but also servers), include a high-performance Graphics Processing Unit (GPU), also known as
a graphics accelerator. Due to intense competition and considerable demand (primarily from the gaming

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


community) for high-performance graphics, such GPUs pack more transistors than the CPUs found in the
same PC enclosure [13] at a smaller price.

Furthermore, we believe that most users do not use their GPUs at full capacity when browsing or oth-
erwise requiring secure communications; conversely, the need for secure communications is perhaps dimin-
ished while playing a graphics-intensive game. Likewise, GPUs are underutilized by server machines. Thus,
there exists the potential for utilizing such widely available, high-performance, special-purpose hardware for
offloading suitable computationally expensive tasks. Our initial intent is to determine the potential use of
typical GPUs and configurations for cryptographic applications, as opposed to requiring enhancements to
GPUs, their drivers, or other system components. Avoiding specialized requirements is necessary to provide
a benefit to generalized environments in which the GPU is otherwise underutilized.

GPUs provide parallel processing of large quantities of data relative to what can be provided by a general
CPU. Performance levels equivalent to the processing speed of 10Ghz Pentium processor have been reached,
and GPUs from Nvidia and ATI are functioning as co-processors to CPUs in various graphics subsystems
[13]. GPUs are already being used for non-graphics applications, but presently none are oriented towards
security [4]. Utilizing GPUs for encryption has potential benefits for both graphics and non-graphics appli-
cations. In general, moving encryption and decryption into GPUs will offload system resources. Beyond
simply improving system performance, implementing ciphers within the GPU allows images to be encrypted
and decrypted without writing the image temporarily as plaintext to system memory, limiting exposure of
the plaintext to within the GPU.

Our work consists of several related experiments regarding the use of GPUs for symmetric-key ciphers.
First, we experiment with the use of GPUs for stream ciphers, leveraging the parallel processing to quickly
apply the key stream to large segments of data. Second, we determine if AES can be implemented to utilize
a GPU in a manner that allows for offloading work from other system resources. Our work illustrates why
algorithms involving certain byte-level operations and substantial byte-level manipulation are unsuitable for
use with GPUs given current APIs. Third, we investigate the potential for implementing ciphers in GPUs
for image processing to avoid the image being written to system memory as plaintext.

1.1 Paper Organization

The remainder of the paper is organized as follows. We provide background on OpenGL commands and
pixel processing used in our implementations in Section 2. Section 3 explains how GPUs can be utilized for
stream ciphers in certain applications, and gives some preliminary performance results. Section 4 describes
the representation of AES which was implemented in OpenGL and includes a general discussion of why
certain block ciphers are not suitable candidates for use with a GPU given the existing APIs. Section 5
provides an overview of the implementation of AES that utilizes a GPU and provides performance results.
We discuss the potential use of GPU-embedded versions of symmetric-key ciphers in image processing in
Section 6. Our conclusions and future areas of work are covered in Section 7. Appendix A describes
the experimental environments, including the minimal required specifications for the GPUs. Appendix B
contains pseudo-code for our AES encryption routine.

2 OpenGL and GPU Background

Before describing our implementations of symmetric key ciphers, we give a brief overview of the OpenGL
pipeline, modeled after the way modern GPUs operate, and the OpenGL commands relevant to our exper-
iments. Our implementations process data as pixels treated as floating point values, with one byte of data
stored in each pixel component; we do not use the pixel processing as color and stencil indices and the

2



vertex processing in OpenGL. Refer to [1] and [18] for a complete description. We used OpenGL version
1.4 in all experiments.

Figure 1 shows the components of the OpenGL pipeline that are relevant to pixel processing when
pixels are treated as floating point values. While implementations are not required to adhere to the pipeline,
it serves as a general guideline for how data is processed. We also point out that OpenGL does not require
support for the Alpha pixel component in the back buffer.

System
Memory Framebuffer

Pixel Transfer
Operations
and Map

Texture 
Memory

Rasterization
Per 
Fragment
Operations

Pixel 
Storage
Modes

Unpack

Convert
to [0,1]

Convert
Luminance
to RGBA

Scale
Bias

Color 
map

Clamp
to [0,1]

RGBA,
depthPack

Convert
to [0,1]

Convert to
Luminance
(if required)

system to
framebuffer

framebuffer 
to system

Legend

Figure 1: OpenGL Pipeline

A data format indicating such items as number of bits per pixel and the ordering of color components
specifies how the GPU interprets and packs/unpacks the bits when reading data to and from system memory.
The data format may indicate that the pixels are to be treated as floating point numbers, color indices, or
stencil indices. The following description concerns the floating point interpretation. When reading data from
system memory, the data is unpacked and converted into floating point values in the range

� �������
. Luminance,

scaling and bias is applied per color component. The next step is to apply the color map, which we describe
later in more detail. The values of the color components are then clamped to be within the range

� �������
.

Rasterization is the conversion of data into fragments, with each fragment corresponding to one pixel in
the framebuffer. In our work this step has no impact. The fragment operations relevant to pixel processing
include dithering, threshold based tests, such as discarding pixels based on alpha value and stencils, and
blending and logical operations that combine pixels being drawn into the framebuffer with those already in
the destination area of the framebuffer. Dithering, which is enabled by default, must be turned off in our
applications to prevent pixels from being averaged with their neighbors.

When reading data from the framebuffer to system memory, the pixel values are mapped to the range� �������
. Scaling, bias, and color maps are applied to each of the RGBA components and the result clamped to

the range
� �������

. The components or luminance is then packed into system memory according to the format
specified. When copying pixels between areas of the framebuffer, the processing occurs as if the pixels

3



were being read back to system memory except the data is written to the new location in the framebuffer
according to the format specified for reading pixels from system memory to the GPU.

Aside from reading the input from system memory and writing the result to system memory, the OpenGL
commands in our implementations consist of copying pixels between coordinates, with color mapping and
a logical operation of XOR enabled or disabled as needed. Unfortunately, the copying of pixels and color
maps are two of the slowest operations to perform [18]. The logical operation of XOR produces a bitwise-
XOR between the pixel being copied and the pixel currently in the destination of the copy, with the result
being written to the destination of the copy.

A color map is applied to a particular component of a pixel when the pixel is copied from one coordinate
to another. A color map can be enabled individually for each of the RGBA components. The color map
is a static table of floating point numbers between 0 and 1. Internal to the GPU, the value of the pixel
component being mapped is converted to an integer value which is used as the index into the table and the
pixel component is replaced with the value from the table. For example, if the table consists of 256 entries,
as in our AES implementation, and the map is being applied to the red component of a pixel, the 8 bits of the
red value are treated as an integer between 0 and 255, and the red value updated with the corresponding entry
from the table. In order to implement the tables of item (III) in Section 4 as color maps, the tables must be
converted to tables of floating point numbers between 0 and 1, and hard-coded in the program as constants.
The table entries, which would vary from 0 to 255 if the bytes were in integer format, are converted to
floating point values by dividing by 255. Because pixels are stored as floating point numbers and the values
are truncated when they are converted to integers to index into a color map, 0.000001 is added to the result
(except to 0 and 1) to prevent errors due to truncation.

3 Use of Graphics Cards for Stream Ciphers

As a first step in evaluating the usefulness of GPUs for implementing cryptographic primitives, we imple-
mented the mixing component of a stream cipher (the XOR operation) inside the GPU. GPUs have the
ability to XOR large quantities of pixels simultaneously, which can be beneficial in stream cipher imple-
mentations. For applications that pre-compute segments of key streams, a segment can be stored in an array
of bytes which is then read into the GPU’s memory and treated as a collection of pixels. The data to be
encrypted or decrypted are also stored in an array of bytes which is read into the same area of the GPU’s
memory as the key stream segment, with the logical operation of XOR enabled during the read. The result
is then written to system memory. Overall, XORing the data with the key-stream requires two reads of data
into the GPU from system memory and one read from the GPU to system memory regardless of how many
bytes are being encrypted.

The number of bytes can be at most three times the number of pixels supported if the data is processed in
a back buffer utilizing only RGB components. The number of bytes can be four times the number of pixels
if the front buffer can be used or the back buffer supports the Alpha component. If the key stream is not
computed in the GPU, the cost of computing the key stream and temporarily storing it in an array is the same
as in an implementation not utilizing a GPU. Certain stream ciphers, such as RC4 [17], can be implemented
such that the key stream is generated within the GPU1. Others involve operations which make it difficult
or impossible to implement in the GPU given current APIs; for example, SEAL [16] which requires 9-bit
rotations.

We compared the rate at which data can be XOR’ed with a key stream in an OpenGL implementation
to that of a � implementation (Visual C++ 6.0). We conducted the tests using a PC with a 1.8Ghz Pentium
IV processor and Nvidia GeForce3 graphics card, a laptop with a 1.3Ghz Pentium Centrino Processor and

1The modular additions required in RC4 can be performed in OpenGL with blending.

4



CPU
1.8 Ghz 1.3 Ghz 800 Mhz

XOR Rate 139MB/s 93.9MB/s 56MB/s

Table 1: XOR Rate Using System Resources (CPU)

a ATI Mobility Radeon graphics card, and a PC with a 800Mhz Pentium III Processor and a Nvidia TNT2
graphics card. Refer to Appendix A for additional details on the test environments. We give the results
from the � implementation in Table 1. We tested several data sizes to determine the ranges for which the
OpenGL implementation would be useful. As expected, the benefit of the GPU’s simultaneous processing
is diminished if the processed data is too small. Table 2 indicates the average encryption rates over 10 trials
of encrypting 1000 data segments of size ����� and ����� , respectively, where the area of pixels is � by � .

Using RGB components Using RGBA components
Area Nvidia ATI Mobility Nvidia Nvidia ATI Mobility Nvidia

(in pixels) GeForce3 Ti200 Radeon 7500 TNT2 GeForce3 Ti200 Radeon 7500 TNT2
50x50 35.7MBps 23.5MBps 27.8MBps 49.3MBps 26.3MBps 37.0MBps

100x100 53.4MBps 38.5MBps 28.8MBps 69.2MBps 38.1MBps 38.4MBps
200x200 64.5MBps 45.5MBps 26.0MBps 86.8MBps 45.7MBps 32.0MBps
300x300 70.1MBps 45.0MBps 26.0MBps 94.8MBps 42.3MBps 32.0MBps
400x400 75.4MBps 43.0MBps 27.0MBps 95.9MBps 49.0MBps 32.8MBps
500x500 77.3MBps 38.0MBps 26.6MBps 97.5MBps 37.0MBps 32.6MBps
600x600 81.2MBps 41.7MBps 27.7MBps 105.0MBps 41.5MBps 32.8MBps

Table 2: XOR Rate Using GPUs - RGB and RGBA Pixel Components

Notice that the encryption rate was fairly constant for all data sizes on the slowest processor with the
oldest GPU (Nvidia TNT2). Possible explanations include slow memory controller, memory bus, or GPU,
although we have not investigated this further. With the GeForce3 Ti200 card the efficiency increased as
more bytes were XOR’ed simultaneously. On the laptop the peak rates were obtained with 200x200 to
400x400 square pixel areas.

When using the RGB components, the highest rate obtained by the GPUs compared to the � program
is 58% for the Nvidia GeForce3 Ti200 card, 48.5% for the ATI Mobility Radeon card, and 51.4% for the
Nvidia TNT2 card. With both the GeForce3 Ti200 and the ATI Radeon cards, results with the 50x50 pixel
area was significantly slower than with larger areas due to the time to read data to/from system memory
representing a larger portion of the total time. In both cases the rate is approximately 25% of that of the �
program. When using the RGBA components, the highest rates on the Nvidia GeForce Ti200, ATI Radeon
and Nvidia TNT2 cards are 75.5%, 52% and 68% of the � program, respectively.

4 Representation of Block Ciphers

We now turn our attention to the use of GPUs for implementing block ciphers. The first step in our work
is to determine if AES can be represented in a manner which allows it to be implemented within a GPU.
We describe the derivation of the OpenGL version of AES and its implementation in some detail in order
to illustrate the difficulties that arise when utilizing GPUs for algorithms performing byte-level operations.

5



We also briefly comment on the suitability of using GPUs for block ciphers in general. While GPUs are
advantageous in various aspects, the use of floating point arithmetic and the fact that the APIs are not
designed for typical byte-level operations, as required in most block ciphers, present severe obstacles. For
128-bit blocks, the AES round function for encryption is typically described with data represented as a
4x4-byte matrix upon which the following series of steps are performed:

(I) ShiftRows (bytes within each row of the 4x4 matrix are shifted between 0 and 3 columns)
MixColumns (a matrix multiplication; absent in last round)
AddRoundKey (the 4x4 matrix is XORed with a round key)

Ten rounds are performed, with the data XORed with key material prior to the first round and the Mix-
Columns step omitted in the last round. The round function for decryption differs from encryption in that
inverse functions for SubBytes, ShiftRows and MixColumns are used. Refer to [3] for a complete descrip-
tion of each function.

A faster implementation for environments with sufficient memory operates on 32-bit words and reduces
the AES round function to four table lookups and four XORs. If � denotes a 4x4 matrix input to the round,����� � denotes the �	��
 row and ���
 column of � , ����� is computed modulo 4, and ��� are tables with 256 32-bit
entries, the round function is reduced to the form:

(II) ������ � � � ����� � ��� � � � ����� �� � �!� ��" � � � � �� � ��� � � � ��#�� ��$# �!�&%('*)$+-,�.0/21
where ���� denotes the � ��
 column of the round’s output. Refer to pages 58–59 of [7] for a complete descrip-
tion. The entries in the tables in (II) are concatenations of 1, 2, and 3 times the S-Box entries. This version
is due to the fact that the order of the SubBytes and ShiftRows steps can be switched and the MixColumn
step can be viewed as the linear combination of four column vectors, which is actually a linear combination
of the S-Box entries.

The AES round function cannot easily be implemented with OpenGL as the standard series of four steps.
The SubBytes can be performed using a color map, and the ShiftRows and AddRoundKey can be performed
by copying pixels to change their location or to XOR them with other pixels. However, the MixColumn step
would have to be expanded to a series of color maps to perform individual multiplications and copying of
pixels to perform additions due to the lack of a corresponding matrix multiplication with modular arithmetic
in OpenGL. The view of AES as four table lookups and XORs also cannot be implemented in OpenGL due
to the lack of a 32-bit data structure. While the RGBA format is 32 bits, it is not possible to use all 32 bits
as an index into a color map or to swap values between components, both of which would be necessary
to implement the version in (II). As a result, an intermediate step in the transformation of the standard
algorithm to the version in (II) is used. Letting �3�� and ���4� � be defined as in (II) and letting 5 � �6��� � � denote the
S-Box entry corresponding to �6�4� � , the encryption round function for rounds 1 to 9 is represented as:

(III)

� �� �
7888
9

� ":5 � ����� � �� � 5 � ����� � �� � 5 � � ��� � ��
�:5 � ����� � �

;=<<<
> �

7888
9

�
�:5 � ����� �� � �� ":5 � ����� �� � �� � 5 � � ��� �� � �� � 5 � ����� �� � �

;=<<<
> �

7888
9

� � 5 � � � � �� � ��
�:5 � � � � �� � �� ":5 � � � � �� � �� � 5 � � � � �� � �

;=<<<
> �

7888
9

� � 5 � ��#�� �2�$# ��
�:5 � ��#�� �2�$# �� ":5 � � #�� �2�$# �� � 5 � ��#�� �2�$# �

;=<<<
> �&%('*)?+-, � /21

If three tables, representing 1, 2, and 3 times the S-Box entries are stored, (III) reduces to a series of
table lookups and XORs2. This allows AES to be implemented using color maps and copying of pixels.
The

� � ��
 round is implemented as (III) with all the coefficients of 2 and 3 replaced by 1. Since decryption

2In AES, @=A is calculated as B=ADC�A .

6



uses the inverses of the S-Box and matrix multiplication, five tables need to be stored, representing 0E, 0B,
0D, 09 and 01 times the S-Box inverse. Notice that this representation of AES processes data as individual
bytes instead of as 4-byte words. However, the manner in which the pixel components are utilized in the
implementation when encrypting multiple blocks allows 4 bytes to be processed simultaneously per pixel,
compensating for the loss of not being able to use 32-bit words as in (II).

In general, algorithms performing certain byte and bit-level operations are not suitable for GPUs given
current APIs. While simple logical operations can be performed efficiently in GPUs on large quantities of
bytes, as shown in Section 3, the byte and bit-level operations typically found in symmetric key ciphers,
such as shifts and rotates, are not available via the APIs to GPUs. Modular arithmetic operations are also
not readily available. While some operations, such as defining masks of pixels and using multiple copy
commands to perform rotations and shifts on single bytes, can be performed via combinations of OpenGL
commands, other operations, such as shifts across multiple bytes and table lookups based on specific bits,
prove to be more difficult. For example, consider the DES S-Boxes [2]. The index into the S-Box is based on
six key bits XORed with six data bits. Two of the bits are used to select the S-Box and the remaining four are
the index into the S-Box. Masks of pixels copied onto the data can be used to “extract” the desired bits, but to
merely XOR the six key bits with six data bit requires copying the pixel containing the desired key bits onto
the pixel containing the mask with XOR turned on, doing the same for the data pixel, then copying the two
resulting pixels to the same position. Color maps are required to emulate the S-Box. Overall, to use OpenGL
for the S-Box step in DES, more and less efficient operations are required than in a � implementation.

5 OpenGL Version of AES

5.1 Implementation Overview

We describe an implementation of AES’s encryption and decryption functions for 128-bit blocks that works
with any GPU supporting 32-bit pixels and OpenGL. The key schedule is not implemented inside the GPU.
While the GPU allows for parallel processing of a large number of blocks, due to the simplicity in which
AES can be implemented in software as a series of table lookups and XORs, the overall encryption rate using
the GPU is below the rate that can be obtained with a � implementation utilizing only system resources, but
allows offloading of some work from the system resources to free them up for other tasks.

The code consisted of �
�

OpenGL and GLUT. The � portion of the code sets up the plaintext or ci-
phertext and key. The OpenGL and GLUT commands are called from within the � program. All of the
encryption and decryption computations are performed with OpenGL functions, with data being stored and
processed as pixels. To accomplish this, it is necessary to represent AES in a manner that required only
the specific transformations or functions supported by the graphics hardware. As explained in Section 4,
we use a representation that can be implemented in OpenGL solely via color maps and pixel copying. The
implementation allows encrypting ���

+
blocks simultaneously, where

+
is the number of pixels utilized for

the data being encrypted or decrypted and may be any integer less than the display’s maximum pixel height
supported by the GPU. The encryption of multiple blocks simultaneously from the same plaintext is useful
if ECB or CTR mode are used. Alternatively, we can process one block from several messages in parallel.

Figure 2 illustrates the pixel coordinates utilized by the algorithm. The initial data blocks are read into
the 16 x

+
area starting at the origin, indicated by “DATA” in the diagram. One byte of data is stored in

each pixel component, allowing us to process ���
+

blocks of data when all of the RGBA components are
used. The � ��
 column contains the � ��
 bytes of the blocks. This area is also used to contain the output from
each round. In order to maximize throughput, for each data block one copy of the expanded key is read
into the area labeled “KEY” in the diagram. This area is 176 x

+
pixels starting at (17, 0) and the round

keys are stored in order, each encompassing 16 columns. The tables are stored as color maps and do not

7



D
A

T
A

01
 (0

1)

02
 (

0E
)

03
 (

0B
)

(0D
)

(0
9)

KEY

16 pixels

n pixels

Figure 2: Layout of Data in Pixel Coordinates

appear in the layout. The data stored in the first 16 columns is copied 3 times for encryption and 5 times
for decryption, applying a color map each time. The results are stored in the areas indicated by the hex
values in the diagram and are computed per round. The values in parenthesis indicate the location of the
transformations for decryption. The hex value indicates the value by which the S-Box (or inverse S-Box)
entries are multiplied. See Appendix B for pseudo-code of the GPU AES encryption process.

Two � implementations of AES are used for comparison. The first is the AES representation corre-
sponding to variant (I) in Section 4, with the multiplication steps performed via table lookups, and reflects
environments in which system resources for storing the tables required by variant (II) are not available. The
second is a � implementation of variant (II), which offers increased encryption and decryption rates over (I)
at the cost of requiring additional memory for tables. The code for (II) is a subset of [15].

5.2 Experiments

We compare the rate of encryption provided with the GPU to that provided by the � implementation running
on the system CPU. Tests were conducted using the same three environments used for the stream cipher
experiments. When describing the results, AES-GL indicates the implementation using OpenGL and AES-
C indicates the C implementations, with the specific variant from Section 4 indicated by I and II. The AES-C
programs have a hard coded key and single 128-bit block of data. The programs expand the key then loop
through encrypting a single block of data, with the output from the previous iteration being encrypted each
time. No data is written to files and the measurements exclude the key setup (which is common for all
variants). The AES-GL program uses a hard-coded expanded key and one or four blocks of data in the cases
when the red or RGBA pixel components are used, respectively. Both the key and data are read in

+
times

to provide
+

copies. Similar to the AES-C programs, the AES-GL program loops through encrypting blocks
of data, with the output from the previous iteration being encrypted each time. The times exclude reading
in the initial data and key, and no data is read from or written to system memory during the loop. Trials

8



were conducted with the values of
+

ranging from 100 to 600 in increments of 100. The rates for values
of
+��

�
� �

varied by less than 2% and the rates across all values of
+

varied by at most 8%. The results
for AES-GL in Table 3 are the averages over

+��
�
� �

when a single pixel component and all of the RGBA
pixel components are utilized. The corresponding decryption rates for the � and OpenGL implementations
will be slightly lower than the encryption rates due to a small difference in the number of operations in the
decryption function compared to that of the encryption function.

AES Version
PC and GPU AES-GL AES-GL AES-C (I) AES-C (II)

R RGBA
800Mhz Nvidia TNT2 184Kbps 732Kbps 1.68Mbps 30Mbps

1.3Ghz ATI Mobility Radeon 55Kbps 278.3Kbps 2.52Mbps 45Mbps
1.8Ghz Nvidia GeForce3 380Kbps 1.53Mbps 3.5Mbps 64Mbps

Table 3: Encryption Rates for AES

The layout of the pixels was chosen to simplify indexing while allowing for a few thousand blocks to be
encrypted simultaneously. Since the layout does not utilize all of the available pixels, the number of blocks
encrypted at once can be increased if the display area is utilized differently. For example, if the number
of blocks is

+
�
�
the layout can be altered such that the various segments are laid out in

+
x
+

areas instead
of as columns. Performance recommendations for OpenGL include processing square regions of pixels as
opposed to processing narrower rectangles [18]. A modification of the program was tried that performed
the same number of steps on square regions instead of the configuration shown in Figure 2. There was no
change in the encryption rate, most likely because the program appears to be CPU-bound as we discuss in
the next section. Furthermore, using square areas makes indexing more difficult and requires the number of
blocks to be a perfect square for optimal utilization of the available pixels.

5.3 Performance Analysis

With the two Nvidia graphics cards, AES-GL’s encryption rate was just under 50% that of AES-C (I).
However, when compared to AES-C (II), the AES-GL rate was 2.4% of the AES-C version. The ratio was
lower in both cases when using ATI Mobility Radeon graphics card, with the AES-GL encryption rate being
11% of AES-C (I)’s rate and less than 1% of AES-C (II)’s rate.

To determine the factors affecting AES-GL’s performance, additional tests were performed in which
AES-GL and AES-C were run while monitoring system resources. When we use either AES-C or AES-GL,
the CPU utilization is 100% for the duration of the program. While we expect high CPU utilization for
AES-C, the result is somewhat counter-intuitive for AES-GL. We believe that this happens because of the
rate at which commands are being issued to the graphics card driver. Due to the simplicity in which AES
is represented, a single OpenGL command resulted in one operation from AES being performed: either the
table lookup or the XORing of bytes.

We do not consider the difference between the AES representations used by AES-GL and AES-C to be a
factor. While the representation of AES used in AES-GL processes data as individual bytes instead of as the
32-bit words used in AES-C (II), even when excluding the processing of

+
pixels simultaneously the use of

the RGBA components allows 4 bytes to be processed simultaneously per pixel, compensating for the loss
of not being able to use 32-bit words. We also reiterate that the actions performed upon the pixels (color
maps and copying) are two of the slowest GPU operations.

9



6 Decryption of Images Inside the GPU

The fact that symmetric-key ciphers can be implemented within a GPU implies it is possible to encrypt
and decrypt images in a manner that does not require the image to ever be present outside the GPU in
unencrypted format. If the decrypted image is only available in the GPU, an adversary must be able to
execute reads of the GPU’s memory for the area utilized by the window containing the image while the
image is being displayed. As a proof of concept, we use AES-GL implementation with the image read into
the card’s memory in an area not utilized by AES. The data area for AES is populated by copying the image
pixels into the area in lieu of reading data from system memory. Trivially, the stream cipher implementation
is also applied to an image by XORing the image with the pixel representation of the key stream.

A potential application is encrypted streaming video in which the video frames are decrypted within the
back buffer of the GPU prior to being displayed, as opposed to decrypting within the system when the data
is received. Typical media player screens vary from 320 x 200 pixels to 1280x1024 pixels. For low end
video 10 frames per second (fps) is sufficient, while full-motion video requires 15 to 30 fps, with minimal
perceived difference between the two rates. Assuming 8 bits per RGB component, the decryption rate must
be 1.92 MBps to support 10 fps and 2.88 MBps to support 15 fps when displaying video to a 320 x 200
pixel window, rates within the limits supported by the GPUs when using stream ciphers but which exceed
the rate currently obtained with AES-GL. The AES � (I) implementation also does not support these rates.
For a 1280 x 1024 screen, 39.25 MBps support is required for 10 fps, a rate which is supported when using
a stream cipher in two of the three GPUs. At 15 fps, 58.9MBps must be supported, which can only be
achieved with the Nvidia GeForce3 Ti200.

When encrypting and decrypting images within the GPU, a few issues need to be resolved, such as image
compression. If an image is encrypted prior to compression, ideally no compression should be possible;
therefore, when encrypting and decrypting images in the GPU compression and decompression will also
need to be migrated to the GPU. Second, as mentioned previously, dithering needs to be turned off. This
may produce a visible side affect if the algorithm is used on large images. However, on small images, typical
of a media player when not set to full screen, the lack of dithering is not likely to be noticeable. An option
would be to decrypt the image in the back buffer then have dithering on when transferring the image to the
front buffer, allowing decrypted images and video to be displayed with dithering.

The current AES-GL implementation reads the expanded key from the system. Implementations for
stream ciphers which can create the key stream within the GPU also read the initial key from system memory.
Alternate methods of storing the key or conveying the key to the GPU must be considered to make the key
storage secure as well.

7 Conclusions

GPUs can be used to offload a shared system CPU in applications using stream ciphers and which allow
large segments of data to be combined with the key stream simultaneously. The AES experiments prove it is
possible to implement AES in a manner that utilizes a GPU to perform the computations. Our preliminary
results indicate a disadvantage to using a GPU to encrypt data when a dedicated CPU is available. However,
the GPU may be used to offload some processing from a heavily-loaded shared CPU, especially in con-
figurations where the GPU is otherwise not utilized. Such use of offloading can be extremely beneficial to
overall system performance [10]. The lessons learned from developing the OpenGL version of AES indicate
GPUs are not suitable, given current APIs, for ciphers involving certain types of byte-level operations.

With both block and stream ciphers, encryption and decryption of images may be moved into the GPU
to avoid temporarily storing an image as plaintext in system memory. As GPU processing power and capa-
bilities continue to increase, the potential uses will also increase. Expanding accessibility to internal GPU

10



functions via APIs may be beneficial by allowing the applications to take advantage of functions currently
not available through these APIs.

Future work includes optimizing the rate of encryption for stream ciphers using GPUs, determining if
other APIs offer opportunities for performance improvements, deriving a mechanism by which the key is not
exposed outside the GPU, and continuing work on the potential application to streaming video. Other areas
for further research include the use of graphics capabilities to design a new cipher that can better exploit
the capabilities of modern GPUs, and investigating the potential benefit to using GPUs with existing ciphers
other than AES, including public-key ciphers.

References

[1] OpenGL Organization. http://www.opengl.org.

[2] FIPS 46-2 Data Encryption Standard (DES), 1993.

[3] FIPS 197 Advanced Encryption Standard (AES), 2001.

[4] General Purpose Computation Using Graphics Hardware. http://www.gpgpu.org, 2003.

[5] E. Biham. ”A Fast New DES Implementation in Software. In Workshop on Fast Software Encryption
- FSE ’97, Lecture Notes in Computer Science 1267, Springer-Verlag, pages 260–272, 1997.

[6] A. G. Broscius and J. M. Smith. Exploiting Parallelism in Hardware Implementation of the DES.
In J. Feigenbaum, editor, Proceedings, CRYPTO 1991 Conference, number 576 in Lecture Notes in
Computer Science, pages 367–376. Springer-Verlag, August 1991.

[7] J. Daemon and V. Rijmen. The Design of Rijndael: AES the Advanced Encryption Standard. Springer-
Verlag, Berlin, 2002.

[8] W. Feghali, B. Burres, G. Wolrich, and D. Carrigan. Security: Adding Protection to the Network via
the Network Processor. Intel Technology Journal, 6, August 2002.

[9] Helion Technology Limited. High Performance Solutions in Silicon, AES (Rijndael) Core. http:
//www.heliontech.com/core2.htm, 2003.

[10] A. D. Keromytis, J. L. Wright, and T. de Raadt. The Design of the OpenBSD Cryptographic Frame-
work. In Proceedings of the USENIX Annual Technical Conference, pages 181–196, June 2003.

[11] H. Kuo and I. Verbauwhede. Architectual Optimization for 1.82 Gbits/sec VLSI Implementation of
Rijndael Algorithm. In Proceedings of CHES, LNCS 2162, Springer-Link, pages 51–64, 2001.

[12] A. Lutz, J. Treichler, F. Gurkeynak, H. Kaeslin, G. Bosler, A. Erni, S. Reichmuth, P. Rommens,
S. Oetiker, and W. Fichtner. 2G bits/s Hardware Realizations of Rijndael and Serpent: A Compar-
ative Analysis. In Proceedings of CHES, LNCS 2523, Springer-Link, pages 144–158, 2002.

[13] M. Macedonia. The GPU Enters Computing’s Mainstream. IEEE Computer Magazine, pages 106–
108, October 2003.

[14] M. McLoone and J. McConny. High Performance Single Chip FPGA Rijndael Algorithms Implemen-
tations. In Proceedings of CHES, LNCS 2162, Springer-Link, pages 65–76, 2001.

11



[15] B. Rijmen, Bosselaers. AES Optimized ANSI C Code. http://www.esat.kuleuven.ac.be/
˜rijmen/rijndael/rijndael-fst-3.0.zip.

[16] P. Rogaway. A Software Optimized Encryption Algorithm. In Journal of Cryptology, volume 11,
pages 273–287, 1998.

[17] B. Schneier. Applied Cryptography. John Wiley and Sons, New York, 1996.

[18] D. Woo, Neider and Shreiner. The OpenGL Programming Guide, 3rd edition, Addison-Wesley, Read-
ing, MA. 1999.

Appendix A: Environments

GPU Requirements

For our implementations, we use OpenGL as the API to the graphics card driver. All of our programs use
basic OpenGL commands and have been tested with OpenGL 1.4.0. No vendor-specific extensions are used,
allowing the program to be independent of the GPU. The GPU must support 32-bit true color mode, because
8-bit color components are required for placing the data in pixels. At a minimum, one color component
and at a maximum all four of the RGBA components are utilized by our programs. The implementations
of AES and stream ciphers can be set to work with one to four pixel components. To avoid displaying the
pixels to the window as the encryption is occurring, the display mode can be set to use a front and back
buffer, with the rendering performed in the back buffer and the results read directly from the back buffer to
system memory and never displayed on the screen. The support for the Alpha component in the back buffer
is optional in OpenGL; therefore, it may be necessary to perform rendering in the front buffer and display
the pixels to the screen when utilizing all of the RGBA components.

Processors

All tests were performed in three different environments, then a subset of the tests were run in other envi-
ronments to verify the correctness of the implementations with additional GPUs. The environments were
selected to represent a fairly current computing environment, a laptop and a low-end PC. The three environ-
ments used for all tests are:

1. A Pentium IV 1.8 Ghz PC with 256KB RAM and an Nvidia GeForce3 Ti200 graphics card with
64MB of memory. The operating system is MS Windows XP.

2. A Pentium Centrino 1.3 Ghz laptop with 256KB RAM and an ATI Mobility Radeon 7500 graphics
card with 32MB of memory. The operating system is MS Windows XP.

3. A Pentium III 800 Mhz PC with 256KB RAM and an Nvidia TNT32 M64 graphics card with 32MB
of memory. The operating system is MS Windows 98.

In all cases, the display was set to use 32-bit true color and full hardware acceleration. Aside from MS
Windows and, in some cases a CPU monitor, no programs other than that required for the experiment were
running. The CPU usage averages around 8% in each environment with only the OS and CPU monitor
running. All code was compiled with Visual C++ Version 6.0. Our implementations required opening a
display window, though computations may be performed in a buffer that is not visible on the screen. The
window opened by the program is positioned such that it does overlap with the window from which the
program was executed and to which the output of the program is written. The reason for this positioning is

12



that movement of the display window or overlap with another active window may result in a slight decrease
in performance and can interfere with the results. GLUT commands were used to open the display window.

The other GPUs we tested our programs with included a Nvidia GeForce4 Ti 4200 on a Pentium III 1.4
Ghz processor running MS Windows 2000, and an Intel c

�
82845G/GL Graphics Controller on a 2.3 Ghz

Pentium IV processor running MS Windows XP. The AES implementation was also tested using a GeForce3
Ti200 graphics card with 64MB of memory with X11 and Redhat Linux 7.3.

Configuration Factors

In order to determine configuration factors impacting the performance, we ran a series of initial tests with
the OpenGL implementations of AES and the stream cipher while holding the number of bytes encrypted
constant. First, since the implementation required a GPU that was also being utilized by the display, we
varied the refresh rate for the display, but that did not affect performance. Second, we varied the screen
area (not the number of pixels utilized for the cipher) from 800x600 to 1600x1200. This also did not affect
performance, and in the results cited for AES, we set the screen area to the minimum of 800x600 and the
dimension that accommodated the number of pixels required by the test. Third, we tested the use of a single
buffer with the pixels displayed to the screen versus a front and back buffer with all work performed in the
back buffer and not displayed to the screen. Again, there was no change in the encryption rate. A fourth
test was run to determine if there was any decrement to performance by using the GLUT or GLX libraries
to handle the display. In the test, we executed two versions of the program, one using GLUT and one using
GLX with direct rendering, from a server with a Pentium III running Redhat Linux 7.3. There was no
noticeable difference between the rates from the GLUT and GLX versions of the program.

Appendix B: AES Encryption Using OpenGL

In our OpenGL version of AES, encryption was implemented as the following steps:

Define static color maps corresponding to 1, 2, 3 times the S-Box entries.

main �
Load the data into the DATA area.
Load the expanded key into the KEY area.
Turn the logical operation of XOR on.
Copy the first key from the KEY area to the DATA area.
Turn the logical operation XOR off.
for (i=0; i � 9; ++i) �

Copy the DATA area:
to the 01 area with the color map corresponding to 1*S-Box turned on
to the 02 area with the color map corresponding to 2*S-Box turned on
to the 03 area with the color map corresponding to 3*S-Box turned on
Turn color mapping off
Copy the pixels from areas 01,02,03 corresponding to the first term on the right hand side of

(III) to the DATA area.
Turn the logical operation of XOR on.
Copy the pixels from areas 01,02,03 corresponding to the 2nd,3rd and 4th terms on the right

hand side of (III) to the DATA area.
Copy the ith round key from the KEY area to the DATA area.
Turn the logical operation XOR off.

13



�

Copy the DATA area to the 01 area with the color map corresponding to 1*S-Box turned on.
Turn color mapping off.
Copy the pixels from the 01 area back to the DATA area in the order corresponding to ShiftRows.
Turn the logical operation of XOR on.
Copy the last round key from the KEY area to the DATA area.
Turn the logical operation XOR off.
Read the DATA area to system memory.�

14


