
DotSlash: A Scalable and Efficient Rescue System
for Handling Web Hotspots

Weibin Zhao and Henning Schulzrinne
Department of Computer Science

Columbia University
New York, NY 10027

{zwb,hgs}@cs.columbia.edu

ABSTRACT
This paper describes DotSlash, a scalable and efficient rescue sys-
tem for handling web hotspots. DotSlash allows different web sites
to form a mutual-aid community, and use spare capacity in the com-
munity to relieve web hotspots experienced by any individual site.
As a rescue system, DotSlash intervenes when a web site becomes
heavily loaded, and is phased out once the workload returns to nor-
mal. It aims to complement existing web server infrastructure such
as CDNs to handle short-term load spikes effectively, but is not in-
tended to support a request load constantly higher than a web site’s
planned capacity. DotSlash is scalable, cost-effective, easy to use,
self-configuring, and transparent to clients. It targets small web
sites, although large web site can also benefit from it. We have im-
plemented a prototype of DotSlash on top of Apache. Experiments
show that DotSlash can provide an order of magnitude improve-
ment for a web server in terms of the request rate supported and
the data rate delivered to clients even if only HTTP redirect is used.
Parts of this work may be applicable to other services such as the
Grid computational services and media streaming.

1. INTRODUCTION
As more web sites experience a request load that can no longer be
handled by a single server, using multiple servers to serve a single
site becomes a widespread approach. Traditionally, a distributed
web server system has used a fixed number of dedicated servers
based on capacity planning, which works well if the request load
is relatively consistent and matches the planned capacity. How-
ever, web requests can be very bursty. Consider a well-identified
problem – web hotspots, where a web site experiences a sudden
and dramatic surge of request load. Web hotspots, also known as
the Slashdot effect (i.e., mentioning a low-volume site in a high-
volume site [2]) or the flash crowd phenomenon, pose a new chal-
lenge for designing scalable and efficient distributed web server
systems. For web hotspots, a fixed set of dedicated servers suf-
fers from two major problems. The first issue is efficiency. Web
hotspots are infrequent events or even one-time event for most sites.
This “15 minutes of fame” lasts for a short time (often in tens of
minutes or a few hours), but may trigger a large load increase (the

The work described in this paper was supported in part by the National
Science Foundation under Grant No. ANI-0117738. Any opinions, findings,
and conclusions or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of the National Science
Foundation.

ratio of peak to average load may go up to 1000 [29]). Thus, it is
not economical to overprovision a web site according to its peak
load. Another issue with a fixed server set is scalability. Since the
peak load is hard to predict, even overprovisioning is difficult. In
other words, a planned capacity may turn out to be insufficient for
an unexpected load. For example, although CNN.com has a well-
planned capacity for its web site, it experienced a request load 20
times greater than its expected peak on September 11, 2001, which
caused its web site to be overloaded for about three hours [19].

To handle web hotspots effectively, we advocate dynamic alloca-
tion of server capacity from a global server pool – those servers in
the pool need to be distributed globally because the access link of
a local network can become a bottleneck. As an example of global
server pools, content delivery networks (CDN) [35] have been used
by large web sites. However, small web sites often cannot afford
the cost of CDN services particularly since they may need these
services very rarely. Thus, we seek a more cost-effective mecha-
nism. As different web sites (e.g., different types or in different lo-
cations) are less likely to experience their peak request loads at the
same time, they could form a mutual-aid community, and use spare
capacity in the community to relieve web hotspots experienced by
any individual site [10]. Based on this observation, we designed
DotSlash – a rescue system that supports dynamic collaborations
among different web sites. Unlike server collaborations within a
single web site, inter-web-site collaborations are more challenging
in that we cannot assume a common administrator and cannot rely
on static configuration to form a collaborating server group. As a
rescue system, DotSlash continuously monitors the workload at a
web server; when the server becomes heavily loaded, rescue ser-
vices are activated to help the server to survive the load spike; and
once the server’s load returns to normal, the rescue services are
phased out. As a result, a web site has a dynamic server set which
includes a single or a cluster of fixed origin servers and a chang-
ing set of rescue servers. Rescue servers are drafted (and released
later) from other sites dynamically by a site in reaction to its load
changes. In this way, a web site can build an adaptive distributed
web server system on the fly, and expand its capacity dynamically
by utilizing spare capacity at other sites.

DotSlash is not designed to support a request load that is constantly
higher than a web site’s planned capacity, but rather serves as a
complementary mechanism to existing web server infrastructure to
handle short-term load spikes effectively. We envision a spectrum
of mechanisms for web sites to handle load spikes. Infrastructure-
based approaches (e.g., capacity planning) should handle the re-
quest load sufficiently in most (e.g., 99.9%) cases, but they might

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be too expensive for short-term enormous load spikes (e.g., a 1000-
fold increase), and might be insufficient for unexpected load in-
creases. For these cases, rescue services such as DotSlash can
intervene when needed so that a web site can support its request
load in more (e.g., 99.999%) cases. In parallel, a web site can use
service degradation [1] under heavily-loaded conditions. For ex-
ample, turning off dynamic content and serving a trimmed version
of static content can reduce CPU workload and network bandwidth
consumption, which can help a web site to survive load spikes. As
the last resort, a web site can use admission control [40] to pre-
vent itself from being overloaded by rejecting a fraction of client
requests and only admitting preferred clients.

DotSlash has the following advantages. First, it is scalable. A web
site can expand its capacity as needed by using more rescue servers.
Second, it is very cost-effective since it utilizes spare capacity in a
web server community to benefit any participating server, and it
is built on top of existing web server infrastructure, without incur-
ring any additional hardware cost. Third, it is easy to use. Standard
DNS mechanisms such as DNS aliasing and round robin and HTTP
redirect are used to offload client requests from an origin server to
its rescue servers, without the need to change operating system or
DNS server software. An add-on module to the web server soft-
ware is sufficient to support all needed functions. Fourth, it is trans-
parent to clients. As DotSlash only uses server-side mechanisms,
client browsers remain unchanged, and client bookmarks continue
to work. Fifth, it is self-configuring. Service discovery [15] is used
to allow a web site to collaborate with other sites automatically,
without any administrator intervention. Finally, an origin server
has full control of its own rescue procedure, such as how to choose
rescue servers and when to offload client requests to rescue servers.

Currently, DotSlash only supports load migration for static web
pages. This is because in DotSlash a rescue server serves as a
reverse caching proxy for its origin servers, and caching control
for static web pages is relatively easy. Another reason is that a
web site can turn off dynamic content by serving static pages under
heavily-loaded conditions. We plan to investigate load migration
for dynamic content in the next stage of this project.

As a rescue system for handling web hotspots, DotSlash targets
small web sites. Large web sites can also benefit from DotSlash,
but they often can afford more expensive mechanisms, such as ded-
icated server clusters or commercial CDN services. Parts of the
work (such as self-configuration, dynamic collaboration, and load
control via monitoring, prediction, offloading and feedback) may
be applicable to other services, including computational services
(Grid [13]), SIP proxy services [26] and media streaming, but syn-
chronizing states (programs, registration entries and media files)
may make this more difficult for short-term load spikes.

The remainder of this paper is organized as follows. We discuss re-
lated work in Section 2, give an overview of DotSlash in Section 3,
present DotSlash design, implementation and evaluation in Section
4, 5 and 6, respectively, and conclude in Section 7.

2. RELATED WORK
Caching [38] provides many benefits for web content retrieval, such
as reducing bandwidth consumption and client-perceived latency.
Caching may appear at several different places, such as client-side
proxy caching, intermediate network caching, and server-side re-
verse caching, many of which are not controlled by origin web
servers. DotSlash uses caching at rescue servers to relieve the load

spike at an origin server, where caching is set up on demand and
fully controlled by the origin server.

CDN [35] services deliver part or all of the content for a web site to
improve the performance of content delivery. As an infrastructure-
based approach, CDN services are good for reinforcing a web site
in a long run (e.g., in months), but less efficient for handling short-
term (e.g., in hours) load spikes; and the cost of using CDN services
is often too expensive for small web sites. Also, using CDN ser-
vices needs advance configuration, such as contracting with a CDN
provider and changing the URIs of offloading objects (e.g., Aka-
maized [3]). As an alternative mechanism to CDN services, Dot-
Slash offers cost-effective and automated rescue services for better
handling short-term load spikes.

Distributed web server systems are a widespread approach to sup-
port high request loads and reduce client-perceived delays. These
systems often use homogeneous (i.e., replicated) web servers de-
ployed in a local area network (e.g., ScalaServer [5]) or strategi-
cally distributed in wide area networks (e.g., GeoWeb [8]), with
a focus on load balancing among replicated servers and serving
a client request from the closest server. In contrast, DotSlash al-
lows an origin server to build a distributed system of heterogeneous
rescue servers on demand, where the main goal is to relieve the
heavily-loaded origin server by replicating its content dynamically
to rescue servers and serving a fraction of client requests at rescue
servers. DC-Apache [20] supports collaborations among heteroge-
neous web servers. However, it generates all hyperlinks dynami-
cally by URI rewriting based on a document graph, which incurs
a cost for each requested document, and it is less efficient to re-
build the document graph if documents are changing frequently.
Also, DC-Apache relies on static configuration to form collabo-
rating server groups, which limits its scalability and adaptivity to
changing environments. DotSlash addresses these limitations by
forming collaborating server groups dynamically, and using sim-
pler and widely applicable mechanisms to offload client requests
from origin servers. Along with the emerging of peer-to-peer (P2P)
technology [25, 32, 27, 41], Backslash [30] suggests using P2P
overlay networks to build distributed web server systems and using
distributed hash table to locate resources.

Client-side mechanisms allow clients to help each other so as to al-
leviate server-side congestion and reduce client-perceived delays.
An origin web server can mediate client cooperation by redirecting
a client to another client that has recently downloaded the URI, e.g.,
Pseudoserving [18] and CoopNet [23]. Clients can also form P2P
overlay networks and use search mechanisms to locate resources.
For example, PROOFS [31] employs randomization to build client-
side P2P overlay networks, and BitTorrent [7] breaks large files
into small parts for efficient retrieval. Client-side P2P overlay net-
works have advantages in sharing large and popular files, which
can reduce request loads at origin web servers. In general, client-
side mechanisms scale well as the number of clients increases,
but they are not transparent to clients, which are likely to prevent
widespread deployment.

Grid technologies allow “coordinated resource sharing and prob-
lem solving in dynamic, multi-institutional organizations” [13], with
a focus on large-scale computational problems and complex appli-
cations that involve many participants and different types of activi-
ties and interactions. The sharing in Grid is broader than simply file
exchange; it can involve direct access to computers, software, data,
and other resources. In contrast, DotSlash employs inter-web-site

2

collaborations to handle web hotspots effectively, with a emphasis
on overload control at web servers and disseminating popular files
to a large number of clients.

3. DOTSLASH OVERVIEW
3.1 Rescue Model
DotSlash uses a mutual-aid rescue model. A web server joins a
mutual-aid community by registering itself with a DotSlash service
registry, and contributing its spare capacity to the community. In
case of a load spike that exceeds its own capacity, a participating
server discovers and uses spare capacities at other servers in its
community via the DotSlash rescue services. In our current pro-
totype, DotSlash is intended for a cooperative environment, and
thus no payment is involved in obtaining rescue services. How-
ever, if authentication and payment mechanisms are incorporated,
DotSlash could support commercial rescue services.

In DotSlash, a web server may benefit from rescue services or pro-
vide rescue services to others; but it does not involve itself with res-
cue services during normal times. Thus, a web server is in one of
the following states at any time: SOS state if it gets rescue services
from others, rescue state if it provides rescue services to others,
and normal state otherwise. Note that these three states are mutu-
ally exclusive: a server is not allowed to get a rescue service from
another server as well as to provide a rescue service to yet another
server at the same time. In other words, a server cannot provide
rescue services to others if itself is in the SOS state, and a server
needs to shutdown all existing rescue services it provides before
it requests rescue services from others. By enforcing this simple
rule for provisioning and utilizing rescue services, we can avoid
complex rescue scenarios (e.g., a rescue loop where S1 requests a
rescue service from S2, S2 requests a rescue service from S3, and
S3 requests a rescue service from S1), and keep DotSlash simple
and robust without compromising scalability.

Throughout this paper, we use the notation origin server and rescue
server in the following way. When a rescue relationship is set up
between two servers, the one that benefits from the rescue service
is the origin server, and the one that provides the rescue service is
the rescue server. In other words, when a server is in the SOS state,
it is the origin server for all of its rescue servers, and when a server
is the rescue state, it is a rescue server for all of its origin servers.
Note, however, a web server is always an origin server for its own,
configured web sites. When it agrees to serve the content for a new,
non-configured web site temporarily, it becomes a rescue server for
that site.

Figure 1 shows an example of rescue relationships for eight web
servers, where an arrow from Sy to Sx denotes that Sy provides
a rescue service to Sx, i.e., Sx is the origin server, and Sy is the
rescue server. In this figure, S1 and S2 are origin servers, S3, S4,
S5 and S6 are rescue servers, and S7 and S8 have not involved
themselves with rescue services. A web server, such as S3, can
simultaneously be a rescue server for multiple origin servers.

3.2 Rescue Examples
In DotSlash, a rescue server serves as a reverse caching proxy for
its origin servers, and an origin server uses HTTP redirect and DNS
round robin to offload client requests to its rescue servers. Thus,
there are four rescue cases: (1) HTTP redirect and cache miss (i.e.,
the origin server uses HTTP redirect and the rescue server has a
cache miss), (2) HTTP redirect and cache hit, (3) DNS round robin

rescuing

S8

S2

S4

S5

S3

S6

S7

S1

Figure 1: An example for DotSlash rescue relationships

www.origin.com

origin.com
DNS

dynamic DNS

Client C1(2) 1.2.3.4

(5) www−vh1.rescue.com (6) 5.6.7.8

(3) request (4) HTTP redirect (7) request (10) response

(8) reverse proxy request

(9) response

(1) www.origin.com

www−vh1.rescue.com

cache
(5.6.7.8)

www.rescue.com
(1.2.3.4)

rescue.com
DNS

Figure 2: A rescue example for HTTP redirect and cache miss

and cache miss, and (4) DNS round robin and cache hit. In case
of a cache miss, the rescue server makes a reverse proxy request to
the origin server. For simplicity, we only show examples for case 1
and 4; case 2 and 3 can be derived similarly.

Figure 2 shows an example for HTTP redirect and cache miss,
where the origin server is www.origin.com with IP address 1.2.3.4,
the rescue server is www.rescue.com with IP address 5.6.7.8, and
the rescue server has assigned an alias www-vh1.rescue.com to the
origin server. In this figure, a client C1 follows a ten-step procedure
to retrieve http://www.origin.com/index.html:

1. C1 resolves the origin server’s domain name www.origin.com;

2. C1 gets the origin server’s IP address 1.2.3.4;

3. C1 makes an HTTP request to the origin server using the URI
http://www.origin.com/index.html;

4. C1 gets an HTTP redirect from the origin server with the
redirect URI http://www-vh1.rescue.com/index.html;

5. C1 resolves the rescue server’s alias www-vh1.rescue.com;

6. C1 gets the rescue server’s IP address 5.6.7.8;

7. C1 makes an HTTP request to the rescue server using the
URI http://www-vh1.rescue.com/index.html;

8. As the request URI leads to a cache miss, the rescue server
makes a reverse proxy request to the origin server using the
URI http://www.origin.com/index.html;

9. Since an origin server always directly answers (i.e., never
HTTP redirects) proxy requests from its rescue servers, the
origin server sends the requested file to the rescue server;

10. The rescue server caches the requested file, and returns the
file to C1.

3

www.origin.com

origin.com
DNS

dynamic DNS

Client C2(2) 5.6.7.8

(3) request (4) response

(1) www.origin.com

cache
(5.6.7.8)

www.rescue.comdynamic DNS

DNS round−robin

(1.2.3.4)

rescue.com
DNS

Figure 3: A rescue example for DNS round robin and cache hit

Figure 3 shows an example for DNS round robin and cache hit,
where the setting is the same as that of the previous example, and
the origin server has added the rescue server’s IP address to its
round robin local DNS. In this figure, a client C2 follows a four-
step procedure to retrieve http://www.origin.com/index.html:

1. C2 resolves the origin server’s domain name www.origin.com;

2. C2 gets the rescue server’s IP address 5.6.7.8 due to DNS
round robin at the origin server’s local DNS;

3. C2 makes an HTTP request to the rescue server using the
URI http://www.origin.com/index.html;

4. C2 gets the requested file from the rescue server because of
a cache hit.

4. DOTSLASH DESIGN
DotSlash has the following functional components: dynamic vir-
tual hosting which allows a rescue server to serve the content of
its origin servers on the fly, request redirection which allows an
origin server to offload client requests to its rescue servers, work-
load monitoring which allows a web server to react quickly to load
spikes, rescue control which allows a web server to properly inter-
act with other web servers for handling web hotspots, and service
discovery which allows servers of different web sites to learn about
each other dynamically and collaborate automatically without any
administrator intervention. Before discussing each component in
turn below, we summarize the DotSlash parameters in Table 1.

4.1 Dynamic Virtual Hosting
Dynamic virtual hosting allows a rescue server to serve the content
of its origin servers on the fly. As HTTP 1.1 [12] becomes widely
deployed, virtual hosting (by using the Host header) has been sup-
ported by most web servers. However, existing virtual hosting such
as Apache [4] needs advance configuration: registering virtual host
names in DNS, creating DocumentRoot directories and files under
those directories, and adding directives to the configuration file to
map virtual host names to DocumentRoot directories. To support
virtual hosting on the fly, DotSlash handles these configurations
dynamically as follows.

A rescue server generates needed virtual host names dynamically
by adding a sequence number component to its configured name.
In Apache, the configured name of a web server is specified via
the ServerName directive. If a rescue server has a configured
name as host.domain, then its virtual host names are composed
as host-vh<seqnum>.domain, where <seqnum> is monotonically
increasing.

Proxy
serverM

Reverse
Proxy

Origin
Server

Proxy
Forward Another

Proxy

client1

clientN

client1

client1

clientN

clientN

client2

client2

Transparent

server1

client2 server2

...

...

...
...

Figure 4: Three different types of proxy: transparent proxy,
forward proxy, and reverse proxy

A rescue server registers its virtual host names using A records via
dynamic DNS updates [36]. In addition to its local domain, a res-
cue server may register virtual host names in any domain as long as
it uses a unique host name in the registration domain. Having a sep-
arate domain for virtual host name registrations is advantageous in
that we don’t need all rescue servers’ local DNS to support dynamic
DNS updates, which simplifies configuration requirements and re-
duces DNS related security risks. We have set up a domain dot-
slash.cs.columbia.edu (another domain dot-slash.net is ongoing),
which accepts virtual host name registrations from all of our test
machines, many of which are PlanetLab [24] nodes deployed across
the whole world. For example, server www.rescue.com can obtain
a unique host name foo in dotslash.cs.columbia.edu, and register
virtual host names as foo-vh<seqnum>.dotslash.cs.columbia.edu.

A rescue server assigns a unique virtual host name to each of its
origin servers, which is used in the HTTP redirects issued from
the corresponding origin server. To avoid potential confusion in
mapping virtual host names, a rescue server does not reuse a virtual
host name for two different origin servers.

A rescue server maintains a table to map each assigned virtual
host name to its corresponding origin server. As a rescue server,
www.rescue.com may receive requests that use three different kinds
of Host header fields: its configured server name www.rescue.com,
an assigned virtual host name such as www-vh1.rescue.com, or an
origin server name such as www.origin.com. The first case requests
its configured content, and the last two cases request the content of
its origin servers. Moreover, the second case is due to HTTP redi-
rects from its origin servers, and the third case is due to DNS round
robin when its origin servers have added its IP address to their local
DNS. A rescue server adds a new entry to its mapping table when-
ever it provides a rescue service to a new origin server. To map the
Host header field of a request, a rescue server checks both the vir-
tual host name and the origin server name in each mapping entry;
if either one matches, the origin server name is returned. Due to
client-side caching, web clients may continue to request an origin
server’s content from its old rescue servers. To handle this situation
properly, a rescue server does not remove a mapping entry imme-
diately after the corresponding rescue service has been terminated,
but rather keeps the mapping entry for a configured time such as a
few hours or a few days, and redirects such a request back to the
corresponding origin server via an HTTP redirect.

A rescue server supports dynamic content replications by work-
ing as a reverse caching proxy for its origin servers. For exam-

4

Parameter Description Unit Default Range
Tlow Low threshold below which release actions may be triggered 10% (0%, 20%]
Talert Alert threshold above which initial allocation may be triggered 50% [40%, 60%]
Thigh High threshold above which initial HTTP redirect is activated 75% [60%, 80%]
Tcoff Cutoff threshold above which additional allocation is triggered 90% [80%, 100%)
Tredi Redirect threshold above which HTTP redirect is activated, adjusted dynamically [0%, Thigh]
Ictrl Control interval for performing rate measurement and load control seconds 1
Aredi Accounting size for an HTTP redirect response bytes 468
Dout Maximum data rate for outbound HTTP traffic kB/s
dout Real data rate of all HTTP responses kB/s
dself Real data rate of HTTP responses for configured sites kB/s
Dresc Maximum data rate of HTTP responses for rescuing other sites kB/s
dfree Available data rate advertised for rescuing other sites kB/s
dresc Real data rate of HTTP responses for rescuing other sites kB/s
dresc(So) Real data rate of HTTP responses for rescuing So kB/s
dredi Real data rate of HTTP redirect responses kB/s
Dredi(So, Sr) Maximum data rate redirected from So to Sr, adjusted dynamically kB/s
dredi(Sr) Real data rate redirected to Sr kB/s
Rredi Rate of HTTP redirects reqs/s
Dmax Maximum data rate of HTTP responses delivered to clients kB/s
Rmax Maximum request rate supported reqs/s
F Average size of requested files KB
U Percentage of bandwidth that is usable for HTTP traffic 80%

Table 1: Major DotSlash parameters, where kB is 1000 bytes, KB is 1024 bytes, and reqs/s is requests per second

ple, when a rescue server www.rescue.com has a cache miss for a
request URI http://www-vh1.rescue.com/index.html, it maps www-
vh1.rescue.com to www.origin.com, and issues a reverse proxy re-
quest for http://www.origin.com/index.html. Figure 4 shows three
different types of proxies: transparent proxy which forwards client
requests to the corresponding web servers, forward proxy which
forwards client requests to another proxy, and reverse proxy which
forwards client requests to one or a small number of origin web
servers. Using reverse caching proxy offers a few advantages for
handling web hotspots. First, as files are replicated on-demand
from the origin server to the rescue server, the origin server incurs
low cost since it does not need to maintain states for replicated files
and can avoid unnecessary transfers for files that are not requested
at the rescue server. Second, as proxy and caching are functions
supported by most web server software, it is simple to use reverse
proxying to get needed files, and use the same caching mechanisms
to cache proxied files and local files. We focus on memory caching
since a small number of hot files account for most accesses [16]
during web hotspots, and it is likely that these hot files could fit
into memory cache. Disk caching is used only for large files such
as streaming media files.

4.2 Request Redirection
Request redirection [9, 6, 39] allows an origin server to offload
client requests to its rescue servers, which involves two aspects: the
mechanisms to offload client requests and the policies to choose a
rescue server among multiple choices. A client request can be redi-
rected by the origin server’s authoritative DNS, the origin server
itself, or a redirector at transport layer (content-blind) or applica-
tion layer (content-aware). Redirection policies can be based on
load at rescue servers, locality of requested files at rescue servers,
and proximity between the client and rescue servers.

DotSlash uses two mechanisms for request redirections: DNS round

robin at the first-level for crude load distribution, and HTTP redi-
rect at the second-level for fine grained load balancing. An origin
server can achieve primitive load balancing in DNS by using mul-
tiple A records for its name as follows: when it has allocated a
new rescue server, it adds the rescue server’s IP address to its local
DNS; and once it has released an existing rescue server, it removes
the rescue server’s IP address from its local DNS. Client requests
are distributed to rescue servers during the origin server’s name res-
olution phase via DNS round robin, which is transparent to clients,
and incurs no additional delays for clients. However, DNS round
robin can only provide crude load balancing due to DNS caching
at clients and intermediate DNS servers. Using HTTP redirect, an
origin server can more precisely control the load redirected to each
rescue server and achieve better load balancing, but clients incur
an extra round trip time for getting the requested content. Com-
pared to the requested content – the container file plus embedded
objects, an HTTP redirect is much smaller, typically less than 300
bytes. Thus, HTTP redirects can reduce in orders of magnitude
the amount of data transferred at the origin server, which is useful
when the outbound network bandwidth is the bottleneck. However,
HTTP redirects cannot help much in reducing the CPU load be-
cause the origin server still needs to handle the same number of
TCP connections.

As to the redirect URI in the Location header, we investigated
three options: virtual directory, IP address, and virtual host name.
The first option uses a virtual directory such as /dotslash-vh. As
an example, http://www.origin.com/index.html can be redirected as
http://www.rescue.com/dotslash-vh/www.origin.com/index.html. A
problem with this option is that it does not work for embedded rel-
ative URIs. The second option uses the IP address of the rescue
server, which can save the client’s DNS lookup time for the res-
cue server’s name. However, this option suffers another problem in
that the rescue server is unable to tell whether a received request is
for itself or for one of its origin servers. We chose the last option,

5

which uses a unique virtual host name of the rescue server. This
option allows proper virtual hosting at the rescue server, and works
for embedded relative URIs.

In terms of redirection policies, DotSlash uses standard DNS round
robin without modifying the DNS server software, and uses a cus-
tomized policy for HTTP redirects. To achieve fine grained load
balancing, we use weighted round robin (WRR) as the basic policy
for HTTP redirects, where the weight is the maximum data rate of
HTTP redirects assigned by each rescue server. To improve cache
hits for large files, we incorporate locality in the redirection policy
for files larger than a configured size, which is achieved via con-
sistent hashing [17] constrained by load. Due to factors such as
caching and embedded relative URIs, the redirected load seen by
the origin server may be different from the real rescue load served
by the rescue server. For simplicity, an origin server only controls
the load of redirected files, not including embedded objects such as
images, to avoid parsing the redirected files, and relies on a load
feedback from the rescue server to adjust its redirected load. We
will discuss this control mechanism in Section 4.4.4.

Redirection needs to be avoided in some cases, such as communica-
tions between two collaborating servers and requests for retrieving
server status information. On one hand, a request sender, either a
web client or a web server, needs to bypass DNS round robin by us-
ing the server’s IP address directly or a special domain name which
is uniquely mapped to the server’s IP address in the following cases:
when a server initiates a rescue connection to another server, when
a rescue server makes a reverse proxy request to its origin server,
and when a client retrieves a server’s status information. On the
other hand, a request receiver, that is a web server, needs to avoid
performing an HTTP redirect if the request is from a rescue server,
or if the request is for the server’s status information.

4.3 Workload Monitoring
Workload monitoring allows a web server to react quickly to load
spikes. As different resources such as network bandwidth, CPU
and memory at a web server may potentially become the bottleneck
during a web hotspot, a separate workload metric is used for each
resource, such as outbound data rate for network, load average for
CPU, and the number of concurrent connections for memory. If any
of these metrics exceeds its corresponding threshold, rescue actions
are triggered; only when all metrics return to normal, rescue actions
are phased out.

According to a recent study [23], network bandwidth is the most
constrained resource for most web sites during hotspots. If we
measure load spikes by two metrics: the data rate requested at a
web server and the connection rate made to the web server, the first
type of load spikes happens more frequently and occurs earlier than
the second type. Thus, we focus on monitoring network bandwidth
usage in DotSlash. Furthermore, we only monitor outbound HTTP
traffic within a web server based on the following considerations.
First, we assume that there is no significant other traffic besides
HTTP at a web server. It is simple and self-contained for a web
server to monitor HTTP traffic by itself, without relying on an ex-
ternal module to monitor traffic on the link. Second, we assume
that a web server has a symmetric link or its inbound bandwidth is
greater than its outbound bandwidth, which is true, for example, for
a web server behind DSL. Normally a web server’s outbound data
rate is greater than its inbound data rate, thus it should be sufficient
to only monitor outbound HTTP traffic.

HTTP request

ServerClient

(92 bytes)

(227 bytes)
HTTP response

ack M+227

ack K+1

ack N+1

ack L+92

HTTP GET L

FIN N, ack M+228

FIN M+227

HTTP 302 M

SYN J

SYN K, ack J+1

Figure 5: The client-server interaction for an HTTP redirect

Due to overhead such as TCP and IP headers, Ethernet header and
trailer, and retransmissions, the HTTP traffic volume monitored by
DotSlash is less than the real traffic volume on the link. As the
header overhead is relatively constant and other overheads are usu-
ally small, to simplify calculation, we use U to indicate the percent-
age of bandwidth that is usable for HTTP traffic. Thus, if outbound
bandwidth is B, then the maximum data rate for outbound HTTP
traffic Dout = B ∗ U . As we will show later in this section that
the overhead for an HTTP transaction with a single request and re-
sponse is below 400 bytes, U = 80% should be a good, although a
bit conservative, estimate if the average size of HTTP responses is
above 2 kB. This should be the case for most web sites when load
is normal. However, as load increases, a web server will offload
more client requests to its rescue servers via HTTP redirects. Since
an HTTP redirect response is usually less than 300 bytes, a large
number of HTTP redirects will make the average size of HTTP
responses much smaller than 2 kB. Therefore, we need a special
accounting for HTTP redirect responses.

To find out the overhead detail for an HTTP redirect, we use Ethe-
real [11] to capture needed packets at a web server, shown in Fig-
ure 5. For each HTTP redirect, the server sends five TCP packets:
one for establishing the TCP connection, one for acknowledging
the HTTP request, one for sending the HTTP response, and two for
terminating the TCP connection. The first TCP header (SYN ACK)
is 40 bytes, the rest four TCP headers are 32 bytes each. The Ether-
net header and trailer are 14 bytes and 4 bytes, respectively. The to-
tal overhead of TCP and IP headers plus Ethernet headers and trail-
ers for five TCP packets is (40+32∗4)+20∗5+(14+4)∗5 = 358
bytes. Thus, an HTTP redirect of size n bytes should be accounted
as Aredi = (n + 358) ∗ U bytes. In our measurement, n = 227
bytes, U = 80%, then Aredi = (227 + 358) ∗ 80% = 468 bytes.

4.4 Rescue Control
Rescue control allows a web server to properly interact with other
web servers for handling web hotspots. We will discuss the follow-
ing aspects of DotSlash rescue control: control strategies, rescue
protocol, rescue server allocation, HTTP redirect control, and res-
cue relationship termination.

4.4.1 Control Strategies

6

accept rescue request

accept rescue request

partial shutdown

Rescue
complete shutdown

initial allocation

partial release

complete release

additional allocation

NormalSOS

Figure 6: DotSlash state transitions

We associate rescue actions with load levels. A load level is the per-
centage of a measured load over the capacity (or a load limit), e.g.,
100%∗dout/Dout indicates the load level for outbound HTTP traf-
fic in DotSlash. We distinguish different load levels using thresh-
olds Tlow , Talert, Thigh, and Tcoff , which are defined in Table 1.
Although these thresholds are configurable, for most web sites there
should be no need to deviate from the default settings. Their asso-
ciated actions will be discussed in Section 4.4.3, 4.4.4 and 4.4.5.
When certain actions are triggered, a web server will change its
state (defined in Section 3.1). Figure 6 summarizes the DotSlash
state transitions.

We perform traffic rate measurement and load control in the granu-
larity of the control interval Ictrl, and represent other time intervals
as TTL counters in terms of Ictrl. A TTL counter is decreased by
one every Ictrl seconds. Once reaching zero, it is restored to its
initial value, and the associated actions are triggered. For example,
if service discovery needs to be performed every 10 minutes, and
Ictrl = 5 seconds, then the TTL for service discovery is 120.

For outbound HTTP traffic, we measure the outbound data rate
dout, the self data rate dself , the rescue data rate dresc, and the redi-
rect data rate dredi. Also, the rescue data rate is measured for each
origin server, such as dresc(So1

) and dresc(So2
), and the redirect

data rate is measured for each rescue server, such as dredi(Sr1
)

and dredi(Sr2
). For any web server, dout = dself + dresc, and

dredi ≤ dself . For any origin server, dresc = 0.

We handle load increases and decreases differently. In order to re-
act quickly to load spikes, rescue actions are triggered, such as al-
locating rescue servers and performing HTTP redirects, only based
on the current load level. In contrast, to keep system stable, res-
cue services are phased out, such as releasing rescue servers, only
when the load levels are consistently low. A load level is consis-
tently low if it is below Tlow for Nlow (configurable and defaulting
to 30) number of consecutive control intervals.

4.4.2 Rescue Protocol
Servers of different web sites collaborate with each other using
the DotSlash rescue protocol. It is an application-level protocol
that uses single-line (ending with ’\n’) pure text messages. It is
a request-response protocol since each request triggers a response.
Each message starts with a message sequence number <msg seq no>,
which is used to match a response with a request. A request has
a command string <cmd str> followed by optional parameters,
where <cmd str> starts with a letter: [a-zA-Z], and is case insen-
sitive. A response has a response code <rep code> followed by
the corresponding response string <rep str> and optional param-
eters, where <rep code> is a three-digit code starting with [0-9].
Therefore, we can distinguish a <cmd str> from a <rep code>,
and thus identify whether a message is a request or a response.

Unlike a traditional client-server protocol where a host is either a

Example 1
So→Sr : 1 SOS www.origin.com 1.2.3.4 8080 600
Sr→So: 1 200 OK www-vh1.rescue.com 5.6.7.8 8080 100
Sr→So: 1 RATE 60
So→Sr : 1 200 OK
Sr→So: 2 RATE 50
So→Sr : 2 200 OK
Sr→So: 3 RATE 100
So→Sr : 3 200 OK
So→Sr : 2 SHUTDOWN
Sr→So: 2 200 OK

Example 2
So→Sr : 1 SOS www.origin.com 1.2.3.4 8080 600
Sr→So: 1 403 Reject

Figure 7: Examples for DotSlash rescue protocol

client sending requests, or a server sending responses, in DotSlash
both origin servers and rescue servers can initiate requests. Cur-
rently, DotSlash only defines three command strings: SOS for initi-
ating a rescue relationship, RATE for adjusting a redirect data rate,
and SHUTDOWN for terminating a rescue relationship. An SOS
command is always sent by an origin server, and a RATE command
is always sent by a rescue server, but a SHUTDOWN command
may be sent by an origin server or a rescue server. Figure 7 gives
two examples for the DotSlash rescue protocol, where So→Sr de-
notes that the message is sent from the origin server So to the rescue
server Sr . Example 1 shows the establishment of a rescue relation-
ship between So and Sr , the adjustments of the HTTP redirect data
rate, and termination of the rescue relationship. Example 2 shows
that a rescue request from So is rejected by Sr .

4.4.3 Rescue Server Allocation
Due to negotiation delays, allocating a new rescue server is per-
formed in advance before the corresponding request redirections
are needed. We distinguish two types of rescue server allocations:
initial allocation and additional allocation. An initial allocation is
triggered if a web server is in the normal state, and its dout/Dout >
Talert. An initial allocation needs to be completed before the server’s
dout/Dout reaches Thigh, which is the threshold when the server
starts offloading client requests via HTTP redirects. An additional
allocation is triggered if an origin server has rescue servers, and the
HTTP redirect load levels of all these rescue servers have reached
Tcoff . An additional allocation needs to be completed before the
HTTP redirect load levels of existing rescue servers approach 100%
so that the origin server can always have a rescue server to which
needed client requests can be offloaded via HTTP redirects.

To initiate a rescue relationship, an origin server sends an SOS
command to a chosen rescue server candidate. The command has
the following parameters: the origin server’s fully qualified domain
name, its IP address, its port number for web requests, and the max-
imum idle time (in seconds) after which the rescue server should
trigger an idle shutdown (see Section 4.4.5). When a web server
receives an SOS request, it can accept the request by sending a
“200 OK” response or reject the request by sending a “403 Reject”
response. A “200 OK” response has the following parameters: a
unique alias of the rescue server assigned to the origin server, the
rescue server’s IP address, the rescue server’s port number for web
requests, and the maximum HTTP redirect data rate (in kB/s) that
the origin server can offload to the rescue server.

7

In DotSlash, rescue servers are allocated based on the following
considerations. First, an origin server should keep the number of
its rescue servers as small as possible. Since a rescue server is a
reverse caching proxy for the origin server, a cache miss at a res-
cue server will trigger a file transfer from the origin server. Min-
imizing the number of rescue servers can potentially reduce their
cache misses, and thus reduce the data transfers at the origin server.
Therefore, a rescue server with large rescue capacity is preferred
over several smaller ones. Second, as allocating rescue servers in-
volve delays, an origin server performs at most one round of allo-
cations in each Ictrl.

4.4.4 HTTP Redirect Controls
DotSlash performs two HTTP redirect controls. The first one is that
an origin server activates HTTP redirects once dout/Dout > Tredi,
and dynamically adjusts Tredi as follows:

Tredi = Thigh − Rredi ∗ Aredi/Dout

if Tredi < 0 then Tredi = 0

where Rredi is the rate of HTTP redirects in the previous control
interval. If Rredi = 0, Tredi = Thigh; if Rredi increases, Tredi

decreases; and if Rredi > Dout ∗ Thigh/Aredi, Tredi = 0, where
an origin server offloads all received client requests via HTTP redi-
rects. The maximum rate of HTTP redirects at an origin server is
bounded by Dout/Aredi.

The second HTTP redirect control is that the rescue server Sr dy-
namically adjusts Dredi(So, Sr) for its origin server So. First,
Sr allocates a data rate Dalloc(So) to So, and sets Dinit(So) to
Dalloc(So) ∗Tcoff . Then, it sets Dredi(So, Sr) to Dinit(So), and
indicates this value in its “200 OK” response to So’s SOS request.
Afterwards, it adjusts Dredi(So, Sr) as follows:

if dresc(So) > Dalloc(So)
then Dredi(So, Sr) = Dredi(So, Sr)/(dresc(So)/Dalloc(So))
else if dresc(So) < Dinit(So) and Dredi(So, Sr) < Dinit(So)

then Dredi(So, Sr) = Dinit(So)

Whenever Dredi(So, Sr) is changed, Sr sends a RATE request to
So to adjust its allowed HTTP redirect data rate. On the other hand,
So ensures that its dredi(Sr) is below Dredi(So, Sr).

4.4.5 Rescue Relationship Termination
A rescue relationship is terminated by sending a SHUTDOWN re-
quest either from the origin server or from the rescue server. We
call it a rescue release when a rescue relationship is terminated by
the origin server. We distinguish two types of rescue releases: par-
tial release and complete release. An origin server triggers a partial
release if it has multiple rescue servers, and the HTTP redirect load
levels of all these rescue servers are consistently low. In a partial
release, only one rescue server is released, and the released rescue
server has the smallest Dredi. An origin server triggers a complete
release if its dout/Dout is consistently low, at which point all re-
maining rescue servers are released.

We call it a rescue shutdown when a rescue relationship is ter-
minated by the rescue server. We distinguish two types of res-
cue shutdowns: idle shutdown and overload shutdown. A rescue
server triggers an idle shutdown if it has not served any rescue

Web Site 3

Web Site 4

Web Site 2

Web Site 5

Web Site 6

R/SR/S

R/SR/S

R/S

PP

P R/S

mSLP DA1

mSLP DA2 mSLP DA3

Web Site 1

Figure 8: DotSlash service registry architecture, where R/S de-
notes register/search, and P denotes a peer relationship.

traffic for an origin server for more than MaxIdle seconds, where
MaxIdle is specified in the origin server’s SOS request, and de-
faults to 10 ∗ Nlow ∗ Ictrl seconds. The goal of an idle shut-
down is to release rescue resources in case of the origin server fail-
ure or network separation. A rescue server triggers an overload
shutdown if dself/Dout > Talert, or dresc/Dout > Thigh, or
dout/Dout > Tcoff . We also distinguish partial shutdowns from
complete shutdowns. While a rescue server terminates all its rescue
relationships in a complete shutdown, it only terminates part of its
rescue relationships in a partial shutdown.

4.5 Service Discovery
Service discovery allows servers of different web sites to learn
about each other dynamically and collaborate automatically with-
out any administrator intervention. We will discuss the following
aspects of service discovery in DotSlash: service discovery proto-
col, service registry architecture, service description, service adver-
tisement, and service search.

Different service discovery protocols [15, 37, 34, 33] have been
developed in recent years. We chose the Service Location Protocol
(SLP) [15] as the DotSlash service discovery protocol since SLP is
an IETF (Internet Engineering Task Force) proposed standard for
service discovery in IP networks, and it is flexible, lightweight and
powerful.

Figure 8 shows the DotSlash service registry architecture, which
features multiple well-known service registries that maintain a fully-
meshed peer relationship. This architecture is based on our previ-
ous work on the SLP mesh enhancement (mSLP [42]). Although
SLP is designed for service discovery within one administrative
domain, any domain can set up an SLP Directory Agent (DA) as a
DotSlash service registry for the public good, which accepts service
registrations and answers service search queries from web servers
in any domain. A web server can use any service registry to register
its information and to search information about other web servers.
Service registrations received by one registry will be propagated to
other registries as soon as possible, and anti-entropy [44] is used to
ensure consistency among all service registries. Only a small num-
ber of such service registries are needed for reliability and scala-
bility. All of them only serve the scope “DotSlash” (reserved for
the DotSlash rescue services) so that these DAs will not affect local
service discovery.

A service template is defined to describe the DotSlash rescue ser-
vices, which has the following service attributes: URL, IP address,
PortDots, and dfree. The URL gives the web server’s domain
name. If the web server does not use port 80, the URL must specify
a port number. The IP address is used to bypass DNS round robin.
PortDots specifies the port number for the DotSlash rescue ser-
vices. dfree specifies the available data rate for rescue traffic. The

8

maximum data rate for rescue traffic Dresc = Dout ∗ (1−Talert),
which defaults to Dout ∗ 50% since Talert defaults to 50%. A web
server updates dfree dynamically as follows. If it is in the normal
state, dfree = Dresc; if it is in the SOS state, dfree = 0; and if it
is in the rescue state, dfree equals Dresc minus the allocated data
rate for rescue traffic.

Service registrations are performed by using an SLP service agent.
All registrations are soft states at DotSlash registries. A web server
makes service registrations periodically. But once dfree is changed,
the web server makes a new registration immediately.

Service searches are performed by using an SLP User Agent. To
get ready for load spikes, a web server performs service searches
periodically, and maintains a list of rescue server candidates. A
DotSlash service search request uses preference filters [43] and the
attribute list extension [14]. Preference filters allow the registry to
sort the search result based on available rescue capacity and to only
return the desired number of matching entries, which is useful if
many entries match a search request. The attribute list extension
allows the registry to return matching URLs and other service at-
tributes in one response. An origin server should choose a rescue
server that has an equivalent or larger rescue capacity than its own
capacity since a rescue server with too small a capacity cannot help
much. Also, an origin server should diversify its rescue servers
(e.g., in different administrative domains) to avoid that they expe-
rience peak loads at the same time.

5. IMPLEMENTATION
5.1 Architecture
We chose Apache [4] as our base system since it is open source and
is the most popular web server [22]. We compiled Apache with the
worker multi-processing module (MPM), the proxy module, and
the cache module. Figure 9 shows the DotSlash software architec-
ture. DotSlash is implemented as two parts: Mod dots and Dotsd.
Mod dots is an Apache module that supports DotSlash functions
related to client request processing, including accounting for each
response, HTTP redirect, and dynamic virtual hosting. Dotsd is
a daemon that accomplishes other DotSlash functions, including
service discovery, dynamic DNS updates, and rescue control and
management. For convenience, Dotsd is started within the Apache
server, and is shutdown when the Apache server is shutdown. Dotsd
and Mod dots share control data structures via shared memory,
which is initialized when the Apache server is started. Mod dots
issues DotSlash commands to Dotsd via UDP to request Dotsd to
allocate rescue servers or to terminate existing rescue services pro-
vided to others. DNS servers and DotSlash service registries are
DotSlash components external to the Apache server. Dotsd in-
teracts with DotSlash service registries using SLP, and interacts
with DNS servers using the DNS protocol. We use BIND as DNS
servers, which supports DNS round robin and dynamic DNS up-
dates. We use mSLP DAs as DotSlash service registries. A web
server interacts with other web servers via its Dotsd using the Dot-
Slash rescue protocol (see Section 4.4.2) carried by TCP.

5.2 Control Data in Shared Memory
We use shared memory to store control data structures that are ac-
cessed by both Mod dots and Dotsd. These data structures are di-
vided into two parts: a traffic meter and a peer table. The traffic
meter keeps traffic accounting information for the web server itself.
The peer table maintains information for DotSlash peers, which is
used in rescue server selection and virtual host name mapping. A

Mod_dots

Apache

Dotsd

HTTP SLPDNS

mSLP DABIND

Another
Dotsd

Internet
P1 P2

P1: DotSlash / UDP

P2: DotSlash / TCP

Shared Memory

P2

Client

Figure 9: DotSlash software architecture

web server’s DotSlash peers are its collaborating web servers via
the DotSlash rescue services. Based on our rescue model from
Section 3.1, the DotSlash peers of an origin server are all rescue
servers, and the DotSlash peers of a rescue server are all origin
servers. The peer table also keeps traffic accounting information
for DotSlash peers such that an origin server and a rescue server
can control dredi and dresc, respectively, for each peer.

We perform traffic accounting in two time intervals: the current
control interval, that is the most recent Ictrl seconds, and the server’s
lifetime, that is from the server’s booting time until now. The for-
mer accounting calculates various rates for current traffic, which
are used to trigger needed rescue actions. The corresponding coun-
ters are reset to zero at the end of current control interval. The latter
accounting allows calculating the average traffic rates by sampling
the corresponding counters at the desired time intervals.

5.3 Dotsd
Dotsd is implemented using pthread. It has three main threads: a
control thread which runs at the end of each control interval for pro-
cessing tasks that need to be done periodically, a UDP server which
processes requests from the local Mod dots, and a TCP server which
accepts connections from other Dotsds and creates a new thread for
processing each accepted connection. Dotsd also includes three
clients: a DNS client for dynamic DNS updates, an SLP Service
Agent (SA) for service registrations, and an SLP User Agent (UA)
for service searches. We discuss them in turn below.

5.3.1 The Control Thread
The control thread runs every Ictrl seconds to perform the follow-
ing tasks. First, it checks current and recent traffic rates to deter-
mine whether it needs to terminate one or all rescue relationships:
partial or complete release for an origin server, or idle shutdown for
a rescue server (see Section 4.4.5). If a rescue relationship needs
to be terminated, a SHUTDOWN command is issued to the cor-
responding DotSlash peer. Second, the control thread checks the
rescue data rate dresc for each origin server, if it needs to adjust
Dredi for an origin server, a RATE command is issued to that ori-
gin server (see Section 4.4.4). Third, the control thread resets all
control interval related counters to zero. Finally, it checks whether
it needs to do service discovery. If the service registration timer is
expired, it activates the SLP SA to perform a new service registra-
tion; if the service search timer is expired, it activates the SLP UA
to perform a new service search.

5.3.2 The UDP Server
The UDP server processes the following commands issued by the
local Mod dots: an ALLOC command for initial and additional
rescue server allocations (see Section 4.4.3), and a SHUTDOWN
command for overload shutdown (see Section 4.4.5). To allocate

9

a new rescue server, the UDP server chooses a web server from
the rescue server candidate table, makes a TCP connection to the
chosen server at PortDots, issues an SOS request, and creates a new
thread, denoted as a TCP handler, for handling further interactions
with the rescue server. To perform an overload shutdown, the UDP
server issues a SHUTDOWN request to each origin server.

5.3.3 The TCP Server
The TCP server accepts connections from other Dotsds and creates
a new thread acting as a TCP handler for processing each accepted
connection. A TCP handler interacts with another TCP handler at
a different Dotsd in a peer-to-peer way. Both can issue requests
as well as process requests and responses from each other. As de-
scribed in Section 4.4.2, a TCP handler may issue or process the
following requests: SOS, RATE, and SHUTDOWN. When a new
rescue relationship is established, the peer information is added to
the peer table in shared memory (see Section 5.2). The origin server
also adds the rescue server’s IP address to it local DNS to allow
offloading client requests via DNS round robin. When a rescue re-
lationship is terminated, the origin server removes the rescue server
from its peer table, and removes the rescue server’s IP address from
its local DNS. Instead of removing the origin server immediately
from its peer table, the rescue server changes the origin server’s
peer type from origin to expired origin, and keeps the entry for a
configurable period (see Section 4.1).

5.3.4 The DNS Client
The DNS client performs dynamic DNS updates. An origin server
uses the DNS client to add or remove a rescue server’s IP address
from its local DNS so that offloading client requests via DNS round
robin to the rescue server can be enabled or disabled. A rescue
server uses the DNS client to add new aliases to its local DNS or a
chosen domain. We do not need any new IP addresses for the above
DNS updates.

5.3.5 The Service Registration Client
An SLP Service Agent is used for registering the web server to a
DotSlash service registry. A new registration is triggered by the
control thread if the registration timer has expired, or by the UDP
server or a TCP handler if the available data rate for rescue traffic
dfree has changed.

5.3.6 The Service Search Client
An SLP User Agent is used for searching available rescue servers
at a DotSlash service registry. A new search is triggered by the
control thread if the search timer has expired. The search results
are used to build a list of rescue server candidates.

5.4 Mod dots
Mod dots constantly monitors the web server’s workload, and trig-
gers rescue actions based on current traffic rates. It performs HTTP
redirects for an origin server, and supports dynamic virtual hosting
for a rescue server. Mod dots also implements a content handler to
provide the current DotSlash status for the web server as a dynam-
ically generated web page.

5.4.1 Workload Monitoring
We use an Apache output filter to compute the length of each HTTP
response as the sum of the content length and the HTTP header
length. The output filter is applied to each connection, and is regis-
tered in the Apache pre connection phase. The length of the current

HTTP response is calculated and recorded in a per-connection data
structure for Mod dots. In the Apache log transaction phase, the
length of the current HTTP response is added to related accounting
counters, then it is reset to zero. For HTTP redirects, we perform a
special accounting as described in Section 4.3 to take the different
overhead into account.

Mod dots triggers rescue actions based on current traffic rates. If
a web server is in the normal state and its dout/Dout > Talert,
then an initial allocation of rescue servers is triggered. For a rescue
server, if its dself/Dout > Talert, or dresc/Dout > Thigh, or
dout/Dout > Tcoff , then an overload shutdown is triggered.

5.4.2 HTTP Redirects
An origin server starts offloading client requests via HTTP redirects
if dout/Dout > Tredi. All HTTP redirects are performed in the
Apache post read request phase.

To perform an HTTP redirect, Mod dots picks a rescue server from
its DotSlash peer table based on the following redirect policy. If the
requested file is large, consistent hashing [17] is used to associate
the request URI with an existing rescue server; otherwise, the least
loaded rescue server is selected. Other policies can be incorporated
later, such as taking into account the proximity of the client to res-
cue servers to reduce client-perceived delays. Next, Mod dots up-
dates traffic accounting information for the chosen rescue server by
adding the requested file size to the corresponding counters. Then,
Mod dots checks whether it needs to trigger an additional alloca-
tion of rescue servers (see Section 4.4.3). At last, Mod dots uses the
chosen rescue server’s virtual host name and its HTTP port num-
ber to fill in the host part of the redirect URI. The rest part of the
redirect URI is copied from the origin request URI. For example, if
a request URI is http://www.origin.com/index.html, the chosen res-
cue server is www-vh1.rescue.com, and its HTTP port is 8080, then
the redirect URI is http://www-vh1.rescue.com:8080/index.html.

An origin server does not offload a client request via an HTTP redi-
rect if the request’s client IP address is the same as a rescue server’s
IP address (i.e., it is a reverse proxy request from a rescue server),
or if the request is to get the web server’s DotSlash status page.

5.4.3 Dynamic Virtual Hosting
Mod dots supports dynamic virtual hosting for a rescue server by
mapping virtual host names dynamically, converting a client re-
quest to a reverse proxy request to the origin server dynamically,
and performing caching controls.

For a rescue server, Mod dots maps the host name in the request
URI dynamically in the Apache post read request phase. Because
of DNS round robin and HTTP redirect, the host name in a request
URI can be an origin server name or the virtual host name assigned
to an origin server. Thus, Mod dots compares the host name in
the request URI with each origin server name and each assigned
virtual host name in its DotSlash peer table (see Section 4.1). This
comparison has three possible results: there is no match, then the
request will be processed as normal; an origin server matches, then
the request will trigger a reverse proxy to the origin server in case
of a cache miss for the request URI; or an expired origin server
matches, then the request will be redirected to the origin server via
an HTTP redirect.

If there is a cache hit for a request URI, Mod dots serves the re-
sponse from its cache; otherwise, Mod dots converts the request to

10

a reverse proxy request to the origin server in the Apache trans-
late name phase, and stores the requested file in the cache. Note
that Mod dots takes care of reverse proxying dynamically; there is
no need to use any proxy directives in the Apache configuration file
httpd.conf.

DotSlash caching controls are built on top of existing Apache caching
mechanisms. In DotSlash, a rescue server is a reverse caching
proxy for its origin servers. To minimize cache misses and thus
minimize the number of reverse proxy requests, all processes at a
rescue server should share the same memory cache. In the current
version of Apache 2.0.48, however, each process has its own mem-
ory cache. Instead of rewriting the existing Apache mem cache
module and implementing memory cache in shared memory, we
use a simple solution as follows. First, we chose the Apache worker
MPM, which is a hybrid multi-threaded multi-process MPM: each
process has a fixed number of threads (say, 25); and normally only
a small number of processes is needed (say, 2). As the number
of memory caches is equal to the number of processes, the issue
of memory cache sharing among processes becomes less important
than that among threads within the same process. Second, we ap-
ply cache control to threads within the same process to avoid con-
current reverse proxy requests for the same URI, which improves
cache efficiency at a rescue server, and reduces the workload at the
corresponding origin server. Since it takes some time for a reverse
proxy request to complete, and fill the requested file in the memory
cache, Mod dots maintains a table of ongoing reverse proxy URIs.
In the Apache post read request phase, Mod dots handles a URI
that may trigger a reverse proxy request as follows:

if the URI is not in the cache
then if the URI is in the ongoing reverse proxy table

then the thread waits until the ongoing reverse proxy
request for the URI has completed

else the thread puts the URI into the ongoing reverse
proxy table and will initiate a reverse proxy
request for the URI in a later phase

In the Apache log transaction phase, if a thread has performed a
reverse proxy request, it signals all threads that are waiting on the
URI. A URI is removed from the ongoing reverse proxy table when
it has completed and no thread is waiting on it.

5.4.4 DotSlash Status Display
Mod dots implements a content handler for /dotslash-status so that
a request for http://host.domain/dotslash-status can retrieve the cur-
rent DotSlash status for the web server host.domain.

6. EVALUATION
6.1 Workload Generation
We use httperf [21] to generate needed workloads. To simulate web
hotspots, a small number of files are requested repeatedly from a
web server. Each request uses a separate TCP connection. Thus,
the request rate equals the connection rate. If the request rate to be
generated is high, multiple httperf clients are needed, each running
on a different machine.

We made two enhancements to httperf to facilitate experiments on
DotSlash. First, we extended httperf to handle HTTP redirects au-
tomatically since an httperf client needs to follow HTTP redirects
in order to complete workload migrations from an origin server to

its rescue servers. Second, we wrote a shell script to support work-
load profiles. A workload profile specifies a sequence of request
rates and their testing durations, which is convenient for describing
workload changes.

6.2 Performance Metrics
We use two performance metrics to evaluate a web server, Dmax

the maximum data rate (in kB/s) of HTTP responses delivered to
clients, and Rmax the maximum request rate (in requests/second)
supported. Our goal is to improve a web server’s Dmax and Rmax

by using the DotSlash rescue services.

For a web server without using DotSlash, its Dmax = Dout, and
Rmax = Dout/F , where F is the average size of requested files (in
KB). We ignore the header size of HTTP responses here, which is
relatively small (about 250 bytes) compared to F . We assume that
the CPU is not a bottleneck. By using DotSlash, the web server
can improve its Rmax and Dmax. If only HTTP redirect is used
to offload client requests, Rmax is bounded by Dout/Aredi, and
Dmax is bounded by Rmax ∗ F . If DNS round robin is used as
well, Rmax and Dmax can be improved further; the degree of im-
provement depends on factors such as client distribution and DNS
caching.

For a web server, its Rmax and Dmax are determined as follows.
We use one or multiple httperf clients to issue requests to the web
server, starting at a low request rate, then increasing the request
rate gradually, until the web server gets overloaded. A client uses 7
seconds [8] as the timeout value for getting the response from the
web server for an issued request. If more than 10% [8] of issued
requests time out, a client declares the web server as overloaded.
We refer to the first request rate under which the web server gets
overloaded as the overloading rate, and the testing request rate just
before the overloading rate is Rmax. For all testing request rates,
up to Rmax, the maximum data rate delivered to clients is Dmax.

6.3 Experiments
6.3.1 Goals of Experiments

The goals of our experiments on DotSlash are as follows. First,
given a web server with a constraint on its outbound bandwidth,
we want to improve its Rmax and Dmax by using the DotSlash
rescue services, and aim to achieve an improvement close to the
analytical bound. Second, we want to confirm that our workload
control algorithm works as expected, which can properly handle a
request rate up to Dout/Aredi when only HTTP redirect is used.

6.3.2 Experimental Setup
We performed experiments in our local area networks (LAN) and
on PlanetLab [24]. In our LANs, we use a cluster of 30 Linux ma-
chines, which are connected using 100 Mb/s fast Ethernet. These
machines have two different configurations, clic and iDot. The for-
mer has a 1 GHz Intel Pentium III CPU, and 512 MB of memory,
whereas the latter has a 2 GHz AMD Athlon XP CPU, and 1 GB of
memory. They all run Redhat 9.0, with Linux kernel 2.4.20-20.9.
On PlanetLab, we have more than 300 nodes over the whole world,
each has a CPU of at least 1 GHz clock rate, and has at least 1 GB
of memory. PlanetLab nodes have four types of network connec-
tions: DSL lines, Internet2, North America commodity Internet,
and outside North America. They all run Redhat 9.0, with Linux
kernel 2.4.22-r3 planetlab, and PlanetLab software 2.0.

We set up the DotSlash software in three steps. First, we com-

11

piled Apache 2.0.48 with the worker MPM, the proxy modules,
and the cache modules, and added the DotSlash module (Mod dots)
and DotSlash daemon (Dotsd) to it to support the DotSlash rescue
services. As reverse proxying is taken care of by Mod dots auto-
matically, proxy configuration is not needed. The Apache caching
is configured with 256 KB of memory cache, and 10 MB of disk
cache, and the maximum file size allowed in memory cache is 20
kB. Regarding the DotSlash rescue services, we only configured
Dout for each web server; other parameters take their default val-
ues. Second, we chose BIND 9.2.2 as the DNS server software, and
set up a DNS domain dotslash.cs.columbia.edu. All rescue servers
register their virtual host names in this domain via dynamic DNS
updates. Currently, we only tested DotSlash workload migration
via HTTP redirect, without using DNS round robin. Third, we set
up a DotSlash service registry using an mSLP Directory Agent. If
multiple DotSlash service registries are needed for reliability and
scalability, they can be supported easily by using the SLP mesh
enhancement [42]. Each web server registers itself with this well-
known service registry, and discovers other web servers by look-
ing up this registry. The rescue capacity a web server provided is
Dresc, which defaults to Dout ∗ 50% (see Section 4.5).

6.3.3 Experimental Results on PlanetLab
We run a web server on a PlanetLab DSL node, planetlab1.gti-
dsl.nodes.planet-lab.org (referred to as gtidsl1), for which the out-
bound bandwidth is the bottleneck. We run httperf on a local clic
machine. Ten files are requested repeatedly from gtidsl1, with an
average size of 6 KB [39]. Our goal is to measure, from the client
side, gtidsl1’s Rmax and Dmax in two cases, namely without using
DotSlash versus using DotSlash.

For the first case, DotSlash is disabled. The request rate starts at
1 request/second, increases to 20 requests/second, with a step of 1,
and each request rate lasts for 60 seconds. Figure 10(a) shows the
experimental results. In this figure, gtidsl1 gets overloaded at 10
requests/second, where 14% of requests, 84 out of 600, time out.
Thus, Rmax is 9 requests/second. The measured Dmax is 53.9
kB/s, which appears when the request rate is Rmax.

For the second case, DotSlash is enabled. We set gtidsl1’s Dout

to 53.9 kB/s. To provide needed rescue capacity for gtidsl1, we
run another web server on a local iDot machine (referred to as ma-
glev), and its Dout is set to 2000 kB/s. The request rate starts at
4 requests/second, increases to 200 requests/second, with a step of
4, and each request rate lasts for 60 seconds. Figure 10(b) shows
the experimental results. In this figure, the origin server gtidsl1
starts redirecting client requests, via HTTP redirects, to the rescue
server maglev when the request rate reaches 8 requests/second. As
the request rate increases, the redirect rate increases accordingly.
Eventually, gtidsl1 redirects almost all clients requests to maglev.
In this experiment, gtidsl1 gets overloaded at 92 requests/second,
where 25% of requests, 1404 out of 5520, time out. Thus, Rmax

is 88 requests/second. The measured Dmax is 544.1 kB/s, which
appears when the request rate is 84 requests/second.

Comparing the results obtained from the above two cases, we have
88/9 = 9.78, and 544.1/53.9 = 10.1, which means that by us-
ing the DotSlash rescue services, we got about an order of mag-
nitude improvement for gtidsl1 on its Rmax and Dmax, even if
only HTTP redirect is used. In this experiment, we only measured
Dout at gtidsl1, without knowing its outbound bandwidth B. Us-
ing U = 80% is likely to over estimate B. Based on the calculation
we did in Section 4.3, the overhead for an HTTP transaction is 358

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

time (minutes)

data rate (kB/s)
request rate (requests/second)
timeout rate (requests/second)

(a) Without using the DotSlash rescue services

0 5 10 15 20 25
0

100

200

300

400

500

600

time (minutes)

data rate (kB/s)
request rate (requests/second)
redirect rate (requests/second)
timeout rate (requests/second)

(b) Using the DotSlash rescue services

Figure 10: The data rate and request rate for a PlanetLab DSL
node gtidsl1 in two cases

bytes, and the bandwidth consumption of an HTTP redirect is 585
bytes. If F is 6 KB, and the average header size of HTTP responses
is 250 bytes, then an HTTP response is 6394 bytes in average. To
be conservative, we use U = 6394/(6394 + 358) = 95%, and
estimate Aredi as 585 ∗ 95% = 556 bytes. As a result, the re-
quest rate is bounded by Dout/Aredi = 53.9 ∗ 1000/556 = 97
requests/second, and we achieved 88/97 = 91% of its analytical
bound.

6.3.4 Experimental Results in LANs
In the previous section we have shown the performance improve-
ment, measured from the client side, for a web server by using the
DotSlash rescue services in a wide area network setting. In this
section we will show, via an inside look from the server side, how
workload is migrated from an origin server to its rescue servers.
The workload monitoring component in DotSlash maintains a num-
ber of counters for outbound HTTP traffic, including total bytes
served, the number of client requests served, the number of client
requests redirected, and the number of requests served for rescuing
others. The values of these counters for a web server host.domain

12

0 2 4 6 8 10 12 14 16 18
0

500

1000

1500

2000

2500

time (minutes)

re
qu

es
ts

/s
ec

on
d

bjs request rate
bjs redirect rate
maglev rescue rate
ottawa rescue rate
delhi rescue rate
beirut rescue rate
ankara rescue rate

(a) The request rate and redirect rate at bjs, and the res-
cue rates at its rescue servers

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

10

time (minutes)

da
ta

 r
at

e
(M

B
/s

)

bjs
maglev
ottawa
delhi
beirut
ankara
total

(b) The data rate at each web server, and the total data
rate of all web servers

Figure 11: The request rates and data rates at the origin server
bjs and its rescue servers

can be obtained from http://host.domain/dotslash-status?auto. By
sampling these counters at a desired interval, we can calculate the
needed average values of outbound data rate, request rate, redirect
rate, and rescue rate.

In this experiment, six machines, bjs, maglev, ottawa, delhi, beirut,
and ankara, run as web servers, where the first two are iDot ma-
chines, and the last four are clic machines. To emulate a scenario
where bjs works as an origin server with a bottleneck on its out-
bound bandwidth, and the rest web servers work as rescue servers,
we configured their Dout as 1000, 10000, 5000, 4000, 3000, and
2000 kB/s, respectively. We run httperf on five clic machines,
which issue requests to bjs using the same workload profile. The
maximum request rate is 400 ∗ 5 = 2000 requests/second, and the
duration of the experiment is 15 minutes. Ten files are requested re-
peatedly, with an average size of 4 KB. We run a shell script to get
the DotSlash status from the six web servers at an interval of 30 sec-
onds. The retrieved status data are stored in round-robin databases

using RRDtool [28], with one database for each web server. Fig-
ure 11 shows the data rates and request rates for the six web servers
in a duration of 17 minutes.

We observe the following results from Figure 11(a). First, bjs can
support a request rate of 2000 requests/second. Its redirect rate in-
creases as the request rate increases, and these two rates are roughly
the same once the request rate exceeds 1500 requests/second. This
validates the control mechanisms we described in Section 4.4.4: (1)
the maximum rate of HTTP redirects bjs can support is bounded
by Dout/Aredi = 2140 requests/second, and (2) if the rate of
HTTP redirects is greater than Dout ∗ Thigh/Aredi = 1603 re-
quests/second, Tredi = 0, which means that all client requests are
redirected from bjs to its rescue servers. Second, bjs allocates one
rescue server at a time, and uses the one with the largest rescue
capacity first. When a new rescue server is added in, the rescue
rates at the existing rescue servers decrease. Also, the rescue rates
at rescue servers are proportional to their rescue capacities because
of the WRR at bjs.

Comparing Figure 11(b) and 11(a), we observe that rescue servers
have similar curve shapes for their data rates and rescue rates. In
contrast, as we expected, the origin server bjs has quite different
curve shapes for its data rate and request rate. Although the re-
quest rate at bjs increases significantly from 200 requests/second
at 1.5 minutes to 2000 requests/second at 11 minutes, the data rate
at bjs is roughly unchanged, staying at Dout ∗ Thigh = 750 kB/s
for the most part. This indicates that bjs has successfully migrated
its workload to its rescue servers under the constraint of its out-
bound bandwidth. Also, we observe that the data rate at bjs goes
beyond 750 kB/s, but still stays below Dout = 1000 kB/s, when
the request rate is between 1600 and 2000 requests/second. This
is because bjs can only support a rate of 1600 requests/second for
HTTP redirects with a data rate of 750 kB/s. Furthermore, we ob-
serve that the total data rate of all web servers has a maximum value
of 9.7 MB/s, which is higher than 9.2 MB/s, the maximum data rate
measured from the httperf clients. The difference is due to our spe-
cial accounting for HTTP redirects. As described in Section 4.3,
an HTTP redirect is 227 bytes, but is counted as 468 bytes, which
results in a rate increase of 241 ∗ 2000 = 0.482 MB/s for 2000
HTTP redirects.

7. CONCLUSION
We have described the design, implementation, and evaluation of
DotSlash in this paper. As a rescue system, DotSlash complements
existing web server infrastructure, such as CDNs, to handle web
hotspots effectively. It is scalable, cost-effective, easy to use, self-
configuring, and transparent to clients. Through our preliminary
experimental results, we have demonstrated the advantages of us-
ing DotSlash, where a web server achieved an order of magnitude
improvement for the request rate its supported and the data rate
delivered to clients, even if only HTTP redirect is used.

We plan to perform trace-driven experiments on DotSlash by us-
ing log files from web hotspot events, and incorporate DNS round
robin in the performance evaluation. Also, we plan to investigate
load migration for dynamic content, which will extend the reach
of DotSlash to more web sites. Our prototype implementation of
DotSlash will be released as open source software.

8. REFERENCES
[1] Tarek F. Abdelzaher and Nina Bhatti. Web server QoS management

by adaptive content delivery. In International Workshop on Quality of

13

Service (IWQoS), London, England, June 1999.

[2] Stephen Adler. The slashdot effect: An analysis of three Internet
publications.
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html.

[3] Akamai homepage. http://www.akamai.com/.

[4] Apache. HTTP server project. http://httpd.apache.org/.

[5] Mohit Aron, Darren Sanders, Peter Druschel, and Willy Zwaenepoel.
Scalable context-aware request distribution in cluster-based network
servers. In Annual Usenix Technical Conference, San Diego,
California, June 2000.

[6] A. Barbir, Brad Cain, Raj Nair, and Oliver Spatscheck. Known
content network (CN) request-routing mechanisms. RFC 3568,
Internet Engineering Task Force, July 2003.

[7] BitTorrent homepage. http://bitconjurer.org/BitTorrent/.

[8] V. Cardellini, M. Colajanni, and P.S. Yu. Geographic load balancing
for scalable distributed web systems. In International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), San Francisco, California,
August 2000.

[9] Valeria Cardellini, Emiliano Casalicchio, Michele Colajanni, and
Philip S. Yu. The state of the art in locally distributed web-server
systems. ACM Computing Surveys, 34(2):263–311, June 2002.

[10] E. Coffman, P. Jelenkovic, J. Nieh, and D. Rubenstein. The Columbia
hotspot rescue service: A research plan. Technical Report
EE2002-05-131, Department of Electrical Engineering, Columbia
University, May 2002.

[11] Ethereal homepage. http://www.ethereal.com.

[12] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, and T. Berners-Lee.
Hypertext transfer protocol – HTTP/1.1. RFC 2068, Internet
Engineering Task Force, January 1997.

[13] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid:
Enabling scalable virtual organizations. International J.
Supercomputer Applications, 15(3), 2001.

[14] E. Guttman. Attribute list extension for the service location protocol.
RFC 3059, Internet Engineering Task Force, February 2001.

[15] E. Guttman, C. E. Perkins, J. Veizades, and M. Day. Service location
protocol, version 2. RFC 2608, Internet Engineering Task Force,
June 1999.

[16] Jaeyeon Jung, Balachander Krishnamurthy, and Michael Rabinovich.
Flash crowds and denial of service attacks: Characterization and
implications for CDNs and web sites. In International World Wide
Web Conference (WWW), Honolulu, Hawaii, May 2002.

[17] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel
Lewin, and Rina Panigraphy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world
wide web. In The 29th ACM Symposium on Theory of Computing
(STOC), El Paso, Texas, May 1997.

[18] Keith Kong and Dipak Ghosal. Mitigating server-side congestion in
the Internet through pseudoserving. IEEE/ACM Transactions on
Networking, 7(4):530–544, August 1999.

[19] W. LeFebvre. CNN.com: Facing a world crisis. Invited talk at
USENIX LISA’01, December 2001.

[20] Quanzhong Li and Bongki Moon. Distributed cooperative Apache
web server. In International World Wide Web Conference, Hong
Kong, May 2001.

[21] David Mosberger and Tai Jin. httperf—a tool for measuring web
server performance. In Workshop on Internet Server Performance
(WISP), Madison, Wisconsin, June 1998.

[22] Netcraft. Web server survey.
http://news.netcraft.com/archives/web server survey.html.

[23] Venkata N. Padmanabhan and Kunwadee Sripanidkulchai. The case
for cooperative networking. In International Workshop on
Peer-to-Peer Systems (IPTPS), Cambridge, Massachusetts, March
2002.

[24] PlanetLab homepage. http://www.planet-lab.org/.

[25] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network. In
SIGCOMM Symposium on Communications Architectures and
Protocols, San Deigo, California, August 2001.

[26] J. Rosenberg, Henning Schulzrinne, G. Camarillo, A. R. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP: session
initiation protocol. RFC 3261, Internet Engineering Task Force, June
2002.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany, November 2001.

[28] RRDtool homepage.
http://people.ee.ethz.ch/˜oetiker/webtools/rrdtool/.

[29] Stan Schwarz. Web servers, earthquakes, and the slashdot effect.
http://pasadena.wr.usgs.gov/office/stans/slashdot.html.

[30] Tyron Stading, Petros Maniatis, and Mary Baker. Peer-to-peer
caching schemes to address flash crowds. In International Workshop
on Peer-to-Peer Systems (IPTPS), Cambridge, Massachusetts, March
2002.

[31] Angelos Stavrou, Dan Rubenstein, and Sambit Sahu. A lightweight,
robust P2P system to handle flash crowds. In IEEE International
Conference on Network Protocols (ICNP), Paris, France, November
2002.

[32] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for
Internet applications. In SIGCOMM Symposium on Communications
Architectures and Protocols, San Deigo, California, August 2001.

[33] Universal description, discovery and integration (UDDI) homepage.
http://www.uddi.org/.

[34] Universal plug and play (UPnP) homepage. http://www.upnp.org.

[35] Athena Vakali and George Pallis. Content delivery networks: Status
and trends. IEEE Internet Computing, 7(6):68–74, December 2003.

[36] Paul Vixie, Sue Thomson, Y. Rekhter, and Jim Bound. Dynamic
updates in the domain name system (DNS UPDATE). RFC 2136,
Internet Engineering Task Force, April 1997.

[37] Jim Waldo. The Jini architecture for network-centric computing.
Communications ACM, 42(7):76–82, July 1999.

[38] Jia Wang. A survey of web caching schemes for the Internet. ACM
Computer Communication Review (CCR), 29(5), October 1999.

[39] Limin Wang, Vivek Pai, and Larry Peterson. The effectiveness of
request redirection on CDN robustness. In Symposium on Operating
Systems Design and Implementation (OSDI), Boston, Massachusetts,
December 2002.

[40] Matt Welsh and David Culler. Adaptive overload control for busy
Internet servers. In USENIX Conference on Internet Technologies
and Systems (USITS), Seattle, Washington, March 2003.

[41] Ben Y. Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing.
Technical Report UCB/CSD-01-1141, University of California at
Berkeley, April 2001.

[42] W. Zhao, H. Schulzrinne, and E. Guttman. Mesh-enhanced service
location protocol (mSLP). RFC 3528, Internet Engineering Task
Force, April 2003.

[43] W. Zhao, Henning Schulzrinne, E. Guttman, C. Bisdikian, and
W. Jerome. Select and sort extensions for the service location
protocol (SLP). RFC 3421, Internet Engineering Task Force,
November 2002.

[44] Weibin Zhao and Henning Schulzrinne. Selective anti-entropy. In
ACM Symposium on Principles of Distributed Computing, Monterey,
California, July 2002.

14

