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ABSTRACT
The increasing popularity of distance learning and online
courses has highlighted the lack of collaborative tools for stu-
dent groups. In addition, the introduction of lecture videos
into the online curriculum has drawn attention to the dis-
parity in the network resources used by the students. We
present an architecture and adaptation model called AI2TV
(Adaptive Internet Interactive Team Video), a system that
allows geographically dispersed participants, possibly some
or all disadvantaged in network resources, to collaboratively
view a video in synchrony. AI2TV upholds the invariant
that each participant will view semantically equivalent con-
tent at all times. Video player actions, like play, pause and
stop, can be initiated by any of the participants and the
results of those actions are seen by all the members. These
features allow group members to review a lecture video in
tandem to facilitate the learning process. We employ an
autonomic (feedback loop) controller that monitors clients’
video status and adjusts the quality of the video according
to the resources of each client. We show in experimental
trials that our system can successfully synchronize video for
distributed clients while, at the same time, optimizing the
video quality given actual (fluctuating) bandwidth by adap-
tively adjusting the quality level for each participant.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Client/server, Distributed
applications; D.2.8 [Software Engineering]: Metrics –
performance measures; H.5.1 [Information Interfaces and

Presentation]: Multimedia Information Systems; H.5.3 [
Group and Organization Interfaces]: Computer-
supported cooperative work, Synchronous interaction; K.3.1
[Computer Uses In Education]: Collaborative learning,
Distance learning
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1. INTRODUCTION
Distance learning programs such as the Columbia Video

Network and the Stanford Center for Professional Develop-
ment have evolved from fedexing lecture video tapes to their
off-campus students to instead streaming the videos over the
Internet. The lectures might be delivered “live”, but are fre-
quently post-processed and packaged for students to watch
(and re-watch) at their convenience. This introduces the
possibility of forming “study groups” among off-campus stu-
dents who view the lecture videos together, and pause the
video for discussion when desired, thus approximating the
pedagogically valuable discussions of on-campus students.
Although the instructor is probably not available for these
discussions, this may be an advantage, since on-campus stu-
dents are rarely afforded the opportunity to pause, rewind
and fast-forward their instructors’ lectures.

However, collaborative video viewing by multiple geograph-
ically dispersed users is not yet supported by conventional
Internet-video technology. It is particularly challenging to
support WISIWYS (what I see is what you see) when some
of the users are relatively disadvantaged with respect to
bandwidth (e.g., dial-up modems) and local computer re-
sources (e.g., archaic graphics cards, small disks). We have
adopted technology (developed by others, Liu and Kender
[33]) for “semantically compressing” standard MPEG videos
into sequences of still JPEG images. This technology auto-
matically selects the most semantically meaningful frames
to show for each time epoch, and can generate different se-
quences of JPEG images for a range of different compression
(bandwidth) levels. This approach works very well for typ-
ical lecture videos, where it is important, for instance, to
see what the instructor has written on the blackboard after
he/she stands aside, but probably not so important to see
the instructor actually doing the writing, when his/her hand
and body may partially cover the blackboard.

The remaining technical challenge is synchronizing the
downloading and display of the image sequences among each
of the distributed user clients, including support for shared
video player actions such as pause. Further, if student groups

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


do indeed sometimes pause the videos, or rewind to a point
already available in local buffers (caches), it is desirable
to take advantage of the then-idle network connection to
prefetch future images at a higher quality level.

We have developed an approach to achieving this, us-
ing three mechanisms working in tandem. First, the soft-
ware clocks of the video clients are synchronized using NTP
[36]. This time is used for reference within the image se-
quences, where each image is associated with its start and
end times relative to the beginning of the sequence. Sec-
ond, the video clients communicate with each other over a
distributed publish-subscribe event bus, which propagates
video actions taken by one user in the group to all the other
users in the group. Thus any user can select a video action,
not just a “leader”.

Finally, the main innovation of this research concerns op-
timizing video quality in this context: A decentralized feed-
back control loop dynamically adjusts each video client’s
choice of both the next image to display and also the next
image to retrieve from the semantic compression levels avail-
able. The controller relies on sensors embedded in each
client to periodically check what image is currently display-
ing, whether this image is “correct” for the current NTP
time compared to what other clients are viewing, which im-
ages have already been buffered (cached) at that client, and
what is the actual bandwidth recently perceived at that
client. Actuators are also inserted into the video clients,
to modify local configuration parameters on controller com-
mand. The controller utilizes detailed information about
the image sequences available at the video server, including
image start and stop times (both the individual images and
their start and stop times tend to be different at different
compression levels), but unlike local client data, video server
data is unlikely to change while the video is showing. A sin-
gle controller is used for all clients in the same user group, so
it can detect “skew” across multiple clients, and may reside
on the video server or on another host on the Internet.

In the next section, we further motivate the collaborative
video viewing problem, provide background on the seman-
tically compressed video repository, and explain the tech-
nical difficulties of optimizing quality while synchronizing
such semantically compressed videos. The following section
presents our architecture and dynamic adaptation model,
and its implementation in AI2TV (Adaptive Interactive In-
ternet Team Video). In the evaluation section, we describe
the criteria used to evaluate the effectiveness of our ap-
proach, and show empirical results obtained when applied to
real lecture videos distributed for a recent Columbia Video
Network course. We compare to related work, and then
summarize our contributions.

2. MOTIVATION AND BACKGROUND
Correspondence courses have been available to working

adult and/or geographically remote learners for over a cen-
tury, e.g., the American School in Illinois has offered high
school courses since 1897 [6], and the University of Wyoming
began offering extension courses in 1892, launching a full-
fledged college distance learning program in 1906 [35]. Cor-
respondence courses have traditionally been designed for in-
dividual students with a self-motivated learning style, study-
ing primarily from text materials.

An NSF Report [7] discusses how technology, from ra-
dio to television, to audio and video cassettes, to audio and

video conferencing, has affected distance education. These
technologies have enabled educational institutions to offer
certification and degree tracks using live or pre-taped au-
dio and/or video of regular on-campus classroom lectures.
The report states that the recent use of Internet technolo-
gies, especially the Web, has “allowed both synchronous and
asynchronous communication among students and between
faculty and students” and has “stimulated renewed interest
in distance education”. It also mentions that “stimulating
interaction among students” can help reduce dropout rates,
which it says may be higher in distance education than in
traditional courses. Finally, it cites some studies that “sug-
gest the Web is superior to earlier distance education tech-
nologies because it allows teachers to build collaborative and
team-oriented communities rather than either the passive
classes of the conventional academy or the individual study
of traditional correspondence courses”.

Today’s equivalent of correspondence courses are often of-
fered online through a Web portal interface, with some for-
profit schools like University of Phoenix [3] and Capella Uni-
versity [1] primarily online. Tools such as instant messaging,
application and desktop sharing [4, 5], and co-browsing [11,
30, 41] facilitate the communicative aspects of synchronous
collaboration but are not designed specifically for educa-
tional purposes. Support for synchronous collaboration re-
mains a major concern in courses where group work is en-
couraged [46], yet there are few educational tools that al-
low synchronous collaboration across a group of online stu-
dents [9]. However, it seems that Web-based video streaming
should enable synchronous collaboration “situated” by col-
laborative lecture video viewing, approximating the experi-
ence of on-campus students physically attending the lecture
and class discussion.

Our AI2TV project aims to contribute to the area of
synchronous collaboration support for distance education,
specifically in the context of collaborative video viewing over
the Internet. Our approach is directed at users with dial-up
level bandwidths, who still constitute a significant portion
of the Internet user community [37], to allow them to col-
laborate with other users that enjoy broadband or higher
bandwidth resources.

Viewing video on the Internet usually requires relatively
high bandwidth resources, and low-bandwidth or lossy net-
work connections can lead to lost video content. This is
particularly a problem for group review of lecture videos,
if different members of the group miss different portions of
the video or fall behind to different degrees due to extensive
buffering. Furthermore, disadvantages in network and com-
puting resources may make it difficult if not impossible –
with current Internet video technology – for some students
to participate in collaborative lecture video viewing at all.

Technically, collaborative video sharing poses a twofold
problem: on the one hand, it is mandatory to keep all users
synchronized with respect to the content they are supposed
to see at any moment during play time; on the other hand,
it is important to provide each individual user with a level of
quality that is optimized with respect to the user’s available
resources, which may vary during the course of the video.

One solution to the problem of balancing the group syn-
chronization requirement with the optimization of individual
viewing experiences is to use videos with cumulative layering
[34], also known as scalable coding [28]. In this approach,
the client video player selects a quality level appropriate for
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Figure 1: Semantic Video Scenario

that client’s resources from a hierarchy of several different
encodings for that video. Thus a client could receive an ap-
propriate quality of video content while staying in sync with
the other members of the group.

We use semantic compression to produce a video with
cumulative layering. A semantic compression algorithm de-
veloped by Liu and Kender [33] reduces a video to a set of
semantically significant key frames. That tool operates on
conventional MPEG format videos and outputs sequences
of JPEG frames, some of which are displayed in figure 1.
The semantic compression algorithm profiles video frames
within a sliding time window and selects key frames that
have the most semantic information with respect to that
window. By increasing the size of the window, a key frame
will represent a larger time slice, which means that a larger
window size will produce less key frames as compared to a
smaller window size setting.

A conceptual diagram of a layered video produced from
this semantic compression is shown in figure 1. Note that
the semantic compression algorithm produces an effectively
random distribution of key frames, hence the video produced
by the package plays back at a variable frame rate. The
variability in the frame rate is most significant when there
are pockets of relatively high frequency semantic change,
which result in sections in the video that demand a higher
frame rate. The variable frame rate video adds substantial
complexity to the bandwidth demands of the client.

In figure 1, the bottom-left in-set shows the juxtaposition
of individual frames from two different quality levels. Each
frame has a representative time interval [start:end]. For
the higher level, Frame 1a represents the interval from 1:00
to 1:03, and Frame 1b represents the interval from 1:04 to
1:10. For the lower level, Frame 2 represents the entire in-
terval from 1:00 to 1:10. In this diagram, Frame 2 is seman-
tically equivalent to Frame 1a and 1b together. However, in
real JPEG frame sequences produced from the same MPEG
video for different quality levels, the start and end times of
frame sets rarely match up as ideally as in our example.

Through the use of the Liu/Kender video compression
algorithm, we can potentially provide semantically equiva-
lent content to a group of user clients with diverse resources
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Figure 2: AI2TV Architecture

by adjusting the compression level assigned to each client
while the users are watching the video. Thus for our pur-
poses, synchronization of collaborative video boils down to
showing semantically equivalent frames.

To adjust the clients in response to the changing environ-
ment, we use an “autonomic” controller to maintain the syn-
chronization of the group of video clients while simultane-
ously fine tuning the video quality for each client. The term
autonomic is borrowed from IBM to mean a self-managing
system that uses a (software) feedback control loop [23].
Their terminology was invented for the self-management of
data center operations, whereas our application applies to
the novel domain of multi-user video synchronization.

Our autonomic controller remains conceptually separate
from the controlled video system, employing our decentral-
ized workflow engine, named Workflakes [42], to achieve the
control capabilities. Said workflow coordinates the behav-
ior of software entities, as opposed to conventional human-
oriented workflow systems; the use of workflow technology
for the specification and enactment of the processes coordi-
nating software entities was previously suggested by Wise at
al. [27]. Workflakes has previously been used in a variety of
more conventional “autonomic computing” domains, where
it orchestrates the work of software actuators to achieve the
fully automated dynamic adaptation of distributed appli-
cations [43, 25, 26]. In the context of AI2TV, Workflakes
monitors the video clients and consequently coordinates the
dynamic adjustment of the compression (quality) level cur-
rently assigned to each client.

3. ARCHITECTURE AND ADAPTATION
MODEL

3.1 System Architecture
AI2TV involves several major components: a video server,

video clients, an autonomic controller, and a common com-
munications infrastructure, as shown in figure 2.

The video server provides the educational video content to
the clients for viewing. Each lecture video is stored in the
form of a hierarchy of versions, produced by running the
semantic compression tool multiple times with settings for



different compression levels. Each run produces a sequence
of JPEG frames with a corresponding frame index file. The
task of the video server is simply to provide remote download
access to the collection of index files and frames over HTTP.

The task of each video client is to acquire video frames,
display them at the correct times, and provide a set of ba-
sic video functions. Taking a functional design perspective,
the client is composed of four major modules: a time con-
troller, video display, video buffer that feeds the display, and
a manager for fetching frames into the buffer.

The time controller’s task is to ensure that a common
video clock is maintained across clients. It relies on NTP to
synchronize the system’s software clocks, therefore ensuring
a common time base from which each client can reference
the video indices. Using this foundation, the task of each
client is simplified to displaying the client’s needed frame at
the correct time. Since all the clients refer to the same time
base, then all the clients are showing semantically equivalent
frames from the same or different quality levels.

The video display renders the JPEG frames at the correct
time into a window and provides a user interface for play,
pause, goto and stop. When any participant initiates such
an action, all other group members receive the same com-
mand, thus all the video actions are synchronized. Video ac-
tions are time stamped so that clients can respond to those
commands in reference to the common time base. The video
display knows which frame to display by using the current
video time and display quality level to index into the frame
index for the representative frame. Before trying to render
the frame, it asks the video buffer manager if the needed
frame is available. The video display also includes a con-
trol hook that enables external entities, like the autonomic
controller, to adjust the current display quality level.

The video manager constitutes a downloading daemon
that continuously downloads frames at a certain level into
the video buffer. It keeps a hash of the available frames and
a count of the current reserve frames (frames buffered) for
each quality level. The buffer manager also includes a con-
trol hook that enables external entities to adjust the current
downloading quality level.

The purpose of the autonomic controller is to ensure that,
given the synchronization constraint, each client plays at its
highest attainable quality level. The controller is itself a
distributed system, whose design derives from a conceptual
reference architecture for autonomic computing platforms
proposed by Kaiser et al. [24], which is shown in figure 3.1.
The architecture provides an end-to-end closed control loop,
in which sensors attached to a generic (possibly legacy) tar-
get system continuously collect and send streams of data to
gauges. The gauges analyze the incoming data streams and
recognize adverse conditions that need adaptation, relaying
that information to controllers. The controllers coordinate
the expression and orchestration of the workflow needed to
carry out the adaptation. At the end of the loop, actuators
attached to the target system effect the needed adjustments
under the supervision of the controller.

In the AI2TV case, sensors at each client monitor for cur-
rently displayed frame, its quality level, the quality level
currently being fetched by the manager, the time range cov-
ered by buffer reserve frames, and the current bandwidth.
Gauges are embedded together with the controller for ex-
pediency in design and to minimize communication latency.
They receive the sensor reports from individual clients, col-

Figure 3: Conceptual Reference Architecture

lect them in buckets, similar to the approach in [20], and
pass the bucket data structure to the controller’s coordina-
tion engine. A set of helper functions tailored specifically for
this application operate on this data structure and produce
triggers for the coordinator. When a trigger is raised, the
coordination engine enacts an adaptation scheme, basically
a workflow plan, which is executed on the end hosts by tak-
ing advantage of the hooks provided to the actuators by the
clients.

Communication among the video clients, as well as be-
tween the sensors and actuators at the clients and the au-
tonomic controller, is provided by a publish-subscribe event
bus. There are three kinds of events: video player actions,
sensor reports, and adaptation directives (see figure 2).

3.2 Adaptation Model
The adaptation scheme consists of two levels: a higher

level data flow, and a lower level adjustment heuristic. The
former directs the flow of data through a logical sequence to
provide a formal decision process, while the latter provides
the criteria as to when to make certain adjustments.

The higher level logic is shown in figure 4. The diagram
shows the task decomposition hierarchy according to which
the adaptation workflow unfolds. Note that the evaluation
of clients’ state with respect to the group (EvaluateClient)
and the issuing of adaptation directives (AdaptClient) is
carried out as a set of parallel steps. Also note that the
multiplicity of those parallel steps is dynamically determined
via the number of entries in the clients variable, which
maps to a collection of AI2TV clients.

The adaptation scheme at the lower level falls into two
categories: directives that adjust the client in response to
relatively low bandwidth situations, and those that take ad-
vantage of relatively high bandwidth situations.

In the situation where a client has relatively low band-
width, below its baseline bandwidth level, the client may
not be able download the next frame at the current quality
level by the time it needs to begin displaying that frame.
Then both the client and buffer quality levels are adjusted
downwards one level. If the client is already at the lowest
level (among those available from the video server), the con-
troller will calculate the next possible frame that most likely
can be successfully retrieved before its own start time while
remaining synchronized with the rest of the group. The
client will then be directed to jump ahead to that frame.

To take advantage of relatively high bandwidth situations,
the buffer manager will start to accumulate a reserve buffer.



Figure 4: AI2TV Workflow diagram

Once the buffer reaches a threshold value (e.g., 10 buffered
frames), the controller will direct the manager to start fetch-
ing frames at a higher quality level. Once sufficient re-
serve is accumulated also at that higher level, the client
is then ordered to display frames at that quality level. If
the bandwidth drops before the buffer manager can accu-
mulate enough frames in the higher-level reserve, the buffer
manager is dropped back down one quality level.

3.3 Implementation
Our system is implemented in Java. The video client uses

javax.swing to render JPEG images. The controller, Work-
flakes, is built on top of the open-source Cougaar multi-
agent system [2], which it extends to allow the orchestration
of distributed software agents for autonomic purposes (ex-
plained further in [43]). We used the Little-JIL graphical
workflow specification language [13] for defining adaptation
plans. We chose a freely available, content-based, publish-
subscribe event system, Siena [12], as our communication
bus.

4. EVALUATION
Our assessment considers the ability of AI2TV to synchro-

nize the clients and to optimally adjust their video quality.
Our results were computed from client configurations con-
sisting of 1, 2, 3, and 5 clients together running a semanti-
cally summarized video for 5 minutes, with sensors probing
clients state every 5 seconds. The compression hierarchy we
employed has 5 different quality levels.

We define a baseline client against which the performance
of our approach can be compared. The baseline client’s qual-
ity level is set at the beginning of the video and not changed
thereafter, using a value we identify as the average band-
width per level. This value is computed by summing the to-
tal size in bytes of all frames produced at a certain compres-
sion level and dividing by the total video time. This value
provides the bandwidth needed, on average, for the buffer
manager to download the next frame on time. We provide
the baseline client with the corresponding bandwidth for
its chosen level by using a bandwidth throttling tool ([39])

to adjust the bandwidth between that client and the video
server. Note that using the average as the baseline does not
account for the inherent variability in video frame rate and
likely fluctuations in real-world network bandwidth, where
adaptive control can make a difference.

Each controller-assisted client is assigned an initial level
in the compression hierarchy and the same bandwidth as
the baseline client for that hierarchy level. For each exper-
imental trial, we record any differences resulting from the
controller’s adaptation of the clients’ behavior versus the
behavior of the baseline client, with respect to synchrony
and frame rate.

4.1 Evaluating Synchronization
The primary goal of our system is to provide synchronous

viewing of lecture videos to small groups of geographically
dispersed students, some possibly with relatively meager re-
sources. Our initial experiments evaluate the level of syn-
chronization for several small groups of clients, where each
group is involved in a video session. Each client is preset
at a designated level of compression and given the average
baseline bandwidth required for that compression level. To
measure the effectiveness of the synchronization, we probe
the video clients at periodic time intervals and log the frame
currently being displayed. This procedure effectively takes
a series of system snapshots, which we can evaluate for syn-
chronization correctness. We check whether the frame being
displayed at a certain time corresponds to one of the valid
frames for that time, on any quality level. We allow an
arbitrary level here because the semantic compression algo-
rithm ensures that all frames designated for a given time will
contain the semantically equivalent information. We obtain
a score by summing the number of clients not showing an
acceptable frame and normalizing over the total number of
clients. A score of 0 indicates a fully synchronized system.

These experiments showed a total score of 0 for all tri-
als, meaning that all of the clients were viewing appropri-
ate frames when probed. Notwithstanding the variations in
the frame rate and/or occasional fluctuations in the actual
bandwidth of the clients, no frames were missed. This re-
sult demonstrates that the chosen baseline combinations of
compression levels and throttled bandwidths do not push
the clients beyond their bandwidth resource capacity.

Then we ran another set of experiments, in which the
clients were assigned more casually selected levels of start-
ing bandwidths. Said casual selection is representative of
real-world situations, like listening to Internet radio, where
users must choose a desired frame rate to receive. The user
may have been informed that she is allocated a certain band-
width level from her Internet service provider, but may ac-
tually be receiving a significantly lower rate. The clients
were assigned bandwidths one level lower than the preset
quality level. We ran this set of experiments first without
the aid of the autonomic controller and then with it. In the
former case, clients with insufficient bandwidth were stuck
at the compression level originally selected, and thus missed
an average of 63% of the needed frames. In the latter case,
the same clients only missed 35% of the needed frames. Al-
though both situations show a significant amount of missed
frames, these results provide evidence of the benefits of the
adaptive scheme implemented by the autonomic controller.



4.2 Evaluating Quality of Service
The most interesting technical innovation of the AI2TV

system is our autonomic controller approach to optimizing
video quality. Here we analogously use a scoring system rela-
tive to the baseline client’s quality level. We give a weighted
score for each level above or below the baseline quality level.
The weighted score is calculated as the ratio of the frame
rate of the two levels. For example, if a client is able to play
at one level higher then the baseline, and the baseline plays
at an average n frames per second (fps) while the level higher
plays at 2*n fps, the score for playing at the higher level is
2. The weighted score is calculated between the computed
average frame rates of the chosen quality levels. Theoreti-
cally, the baseline client should receive a score of 1. Note
that we formulated this scoring system because other scoring
systems (e.g., [8, 16, 45]) measure unrelated factors such as
the synchronization between different streams (audio and
video), image resolution, or human perceived quality, and
are not constrained by the group synchronization require-
ment. This restriction mandates a scoring system sensitive
to the relative differences between quality hierarchies.

Our experiments show that baseline clients scored a group
score of 1 (as expected) while the controller-assisted clients
scored a group score of 1.25. The one-tailed t-score of this
difference is 3.01, which is significant for an α value of .005
(N=17). This result demonstrates that using the autonomic
controller enabled our system to achieve a significant posi-
tive difference in received frame rate, or quality of services
(QoS). Note that the t-score does not measure the degree of
the positive difference: To demonstrate the degree of bene-
fit, we measure the proportion of additional frames that each
client is able to enjoy. We found that, overall, those clients
received 20.4% (± 9.7, N=17) more frames than clients op-
erating at a baseline rate.

Running the client close to or at a level higher than the
average bandwidth needed puts the client at risk for missing
more frames, because the autonomic controller is trying to
push the client to a better but more resource-demanding
level. To measure whether the controller-assisted client is
adversely exposed to a higher risk of missing frames, we also
count the number of missed frames during a video session.
The scoring is a simple count of the missed frames. Note
that this scoring is kept separate from the measure of the
relative quality to discriminate between levels of concern,
although they both indicate QoS characteristics.

There was only one instance in which a controller-assisted
client missed two consecutive frames. Upon closer inspec-
tion, the time region during this event showed that the se-
mantically compressed video demanded a higher frame rate
at the same time that the network bandwidth available to
that client was relatively low. The client was able to consis-
tently maintain a high video quality level after this epoch.

Our AI2TV system can achieve collaborative video view-
ing using relatively naive NTP-based synchronization, with-
out the autonomic controller. But in typical real-world sce-
narios, network bandwidth varies over time, plus the vari-
able frame rate of semantically compressed video does not
permit the client to make an informed decision about the
most appropriate quality level for the next frames without
adaptive technology akin to our controller. Our experimen-
tal data shows that the autonomic controller makes a signif-
icant positive difference in achieving higher QoS.

5. RELATED WORK
Stream synchronization is a widely studied topic in mul-

timedia research. Classifications of synchronization schemes
consider whether the scheme is local or distributed (i.e., one
or multiple sinks), whether they take action reactively or
proactively, and whether a global clock is required. Our
work does not address the problem of inter-media synchro-
nization of multiple modalities (i.e., video and audio), where
the concern is to ensure the correctly timed playback of re-
lated data originating from different streams. Our problem
is instead related to intra-stream synchronization, which is
concerned with ensuring the temporal ordering of data pack-
ets transmitted across a network from a single streaming
source to one or more delivery sinks.

Most intra-stream synchronization schemes are based on
data buffering at the sink(s) and on the introduction of a de-
lay before the play-out of buffered data packets (i.e., frames).
Those synchronization schemes can be rigid or adaptive [15].
In rigid schemes, such as [19], the play-out delay is chosen a

priori in such a way that it accounts for the maximum net-
work transfer delay that can likely occur across the sinks.
Rigid schemes work under a worst-case scenario assumption
and accept the introduction of delays that may be longer
than necessary, in order to maximize the synchronization
guarantees they can offer even in demanding situations.

Contrary to a rigid approach, adaptive schemes [38, 10,
18] recompute the delay parameter continuously while stream-
ing: they try to “guess” the minimum delay that can be in-
troduced, which still ensuring synchronization under actual
operating conditions. In order to enhance quality of service
in terms of minimized play-out delay, those schemes must ac-
cept some temporary synchronization inconsistencies and/or
some data loss, in case the computed delay results are at
times insufficient (due, e.g., to variations in network condi-
tions) and may need to be corrected on the fly.

Our approach to synchronization can be classified as a dis-
tributed adaptive scheme that employs a global clock and
operates in a proactive way. The most significant difference
compared to other approaches, such as the Adaptive Syn-
chronization Protocol [38], the work of Gonzalez and Adbel-
Wahab [21], or that of Liu and El Zarki[31] (which can all
be used equally for inter- and intra-stream applications), is
that our approach is not based on the idea of play-out delay.
Instead, we take advantage of layered semantic compression
coupled with buffering to “buy more time” for clients that
might not otherwise be able to remain in sync, by putting
them on a less demanding level of the compression hierarchy.

To ensure stream synchronization across a group of clients,
it is usually necessary to implement some form of trade-
off impacting the quality of service of some of the clients.
Many schemes trade off synchronization for longer delays,
while some other approaches, like the Concord local synchro-
nization algorithm [40], allow a choice among other qual-
ity parameters besides delay, such as packet loss rate. Our
approach sacrifices frame rates to achieve synchronization
when resources are low.

Liu et al. provide a comprehensive summary of the mech-
anisms used in video multicast for quality and fairness adap-
tation as well as network and coding requirements [32]. To
frame our work in that context, our current design and im-
plementation models a single-rate server adaptation scheme
to each of the clients because the video quality we provide is
tailored specifically to that client’s network resources. The



focus in our work is directed towards the client-side end-
user perceived quality and synchrony, so we did not utilize
the most efficient server model. The authors believe that it
would be trivial to substitute in a simulcast server adapta-
tion model [14, 29]. Our design also fits into the category
of layered adaptation. Such an adaptation model defines a
base quality level that users must achieve. Once users have
acquired that level, the algorithm attempts to incrementally
acquire more frames to present a higher quality video. In
the work presented here, the definition of quality translates
to a higher frame rate. Liu’s discussion of bandwidth fair-
ness, coding techniques and network transport perspectives
lie out of the scope of this paper.

With respect to the software architecture, our approach
most resembles the Lancaster Orchestration Service [10],
since it is based on a central controller that coordinates the
behavior of remote controlled units placed within the clients
via appropriate directives (i.e., the AI2TV video buffer and
manager). The Lancaster approach employs the adaptive
delay-based scheme described above, hence the playback of
video focuses on adapting to the lowest bandwidth client.
That approach would degrade the playback experience of the
other participants to accommodate the lowest bandwidth
client. Our approach seems preferable, since it enables each
client to receive video quality commensurate with its band-
width resources.

Cen et al. provide a distributed real-time MPEG player
that uses a software feedback loop between a single server
and a single client to adjust frame rates [44]. Their architec-
ture incorporates feedback logic within each video player and
does not support synchronization across a group of players,
while the work presented here explicitly supports the syn-
chronization of semantically equivalent video frames across
a small group of clients.

An earlier implementation of AI2TV is described in [22].
In that version, a collaborative virtual environment (CVE)
supported a variety of team interactions [17], with the op-
tional lecture video display embedded in the wall of a CVE
“room”. The same semantic compression capability was
used. Video synchronization data was piggybacked on top
of the UDP peer-to-peer communication used primarily for
CVE updates, such as tracking avatar movements in the
style of multi-player 3D gaming. The video synchronization
did not work very well, due to the heavy-weight CVE bur-
den on local resources. Video quality optimization was not
addressed. The new implementation of AI2TV presented
here can run alongside the CVE in a separate window.

6. CONCLUSION
We present an architecture and prototype system that

allows geographically dispersed student groups to collabo-
ratively view lecture videos in synchrony. AI2TV employs
an “autonomic” (feedback loop) controller to dynamically
adapt the video quality according to each client’s network
bandwidth. We rely on a semantic compression algorithm
to guarantee that the semantic composition of the simul-
taneously viewed video frames is equivalent for all clients,
some which may have very limited resources. Our system
distributes appropriate quality levels (different compression
levels) of the video to clients, which are automatically ad-
justed according to their current and fluctuating bandwidth
resources. We have demonstrated the advantages of this ap-
proach through experimental trials using bandwidth throt-

tling to show that our system can provide synchronization
of video together with optimized video quality.
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