
Secure Isolation and Migration of Untrusted Legacy Applications

Shaya Potter Jason Nieh Dinesh Subhraveti
Computer Science Department

Columbia University
{spotter, nieh, dinesh }@cs.columbia.edu

Columbia University Technical Report CUCS-005-04, January 2004

Abstract
Existing applications often contain security holes that are
not patched until after the system has already been com-
promised. Even when software updates are applied to ad-
dress security issues, they often result in system services
being unavailable for some time. To address these system
security and availability issues, we have developed peas
and pods. A pea provides a least privilege environment
that can restrict processes to the minimal subset of sys-
tem resources needed to run. This mechanism enables the
creation of environments for privileged program execution
that can help with intrusion prevention and containment.
A pod provides a group of processes and associated users
with a consistent, machine-independent virtualized envi-
ronment. Pods are coupled with a novel checkpoint-restart
mechanism which allows processes to be migrated across
minor operating system kernel versions with different se-
curity patches. This mechanism allows system administra-
tors the flexibility to patch their operating systems immedi-
ately without worrying over potential loss of data or need-
ing to schedule system downtime. We have implemented
peas and pods in Linux without requiring any application
or operating system kernel changes. Our measurements on
real world desktop and server applications demonstrate that
peas and pods impose little overhead and enable secure iso-
lation and migration of untrusted applications.

1 Introduction

As software complexity grows and computers become
more interconnected, the need for effective computer secu-
rity increases. Complex software often contains program-
ming errors, some of which may lead to vulnerabilities that
can be exploited by attackers who gain access to those ap-
plications. Standard security models employed by com-
modity operating systems, such as Unix, do not help this
situation. Because Unix lumps all privileges together as
root, an application that only periodically needs one priv-
ilege still needs to run as root, providing it with all privi-
leges. An attacker can thus gain root privileges by exploit-

ing a weakness in an application run as root. Consequently,
Internet accessible services offer prime opportunities for
remote attackers to gain access to applications running with
privilege.

Security problems can wreak havoc on an organization’s
computing infrastructure. To prevent this, software ven-
dors frequently release patches that can be applied to ad-
dress security issues that have been discovered. However,
software patches need to be applied to be effective. It is
not uncommon for systems to continue running unpatched
applications long after a security exploit has become well-
known [35]. This is especially true of the growing number
of server appliances intended for very low-maintenance op-
eration by less skilled users. Furthermore, once a patch has
been released, exploits of unpatched applications based on
reverse engineering the patch now occur as quickly as a
month later whereas such exploits took closer to a year just
a couple years ago [23].

Software updates to existing applications may not ad-
dress security problems that result from users accidentally
downloading and executing malicious code. Recently a se-
curity hole was discovered in a popular mp3 player [19]
that could result in arbitrary code being executed if a user
played a maliciously constructed mp3. If the mp3 player
were run within a simple sandbox that limited the player to
one’s collection of mp3s, the damage the malicious code
could accomplish would be severely limited. Over the
years, complex services like Sendmail have similarly been
exploited to allow malicious code to be run within its con-
text. Since Sendmail runs with privilege, the malicious
code also runs with privilege. A sandbox can be used to
protect an entire machine from a faulty service, such as
Sendmail. However, these services don’t run by them-
selves, but also depend on other aspects of the machine,
such as programs a user might want to call from a Proc-
mail script to filter their mail. Consequently, one might end
up including the entire machine within the sandbox. Since
common sandboxes simply provides a single namespace,
they don’t provide good security solutions for the complex
services in use today.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Furthermore, even when software updates are applied to
address security issues, they commonly result in system
services being unavailable. Patching an operating system
can result in the entire system having to be down for some
period of time. If a system administrator chooses to fix an
operating system security problem immediately, he risks
upsetting his users because of loss of data. Therefore, a
system administrator must schedule downtime in advance
and in cooperation with all the users, leaving the computer
vulnerable until repaired. If the operating system is patched
successfully, the system downtime may be limited to just a
few minutes during the reboot. If the patch is not success-
ful, downtime can extend for many hours while the problem
is diagnosed and a solution is found. For systems that need
to provide a high degree of availability, downtime due to
security-related issues is not only inconvenient but costly
as well. While application servers can sometimes mirror
application state between servers and allow an application
to continue even when one server has to be taken down,
they only work in specific situations. For instance, a reg-
ular user’s desktop can not be mirrored between servers.
Even for applications that can mirror their data, the appli-
cation has to be designed to interface with the mirroring
architecture, resulting in application specific solutions that
are difficult to generalize.

We introduce Pea-Pods to provide a solution to these se-
curity problems. Pea-Pods provide two key abstractions,
peas (Protection and Encapsulation Abstraction) and pods
(PrOcess Domain). A pod is a lightweight migratable vir-
tual execution environment that looks just like the underly-
ing operating system environment. A pea is a least privilege
environment within a pod that allows access to a subset of
processes and resources in the pod. In tandem, peas and
pods decouple process execution from the underlying op-
erating system to provide transparent, secure isolation and
migration of untrusted applications. Pea-Pods can isolate
untrusted applications within sandboxes, preventing them
from causing harm to the underlying system or other appli-
cations if they are compromised.

Pea-Pods can encapsulate a group of processes within a
migratable sandbox environment that can be transparently
moved from one machine to another, even when the sys-
tems are running different operating system versions with
different security and maintenance patches. This enables
security patches to be applied to operating systems in a
timely manner with minimal impact on the availability of
application services by migrating applications to another
machine that has already been updated while the original
system is brought down for security upgrades and mainte-
nance. Once the original machine has been updated, appli-
cations can be migrated back and continue to execute even
though the underlying operating system has changed. Pea-
Pods provide migration using a checkpoint-restart mecha-
nism that can also enable application services to be check-
pointed before a system goes down and restarted when it

comes back up. This provides fast recovery from system
downtime even when other machines are not available to
migrate application services, as well as providing a general
solution that any application can take advantage of.

Pea-Pods achieve these goals through three distinguish-
ing characteristics. First, a pod provides a consistent pri-
vate virtual namespace that gives all processes within it the
same virtualized view of the system. This virtualized view
isolates sandboxed processes from the underlying system
by associating virtual identifiers with operating system re-
sources and only allowing access to resources that are made
available within the virtualized namespace. This isolation
mechanism provides a simple way to control what operat-
ing system resources are accessible to a group of processes.
Similarly, it allows a pod to define a complete set of users
which can be distinct from those supported by the underly-
ing system.

Second, a pea provides a least privilege encapsulation
layer within a pod that can limit certain processes from in-
teracting with other processes and accessing file system and
network resources. This is effective for preventing com-
promised applications from attacking other processes and
resources of the system. We provide intuitive tools to eas-
ily and dynamically create Pea-Pods tailored for individual
applications or groups of applications.

Third, Pea-Pod virtualization is integrated with a
checkpoint-restart mechanism that decouples processes
from dependencies on the underlying system and maintains
process state semantics to enable processes to be migrated
across different machines. The checkpoint-restart mecha-
nism employs an intermediate format for saving the state
associated with processes and Pea-Pod virtualization. This
format provides a high degree of portability to support pro-
cess migration across machines that are running operating
systems that differ in the security and maintenance patches
applied. It also enables application services to be check-
pointed on a system and restarted after the underlying op-
erating system is upgraded and the system is restarted.

We have implemented Pea-Pods in a prototype system
as a loadable Linux kernel module. We have used this pro-
totype to securely isolate and migrate a wide range of un-
modified legacy and network applications. We measure the
performance and demonstrate the utility of Pea-Pods across
multiple systems running different Linux 2.4 kernel ver-
sions using three real-world application scenarios, includ-
ing a full KDE desktop environment with a suite of desktop
applications, an Apache/MySQL web server and database
server environment, and a Sendmail/Procmail e-mail pro-
cessing environment. Our performance results show that
Pea-Pods can provide secure isolation and migration func-
tionality on real world applications with low overhead.

This paper describes how Pea-Pods can isolate appli-
cations to limit their ability to attack a system and how
Pea-Pods can migrate applications across operating system
kernel changes to facilitate kernel maintenance and secu-

2



rity updates with minimal application downtime. Section
2 describes the pea and pod abstractions in further detail.
Section 3 presents the virtualization architecture to sup-
port the Pea-Pod model. Section 4 discusses the Pea-Pod
checkpoint-restart mechanisms used to facilitate migration
across operating system kernels that may differ in mainte-
nance and security updates. Section 5 analyzes the security
of Pea-Pods and illustrates the utility of the system in sev-
eral application scenarios. Section 6 presents experimental
results evaluating the overhead associated with Pea-Pods
and measures the system performance in providing secure
isolation and migration for several application scenarios.
Section 7 discusses related work. Finally, we present some
concluding remarks.

2 Pea-Pod Model

The Pea-Pod model provides two key abstractions, pods
(PrOcess Domain) and peas (Protection and Encapsulation
Abstraction). Pods enable secure isolation and migration
of application components that only need to interact via the
file system or Internet communication. Peas provide fine-
grain isolation among application components that may
need to interact using interprocess communication mech-
anisms, including signals, shared memory, IPC messages
and semaphores, and process forking and execution.

A pod is a host-independent virtualized view of an op-
erating system in which a group of processes can be ex-
ecuted. A pod may contain one or many processes, and a
system may contain one or many pods. The pod abstraction
provides the same application interface as the underlying
operating system so that legacy applications can execute in
the context of a pod without any modification. Processes
within a pod can make use of all available operating sys-
tem services, just like processes executing in a traditional
operating system environment. Unlike a traditional oper-
ating system, the pod abstraction provides a self-contained
unit that can be isolated from the system, checkpointed to
secondary storage, migrated to another machine, and trans-
parently restarted, as shown in Figure 1. This is made pos-
sible because each pod has its own private, virtual names-
pace. All operating system resources are only accessible
to processes within a pod through the pod’s private, virtual
namespace.

A pod namespace is private in that only processes within
the pod can see the namespace. It is private in that it masks
out resources that are not contained within the pod, includ-
ing processes outside of the pod. Processes inside a pod
appear to one another as normal processes that can commu-
nicate using traditional IPC mechanisms. Other processes
outside a pod do not appear in the namespace and are there-
fore not able to interact with processes inside a pod using
IPC mechanisms such as shared memory and signals. In-
stead, processes outside the pod can only interact with pro-
cesses inside the pod using network communication and

Pea 2Pea 1

Pod

Pea Pod Layer

Kernel

Kernel Space

User Space

Machine A Machine B

Pea 2Pea 1

Pod

Pea Pod Layer

Kernel

Figure 1: Pea-Pod migration

shared files that are normally used to support process com-
munication across machines.

A pod namespace is virtual in that all operating sys-
tem resources including processes, user information, files,
and devices are accessed through virtual identifiers within
a pod. These virtual identifiers are distinct from host-
dependent resource identifiers used by the operating sys-
tem. The pod virtual namespace provides a host-
independent view of the system by using virtual identi-
fiers that remain consistent throughout the life of a pro-
cess in the pod, regardless of whether the pod moves from
one system to another. Since the pod namespace is sepa-
rate from the underlying operating system namespace, the
pod namespace can preserve this naming consistency for its
processes even if the underlying operating system names-
pace changes, as may be the case in migrating processes
from one machine to another.

The pod private, virtual namespace enables secure iso-
lation of applications by providing complete mediation to
operating system resources. Pods can restrict what operat-
ing system resources are accessible within a pod by simply
not providing identifiers to such resources within its names-
pace. A pod only needs to provide access to resources that
are needed for running those processes within the pod. It
does not need to provide access to all resources to support
a complete operating system environment. For example,
a pod can easily provide a least privilege environment tai-
lored to the needs of an application services. If one had
a web server that just served up static content, one could
easily setup the pod to only contain the files the web server
needs to run as well as the content it wants to serve. If the
web server application gets compromised, the pod limits
the ability of an attacker to further harm the system since
the only resources he has access to are the ones explicitly
needed by the service. Since the pod namespace provides
the same application interface as the underlying operat-
ing system, pods can provide complete mediation without
modifying, recompiling, or relinking applications.

The pod private, virtual namespace enables process mi-
gration by providing a consistent, host-independent view
of the underlying operating system. Operating system re-

3



source identifiers such as process IDs (PIDs) must remain
constant throughout the life of a process to ensure its cor-
rect operation. However, when a process is moved from
one operating system to another, there is no guarantee
that the underlying operating system will provide the same
identifiers to a migrated process; those identifiers may in
fact already be used by other processes in the system. The
pod namespace addresses these issues by providing con-
sistent, virtual resource names in place of host-dependent
resource names such as PIDs. Names within a pod are
trivially assigned in a unique manner in the same way
that traditional operating systems assign names, but such
names are localized to the pod. Since the namespace is
private to a given pod, there are no resource naming con-
flicts for processes in different pods. There is no need for
the pod namespace to change when the pod is migrated,
which allows pods to ensure that identifiers remain constant
throughout the life of the process, as required by legacy ap-
plications that use such identifiers.

A process can run inside a pod, but there are times when
it is desirable to further restrict a process inside a pod in
terms of the pod resources it can access. For example, in
a conventional e-mail system, one will have a privileged
SMTP daemon, such as Sendmail, and a non-privileged
delivery agent, such as Procmail. While the Sendmail
server runs with privilege, it actually needs a very small
resource namespace. However, the Procmail delivery agent
can make use of programs, such as SpamAssassin, to en-
able users to filter their e-mail effectively. Since these two
programs need to interact directly, they can not be run in
separate pods. Peas are introduced for the purpose of al-
lowing these programs to interact, while restricting them to
smaller resource namespaces. A pea is an abstraction that
can contain a subset of processes within a pod and restrict
those processes to accessing only a subset of pod resources.
Pods can contain a group of processes, but the group may
be composed of interacting components with different re-
source needs. Peas can separate these components within
the pod by providing fine-grained and dynamic resources
restrictions on differing sets of processes. The pea abstrac-
tion allows for processes running within a pod to have vary-
ing levels of isolation among them by running them in sep-
arate peas.

A pea achieves isolation levels by controlling what re-
sources of a pod its processes are allowed to access and in-
teract with. Peas provide a “see, but don’t touch” resource
restriction model. For example, a process in a pea may be
able to see file system resources and processes available to
other peas, but can be restricted from accessing them. Un-
like processes in separate pods, processes in separate peas
in a single pod can “see each other” in that they share the
same namespace and can be allowed to interact using tradi-
tional interprocess communication mechanisms. Processes
can also be allowed to move from one pea to another in the
same pod. However, by default processes in separate peas

“can’t touch” any resource outside of it’s pea, be it a pro-
cess pid or file system entry. Peas can support a wide range
of resource restriction policies. By default, processes con-
tained in a pea can only interact with other processes in the
same pea. They have no access to other resources, such as
file system and network resources or processes outside of
the pea. This provides for a set of fail safe defaults, as any
extra access has to be explicitly allowed by the administra-
tor.

Many peas can be running side by side to provide flexi-
bility in implementing a least privilege system for programs
that are composed of multiple components that must work
together, but do not all need the same level of privilege.
One usage scenario would be to have a severely resource
limited pea in which a privileged process executes but al-
lowing the process to use traditional Unix semantics to
work with less privileged programs that are in less resource
restricted peas. One use of this is the mail delivery ser-
vices already described, one can create two separate peas
for Sendmail and Procmail to run within. It can similarly
be used to allow a web server the ability to serve dynamic
content via CGI in a more secure manner. Since the web
server and the CGI scripts need separate levels of privilege,
as well as different resource requirements, they shouldn’t
have to run within the same security context. By config-
uring two separate peas for a web service, one for the web
server to run within, and a separate for the specific CGI
programs it wants to execute, one limits the damage that
can occur if a fault is discovered within the web server. If
one manages to execute malicious code within the context
of the web server, one can only make use of resources that
are allocated to the web server’s pea, as well as only exe-
cute the specific programs that are needed as CGIs. Since
the CGI programs will also only run within their specific
security context, the ability for malicious code to do harm
is severely limited.

Peas and pods together provide secure isolation based
on flexible resource restriction for programs as opposed to
restricting access based on users. Pea-Pods also do not
subvert underlying system restrictions based on user per-
missions, but instead complement such models by offer-
ing additional resource control based on the environment
in which a program is executed. Instead of allowing pro-
grams with root privileges to do anything they want to a
system, Pea-Pods enable a system to control the execution
of such programs to limit their ability to harm a system
even if they are compromised. Pea-Pods provide program-
based resource restriction for file access, device access, net-
work access, root privileges, process interactions, process
transitions among peas, and resource utilization. Pea-Pods
can restrict root privileges by disallowing certain operating
system services for a given pea or pod. Pea-Pods can re-
strict process interactions by disallowing interprocess com-
munication with processes outside of a pod, and by lim-
iting such interactions among processes in separate peas

4



in a pod. Pea-Pods can dynamically control the ability of
processes to transition between peas, enabling processes to
have different dynamic privileges during their execution.
Pea-Pods can control the resources that processes consume
in a pea or pod to limit denial of service attacks against
the system. Due to space constraints, the Pea-Pod resource
usage model is not discussed further in this paper.

3 Pea-Pod Virtualization

To support the Pea-Pod abstraction design of secure and
isolated namespaces on commodity operating systems, we
employ a virtualization architecture that operates between
applications and the operating system, without requiring
any changes to applications or the operating system ker-
nel. This virtualization layer is used to translate between
the Pea-Pod namespaces and the underlying host operat-
ing system namespace. It also protects the host operating
system from dangerous privileged operations that might be
performed by processes within the Pea-Pod, as well as pro-
tecting those processes from processes outside of the Pea-
Pod on the host. Pea-Pod virtualization is used to provide
isolation of peas and pods as well as enable pods to be mi-
gratable. The virtualization support for pod migration is
based on Zap [28].

3.1 Pod Virtualization

Pods are supported using virtualization mechanisms that
translate between pod virtual resource identifiers and op-
erating system resource identifiers. Every resource that a
process in a pod accesses is through avirtual namewhich
corresponds to an operating system resource identified by
a physical name. When an operating system resource is
created for a process in a pod, such as with process or
IPC key creation, instead of returning the corresponding
physical name to the process, the pod virtualization layer
catches the physical name value, and returns a private vir-
tual name to the process. Similarly, any time a process
passes a virtual name to the operating system, the virtu-
alization layer catches it and replaces it with the appro-
priate physical name. The key pod virtualization mecha-
nisms used are a system call interposition mechanism and
thechroot utility with file system stacking for file system
resources.

Pod virtualization employs system call interposition to
wrap existing system calls to check and replace arguments
that take virtual names with the corresponding physical
names before calling the underlying original system call.
Similarly, the wrapper is used to capture physical name
identifiers that the original system calls return and return
corresponding virtual names to the calling process running
inside the pod. Pod virtual names are maintained consis-
tently as a pod migrates from one machine to another and
are remapped appropriately to underlying physical names

that may change as a result of migration. Pod system call
interposition also masks out processes inside of a pod from
processes outside of a pod to remove any interprocess host
dependencies across pod boundaries. System call interposi-
tion is used to virtualize operating system resources includ-
ing process identifiers, keys and identifiers for IPC mech-
anisms such as semaphores, shared memory, and message
queues, and network addresses.

Pod virtualization uses system call interposition to de-
termine the network accessibility of pod processes. Pods
provide the same semantic interface to applications as reg-
ular machines, which provide Internet accessible and local-
host addresses. Therefore, pods also provide two types of
networking addresses. Pods provide one that is only ac-
cessible to processes in a pod and one that is accessible on
the Internet. A pod restricts its processes to the set of net-
work addresses given to the pod by using the same virtual
to physical mapping concepts of PID and IPCs. Processes
within a pod make use of a virtual name for a network ad-
dress. Since the regular pod virtualization rules take affect,
processes are confined to the appropriate addresses.

Pod virtualization employs thechroot utility and file
systems stacking to provide each pod with its own file
system namespace that can be separate from the regular
host file system. The pod file system can be composed
from loopback mounts from the host for pods that are only
checkpointed and restarted on the same machine. Simi-
larly, one can make use of a portable hard drive that one
moves between the different hosts one wants to migrate
within. More commonly, the pod file system is composed
from remote mounts via a network file system such as NFS
so that the same files can be made consistently available
as a pod is migrated from one machine to another. More
specifically, when a pod is created or moved to a host, a
private directory named according to a pod identifier is cre-
ated on the host to serve as a staging area for the pod’s vir-
tual file system. Within this directory, the various network-
accessible directories that the pod is configured to access
will be mounted from a network file server. For exam-
ple, from a Unix-centric viewpoint, this set of directories
could include/etc , /lib , /bin , /usr , and/tmp . The
chroot system call is then used to set the staging area as
the root directory for the pod, thereby achieving file system
virtualization with negligible performance overhead. This
method of file system virtualization provides an easy way
to restrict access to files and devices from within a pod.
This can be done by simply not including file hierarchies
and devices within the pod file system namespace. If files
and devices are not mounted within the pod virtual file sys-
tem, they are not accessible to pod processes.

Because commodity operating systems are not built to
support multiple namespaces, a security issue that pod vir-
tualization must address is that there are many ways to
break out of a standard chrooted environment, especially
if one allows thechroot system call to be used by pro-

5



cesses in a pod. Pod file system virtualization enforces the
chrooted environment and ensures that the pod’s file sys-
tem is only accessible to processes within the given pod by
using a simple form of file system stacking to implement
a barrier. File systems provide a permission function that
determines if a process can access a file. For example, if
a process tries to access a file a few directories below the
current directory, the permission function is called on each
directory as well as the file itself in order. If any of calls
determine that the process doesn’t have permission on a
directory, the chain of calls end. Even, if the permission
function determines that the process would have access to
the file itself, it must have permission to walk the directory
hierarchy to the file to access it. We implement a barrier
by simply stacking a small pod-aware file system on top of
the staging directory that overloads the underlying permis-
sion function to prevent processes running within the pod
from accessing the parent directory of the staging directory,
and to prevent processes running only on the host from ac-
cessing the staging directory. This effectively confines a
process in a pod to the pod’s file system by preventing it
from ever walking past the pod’s file system root.

While any network file system can be used with pods to
support migration, we focus on NFS because it is the most
commonly used network file system. Pods can take ad-
vantage of the user identifier (UID) security model in NFS
to support multiple security domains on the same system
running on the same operating system kernel. For exam-
ple, since each pod can have its own private file system,
each pod can have its own/etc/passwd file that deter-
mines its list of users and their corresponding UIDs. In
NFS, the UID of a process determines what permissions it
has in accessing a file. By default, pod virtualization keeps
process UIDs consistent across migration and keeps pro-
cess UIDs the same in the pod and operating system names-
paces. However, since the pod file system is separate from
the host file system, a process running in the pod is effec-
tively running in a separate security domain from another
process with the same UID that is running directly on the
host system. Although both processes have the same UID,
each process is only allowed to access files in its own file
system namespace. Similarly, multiple pods can have pro-
cesses running on the same system with the same UID, but
each pod effectively provides a separate security domain
since the pod file systems are separate from one another.

The pod UID model supports an easy-to-use migration
model when a user may be working in one administrative
domain and then moves to another. Even if the user has
computer accounts in both administrative domains, it is un-
likely that the user will have the same UID in both do-
mains if they are administratively separate. Nevertheless,
pods can enable the user to run the same pod with access to
the same files in both domains. Suppose the user has UID
100 on a machine in administrative domain A and starts a
pod connecting to a file server residing in domain A. Sup-

pose that all pod processes are then running with UID 100.
When the user moves to a machine in administrative do-
main B where he has UID 200, he can migrate his pod to the
new machine and continue running processes in the pod.
Those processes can continue to run as UID 100 and con-
tinue to access the same set of files on the pod file server,
even though the user’s real UID has changed. While this
example considers the case of having a pod with all pro-
cesses running with the same UID, it is easy to see that the
pod model supports pods that may have running processes
with many different UIDs.

Because the root UID 0 is privileged and treated spe-
cially by the operating system kernel, pod virtualization
also treat UID 0 processes inside of a pod in a special way
to prevent them from breaking the pod abstraction, access-
ing resources outside of the pod, and causing harm to the
host system. While a pod can be configured for administra-
tive reasons to allow full privileged access to the underlying
system, we focus on the case of pods for running applica-
tion services which do not need to be used in this manner.
Pods do not disallow UID 0 processes, which would limit
the range of application services that could be run inside
pods. Instead, pods provide restrictions on such processes
to ensure that they function correctly inside of pods.

While a process is running in user space, the UID it runs
as doesn’t have any effect. Its UID only matters when it
tries to access the underlying kernel via one of the kernel
entry points, namely devices and system calls. Since a pod
already provides a virtual file system that includes a virtual
/dev with a limited set of secure devices, the device entry
point is already secured. The only system calls of concern
are those that could allow a root process to break the pod
abstraction. Only a small number of system calls can be
used for this purpose. Pod virtualization classifies these
system calls into three classes that need to be protected.

The first class of system calls are those that only affect
the host system and serve no purpose within a pod. Exam-
ples of these system calls include those that load and un-
load kernel modules or that reboot the host system. Since
these system calls only affect the host, they would break
the pod security abstraction by allowing processes within it
to make system administrative changes to the host. System
calls that are part of this class are therefore made inacces-
sible by default to processes running within a pod.

The second class of system calls are those that are forced
to run unprivileged. Just like NFS, by default, squashes
root on a client machine to act as usernobody , pod virtu-
alization forces privileged processes to act as thenobody
user when it wants to make use of some system calls. Ex-
amples of these system calls include those that set resource
limits and ioctl system calls. Since system calls such
assetrlimit andnice can allow a privileged process
to increase its resource limits beyond predefined limits im-
posed on pod processes, privileged processes are by default
treated as unprivileged when executing these system calls

6



within a pod. Similarly, theioctl system call is a system
call multiplexer that allows any driver on the host to effec-
tively install its own set of system calls. Since the ability
to audit the large set of possible system calls is impossi-
ble given that pods may be deployed on a wide range of
machine configurations that are not controlled by the Pea-
Pod system, pod virtualization conservatively treats access
to this system call as unprivileged by default.

The final class of system calls are calls that are required
for regular applications to run, but have options that will
give the processes access to underlying host resources,
breaking the pod abstraction. Since these system calls are
required by applications, the pod checks all their options to
ensure that they are limited to resources that the pod has
access to, making sure they aren’t used in a manner that
breaks the pod abstraction. For example, themknod sys-
tem call can be used by privileged processes to make named
pipes or files in certain application services. It is therefore
desirable to make it available for use within a pod. How-
ever, it can also be used to create device nodes that provide
access to the underlying host resources. To limit how the
system call is used, the pod system call interposition mech-
anism checks the options of the system call and only allows
it to continue if it’s not trying to create a device.

3.2 Pea Virtualization

Peas are supported using virtualization mechanisms that
impose levels of isolation among processes running within
a single pod in separate peas by labeling resources and en-
forcing a simple set of configurable rules. For example,
when a process is created in a pea, its process identifier is
tagged with the identifier of the pea in which it was created.
A process’s ability to access pod resources is then dictated
by the set of rules associated with its pea. Like pod virtu-
alization, the key pea virtualization mechanisms used are a
system call interposition mechanism and file system stack-
ing for file system resources.

Pea virtualization employs system call interposition to
wrap existing system calls to enforce restrictions on pro-
cess interactions by controlling access to process and IPC
virtual identifiers. Since each resource is labeled with the
pea in which it was created, the system call interposition
mechanism simply checks if the pea labels of the calling
process and the resource to be touched are the same or dif-
ferent, providing an effective means of enforcing the pea’s
“see, but don’t touch” model. For example, if a process in
one pea would try to send a signal to another process in
a seperate pea by using thekill system call, the system
would return an error value of EPERM, as the process ex-
ists, just this process has no permission to signal it. On the
other hand, a parent is able to use thewait system call to
wait on a child process, even if that child process is running
within a seperate pea since wait doesn’t “touch” a process
by affecting its execution.

When a new program is executed one might want to
switch pea security domains. Peas support a single type
of pea specific rule that let a pea determines how a process
can transition from one its own pea to another. This rule
is specified by a program filename and pea identifier. A
pea may have multiple rules of this type. The rule speci-
fies that a process should be moved into the pea specified
by the pea identifier if it executes the program specified by
the given filename. This is useful when it is known what a
process will execute and it is desirable to have that program
execution occur in an execution environment with different
resource restrictions. For example, an Apache web server
running in a pea may want to execute its CGI child pro-
cesses in a more restrictive pea. This is supported via sys-
tem call interposition by intercepting theexec system call
and changing peas if a matching pea transition rule is spec-
ified for the pea in which the calling process is executing.
Note that pea transition rules are one-way transitions that
do not enable a process to return to its previous pea unless
its current pea explicitly provides such rules.

System call interposition is also used to control network
access for processes inside the pea. Peas provide two net-
working rules, one to allow processes in the pea to make
outgoing network connections on a pod’s virtual network
adapters, the other to allow processes in the pea to bind to
specific ports on the adapter to receive incoming connec-
tions. Pea rules can allow complete access to a pod network
adapter, or only allow access on a per port basis. Since any
network access occurs through system calls, peas simply
check the options of the networking system call to ensure
that it is allowed to perform the specified action.

Pea virtualization employs a set of file system rules and
file systems stacking to provide each pea with its own per-
mission set on top of the pod file system. To provide a least
privilege environment, processes shouldn’t have access to
file system privileges they don’t need. For example, while
Sendmail has to write to/var/spool/mqueue , it only
has to read its configuration from/etc/mail and should
not need to have write permissions on its configuration. To
implement such a least privilege environment, peas enable
files to be tagged with additional permission rules that over-
lay the respective underlying file permissions. File system
permissions determine access rights based on the user iden-
tity of the process while pea file permission rules determine
access rights based on the pea context in which a process is
executed. Each pea file rule can selectively allow or deny
use of the underlying read, write and execute permissions
of a file on a per pea basis. The underlying file permission
is always enforced, but pea permissions can further restrict
whether the underlying permission is allowed to take ef-
fect. The final permission is achieved by performing a bit-
wise AND operation on both the pea and file system per-
missions. For example, if the pea permission allowed for
read and execute, the permission set of r-x would be trip-
licated to r-xr-xr-x- for the 3 sets of Unix permissions and

7



the bitwise AND operation would effectively mask out any
write permission that the underlying file system might al-
low. This prevents any process in the pea from opening the
file and modifying it.

Enforcing on disk labeling of every single file is in-
tractable if the underlying file system is going to be used for
multiple disparate pods and peas. Since each pea in each
pod might make use of similar underlying files but have dif-
ferent permission schemes, storing the pea permission data
on disk effectively is not feasible. Instead, peas support
the ability to dynamically label each file within a pod’s file
system based on two simple path matching rules,path spe-
cific rulesanddirectory default rules. A path specific rule
matches an exact path on the file system. For instance, if
there’s a path specific rule for/home/user/file , only
that file will be matched with the appropriate permission
set. On the other hand, if there’s a directory default rule for
the directory/home/user/ any file under that directory
in the directory tree can match it, and inherit its permission
set.

Given a set of path specific and directory default rules
for a pea, the algorithm for determining what rule matches
to what path starts with the complete path and walks up the
path to the root directory until it finds a matching rule. The
algorithm can be described in four simple steps:

1. If the specific path has apath specific rule, return that
rule set.

2. Otherwise, choose the path’s directory as the current
directory to test.

3. If the directory being tested has adirectory default
rule, return that rule set.

4. Otherwise set its parent as the current directory to test
and go back to step 3.

This ensures that if there’s nopath specific rule, the clos-
estdirectory default ruleto the specified path becomes the
rule for that path. Also, since by default peas give the root
directory “/” a directory default ruledenying all permis-
sions, the default for every file on the system, unless other-
wise specified is deny, ensuring a fail safe default setup.

The semantics of pea file permission rules are based on
file path name. If a file has more than one path name, such
as via a hard link, both have to be protected by the same
rule, otherwise depending on how the underlying file is ac-
cessed the permission set it gets will be non-deterministic
as the inode cache will contain the permission set of the
path name that was opened initially. This is only an issue
on setup of a Pea-Pod, as once its setup, any hard links that
are created will obey the regular file system rules, which in-
clude being unable to hard link to a path one’s pea doesn’t
have access to, as well as any new hard link path name that
gets created is given a path specific rule equivalent to the
original path’s rule.

The pea architecture makes use of the pod’s stackable file
system to integrate the pea file system namespace restric-
tions into the regular kernel permission model. It accom-
plishes this by stacking on top of the file system’slookup
function which fills in the respective file’s inode structure,
and thepermissionfunction which makes use of the stored
permission data to make simple permission determinations.
Since a file system’s permission function is a standard part
of the operating system kernel’s security infrastructure, no
changes have to be made to the kernel’s file system security
infrastructure.

The stackable file system uses a unique set of hash tables
that it organizes in a tree structure to mimic the underlying
file system. Every directory can be represented by a hash
table, and entries in the hash table correspond to directory
entries that have pea file system rules. If a directory entry
is an actual directory, it would have a corresponding child
hash table. Looking up the appropriate rule for any path
name is simply parsing the path name into directory entry
tokens, and performing a token by token traversal of the
tree of hash tables. This traversal results in finding the rule
that best matches the pathname, based on the decision al-
gorithm given above. Since hashing of tokens is fast, one
can quickly traverse the tree inO(h) time, whereh is the
height of the file system tree, no matter how many rules
the file system enforces. The stackable file system is made
even faster by the fact that the rule lookup doesn’t have to
be done often, since we store the data in the file system’s
inode structure and the kernel caches the inode structure for
later use.

4 Migration Across Different Kernels

To maintain application service availability without losing
important computational state as a result of system down-
time due to operating system upgrades, Pea-Pods provide
a checkpoint-restart mechanism that allows pods to be mi-
grated across machines running different operating system
kernels. Upon completion of the upgrade process, the re-
spective Pea-Pod and its applications are restored on the
original machine now with an upgraded operating system.
We assume here that the systems have not been compro-
mised and that any kernel security holes on the unpatched
system have not yet been exploited on the system; migrat-
ing across kernels that have already been compromised is
beyond the scope of this paper.

We also limit our focus to migrating between machines
with a common CPU architecture with kernel differences
that are limited to maintenance and security patches. These
patches often correspond to changes in the minor version
number of the kernel. For example, the Linux 2.4 kernel
has more than twenty minor versions. Even within mi-
nor version changes, there can be significant changes in
kernel code. Table 1 shows the number of files that have
been changed in various subsystems of the Linux 2.4 kernel

8



Type .c Files Changed Percentage
Drivers 2221 2079 93.6
Arch 2694 2351 87.2
FS 524 488 93.1
Network 422 352 83.4
Core Kernel 27 22 81.4
VM 20 20 100
IPC 4 4 100

Table 1: Kernel Changes within the Linux 2.4 Series

across different minor versions. For example, all of the files
for the VM subsystem were changed since extensive mod-
ifications were made to implement a completely new page
replacement mechanism in Linux. Many of the Linux ker-
nel patches contain security vulnerability fixes, which are
typically not separated out from other maintenance patches.
We similarly limit our focus to where the application’s ex-
ecution semantics, such as how threads are implemented
and how dynamic linking is done, do not change. On the
Linux kernels this is not an issue as all these semantics are
enforced by user-space libraries. Whether one uses kernel
or user threads, or one how libraries are dynamically linked
into a process is all determined by the respective libraries
on the file system. Since the Pod has access to the same file
system on whatever machine it is running on, these seman-
tics stay the same.

To support migration across different kernels, Pea-Pods
use a checkpoint-restart mechanism that employs an in-
termediate format to represent the state that needs to be
saved on checkpoint. On checkpoint, the intermediate for-
mat representation is saved and digitally signed to enable
the restart process to verify the integrity of the image. Al-
though the internal state that the kernel maintains on behalf
of processes can be different across different kernels, the
high-level properties of the process are much less likely
to change. We capture the state of a process in terms of
higher-level semantic information specified in the interme-
diate format rather than kernel specific data in native format
to keep the format portable across different kernels. For
example, the state associated with a Unix socket connec-
tion consists of the directory entry of the Unix socket file,
its superblock information, a hash key, and so on. It may
be possible to save all of this state in this form and suc-
cessfully restore on a different machine running the same
kernel. But this representation of a Unix socket connection
state is of limited portability across different kernels. A dif-
ferent high-level representation consisting of a four tuple,
virtual source pid, source fd, virtual destination pid, des-
tination fd is highly portable. This is because the seman-
tics of a process identifier and a file descriptor is typically
standard across different kernels, especially across minor
version differences.

The intermediate representation format used by Pea-
Pods for migration is chosen such that it offers the de-
gree of portability needed for migrating between differ-

ent kernel minor versions. If the representation of state is
too high-level, the checkpoint-restart mechanism could be-
come complicated and impose additional overhead. For ex-
ample, the Pea-Pod system saves the address space of a pro-
cess in terms of discrete memory regions called VM areas.
As an alternative, it may be possible to save the contents of
a process’s address space and denote the characteristics of
various portions of it in more abstract terms. However, this
would call for an unnecessarily complicated interpretation
scheme and make the implementation inefficient. The VM
area abstraction is standard across major Linux kernel revi-
sions. Pea-Pods view the VM area abstraction as offering
sufficient portability in part because the organization of a
process’s address space in this manner has been standard
across all Linux kernels and has never been changed since
its inception.

Pea-Pods further support migration across different ker-
nels by leveraging higher-level native kernel services to
transform intermediate representation of the checkpointed
image into an internal representation suitable for the target
kernel. Continuing with the previous example, Pea-Pods
restore a Unix socket connection using high-level kernel
functions as follows. First, two new processes are created
with virtual PIDs as specified in the four tuple. Then, each
one creates a Unix socket with the specified file descriptor
and one socket is made to connect to the other. This proce-
dure effectively recreates the original Unix socket connec-
tion without depending on many kernel internal details.

This use of high-level functions helps in general portabil-
ity of using Pea-Pods for migration. Security patches and
minor version kernel revisions commonly involve modify-
ing the internal details of the kernel while high-level primi-
tives remain unchanged. As such services are usually made
available to kernel modules through exported kernel sym-
bol interface, the Pea-Pod system is able to perform cross-
kernel migration without requiring modifications to the ker-
nel code.

The Pea-Pod checkpoint-restart mechanism is also struc-
tured in such a way to perform its operations when pro-
cesses are in a state that checkpointing can avoid depending
on many low-level kernel details. For example, semaphores
typically have two kinds of state associated with each of
them: the value of the semaphore and the wait queue of
processes waiting to acquire the corresponding semaphore
lock. In general, both of these pieces of information
have to be saved and restored to accurately reconstruct the
semaphore state. Semaphore values can be easily obtained
and restored through GETALL and SETALL parameters of
thesemctl system call. But saving and restoring the wait
queues involves manipulating kernel internals directly. The
Pea-Pod mechanism avoids having to save the wait queue
information by requiring that all the processes be stopped
before taking the checkpoint. When a process waiting on
a semaphore receives a stop signal, the kernel immedi-
ately releases the process from the wait queue and returns

9



EINTR. This ensures that the semaphore wait queues are
always empty at the time of checkpoint so that they do not
have to be saved.

While Pea-Pods can abstract and manipulate most pro-
cess state in higher-level terms using higher-level ker-
nel services, there are some parts that not amenable to a
portable intermediate representation. For instance, specific
TCP connection state like timestamp values and sequence
numbers, which do not have a high-level semantic value,
have to be saved and restored in order to maintain a TCP
connection. As this internal representation can change, its
state needs to be tracked across kernel versions and se-
curity patches. Fortunately, there is usually an easy way
to interpret such changes across different kernels because
networking standards such as TCP do not change often.
Across all of the Linux 2.4 kernels, there was only one
change in TCP state that required even a small modifica-
tion in the Pea-Pod migration mechanism. Specifically, in
the Linux 2.4.18 kernel, an extra field was added to TCP
connection state to address a flaw in the existing syncookie
mechanism. If configured into the kernel, syncookies pro-
tect an Internet server against a synflood attack. When mi-
grating from an earlier kernel to Linux-2.4.18, the Pea-Pod
system initializes the extra field in such a way that the in-
tegrity of the connection is maintained. In fact, this was
the only instance across all of the Linux 2.4 kernel versions
where an intermediate representation was not possible and
the internal state had changed and had to be accounted for.

To provide proper support for Pea-Pod virtualization
when migrating across different kernels, we must ensure
that that any changes in the system call interfaces are prop-
erly accounted for. As pea-pods have a virtualization layer
using system call interposition mechanism for maintaining
namespace consistency and ensuring pea security, a change
in the semantics for any system call intercepted by pea-
pods could be an issue in migrating across different ker-
nel versions. But such changes usually do not occur as it
would require that the libraries be rewritten. In other words,
Pea-Pod virtualization is protected from such changes in a
similar way as legacy applications are protected. However,
new system calls could be added from time to time. Such
system calls could have implications to the pea encapsula-
tion mechanism. For instance, across all Linux 2.4 kernels,
there were two new system calls,gettid andtkill for
querying the thread identifier and for sending a signal to
a particularly thread in a thread group, respectively, which
needed to be accounted for to properly virtualize Pea-Pods
across kernel versions. As these system calls take identifier
arguments, they were simply intercepted and virtualized.

5 Security Analysis and Examples

Saltzer and Schroeder[37] describe several principles for
designing and building secure systems. These include:

• Economy of mechanism: Simpler and smaller systems

are easier to understand and ensure that they do not
allow unwanted access.

• Fail safe defaults: Systems must choose when to allow
access as opposed to choosing when to deny.

• Complete mediation: Systems should check every ac-
cess to protected objects.

• Least privilege: A process should only have access to
the privileges and resources it needs to do its job.

• Psychological acceptability: If users are not willing to
accept the requirements that the security system im-
poses, such as very complex passwords that the users
are forced to write down, security is impaired. Simi-
larly, if using the system is too complicated, users will
misconfigure it and end up leaving it wide open.

• Work factor: Security designs should force an attacker
to have to do extra work to break the system. The
classic quantifiable example is when one adds a single
bit to an encryption key, one doubles the key space an
attacker has to search.

Pea-Pods are designed to satisfy these six principles.
Pea-Pods provide economy of mechanism using a thin vir-
tualization layer based on system call interposition and file
system stacking that only adds a modest amount of code to
a running system. The largest part of the system is due to
the use of a null stackable file system with 7000 lines of
C code, but this file system was generated using a simple
high-level file system language [45], and only 50 lines of
code were added to this well tested file system to imple-
ment the Pea-Pod file system security. Furthermore, Pea-
Pods change neither applications nor the underlying oper-
ating system kernel. The modest amount of code to im-
plement Pea-Pods makes the system easier to understand.
Since the Pea-Pod security model only provides resources
that are explicitly stated, it is relatively easy to understand
the security properties of resource access provided by the
model.

Furthermore, Pea-Pods provide fail safe defaults by only
providing access to resources that have been explicitly
given to peas and pods. Since Pea-Pod virtualization limits
access to the underlying system to its virtual namespace,
Pea-Pods provide complete mediation to operating system
resources. Peas in pods are explicitly designed to provide
least privilege by restricting programs in an environment
that can be easily limited to provide the least amount of
access for the encapsulated program to do its job. Pea-
Pods provide psychologically acceptability by providing
users and system administrators with a standard system en-
vironment where all they have to understand are their ap-
plications and the system resources that they need without
detailed understanding of any underlying operating system
specifics.

10



Similar to least privilege, Pea-Pods increase the work
factor that it would take to compromise a system by simply
not making available the resources that attackers depend
on to harm a system once they have broken in. For exam-
ple, since Pea-Pods can provide selective access to what
program are included within their view, it would be very
difficult to get a root shell on a system that does not have
access to any shell program. Similarly, the fact that one
can migrate a system away from a host that is vulnerable to
attack increases the work an attacker would have to do to
make services unavailable.

We briefly describe three examples that help illustrate
how Pea-Pods can be used to improve computer security
and application availability for different application sce-
narios. The application scenarios are e-mail delivery, web
content delivery, and desktop computing.

For e-mail delivery, Pea-Pods can isolate different com-
ponents of e-mail delivery to provide a significantly higher
level of security in light of the many attacks on Sendmail
vulnerabilities that have occurred. Consider isolating a
Sendmail installation that also provides mail delivery and
filtering via Procmail. E-mail delivery services are often
run on the same system as other Internet services to im-
prove resource utilization and simplify system administra-
tion through server consolidation. However, this can pro-
vide additional resources to services that do not really need
them, potentially increasing the damage that can be done
to the system if attacked. Using Pea-Pods, both Sendmail
and Procmail can execute in the same pod, which isolates
e-mail delivery from other services on the system. Since
pod’s allow one to migrate a service between machines, the
e-mail delivery pod is migratable. If a fault is discovered
in the underlying host machine, the e-mail delivery service
can be moved to another system while the original host is
patched, preserving the availability of the e-mail service.

Furthermore, Sendmail and Procmail can be placed in
separate peas which facilitate necessary interprocess com-
munication mechanisms between them while improving
isolation. This pod is a common example of a privileged
service that has child helper applications. In this case, the
Sendmail pea is configured with full network access to re-
ceive e-mail, but without shell access since there is no rea-
son why Sendmail needs a shell. Sendmail would be de-
nied write access to file system areas such as/usr/bin to
prevent modification to those executables, and would only
be allowed to transition a process to the Procmail pea if it
is executing Procmail. On mail delivery, Sendmail would
thenexec Procmail in the Procmail pea, which would be
configured with more liberal access to process shell scripts
and run other programs such as SpamAssassin. As a result,
the Sendmail/Procmail pod can provide full e-mail delivery
service while isolating Sendmail such that even if Sendmail
is compromised by an attack, such as a buffer overflow, the
attacker would be contained in the Sendmail pea and not
even be able to execute a root shell to attempt to further

compromise the system.

Note that there are multiple ways to configure Internet
services peas. With the e-mail delivery example, we illus-
trated a simple system configuration to prevent the com-
mon buffer overflow exploit of getting the privileged server
to execute a local shell. By simply denying access to shells
but allowing access to other files, we limit the amateur at-
tacker’s ability to exploit flaws, while requiring very little
configuration or knowledge of the actual services. On the
other hand, one can also use Pea-Pods to create a complete
least privilege environment to contain more professional at-
tackers to the domain they exploited.

For web content delivery, Pea-Pods can isolate different
components of web content delivery to provide a signif-
icantly higher level of security in light of common web
server attacks that may exploit CGI script vulnerabilities.
Consider isolating an Apache web server front end, a
MySQL database backend, and CGI scripts that interface
between them. While one could run Apache and MySQL
in seperate pods, since they are providing a single service, it
make sense to run them within a single pod that can be mi-
grated as a unit. If the underlying host comes under attack,
such as via a denial of service attack, one can use the pod’s
migration mechanism to move the web content delivery
pod to a safer machine, providing better service availability
in a hostile environment. However, since both Apache and
MySQL are within the pod’s single namespace, if an ex-
ploit is discovered in Apache, it could be used to perform
unauthorized modifications to the MySQL database.

To provide greater isolation among different web content
delivery components, we can use three peas in a pod: one
for Apache, a second for MySQL, and a third for the CGI
programs. Each pea is configured to contain the minimal
set of resources needed by the processes running within the
respective pea. The Apache pea includes the apache binary,
configuration files and the static html content, as well as a
rule to exec all CGI programs into the CGI pea. The CGI
pea contains the relevant CGI programs as well as access
to the MySQL daemon’s named socket, allowing interpro-
cess communication with the MySQL daemon to perform
the relevant SQL queries. The MySQL pea contains the
mysql daemon binary, configuration files and the files that
make up the relevant databases. Since Apache is the only
program exposed to the outside world, it is the only pro-
cess that can be directly exploited. However, if an attacker
is able to exploit it, the attacker is limited to a pea that is
only able to read or write specific Apache files, as well as
exec specific CGI programs into a seperate pea. Since the
only way to access the database is through the CGI pro-
grams, the only access to the database an attacker would
have is what is allowed by said programs. Consequently,
it becomes very difficult to cause serious harm to such a
Pea-Pod web content delivery system.

For desktop computing, Pea-Pods enable desktop com-
puting environments to accommodate mobile users across

11



separate administrative domains. As users move from one
geographic location to another, Pea-Pods allow them to
take their computing with them in a hassle-free way. Since
Pea-Pods provide complete mediation as well as fail safe
defaults, system administrators can allow desktop comput-
ing pods from separate security domains to migrate onto
their hosts, since the processes within the pod are prevented
from harming it and can be configured to only access files
from the pod file system securely exported to remote ma-
chines via NFS over IPSec. Peas can also be used within
the context of such a desktop computing environment to
provide additional isolation. Many application used on a
daily basis, such as mp3 players and web browsers, have
had security holes in the past that could possibly enable
attackers to cause them to execute malicious code or give
them access to the entire local file system [19, 20].

To secure an mp3 player, an mp3 player pea can be cre-
ated within a desktop computing pod that restricts the mp3
player’s ability to make use of files outside of a special
mp3 directory. Since most users store their music within its
own subtree, this isn’t a serious restriction. Most mp3 con-
tent should not trusted, especially if one is streaming mp3s
from a remote site. By running the mp3 player within this
fully restricted pea, a malicious mp3 cannot compromise
the user’s desktop session. This mp3 player pea is simply
configured with three file system rules. A path specific rule
that provides access to the mp3 player itself is required to
load the application. A directory default rule that provides
access to the entire mp3 directory subtree is required to give
the process access to the mp3 file library. Finally, a path
specific rule that provides access to the/dev/dsp audio
device is required to allow the process to actually play au-
dio.

To secure a web browser, a web browser pea can be
created within a desktop computing pod that restricts the
web browser’s access to system resources. Consider the
Mozilla web browser as an example. A Mozilla pea would
need to have all the files Mozilla needs to run accessi-
ble from within the pea. Moziall dynamically loads li-
braries itself and stores them along with its plugins within
the /usr/lib/mozilla directory. By providing a di-
rectory default rule that provides access to that directory,
as well as another directory default rule that provides ac-
cess to the user’s.mozilla directory, the Mozilla web
browser can run as normal within this special Mozilla pea.
One would also want the ability to be able to download and
save files, as well as launch viewers, such as for postscript
or mp3 files, directly from the web browser. This involves
a simple reconfiguration of Mozilla to change its internal
application.tmp dir variable to be a directory that
is within the Mozilla pea. By creating such a directory,
such asdownloads within the users home directory, and
providing a directory default rule allowing access, we en-
able one to explicitly save files, as well as as implicitly save
when one wants to execute a helper application. Similarly,

Name Description Linux
getpid averagegetpid runtime 350 ns
ioctl average runtime for the FIONREAD

ioctl
427ns

shmget-
shmctl

IPC Shared memory segment holding
an integer is created and removed

3361 ns

semget-
semctl

IPC Semaphore variable is created and
removed

1370 ns

fork-
exit

process forks and waits for child which
calls exit immediately

44.7 us

fork-sh process forks and waits for child to run
/bin/sh to run a program that prints
“hello world” then exits

3.89 ms

Apache Runs Apache under load and measures
average request time

1.2 ms

Make Linux Kernel compile with up to 10
process active at one time

224.5s

Postmark Use Postmark Benchmark to simulate
Sendmail performance

.002s

MySQL “TPC-W like” interactions benchmark 8.33s

Table 2: Application Benchmarks

just like Mozilla is configured to run helper applications for
certain file types, one would have to configure the Mozilla
pea to execute those helper applications within their respec-
tive peas. As shown for an mp3 player, configuring such a
pea for these process is fairly simple. The only addition one
would have to make is to provide an additional pea transi-
tion rule to the Mozilla pea that tells the Pea-Pod system to
transition the process to a separate pea on execution of pro-
grams such as thempg123 mp3 player or thegv postscript
viewer.

6 Experimental Results

We implemented Pea-Pods as a loadable kernel module in
Linux that requires no changes to the Linux kernel. We
present some experimental results using our Linux proto-
type to quantify the overhead of using Pea-Pods on vari-
ous applications. Experiments were conducted on a trio of
IBM Netfinity 4500R machines, each with a 933Mhz In-
tel Pentium-III CPU, 512MB RAM, 9.1 GB SCSI HD and
a 100 Mbps Ethernet connected to a 3Com Superstack II
3900 switch. One of the machines was used as an NFS
server from which directories were mounted to construct
the virtual file system for the Pea-Pods on the other client
systems. The clients ran different Linux distributions and
kernels, one machine running Debian Stable with a Linux
2.4.5 kernel and the other running Debian Unstable with a
Linux 2.4.18 kernel.

To measure the cost of Pea-Pod virtualization, we used
a range of micro benchmarks and real application work-
loads and measured their performance on our Linux Pea-
Pod prototype and a vanilla Linux system. Table 2 shows
the seven micro-benchmarks and four application bench-

12



0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Fork
/E

xe
c

Fork
/E

xit

Fork
/S

h
ge

tpi
d

ioc
tl

se
mge

t

sh
mge

t

Pos
tm

ark

Apa
ch

e
Mak

e
Mys

ql

Plain Linux Pea Pod

Figure 2: Pea-Pod Virtualization Overhead

marks we used to quantify Pea-Pod virtualization overhead
as well as the results for a vanilla Linux system. To ob-
tain accurate measurements, we rebooted the system be-
tween measurements. Additionally, the system call micro-
benchmarks directly used the TSC register available Pen-
tium CPUs to record timestamps at the significant measure-
ment events. Each timestamp’s average cost was 58 ns. The
files for the benchmarks were stored on the NFS Server. All
of these benchmarks were performed in a chrooted envi-
ronment on the NFS client machine running Debian Unsta-
ble with a Linux 2.4.18 kernel. Figure 2 shows the results
of running the benchmarks under both configurations, with
the vanilla Linux configuration normalized to one. Since
all benchmarks measure the time to run the benchmark, a
small number is better for all benchmarks results.

The results in Figure 2 show that Pea-Pod virtualization
overhead is small. Pea-Pods incur less than 10% overhead
for most of the micro-benchmarks and less than 4% over-
head for the application workloads. The overhead for the
simple system callgetpid benchmark is only 7% com-
pared to vanilla Linux, reflecting the fact that Pea-Pod vir-
tualization for these kinds of system calls only requires an
extra procedure call and a hash table lookup. The most
expensive benchmarks for Pea-Pods issemget+semctl
which took 51% longer than vanilla Linux. The cost re-
flects the fact that our untuned Pea-Pod prototype needs to
allocate memory and do a number of namespace transla-
tions. Theioctl benchmark also has high overhead, be-
cause of the 12 separate assignments it does to protect the
call against malicious root processes. This is large com-
pared to the simple FIONREADioctl that just performs
a simple dereference. However, since theioctl is sim-
ple, we see that it only adds 200 ns of overhead over any
ioctl . For real applications, the most overhead was only
four percent which was for the Apache workload, where
we used thehttp load benchmark [30] to place a paral-
lel fetch load on the server with 30 clients fetching at the
same time. Similarly, we tested MySQL as part of a web-
commerce scenario outlined by TPC-W with a bookstore
servlet running on top of Tomcat with a MySQL back-end.
The Pea-Pod overhead for this scenario was less than 2%

Name Applications
E-mail Sendmail 8.12.3 with the pod configured to auto-

matically change peas on execution of Procmail.
Web Apache 1.3.26 and MySQL 3.23.49 running

within separate peas inside the same Pod.

KDE

Xvnc – VNC 3.3.3r2 X Server
KDE – Entire KDE 2.2.2 environment, including
window manager, panel and assorted background
daemon and utilities
SSH – openssh 3.4p1 client inside a KDE konsole
terminal connected to a remote host
Shell – The Bash 2.05a shell running in a konsole
terminal
KGhostView – A PDF viewer with a 450k 16 page
PDF file loaded.
Konqueror – A modern standards compliant web
browser that is part of KDE
KOffice – The KDE word processor and spread-
sheet programs

Table 3: Application Scenarios for Migration

Case Checkpoint Restart Size Compressed
E-mail 0.079s 0.049s 848KB 124KB
Web 0.308s 0.508s 5.3MB 332KB
KDE 0.851s 0.942s 35MB 8.8MB

Table 4: Pea-Pod Migration Costs

versus vanilla Linux.
To measure the cost of Pea-Pod migration and demon-

strate the ability of Pea-Pods to migrate real applica-
tions, we migrated the three application scenarios dis-
cussed in Section 5, an email delivery service using
Sendmail/Procmail, a web content delivery service using
Apache/MySQL, and a KDE desktop computing environ-
ment with an isolated web browser. Table 3 described the
configurations of the application scenarios we migrated.
To demonstrate our Pea-Pod prototype’s ability to migrate
across Linux kernels with different minor versions, we
checkpointed each application workload on the 2.4.5 kernel
client machine and restart it on the 2.4.18 kernel machine.
For these experiments, the workloads were checkpointed to
and restarted from local disk.

Table 4 shows the time it took to checkpoint and restart
each application workload. In addition to these, migration
time also has to take into account network transfer time. As
this is dependent on the transport medium, we include the
uncompressed and compressed checkpoint image sizes. In
all cases, checkpoint and restart times were fast, taking less
than a second for both operations, even when performed
on separate machines or across a reboot. We also show
that the actual checkpoint images that were saved were
modest in size for complex workloads. For example, the
KDE pod had over 30 different processes running, provid-
ing the desktop applications applications, as well as sub-
stantial underlying window system infrastructure, includ-
ing inter-application sharing, a rich desktop interface man-

13



aged by a window manager with a number of applications
running in a panel such as the clock. Even with all these
applications running, they checkpoint to a very reasonable
35 MB uncompressed for a full desktop environment. Ad-
ditionally, if one needed to transfer the checkpoint images
over a slow link, Table 4 how they can be compressed very
well with the bzip2 compression program.

7 Related Work

Historically, the military has been concerned with confi-
dentiality and controlling the flow of information. Bell and
LaPadula [8] as well as Biba [9] formulated models that
formalize the concepts of ensuring confidentiality and in-
tegrity constraints between programs running at different
classification levels. The work was incorporated into Mul-
tics’ Multilevel Security Model [22] and the later Orange
Book specification [14]. This work on information flow
[24] is orthogonal to Pea-Pods, which focuses on contain-
ing untrusted applications.

Language-based tools have been used to try to harden
the applications against buffer overflow attacks. Examples
of this include the StackGuard compiler [13] and the Lib-
Safe [6] interposition library. Similarly, others have strived
to encourage the use of safer languages and language fea-
tures, such as the type safety of ADA and Java. While
LibSafe can work with unmodified dynamically linked ap-
plications, the majority of these solutions require applica-
tions to be rewritten or recompiled. Pea-Pods compliment
these approaches by providing isolation of legacy applica-
tions without modification.

Privilege separation [32, 4] is a programming model that
can be used to help prevent malicious code from execut-
ing in a privileged context. By separating each task of a
system into a small process, one can create multiple sim-
ple programs that work together to perform a complex task
and are easier to verify for correctness. Since the system
is split into multiple processes, each process can be given
a restricted set of privileges based on what it needs to do.
OpenSSH and Qmail are two program examples that imple-
ment privilege separation. The Pea-Pod sandbox provides
a form of privilege separation for legacy processes without
requiring a redesign of the application service.

NSA’s Security Enhanced Linux [26], which is based
upon the Flask Architecture [40], implements a policy lan-
guage that one can use to implement models that enable
one to enforce privilege separation. The policy language is
very flexible, but this also makes them very complex. Their
example security policy is over 80 pages long. There is re-
search into creating tools to make policy analysis tractable
[2], but the fact that the language is so complex makes it
difficult for the average end user to construct an appropri-
ate policy. Peas, like NSA SE Linux, operate on a resource
level where every resource is tagged, while Pod’s operate
like a virtual machine where resources not allocated to the

namespace are unavailable. Pods offer simplicity, such that
even a novice administrator can determine what’s available
to both well behaved and malicious code. Peas provide the
ability to provide simple increases in security, while also
scaling up in complexity as required.

Janus [43, 17] and Systrace [31] are rule-based systems
used for determining access controls. They implement sys-
tem call interposition to control at an individual system call
level what kernel functionality a process can use. Systrace
provides graphical tools that help build rules on the fly.
However, policy creation for Janus and Systrace requires
a fine understanding of system calls. This provides great
flexibility, but it makes them hard to configure, as well
making final configurations difficult to understand. Like
Pea-Pods, Janus and Systrace operate at the system call
level. Unlike Pea-Pods, Janus and Systrace are also con-
figured at the same individual system call level. Neither
system integrates support for secure isolation with migra-
tion capabilities.

FreeBSD’s Jail mode [21] implements a simpler to un-
derstand sandbox. It provides a chroot like environment
that processes can not break out of. However, since Jail
is limited in what it can do, such as the fact it doesn’t al-
low IPC within a jail[16] many real world application will
not work. Pea-Pods, on the other hand, do not place any
restrictions on the types of applications that can run in its
sandboxed environment.

SubDomain [12] creates a sandboxed view of the under-
lying file system for applications to run in. Like the pea-
aware file system, it attempts to allow a system administra-
tor to limit a processes’ file system view to the minimum set
needed by that application. However, since SubDomain’s
sandbox doesn’t encapsulate processes, processes running
as root can take advantage of system calls such assignal
to affect change on processes outside their sandbox. While
the Pea-Pods file system model is similar to SubDomain,
it is conceptually different. While SubDomain operates at
the system call level, the pea file system is a full-fledged
file system. For example, when a file is opened, SubDo-
main must resolve it if it is a symbolic link. Pea-Pods, on
the other hand, just uses the permission associated with the
file at the end of the link as a regular file system does. Sim-
ilarly, since Pea-Pods includes a full fledged file system, it
integrates fully with the regular kernel security infrastruc-
ture and provides much better performance.

Virtual machine monitors (VMMs) can also be used to
provide a secure sandbox environment [42, 44, 7]. VMMs
can also be used to migrate an entire operating system envi-
ronment [38]. Pea-Pods can compliment the functionality
of VMMs. Unlike Pea-Pods, VMMs decouple processes
from the underlying machine hardware, but tie them to an
instance of an operating system. As a result, VMMs can-
not migrate processes apart from that operating system in-
stance and cannot continue running those processes if the
operating system instance ever goes down, such as during

14



security upgrades. In contrast, Pea-Pods decouple process
execution from the underlying operating system which al-
lows it to migrate processes to another system when an op-
erating system instance is upgraded. Similarly, VMMs just
provide a single operating system namespace and lack the
ability to isolate components within an operating system. If
a single process in a VMM is exploitable, malicious code
can make use of it to access and make use of the entire set of
operating system resources. Since Pea-Pod’s decouple pro-
cesses from the underlying operating system and it’s result-
ing namespace, they are natively able to limit the separate
processes of a larger system to the appropriate resources
needed by them.

Many systems have been proposed to support process
migration, but not in the context of supporting applica-
tion availability in the presence of operating system patches
and upgrades. Several such research operating systems
[34, 27, 3, 36, 15, 5, 11] rely on a single system image
across all machines for process migration, in addition to
the ability to forward many operations to the home node.
They do not provide migration across independent com-
modity operating systems. Several user-space migration
systems have been designed to run on commodity operating
systems [25, 33, 29, 10]. These systems are primarily de-
signed for long running scientific computations and cannot
support processes that use many standard operating system
services, such as IPC. TUI [39] provides support for pro-
cess migration across machines running different operating
systems and hardware architectures. Unlike Pea-Pods, TUI
has to compile applications on each platform using a spe-
cial compiler and does not work with unmodified legacy
applications. Pea-Pods build on Zap [28], which supports
transparent migration across systems running the same ker-
nel version. Unlike Zap, Pea-Pods provide pod security
and support for isolating processes inside of a pod. Fur-
thermore, Pea-Pods support transparent migration across
different minor kernel versions, which is essential for pro-
viding application availability in the presence of operating
system security upgrades.

Pea-Pods can be used to improve the security of trusted
computing systems[41, 18], which can enable the operat-
ing system and third parties to determine the identity of a
program and if it’s authorized to be executed. However,
if a fault is discovered within a running trusted program,
an attacker can make use of that fault to inject untrusted
code into the system enabling access to the full set of re-
sources. For example, Microsoft’s X-Box, which runs a
trusted operating system on trusted hardware, enforces a
policy of only loading authorized games. However, buffer
overflows in the code of trusted games have enabled users
to load an untrusted Linux kernel and use the X-Box as a
normal computer [1]. Pea-Pods can be used to limit the
resources available to faulty trusted programs and thereby
further limit an attacker’s ability to compromise a trusted
computing system.

8 Conclusions

The Pea-Pod system provides an operating system virtu-
alization layer that decouples process execution from the
underlying operating system. The virtualization layer sup-
ports two key abstractions for encapsulating processes,
peas and pods. Pods provide lightweight sandboxes that
mirror the underlying operating system environment, and
peas provide fine-grain least privilege environments within
pods. Together, peas and pods can isolate untrusted appli-
cations within sandboxes, preventing them from being used
to attack the underlying host system or other applications
even if they are compromised. The Pea-Pod sandboxes can
be transparently migrated across machines running differ-
ent operating system kernel versions. This enables security
patches to be applied to operating systems in a timely man-
ner with minimal impact on the availability of sandboxed
application services. Pea-Pod secure isolation and migra-
tion functionality is achieved without any changes to appli-
cations or operating system kernels. We have implemented
Pea-Pods in a Linux prototype and demonstrated how peas
and pods can be used to improve computer security and
application availability for a range of applications, includ-
ing e-mail delivery, web servers and databases, and desktop
computing. Our results show that Pea-Pods can provide
easily configurable, secure migratable sandboxes that can
run a wide range of desktop and server Linux applications
in least privilege environments with low overhead.

References

[1] Anonymous. Technical Analysis of 007: Agent Under Fire
save game hack.http://www.xbox-linux.org/
docs/007analysis.html , Jul 2003.

[2] M. Archer, E. Leonard, and M. Pradella. Towards
a Methodology and Tool for the Analysis of Security-
Enhanced Linux. Technical Report NRL/MR/5540—02-
8629, NRL, 2002.

[3] Y. Artsy, Y. Chang, and R. Finkel. Interprocess communi-
cation in charlotte.IEEE Software, pages 22–28, Jan 1987.

[4] N. Associates. Privman - a library to make privilege sep-
aration easy.http://opensource.nailabs.com/
privman/ .

[5] A. Barak and R. Wheeler. MOSIX: An Integrated Multipro-
cessor UNIX. InProceedings of the USENIX Winter 1989
Technical Conference, pages 101–112, San Diego, CA, Feb.
1989.

[6] A. Baratloo, N. Singh, and T. Tsai. Transparent Run-Time
Defense Against Stack Smashing Attacks. InProceedings
of the USENIX Annual Technical Conference, 2000.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauery, I. Pratt, and A. Warfield. Xen and
the Art of Virtualization. InProceedings of the 19th ACM
Symposium on Operating Systems Principles, Bolton Land-
ing, NY, Oct. 2003.

[8] D. E. Bell and L. J. LaPadula. Secure Computer Systems:
Mathematical Foundations and Model. Technical Report
ESD-TR-74-244, Mitre Corp, Bedford, MA, May 1973.

15



[9] K. Biba. Integrity Considerations for Secure Computer Sys-
tems. Technical Report ESD-TR-76-372, Mitre Corp, Bed-
ford, MA, 1977.

[10] J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and
J. Walpole. MPVM: A migration transparent version of
PVM. Computing Systems, 8(2):171–216, 1995.

[11] D. Cheriton. The V distributed system.Communications of
the ACM, 31(3):314–333, Mar 1988.

[12] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle,
and V. Gligor. SubDomain: Parsimonious Server Security.
In 14th USENIX Systems Administration Conference (LISA
2000), New Orleans, LA, Dec. 2000.

[13] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stack-
Guard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. InProc. 7th USENIX Security
Conference, pages 63–78, San Antonio, Texas, Jan. 1998.

[14] Department of Defense. Trusted Computer System Eval-
uation Criteria (Orange Book). Technical Report DoD
5200.28-STD, Department of Defense, Dec. 1985.

[15] F. Douglis and J. Ousterhout. Transparent process migra-
tion: Design alternatives and the sprite implementatio.Soft-
ware - Practice and Experience, 21(8):757–785, Aug. 1991.

[16] FreeBSD Project. Developer’s handbook.
http://www.freebsd.org/doc/en_US.
ISO8859-1/books/developers-handbook/
se%cure-chroot.html .

[17] T. Garfinkel. Traps and Pitfalls: Practical Problems in Sys-
tem Call Interposition Based Security Tools. InProc. Net-
work and Distributed Systems Security Symposium, Feb.
2003.

[18] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform for
trusted computing. InProceedings of the 19th Sympo-
sium on Operating System Principles(SOSP 2003), October
2003.

[19] GOBBLES Security. Local/remote mpg123 exploit.
http://www.opennet.ru/base/exploits/
1042565884_668.txt.html .

[20] GreyMagic Security Research. Reading local files in
netscape 6 and mozilla.http://sec.greymagic.
com/adv/gm001-ns/ .

[21] P.-H. Kamp and R. N. M. Watson. Jails: Confining the
omnipotent root. In2nd International SANE Conference,
MECC, Maastricht, The Netherlands, May 2000.

[22] P. A. Karger and R. R. Schell. MULTICS Security Evalu-
ation: Vulnerability Analysis. Technical Report ESD-TR-
74-193, Mitre Corp, Bedford, MA, June 1977.

[23] B. LaMacchia. Personal Communication, Jan 2004.
[24] C. E. Landwehr. Formal Models for Computer Security.

ACM Computing Surveys, 13(3):247–278, Sept. 1981.
[25] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.

Checkpoint and migration of unix processes in the con-
dor distributed processing system. Technical Report 1346,
University of Wisconsin Madison Computer Sciences, Apr.
1997.

[26] P. Loscocco and S. Smalley. Integrating Flexible Support
for Security Policies into the Linux Operating System. In
Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, June 2001.

[27] S. J. Mullender, G. v. Rossum, A. S. Tanenbaum, R. v. Re-
nesse, and H. v. Staveren. Amoeba a distributed operating
system for the 1990s.IEEE Computer, 23(5):44–53, May
1990.

[28] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The De-
sign and Implementation of Zap: A System for Migrating
Computing Environments. InProceedings of the Fifth Sym-
posium on Operating Systems Design and Implementation
(OSDI 2002), Boston, MA, Dec. 2002.

[29] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent checkpointing under unix. InProceedings of
Usenix Winter 1995 Technical Conference, pages 213–223,
New Orleans, LA, Jan 1995.

[30] J. Poskanzer.http://www.acme.com/software/
http_load/ .

[31] N. Provos. Improving Host Security with System Call Poli-
cies. In12th USENIX Security Symposium, Washington,
DC, Aug. 2003.

[32] N. Provos, M. Friedl, and P. Honeyman. Preventing priv-
ilege escalation. In12th USENIX Security Symposium,
Washington, DC, August 2003.

[33] J. Pruyne and M. Livny. Managing checkpoints for paral-
lel programs. In2nd Workshop on Job Scheduling Strate-
gies for Parallel Processing (In Conjunction with IPPS ’96),
Honolulu, Hawaii, Apr. 1996.

[34] R. Rashid and G. Robertson. Accent: A communication ori-
ented network operating system kernel. InProceedings of
the 8th Symposium on Operating System Principles, pages
64–75, Dec 1984.

[35] E. Rescorla. Security holes... Who cares? InProceedings of
the 12th USENIX Security Conference, Washington, D.C.,
Aug. 2003.

[36] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,
M. Guillemont, F. Herrman, C. Kaiser, S. Langlois,
P. Léonard, and W. Neuhauser. Overview of the Chorus dis-
tributed operating system. InWorkshop on Micro-Kernels
and Other Kernel Architectures, pages 39–70, Seattle WA
(USA), 1992.

[37] J. H. Saltzer and M. D. Schroeder. The Protection of Infor-
mation in Computer Systems. InFourth ACM Symposium
on Operating System Principles, Oct. 1973.

[38] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum. Optimizing the migration of vir-
tual computers. InProceedings of the 5th Symposium on
Operating Systems Design and Implementation, December
2002.

[39] P. Smith and N. C. Hutchinson. Heterogeneous process mi-
gration: The Tui system.Software – Practice and Experi-
ence, 28(6):611–639, 1998.

[40] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Ander-
sen, and J. Lepreau. The Flask Security Architecture: Sys-
tem Support for Diverse Security Policies. InProc. of the
Eighth USENIX Security Symposium, Aug. 1999.

[41] Trusted Computing Platform Alliance. TCPA main spec-
ification v1.1b. http://www.trustedcomputing.
org .

[42] VMware, Inc.http://www.vmware.com .
[43] D. Wagner. Janus: an approach for confinement of un-

trusted applications. Master’s thesis, University of Califor-
nia, Berkeley, 1999.

[44] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Per-
formance in the Denali Isolation Kernel. InProceedings
of the Fifth Symposium on Operating Systems Design and
Implementation (OSDI 2002), Boston, MA, Dec. 2002.

[45] E. Zadok and J. Nieh. FiST: A Language for Stackable File
Systems. InProceedings of the Annual USENIX Technical
Conference, pages 55–70, June 2000.

16


