
THE MELD PROGRAMMING LANGUAGE

USER MANUAL

Bill N. Schilit
Wen-Wey Hseush
Shyhtsun Felix Wu
Steven S. Popovich

Technical Report
CUCS-461-89

Columbia University
Department of Computer Science

New York, NY 10027

28 September 1989

Copyright © 1989 Bill Schilit, Wen-wey Hseush, Shyhtsun Felix Wu and Steven S. Popovich

Research in Programming Systems is supported by National Science Foundation grants
CCR-8858029 and CCR-8802741, by grants from AT&T, Citicorp, IBM, Siemens, Sun and
Xerox, by the Center for Advanced Technology and by the Center for Telecommunications
Research.

Schilit is supported in part by the Center for Advanced Technology. Hseush, Wu, and Popovich
are supported in part by the Center for Telecommunications Research.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MELD PROGRAMMING LANGUAGE 1

Notes to the Reader

The Structure of this Manual
This manual is divided into two parts, a tutorial introduction to the MELD programming
language, and a language reference manual. The index spans both parts. A bibliography of
MELD publications and technical reports is available in Appendix II. If you are interested in the
decisions leading to the current design you should refer to this literature; the intent of this
manual is to provide a working description of the current language and its implementation, and
not an exposition of the language issues. Chapter 9 describes the language features which are
not yet implemented.

A Note on Object Oriented Programming
The primary programming paradigm used in MELD is object oriented. We assume the reader is
familiar with the concept of object oriented programming, and if not, urge them to refer to the
Smalltalk-80 [Goldberg 85] and C++ books [Stroustrup 86], or the articles on Flavors [Keene 85;
Moon 86] which are common examples of the paradigm.

A brief review of the terminology used in OOPLS (Object Oriented Programming Languages) is
in order. Object oriented programming is an approach to software development involving the
use of objects, a notion similar to abstract data types. Both are ways of encapsulating actions,
however objects usually refer to the notions of messages, class hierarchy, and inheritance as
well. An object has private procedures, called methods, private storage, called instance
variables, and a public interface to the procedures, sometimes called the protocol and in MELD

this is called the selector and parameters. Objects tie together procedures and data to form a
functionality that is accessible only through an interface.

When programming in an OOPL, you must create a description (called a class) for the object,
usually by specializing, i.e, adding "special case" code to a more general class. For example,
you would define class "Pinto" to be a specialization of "Car" with the difference that the gas
tank of a "Pinto" explodes on a rear end collisions of more than 45 M.P.H. You then declare
instantiations (instances) of the object, as you would declare variables in C. Of course, you can
also create instances during the execution of a method. Methods are invoked by sending
messages to objects instead of the normal notion of a subroutine call. Messages are employed
because the binding, that is, the decision of what code gets executed, occurs at runtime for many

1OOPLS . It is this runtime matching of message to method that gives OOPLS their power,
because if a message does not match any method selector (also called protocol), then the
message is forwarded to the parent class (superclass). In our example the message "turn right" is
understood by "Pinto" even though we never wrote the "turn" method because "turn" would be
defined by the superclass of "Pinto", namely "car." In this way, an object inherits the actions of
the more general superclass. Because of inheritance the programmer only needs to specify how

1MELD determines what code to run at compile time

MELD PROGRAMMING LANGUAGE 2

some desired action differs from the superclass action, thereby making software reuse a natural
part of the paradigm.

A Note on Dataflow Programming
Data flow programming is a paradigm useful for achieving a high degree of parallel execution.
The concept behind dataflow is simple: statements (instructions, subroutines, etc.) may be
executed as soon as their inputs become available. Dataflow can take advantage of architectural
parallelism since at any given time a number of statements may be available for execution.
Dataflow programming, however, is somewhat different from normal programming because the
approach is declarative, that is, you specify the statements to be executed, but not the order of
their execution.

MELD employs the dataflow paradigm, and MELD programmers may take full advantage of
dataflow programming at the statement level (or not, if they choose). MELD’s dataflow does not
presume a particular underlying machine architecture.

For further information on dataflow and dataflow programming languages see [Wadge 85; Broy
85; Sharp 85].

A Note on the Examples
The examples in this manual show all MELD reserved words in CAPITALS and all other
program components in Mixed case. This is merely a convention, case is not significant for
MELD reserved words. Case is, however, significant for variable and selector names. The output
examples in this manual show user typein in italics and the program output in bold.

The example programs are tested MELD programs, available in the
/proj/meld/man/examples directory. Those examples marked ‘‘Program Fragment’’ are
not complete programs.

MELD PROGRAMMING LANGUAGE 3

I Tutorial

MELD PROGRAMMING LANGUAGE 4

MELD PROGRAMMING LANGUAGE 5

1. A Tutorial Introduction
This chapter will give you a quick introduction to the MELD programming language. Our aim is
to show enough of the basic elements of MELD to write a few small programs.

1.1. Getting Started

How hard is it to write a "Hello, World!" program in MELD? Not very. Here is an example:

FEATURE World

INTERFACE:

IMPLEMENTATION:

OBJECT:
world : Main := Main.CREATE;

CLASS Main ::=

METHODS:

printf("Hello, World!!\n");

END CLASS Main
END FEATURE World

Figure 1-1: Hello, World! Program

First put this program into the file hello.m in your working directory or copy the file
2hello.m from the examples directory . The compiler is run from a shell script, meld, that is

stored in the /proj/meld/bin directory. You will either need to use the full
/proj/meld/bin/meld name when invoking the compiler, or you may prefer to add the
MELD bin directory to your shell PATH variable.

To compile (and then run) with input hello.m and executable output specified as hello, you
3would type:

$ meld -o hello hello.m
$ hello

The program would then output:

Hello, World!!

2Examples are in /proj/meld/man/examples

3We use italics to denote user typein and bold to denote program output.

MELD PROGRAMMING LANGUAGE 6

From this example you can see that a MELD program begins with a FEATURE name, and
consists of an INTERFACE: and IMPLEMENTATION: part. A MELD FEATURE is a unit of
reusability, similar to an Ada package, that is, a collection of private storage and class types with
a well defined interface. The INTERFACE: portion of a MELD program is also a mechanism for
reusability. It is employed when a number of files (actually FEATURE) are being used together,
and, as you might expect, it defines the interface of a feature. See section 4.5.

The IMPLEMENTATION: part of a MELD program contains the storage and code declarations.
You define and initialize global object variables in the OBJECT section, and specify the behavior
for each class of objects in the CLASS section.

4The basic syntax of MELD is illustrated in Figure 1-2 (the full grammar is presented in 8) . Note
that there are two types of object declarations. Declarations directly after the keyword OBJECT
denote global variables, and declarations inside the CLASS part define variables local to the
object, i.e., instance variables.

In this example, the global variable Main is initialized to a new instance of the World class
using CREATE. This is a very useful sort of initialization, and most often is the one you want to
use. If no initialization is done on a variable, its value will start out as the null object, nil, and
messages sent to it will not do what you expect; they will not do anything. This common bug
can be avoided by making sure that every variable is initialized in its declaration.

The executable code in a MELD program is contained in the METHODS part of a class definition.
In this case we have a special type of method called a constraint that can be identified by the fact
that it has no selector. Selectors are like templates for matching incoming messages.

A constraint statement has no selector because it executes when an object is created or when an
object’s variables change, and not directly upon receipt of a message. Constraints are further
discussed later on in this chapter, and in chapter 6. It suffices to say that the constraint statement
in our example is executed when the object World is created.

Let’s continue with another program that does some input as well as output, see 1.1.

In this example we have a method with a string selector, "Hello". The basic syntax for a
method is:

selector --> statement

The statement, as you’ll see later, can be a block of statements, and the selector can be a string or
symbolic form. A string selector method has simple semantics: when a string message sent to an
object matches a string selector, the statement will be executed. The string selector may contain
a regular expression or scanf() like arguments, so matching and extracting arguments is very

4The grammar here is simplified for readability, you can actually have objects and classes appear in any order.
See the full grammar for details.

MELD PROGRAMMING LANGUAGE 7

program ::= FEATURE identifier-list
*INTERFACE: externals

IMPLEMENTATION:
OBJECT

*object-def
CLASS LABEL :=

*object-def
*METHODS method

END CLASS identifier-listopt
END FEATURE identifier-listopt

Figure 1-2: Basic Syntax in MELD

FEATURE Animal World

INTERFACE:

IMPLEMENTATION:

OBJECT:
Polly : Parrot := Parrot.CREATE;

CLASS Parrot ::=

METHODS:

"Hello"--> printf("How are you?\n");

END CLASS Parrot
END FEATURE Animal World

Figure 1-3: Parrot Program

flexible. For example:
"Deposit %d"(cash : INTEGER) -->
printf("Deposited %d\n",cash);

will extract the integer 10 from the string message "Deposit 10." For further information on
string selectors see section 4.4.2.

To run this program, you should type:

$ meld -o hello-2 hello-2.m
$ hello-2

Hello
How are you?

This program acts a little like a parrot. Whenever it hears "Hello," it responds with "How are
you?"

MELD PROGRAMMING LANGUAGE 8

The program operates as follows. The global object Polly is created during initialization.
Since no other action is possible the runtime system waits for user input. When the user types a
string followed by a return, the runtime system matches the input line against all string selectors
in all objects. The runtime finds a match with a selector in object Polly and sends it the line of
input. If other string selectors matched, then they too would get messages.

1.2. Variables and Types

You can define variables with basic types, constructor types or user defined types (that is,
classes). Basic types include integer, boolean, char, string, real, and double. Types are
described in Chapter 2. Here, we only give a simple example of how to define instance
variables, using the basic type INTEGER.

FEATURE Money World

INTERFACE:

IMPLEMENTATION:

OBJECT:
Ruckhouser : Person := Person.CREATE;

CLASS Person ::=
Salary : INTEGER := 40000;

METHODS:

"you get a raise"-->
Salary := Salary + 4000;

"what is your salary"-->
printf("My current salary is %d\n",Salary);

END CLASS Person
END FEATURE World

Figure 1-4: Money World Program

The "what is your salary" method in this example, like the earlier "Hello" method, is a string
selector, and is executed whenever the string "what is your salary" is typed at the terminal.

1.3. Action Equations and Data Dependency

One significant difference between MELD and other object-oriented languages is the notion of
action equations. An action equation is a statement that is executed by data dependency rather
than sequentially. Normally, statements within a begin end block are executed one after another.
The execution of action equations, however, is determined by when their inputs (variables on the
right hand sides) become available.

MELD PROGRAMMING LANGUAGE 9

A parallel block in MELD is enclosed by curly braces:

action-block ::= { statements }

METHODS:

M1() --> { A := B + C;
B := 5;
C := 7; }

+---------+

/---> | B := 5 | --\

+----------+/ +---------+ \-> +-------------+

----> | Method | | A := B + C |

+----------+\ +---------+ /-> +-------------+

\---> | C := 7 | --/

+---------+

Figure 1-5: Data Dependency Relations Among Action Equations in MELD

Consider the method in figure 1-5. In this example, there are three action equations, "A := B
+ C", "B := 5", and "C := 7". It is clear that the first statement relies on variables B and C.
The second two statements are assignments to the constants 5 and 7 so they have no reliance on
values of variables.

The data flow dependencies force "A := B + C" to be executed after both "B := 5" and "C
:= 7", but do not specify which of those two must be executed first. On a multiprocessor
system, they might conceivably be executed in parallel, although is this particular example there
is little merit. If, on the other hand, B and C were each being set to the return value of some
complicated function (with no side effects), executing them in parallel might be very worthwhile.

Let’s consider the following example program, which implements the part of a simple "savings
account" that handles deposits. We will add to this example at various points in this manual.

In this example, if you were to change the order of the two action equations in the "Deposit"
method, you would find that, due to data dependency:

balance := balance + cash;
printf("the balance is %d",balance);

is equivalent to
printf("the balance is %d",balance);
balance := balance + cash;

By examining Fig. 1-5, you can also find that:
A := B + C;
B := 5;
C := 7;

is equivalent to
B := 5;
A := B + C;
C := 7;

MELD PROGRAMMING LANGUAGE 10

FEATURE Bank

INTERFACE:

IMPLEMENTATION:

OBJECT:
CitiSaver : Savings_Account := Savings_Account.CREATE;

CLASS Savings_Account ::=
balance : INTEGER := 0;

METHODS:

"Deposit %d"(cash : INTEGER) --> {
balance := balance + cash;
printf("the balance is %d\n",balance);

}

END CLASS Saving_Account
END FEATURE Bank

Figure 1-6: Bank Program

and, in fact, all orderings of these three action equations are equivalent. Regardless of ordering,
A will be equal to 12 after these three action equations are executed.

1.4. Messages to Objects

Our examples so far have used string messages and string selectors in the methods. The runtime
system, as we saw, sends lines of user input to objects with matching string selectors.

Another form of selector is called the symbolic selector, which matches symbolic messages sent
to an object. The symbolic message and symbolic selector look very similar to a procedure call
and a procedure header in Pascal. Whereas string selectors are used for messages that interact
with the user, symbolic selectors are used for messages internal to the program.

Here is an example of a method using symbolic selectors. Note that selectors look like procedure
headers, and you must have a type for each selector argument:

MELD PROGRAMMING LANGUAGE 11

CLASS PositiveInteger ::=

METHODS:
Add(i,j : INTEGER) -->

return(i+j);

Sub(i,j : INTEGER) -->
if ((i-j) > 0) then
return(i-j);

else
return(0);

END CLASS PositiveInteger

You can invoke methods using a synchronous or asynchronous message. The synchronous
message looks like a normal C function call except it is preceded by a variable name and a dot.
The message is sent to the object represented by the variable.

For example, if you have an object balance of type PositiveInteger as defined in the
previous example, you can send synchronous messages using the syntax:

balance.Add(6,10);

The synchronous message is also called the MELD function call, since, along with SEND (see
below), it is the principal mechanism for calling other methods. Note also that MELD allows
calling external C functions using the normal C function call syntax.

MELD is a concurrent programming language. Two (or more) methods of any object may be
active at the same time. One way to achieve concurrency is to use the asynchronous form of the
SEND statement. With SEND execution continues immediately after sending the message, and in
effect, you create a new thread of control. You can use SEND with symbolic or string messages.

For example, you can use SEND to output on your terminal by sending a string message to the
system defined object stdout:

SEND "Hello, World!\n" to stdout;

Everything sent to stdout will be displayed on the standard output (usually your terminal).

Figure 1.4 is an example of a method that interacts with the user for input and then uses MELD

functions.

CitiSaver.Withdraw(cash) is a MELD function call that sends the message
Withdraw(cash) to object CitiSaver and then waits for the result sent back from
CitiSaver. Since the return value will be assigned to balance and the following statement
(2) depends on the value of balance (by the rules of data dependency), statement (2) will not
be executed until the function call returns and balance is assigned its new value.

Next, we show an example of using asynchronous sending to initiate another thread of control
(see figure 1.4).

MELD PROGRAMMING LANGUAGE 12

FEATURE Bank

INTERFACE:

IMPLEMENTATION:

OBJECT:
teller : Teller := Teller.CREATE;
CitiSaver : Savings_Account := Savings_Account.CREATE;

CLASS Teller ::=

METHODS:

"withdraw %d"(cash : INTEGER) --> {
balance : INTEGER;

balance := CitiSaver.Withdraw(cash); {* (1) *}
printf("the balance is %d\n",balance); {* (2) *}

}
END CLASS Teller

CLASS Savings_Account ::=
balance : INTEGER := 1000;

METHODS:

Withdraw(cash: INTEGER) --> {
balance := balance - cash;
RETURN(balance);

}

END CLASS Savings_Account
END FEATURE Bank

Figure 1-7: Interactive Bank Program

In figure 1.4, statement (1) sends the message Withdraw(cash) to object CitiSaver.
Statement (2) may then run concurrently with statements (3) and (4) and the output could be
either ordering of statements (2) and (4). Note that the teller does not know the new balance,
and in fact cannot tell when the withdrawal has been completed! This situation could be avoided
by having withdraw explicitly SEND a notification message back to its caller, but in most
cases where information must be returned to the caller, synchronous message passing (function
call) should be used, as in the previous example.

MELD PROGRAMMING LANGUAGE 13

FEATURE Bank

INTERFACE:

IMPLEMENTATION:

OBJECT:
teller : Teller := Teller.CREATE;
CitiSaver : Savings_Account := Savings_Account.CREATE;

CLASS Teller ::=

METHODS:

"withdraw %d"(cash : INTEGER)--> {
SEND Withdraw(cash) TO CitiSaver; {*(1)*}
printf("your transaction is being processed\n"); {*(2)*}

}
END CLASS TELLER

CLASS Savings_Account ::=
balance : INTEGER := 0;

METHODS:

Withdraw(cash : INTEGER) --> {
balance := balance - cash; {*(3)*}
printf("the balance is %d\n",balance); {*(4)*}

}
END CLASS Saving_Account

END FEATURE Bank

Figure 1-8: Asynchronous Bank Program

1.5. Constraints

We have already seen a simple example of a constraint statement (in figure 1.1). A constraint
statement differs from a method in that it has no selector. Once a constraint statement is defined
for an object it will be executed whenever the right hand side variables in the statement change,
and when the object is created.

Figure 1.5 shows an example of using a constraint statement in a class. We have a constraint
specifying the equivalent temperature in degrees Fahrenheit (F) for one given in degrees Celsius
(C). This constraint causes F to be set to a new value immediately following any change to C,
keeping the Fahrenheit temperature consistent with the Celsius temperature. It does not,
however, cause C to respond to changes in F.

In general, a constraint defining a relation between instance variables in a class will be executed
whenever a variable on the right-hand side changes, but not when a variable on the left-hand side

MELD PROGRAMMING LANGUAGE 14

FEATURE Weather World

INTERFACE:
IMPLEMENTATION:

OBJECT:
thermometer : FConverter := FConverter.CREATE;

CLASS FConverter ::=
F,C : REAL := 0;

METHODS:
F := 32 + C * 9.0/5.0; {* constraint *}

"set %f"(x : REAL) --> C := x;

"F"--> printf("F = %f\n",F);
END CLASS FConverter

END FEATURE Weather World

Figure 1-9: Weather Program

changes. A two way constraint may easily be specified by giving two constraints, one for each
direction. For example, the two constraints

F := 32 + C * 9.0/5.0; {* constraint *}
C := (F - 32) * 5.0/9.0; {* inverse constraint *}

together specify that whenever either the Fahrenheit or Celsius temperature changes, the other
one should be updated in a consistent manner.

Our next example (see figure 1.5) shows a useful debugging feature — how a constraint can be
used to display all changes to a variable as they happen. It shows a modification of our banking
example to display the balance every time it changes.

Constraints are declarative. In order to display the balance whenever and wherever changed, the
programmer need only declare one constraint. In the absence of any effective sort of debugger
for MELD, constraints are the only way available to trace instance variables when debugging.
Eventually, MELD will have a debugger (MD), but until then, remember this example.

1.6. Method Interleaving

MELD is a concurrent programming language; calls to two (or more) methods of an object may
be active simultaneously. Here, we show an example of what can happen when two methods are
activated concurrently.

MELD PROGRAMMING LANGUAGE 15

FEATURE Bank

INTERFACE:

IMPLEMENTATION:

OBJECT:
teller : Teller := Teller.CREATE;
SuperSaver : Savings_Account := Savings_Account.CREATE;

CLASS Teller ::=

METHODS:

"withdraw %d"(cash : INTEGER)--> {
SEND Withdraw(cash) TO SuperSaver; {*(1)*}
printf("your transaction is being processed\n"); {*(2)*}

}
END CLASS TELLER

CLASS Savings_Account ::=
balance : INTEGER := 0;

METHODS:

{* constraint *}
printf("the balance is %d\n",balance);

Withdraw(cash : INTEGER) --> {
balance := balance - cash; {*(3)*}
printf("the balance is %d\n",balance); {*(4)*}

}
END CLASS Saving_Account

END FEATURE Bank

Figure 1-10: Bank Program with Debug Constraint

MELD PROGRAMMING LANGUAGE 16

printf("a = %d",A); {* (1) *}
printf("b = %d",B); {* (2) *}
printf("c = %d",C); {* (3) *}
printf("d = %d",D); {* (4) *}

FOO (X : INTEGER)-->
{

A := X + 1; {* (5) *}
C := B + 1; {* (6) *}

}
BAR (X : INTEGER)-->
{

B := X + A; {* (7) *}
D := C + 1; {* (8) *}

}

If method FOO and method BAR are called at the same time, the statements in the methods will
interleave according to the rules of data dependency. In this example, there is only one valid
execution ordering, (5)->(1)->(7)->(2)->(6)->(3)->(8)->(4). This ordering occurs because data
dependencies force (5) to be executed before (7), (7) before (6), and (6) before (8), giving us a
partial execution path, before constraints are considered, of (5)->(7)->(6)->(8). Then, since
constraints are executed as soon as possible after their right-hand-side variables change, the
complete execution path will be as given above.

Race condition may occur because of the timing of message passing. For example, if the
message for FOO arrives earlier than the message for BAR then FOO might start executing and
the interleaving of the statements may cause adverse effects.

MELD PROGRAMMING LANGUAGE 17

2. Declarations, Variables, Literals and Types
MELD is a strongly typed language -- you must declare all of your variables and the compiler
will enforce certain rules in their use.

Some basic variable types are offered by MELD, and of course, using classes, MELD

programmers can create new types for themselves. In this chapter we talk about what types are
offered by MELD, how to declare them, and how to use them.

2.1. Declarations

A declaration in MELD consists of one or more variable names, a colon, a type specifier, and an
optional initializer:

object-def ::= var-list : type-specifier ;
| var-list : type-specifier := signed-constant ;
| var-list : type-specifier := LABEL . CREATE ;

where LABEL is a declared class name.

The initializer assigns the value to each element in the var-list, so for example:
Bob,Carol,Ted,Alice : People := People.CREATE;

will create four objects and
BobAge,CarolAge : INTEGER := 24;

will assign 24 to both BobAge and CarolAge. You would use two declaration statements in
order to initialize these variables to different values.

Depending on its placement in the MELD program, the declaration statement can be used to
define global variables, instance variables, or local variables. Global variables are accessible by
all classes in the feature (and, if exported, they are accessible to other features as well). Instance
variables are private to each object. When an object is created, it gets a private copy of the
instance storage. And local variables are private to each method; like local variables in a
subroutine, their value is not preserved across calls.

The three types of variables are shown in the example of figure 2.1. This example shows the use
of a global variable FDIC_Limit that defines the limit of insurance per savings account offered
by the Federal Deposit Insurance Corporation. Clearly we want this constant to be the same for
all Account objects so it is defined in the OBJECT section and made global.

The MELD message CREATE is useful for initializing variables, see section 4.1 for more
information.

2.2. Types

There are six basic types in MELD:

Integer an integer, typically reflecting the natural size of integers on the host
machine.

MELD PROGRAMMING LANGUAGE 18

FEATURE VarExample

INTERFACE:
IMPLEMENTATION:

OBJECT:
Main : V_Test := V_Test.CREATE;
global : INTEGER := 1;

CLASS V_Test ::=
instance : INTEGER := 2;

METHODS:

"show" --> {
local : INTEGER := 3;

printf("%d %d %d\n",global,instance,local);
}

END CLASS V_Test

END FEATURE VarExample

Figure 2-1: Variables in a Program

Real a single-precision floating point number.

Double a double-precision floating point number.

Boolean True(1) or False(0).

Character one byte, machine-dependent but usually ASCII.

String a one dimensional array of characters.

The declarations Real and Double will reflect their types ‘‘natural’’ size on the host machine.

2.2.1. Compound Types

In addition you can define a type using the following constructors:

ARRAY [INTEGER .. INTEGER] OF basic-type
ARRAY [INTEGER .. INTEGER] OF LABEL

Here, basic-type is one of the types defined above.

Note: initialization does not work for arrays, and there is no range checking on the indices.

2.3. Constants (Literals)

String, character, integer, and floating point constants may be used in your MELD program. The
format is similar to the C language format, and is described in section 7.3.4. In addition the

MELD PROGRAMMING LANGUAGE 19

FEATURE SavingsAndLoan

INTERFACE:

IMPLEMENTATION:

OBJECT:
FDIC_Limit : INTEGER := 200000;
Savings : Account := Account.CREATE;

CLASS Account ::=
balance : INTEGER := 0;

METHODS:

printf("Your balance is %d\n",balance);

"deposit %d"(cash : INTEGER)--> {
balance := balance + cash;
if (balance > FDIC_Limit) then
printf("careful, $%d is uninsured\n",

(balance-FDIC_Limit));
}

END CLASS Account
END FEATURE SavingsAndLoan

Figure 2-2: Global Variables

5MELD language defines a number of system constants for your use :

TRUE 1
FALSE 0
NIL 0
NULL 0

2.4. Variables

A variable name starts with a character of the alphabet and continues with any number of
alphanumeric or underscore characters. Case is significant in variable names.

You may not use a variable name that conflicts with one of the MELD reserved words, see 7.3.3,
or one of the C language reserved words (refer to your local C compiler reference manual).

5These constants may not be redefined.

MELD PROGRAMMING LANGUAGE 20

2.4.1. System Variables

System variables are distinguished by a dollar sign as the first character in their names. These
variables are generally read only, unless specified otherwise, and include:

$SELF Refers to the object that is executing the current statement.

$SENDER Refers to the object that sent the current message.

$SELECTOR The entire string message that invoked this method. For symbolic selectors
$SELECTOR holds the selector name as a string. When used with the *
selector you may inspect $SELECTOR to see what the message received
was.

MELD PROGRAMMING LANGUAGE 21

3. Operators, Expressions and Statements
This chapter covers the expression and statement syntax of MELD. This syntax is conveniently
similar to C except that the assignment operator is := instead of =.

3.1. Operator Summary

MELD supports arithmetic, relational, and boolean operators.

3.1.1. Arithmetic Operators

In MELD there are three classes of arithmetic operators:

binary arithmetic operators
+, -, *, and /.

modulus operator %, which produce the remainder when the first operand is divided by the
second operand.

unary operators the + and - signs, for example, -3.

The precedence of these operators in MELD is the same as in the C language.

3.1.2. Relational Operators

The relational operators are:

> Greater than.

>= Greater than or equal to.

< Less than.

<= Less than or equal to.

= (or) == Equal to.

<> (or) != Not equal to.

3.1.3. Logical Operators

OR (or) | OR operator.

AND (or) & AND operator.

XOR (or) ^ Exclusive OR operator.

NOT (or) ! NOT operator.

3.2. Expressions

Expressions in MELD are identical to expressions in C.

3.3. Statement Summary

The statement in MELD is the unit of execution and concurrency. Chapter 5 describes how to
combine statements into blocks that execute their statements sequentially or in parallel. Section
7.4.7 describes statements used as constraints within a class, and chapter 4 describes those
statements used for communicating among objects.

MELD PROGRAMMING LANGUAGE 22

This section will provide you with an description of the basic statements in MELD: assignment,
condition, return, and the interface to external C procedures.

3.3.1. Assignment Statement

The syntax of the assignment statement is:

assignment ::= variable asgn-operator expression

where variable can be a global variable, an instance variable, or a local variable declared in a
method. The expression is the same as a C language expression, and the asgn-operator is
defined as:

asgn-operator ::= := | +:= | -:= | *:=
| /:= | %:= | >>:= | <<:=
| &:= | ^:= | |:=

The assignment operators are identical to their C language counterparts, except they use :=
instead of =. Expressions such as

i := i + 1;

in which the left hand side is repeated, can be written as
i +:= 1;

where +:= is an asgn-operator. The possible assignment operators are:

:= Simple assignment.

+:= Addition.

-:= Subtraction.

*:= Multiplication.

/:= Division.

%:= Remainder.

>>:= Right shift.

<<:= Left shift.

&:= Bitwise AND operator.

^:= Bitwise XOR operator.

|:= Bitwise OR operator.

3.3.2. Conditional Statement

The syntax of the IF-THEN-ELSE statement is

if-statement ::= IF (expression) THEN statement1
| IF (expression) THEN statement ELSE statement1 2

Where expression is a boolean expression, and statement is a statement described in this chapter,
or a block statement described in chapter 5. As is normally the case, any ambiguity is resolved
by associating the ELSE with the closest else-less IF.

MELD PROGRAMMING LANGUAGE 23

3.3.3. Return Statement

The return statement is used for a method to return a value. The format is:

return-statement ::= RETURN expression

3.3.4. C Interface

MELD provides an interface to the C language. MELD programs can simply use C function calls
or procedures by using the ordinary C function call syntax. A C function call is legal wherever a
MELD function call (synchronous send) is legal.

The parameter types in MELD programs will be converted as follows:

INTEGER int

REAL float

DOUBLE double

STRING char *

BOOLEAN int

CHARACTER char

The current implementation of MELD does not do any checking on the types or number of
arguments to C functions. Our programs using printf() throughout this manual are examples
of an external C function call.

3.4. Comments

The format for a comment in MELD is:
{* comment *}

3.5. A Small Example

The following example, in figure 3.5, uses some of the language features covered in this chapter.
The example also uses a construct that will be explained fully in chapter 5, namely, a group of
statements enclosed in square brackets:

[statements]

These statements will be executed sequentially, one right after another, the same as using BEGIN
and END in Pascal, or {} in C.

MELD PROGRAMMING LANGUAGE 24

FEATURE HiLo

{* HiLo. Play the game of High-Low! Try to guess the computer’s
* secret number.
*}

INTERFACE:
IMPLEMENTATION:

OBJECT:
Main : UserInterface := UserInterface.CREATE;

CLASS UserInterface ::=
val : INTEGER := 0;

METHODS:

{* Initialization constraint... *}
send "Help" to $SELF;

{* Help method. Show user valid commands *}
"Help" --> [
printf("Welcome to the game of Hi-Lo.\n");
printf("The object of the game is for you to guess");
printf("a number. Commands are:\n");
printf(" help exit play <number>\n\n");

]

{* Internal method, called when user wins *}
Winner() --> [
printf("Congratulations, you are a winner!\n");
printf("Don’t you want to play again? (say play)\n");

]

{* Integer guess method, see if it is high or low *}
"%d"(guess : INTEGER) -->
if (guess > val) then
printf("High\n");

else if (guess < val) then
printf("Low\n");

else $SELF.Winner();

{* play method. Start a new game *}
"give up" --> printf("The val was %d\n",val);

"play" --> val := rand()*10;

END CLASS UserInterface
END FEATURE HiLo

Figure 3-1: Language Features Example

MELD PROGRAMMING LANGUAGE 25

4. Classes, Objects, Methods and Messages

4.1. Overview

All executable statements in MELD exist within classes. A class is a definition of an abstract
data type consisting of private storage and operations on that storage. The storage is called
instance variables and the operations are called methods. Since the class is only a description of
the storage and operations, you instantiate the class, that is, create an instance, as you would
create a new record structure in Pascal given its template.

6The method we have seen for instantiating a class is by using CREATE in a variable declaration :
OBJECT:
mazda : Car := Car.CREATE;

This creates a new Car object, called mazda. We say that mazda is an instance of the class
Car. An object has its own private storage known as instance variables.

Once an object has been created you can invoke the methods defined by the class. Using the
SEND statement or the MELD function call you send messages to an object and invoke one of its
methods. The methods themselves may invoke other methods using SEND and the MELD

function call, or they may use external C procedures, or the simple MELD statements described in
chapter 3.

4.2. Classes and Instances

A MELD class definition is:

class-decl ::= PERSIST CLASS IDENTIFIER :=opt
*object-def

methods-partopt
END CLASS identifiersopt

The data of class objects may persist across program executions by using the PERSIST keyword
(see the next section for details). The object-def section is used to declare instance variables, and
the methods-part is used to declare functions and constraints. A single IDENTIFIER is used to
name the class, and an optional list of identifiers is allowed for the END CLASS, these identifiers
do not need to match.

For information on how to declare objects see section 2.1.

4.2.1. Persistent Classes

Objects of a class declared with the PERSIST keyword remain in existence even when the
MELD program terminates. The next time the program (or another) is invoked all data from
persistent objects may be restored. Objects are stored and retrieved from the file MELD.db in
the currently connected directory. This file should not be removed unless you want to ‘‘forget’’

6class.CREATE() may also be used as a function call to create objects.

MELD PROGRAMMING LANGUAGE 26

the persistent objects.

To create and access persistent objects you first declare the class with the PERSIST attribute
and then use class.CREATE("name") to create and identify the name of the object. MELD

will look for name in the database, and restore all class variables to the new object; otherwise
MELD creates a new object and initializes the class variables as determined by the class
declaration.

Figure 4.2.1 is an example of using PERSIST in this way.

Any instance variables changed during the execution of a method of a persistent object will be
written back to the database at the time the method finishes executing.

Note: The current MELD compiler will not allow arguments to CREATE if CREATE is part of the
object declaration. Instead you need to use class.CREATE() in an assignment statement as
part of a method or constraint.

Note: There is no way to remove persistent objects aside from deleting the MELD.db file.
DESTROY does not exits in the current implementation.

Note: The name can be any ascii string, however, don’t use ‘‘$’’ in the name.

4.2.2. Remote Objects

Remote objects are named objects that are registered through a network wide Naming Service.
When you send a message to a remote object the message is routed to the machine containing the
object, then the object executes the message, and if a (synchronous) MELD function call with a
return value was used, the result is sent back.

When you use class.CREATE("name"), the following steps take place:
1. The local database is searched for a persistent object of the same name. If one is

found it is returned.

2. The Naming Service is asked to locate remote objects of the same class and name
on the network. The Naming Service will not locate the object unless it (or a
member of the same class) is being used in a running MELD program. If an object
is found it is returned.

3. If steps (1) and (2) are not able to provide an object, a new object is created and
given the specified name. The name is also registered with the Naming Service for
future accesses.

If you require that the object already exist you can use class.GET("name"). This is similar
to CREATE described above, except for the last step; GET will never create a new object.
Instead, when GET is unable to locate a named object it returns a place-holder object that will
re-lookup and try to locate the named object at the time of use. If lookup is still unsuccessful at
time of use, the message is discarded. A similar result occurs when the server system containing

MELD PROGRAMMING LANGUAGE 27

FEATURE Linger

{* Linger. Example of how class storage can persist. *}

INTERFACE:
IMPLEMENTATION:

OBJECT:
Main : UserInterface := UserInterface.CREATE;

PERSIST CLASS LingerClass ::=
val : INTEGER := -1;

METHODS:

set(n : INTEGER) --> val := n;

show() --> SEND "The value is %d\n"(val) TO stdout;

END CLASS LingerClass

CLASS UserInterface ::=

LingerOne : LingerClass;

METHODS:

send "init" to $SELF;

"init" --> LingerOne := LingerClass.create("One");

"show"--> LingerOne.show();

"set %d"(n : INTEGER) --> LingerOne.set(n);

END CLASS UserInterface

END FEATURE Linger

Figure 4-1: Persistent Class

a named object crashes, or the MELD program containing a named object exits.

One technique for discerning whether a named object was actually located by GET is to call a
simple method (created just for this purpose) that returns a non-nil value, something like
you_there().

Note: The name can be any ascii string, however, don’t use ‘‘$’’ in the name.

MELD PROGRAMMING LANGUAGE 28

4.3. Methods

Methods are the basic program units defined in classes. The format for a method is:
selector : result-type --> statement

or
selector --> statement

depending on whether the method returns a result or not. Here, selector is a description of, or
template for, a message sent to the object. The result-type is a declaration of the datatype of the
method and is only necessary if this method uses the RETURN statement to return a value. The
possibilities for statement have been covered in chapter 3 and the class specific statements are
described further along in this chapter. The symbol "-->" is used to associate selector with
statement. When selector is received the statement is executed.

4.3.1. Send Statement

Meld provides an easy way to create another thread of control: asynchronous sending. Unlike
the "procedure call" or synchronous message, an asynchronous send does not delay the caller.
The message is sent, and execution continues normally. Any return value from the method
called asynchronously is lost.

The syntax of asynchronous sending is:
SEND symbolic-message TO object

or
SEND string-message TO object

where symbolic-message is an identifier with a sequence of typed parameters; object is an object
variable; string-message is a string with a sequence of typed parameters.

A method will be activated when receiving a matched message. The receiving method and the
sending method will run in parallel (as far as is possible, due to data flow and other execution
ordering constraints). For example:

The statement X := 1; and Y := 2 will be executed in parallel, or in either order on a
uniprocessor.

4.3.2. Synchronous Send

The synchronous send is also known as the MELD function call. Synchronous sending causes the
sender process to stop and wait for the result from the receiver process. The syntax of
synchronous sending is:

object.message

where object is an object identifier; message can be only be a symbolic-message.

For example, figure 4.3.2 shows how to use the return statement and synchronous sends using
$SELF.

Other examples are:

MELD PROGRAMMING LANGUAGE 29

Foo_Obj : Foo := Foo.CREATE;
Bar_Obj : Bar := Bar.CREATE;

CLASS Foo ::=

y : INTEGER;

METHODS:

Foo()--> { SEND Bar() TO Bar_Obj; y := 2; }

END CLASS Foo

CLASS Bar ::=

x : INTEGER;

METHODS:

Bar()--> x := 1;

END CLASS Bar

Figure 4-2: Send Program Fragment

FEATURE Bank

INTERFACE:

IMPLEMENTATION:

OBJECT:
CitiSaver : Savings_Account := Savings_Account.CREATE;

CLASS Savings_Account ::=
balance : INTEGER := 0;

METHODS:
"Deposit %d"(m : INTEGER) -->

printf("Your balance is now %d\n",$SELF.Deposit(m));

Deposit(a : INTEGER) : INTEGER -->
{ balance := balance+a;
RETURN(balance);

}

END CLASS Saving_Account
END FEATURE Bank

Figure 4-3: Return Statement

MELD PROGRAMMING LANGUAGE 30

Bar_Obj.Bar();

Foo_Obj.Foo(x, y, z);

The arguments of a function call can be any arbitrary expression.

4.3.3. DelayUntil Statement

The DELAYUNTIL statement is used to wait for a message to be received by the current method.
The syntax is:

DELAYUNTIL selector-name

where selector-name is a symbolic selector that does not need to be defined in the current
method (see below example). The statement causes the current thread of execution to wait for a
message that matches the selector-name, and then continues executing. That is, when a message
is received by an object, any methods in the current object that were using DELAYUNTIL on that
method will continue their execution.

The DELAYUNTIL statement may be used for synchronization of two methods by, for example
the program fragment in figure 4.3.3 shows how to do this. The selector COMPLETION does not
need to be defined as a method; in this example a method would be extraneous.

FOO() --> [
:
:
SEND COMPLETION() TO $SENDER;
]

BAR() --> {
SEND FOO()
:
:
DELAYUNTIL COMPLETION()
}

Figure 4-4: DELAYUNTIL Example Fragment

4.4. Selectors

There are two kinds of selectors that can be employed. The symbolic selector is designed for
internal use for messages between program components; a symbolic selector looks much like a
Pascal procedure header. As we will see, methods with symbolic selectors are used similarly to
procedures in other languages.

4.4.1. Symbolic Selectors

The symbolic selector receives symbolic messages. The format is:

sym-selector ::= IDENTIFIER (param-list)opt

Here, IDENTIFIER is a name for the method, and param-list consists of the typed parameters,

MELD PROGRAMMING LANGUAGE 31

for example:
Withdraw(cash : INTEGER): INTEGER -->

Sort(a : ARRAY[1..20] OF INTEGER)-->

4.4.2. String Selectors

The string selector, is intended for external uses of programs (i.e, input). When a string message
is sent to an object, it is matched against all of the object’s string selectors. Any that match are
invoked in parallel.

The syntax of the string selector is:

str-selector ::= regular-exp
| regular-parm-exp (param-list)

where regular-exp is a regular expression that defines a set of strings; regular-parm-exp is a
regular expression with some notations to specify parameter occurrences. For a description of

TMregular expressions refer to grep(1) in the Unix 4.3BSD programmer’s and user’s manuals.

The param-list is a list of typed parameters:

param-list ::= identifier-list : type-specifier
| param-list ; param-list

Some examples of string selectors are:
"hello"--> {* When "hello" is received, then ... *}

"hello [a-zA-Z]+"-->
{* when "hello " concatenated with a name is received, .. *}

"[0-9]+"--> {* when an integer is received, then *}

In regular-parm-exp, the notations for specifying parameter occurrences is similar to the scanf()
function. The current Meld implementation supports "%d", "%f" and "%s", which indicate the
occurrences of variables of types INTEGER, REAL and STRING, respectively. Examples are:

"X is %d"(x : INTEGER)-->

"Withdraw %f" (cash : REAL)-->

"My name is %s Doe" (name : STRING)-->

When multiple parameters are specified, they must occur in the same order in the input string as
in the parameter list. The first example below is incorrect; the second shows the correct
parameter list for the same input string.

"Withdraw %f from account #%d" (account : INTEGER; amount : REAL) -->

"Withdraw %f from account #%d" (amount : REAL; account : INTEGER) -->

MELD PROGRAMMING LANGUAGE 32

4.4.3. Line-Oriented Matching

After an object receives a message, it checks whether the message matches any string selectors.
The matching is line-by-line, where a line ends with newline ("\n"). So, each line of the message
will be compared with the string selectors. For example:

incoming message: "my name is Ishmael"

string selector: "my name is %s"(name : STRING)

The incoming message will activate the method and the variable will be bound to "Ishmael".
Another example shows a non-matching case:

coming message: "They call me Ishmael"

string selector: "my name is %s"(name : STRING)

The input doesn’t match the string selector even though part of the input does match the string
selector. In order for input to match a string selector, it must match from the beginning of the
line.

4.4.4. More Than One Matching

Since two string selectors can describe two overlapping sets of strings, incoming messages may
match more than one selector. That is, more than one method might be activated by one message.
The activated methods are not ordered in any way, and may be executed in parallel. For
example:

coming message: "Open the cargo doors HAL"

string selector: "Open the %s"(name : STRING)-->statement ;1

string selector: "Open*"-->statement ;2

Both methods will be activated when the message arrives, and both statement and statement1 2
will be executed in parallel.

4.4.5. Special Selectors

A special form of selector is available that will match when no other symbolic method selector
matches:

any-selector ::= *

Figure 4.4.5 shows how this is done.

Note: There is no string form that matches only when no other selector matches. The string "*"
will always match even if their are other matching selectors.

4.5. External Methods and Variables

As discussed in section 1.1 the INTERFACE: clause is used when a number of features are
separately developed and combined into one program. The syntax for the features clause is

MELD PROGRAMMING LANGUAGE 33

FEATURE Match_Any

INTERFACE:
IMPLEMENTATION:

OBJECT:
Intf : UserInterface := UserInterface.CREATE;

CLASS UserInterface ::=

METHODS:

* --> printf("Received an unknown message (%s)!\n",$SELECTOR);

"do" --> $SELF.FUBar();

END CLASS UserInterface

END FEATURE Match_Any

Figure 4-5: Any Example

program ::= FEATURE identifiers
*INTERFACE: externals

IMPLEMENTATION: bodyopt
END FEATURE identifiersopt

externals ::= EXPORTS port-listopt
| IMPORTS port-listopt

port-list ::= IDENTIFIER
| IDENTIFIER [identifier-list]
| port-list port-list

The programmer specifies the external features to be used by means of the IMPORTS clause, and
those classes and globals that are visible to other features with the EXPORTS clause.

The IMPORTS clause:
IMPORTS Feature_Random[Random_Int_Class,Random_Count];

declares that Feature_Random is an external feature, and what follows inside the brackets is a
list of methods and global variables to be used by the importing feature. If no list is supplied,
then all methods and global variables declared in the EXPORTS list for Feature_Random are
available.

The EXPORTS clause:
EXPORTS Random_Int_Class[Get_Random_Int],Random_Real_Class,

Random_Count;

declares that Random_Int_Class is a class available to external features, and if followed by
a bracketed list of method names, only those methods are visible. If no methods are specified

MELD PROGRAMMING LANGUAGE 34

after the class name, then all methods are accessible to external features. The EXPORTS list may
also contain global variables accessible to external features.

When you import a class you are able to declare variables of the external types, to create
instances of the classes, and to send messages to instances of the class (perhaps through global
objects). However, you cannot use the class name in a MERGES statement (described below),
that is you cannot create subclasses of the external class.

7Figures 4.5 and 4.5 are programs that show how to use external features .

FEATURE Random_Feature

INTERFACE:

EXPORTS Random_Int_Class[Get_Random],
Random_Count,Random_Real_Class,RandomInt,RandomReal;

IMPLEMENTATION:

OBJECT:
Random_Count : INTEGER := 0;
RandomInt : Random_Int_Class := Random_Int_Class.CREATE;
RandomReal : Random_Real_Class := Random_Real_Class.CREATE;

CLASS Random_Int_Class ::=

METHODS:
Get_Random() --> {
Random_Count := Random_Count+1;
return(rand(0));
}

END CLASS Random_Int_Class

CLASS Random_Real_Class ::=

METHODS:
Get_Random() --> {
Random_Count := Random_Count+1;
return(rand(0)*1.0);
}

END CLASS Random_Real_Class

END FEATURE Random_Feature

Figure 4-6: Random External Example

7Note: external features do not work with the current compiler as of 9/28/89.

MELD PROGRAMMING LANGUAGE 35

FEATURE Do_Random_Things

INTERFACE:
IMPORTS Random_Feature[Random_Count,RandomInt]

IMPLEMENTATION:

OBJECT:
Main : Be_Random := Be_Random.CREATE;

CLASS Be_Random ::=

METHODS:
"random" --> {
send "The %d random is %d\n"(

RandomInt.Get_Random(),Random_Count) to stdout;
}

END CLASS Be_Random

END FEATURE Do_Random_Things

Figure 4-7: Use Random External Example

4.6. Merges Statement

The MERGES statement is used to create subclass of existing classes. The syntax is:

merge-decl ::= MERGES identifier-list AS IDENTIFIER

Where identifier-list is a list of existing classes, and IDENTIFIER is a new class name.
Normally, MERGES merges together the methods of all classes mentioned in the statement and
produces a new class. If two methods contain the same name, the statements are merged into
one method and executed in dataflow order. It is possible however to specify a combination of
three attributes in a class definition to customize the MERGES behavior. These attributes are:

OVERRIDE On a method of the new class, means MELD uses only the methods described
by the new class and not any of the other methods of the same name.

DEFAULT On a method of the merged classes, means this method is the default action
to be taken if no other (non default) method of the same name occurs in any
of the other merged classes. If two default methods occur they get merged.
Note that DEFAULT on the new class only applies to classes that later
MERGES new class.

INSIST On a method of the merged classes, means the subclass cannot override it.

MELD PROGRAMMING LANGUAGE 36

MELD PROGRAMMING LANGUAGE 37

5. Block Structure
There are three types of blocks in MELD: parallel, sequential, and atomic. The block type
defines the runtime behavior of the statements within the block. Statements within a parallel
block will be (potentially) executed in parallel according to the partial ordering of data
dependency. A sequential block will execute statements sequentially according to their textual
ordering. Statements within an atomic block are executed without interleaving with statements
outside the block; by default, they are executed "in parallel", or in data-flow order, but atomic
and sequential blocks may be combined to give sequential execution without interleaving with
other statements.

The MELD grammar defines a block as:

block ::= BEGIN statements END
| { statements }
| [statements]
| (statements)

A block consists of zero or more statements enclosed by delimiters. We have covered the
different statement types in chapter 3 and 4. These are:

statement ::= block ;opt
| assignment ;
| if-statement ;
| object-def ;
| function-call ;
| send-statement ;
| delay-statement ;
| RETURN expression ;

statements ::= statement
| statements statement

The runtime execution of the statements is determined by the delimiters surrounding the block,
as follows:

BEGIN parallel END
Equivalent to { statements }.

{ parallel } The statements are (potentially) executed in parallel according to the partial
ordering of data dependencies.

[sequential] The statements enclosed in the block are executed sequentially.

(atomic) The statements enclosed in the block are executed without interleaving with
any statements outside the block. By default the statements are executed in
data-flow order, but a sequential block may be nested inside an atomic block
to provide sequential execution without interleaving with other statements.

An atomic block executes without interruption from statements outside the block. Normally, a
method may have more than one thread of execution running at one time; the atomic block
allows entry of only one thread of execution at a time.

MELD PROGRAMMING LANGUAGE 38

5.1. Parallel Block

A parallel block is a set of statements enclosed by {}. The syntax is:

{ statements }

where statements can be any number of statements including parallel, sequential or atomic
blocks.

5.1.1. Partial Ordering of Data Dependency

For every parallel block there is a partial ordering of statement inputs and outputs (i.e, right hand
and left hand side variables), according to the rules of data dependency. The execution order is
determined by this partial ordering.

In figure 5.1.1 we have an example of a parallel block associated with the selector ADD of class
Bank. Because no data dependency exists between statements (1) and (2), they will be executed
in parallel.

CLASS Bank ::=

Add(x : INTEGER) --> {
counter := counter + 1; {* (1) *}
all := all + x; {* (2) *}

}
END CLASS Bank

Figure 5-1: Parallel Block Program Fragment

In the cases that data dependency does exists between statements, the partial ordering is
determined among statements. For example:

CLASS Bank ::=

METHODS:

Add(amount : REAL) --> {
tax : REAL;

counter := counter + 1; {* (1) *}
total := total + tax; {* (2) *}
tax := 0.0825 * amount; {* (3) *}

}
END CLASS Bank

A data dependency relation exists between statement (2) and statement (3) through local variable
tax. In other words, a value for tax must be computed and assigned before statement (2) can
be executed. Therefore only the ordering requirement that statement (3) runs before statement
(2) exists. The execution ordering between statement (1) and statement (2), and between
statement (1) and statement (3) is not restricted, and hence nondeterministic from the

MELD PROGRAMMING LANGUAGE 39

programmers point of view. That is, (1) and (2) are concurrent and so are (1) and (3). The
partial ordering below indicates how two threads of control might be used to execute the three
statements:

--> (3) --> (2) -->
------> (1) ------>

5.2. Sequential Block

A sequential block is a set of statements enclosed by []. The syntax is:

[statements]

where statements can be any number of statements including parallel, sequential or atomic
blocks.

Sequential blocks are appropriate when ordering of the statements must be one after another:
ReadFile() --> [

open();
x := read_x();
close();

]

Here, the programmer requires the file to be opened first, then read, then closed. By enclosing
these statements in [], the block will be executed sequentially.

Note: ReadFile(), open(), close(), and read_x() are not parts of the MELD language
or runtime, they are made up just for this example.

5.3. Atomic Block

An atomic block is a set of statements enclosed by (). The syntax is:

(statements)

where statements can be any number of statements including parallel, sequential or atomic
blocks.

The statements are run in dataflow order when the block is activated and the whole block is
treated as a unit. The statements enclosed by the atomic block are executed without interleaving
with the statements outside the block. For example:

The execution order is (3)->(1)->(2)->(4). Since statement (1) and statement (2) are in a atomic
block, no other statements can be executed between them.

In the next chapter, we will show the use of constraints in MELD programming. It is sometimes
very important to use atomic blocks to avoid premature activation of constraints. For example, a
constraint is used to automatically move the point (X, Y) on the screen when the internal data
X or Y are changed.

MELD PROGRAMMING LANGUAGE 40

CLASS Foo ::=

a, b, c, d : INTEGER;

METHODS:

Foo() --> {
(
a := b + 1; {* (1) *}
c := d + 1; {* (2) *}
)
d := 1; {* (3) *}
SEND "A is %d\n"(a) TO stdout; {* (4) *}

}

END CLASS Foo

Figure 5-2: Atomic Block Program Fragment

CLASS Move ::=
x, y : INTEGER;

METHODS:

{* constraint to move the point whenever x or y changes *}
Move_Point(x,y);

MOVE(dx,xy : INTEGER) --> (
x := x + dx; {* (1) *}
y := y + dy; {* (2) *}

)

END CLASS Move

Without using a atomic block, the move_point() constraint would be activated twice. The
first time is when x is changed in statement (1) and the second is when y is changed in statement
(2). The point on the screen will be moved horizontally and then be moved vertically. Using a
atomic block, the constraint is activated only once.

5.4. The Rules of Data Dependency

5.4.1. First Rule of Data Dependency - Assignment Rule

For two different assignment statements, if the left-hand side variable of one assignment also
appears in the right-hand side of another assignment, then there is a data dependence relation
between these two assignments.

We say the left-hand side ‘‘affects’’ the right-hand side, and the right-hand side ‘‘depends’’ on
the left-hand-side.

MELD PROGRAMMING LANGUAGE 41

A single assignment statement cannot depend on itself. Even if a left-hand side variable also
appears on the right-hand side of the assignment, there is no data dependency.

5.4.2. Second Rule of Data Dependency -- If-Then-Else Rule

There is no data dependency between the statements in the if-branch and the statements in the
else-branch. The reason is that only one branch is active at any time in an If-Then-Else
statement.

5.4.3. Third Rule of Data Dependency -- Change-Type Rule

All Statements have a depend on relation to the variables they use (that is, read).

5.4.4. Fourth Rule of Data Dependency - sequential block rule

There is no data dependency between the statements in a sequential block. But data dependency
can, however, exist between a statement in the sequential block and a statement outside the
sequential block.

CLASS Foo ::=
x, y : INTEGER;

METHODS:

Exchange() --> [
temp : INTEGER;

temp := x; {* (1) *}
x := y; {* (2) *}
y := temp; {* (3) *}

]
END CLASS Foo

Figure 5-3: Fourth Rule Example Fragment

Even though statement (1) has x as an input variable (right-hand side variable) and statement (2)
has x as an output variable (left-hand side variable), there is no data dependency between (1) and
(2), because both statements are in the same sequential block. The statements will be executed
sequentially (i.e, (1)->(2)->(3)).

Another example shows the data dependency between the statements in a sequential block and
the statements outside the block.

MELD PROGRAMMING LANGUAGE 42

CLASS Foo ::=
a, b, c, d : INTEGER;

METHODS:

Foo() --> {
[
a := 1; {* (1) *}
c := b; {* (2) *}

]
[
b := a + 1; {* (3) *}
d := c + 1; {* (4) *}

]
}
END CLASS Foo

The execution order is (1)->(3)->(2)->(4).

5.4.5. Fifth Rule of Data Dependency -- Constraint Rule

A constraint has no effect on the dependency of any statements, either statements in a method or
another constraint. For example:

CLASS Foo ::=
a, b, c : INTEGER;

METHODS:

a := b+1; {* (1) *}

Foo() --> {
c := a+1; {* (2) *}
b := c+1; {* (3) *}

}
END CLASS Foo

The execution order is (2)->(3)->(1). There is no circularity of data dependency, since the
constraint has no "affect" relation with statement (2) and statement (3).

5.4.6. Sixth Rule of Data Dependency - Dynamic Rule

When two methods in one object are executing concurrently and the first five rules of data
dependency have been applied to each method, the execution order of statements among the two
methods is further limited by the Dynamic Rule. The Dynamic Rule says that when two
methods in the same object are running concurrently, the total effect of execution order is
determined by interleaving the two partial orderings according to the rules of data dependency.

5.4.7. Data Dependency Deadlock

Dynamic data dependency sometimes causes a deadlock situation due to the circularity of the
effect of statements. That is, a circular chain of depends and effects exists, and no statement is
ready to run. This situation is considered a fatal error and the MELD runtime will detect and
print an error message when a deadlock occurs.

MELD PROGRAMMING LANGUAGE 43

Figure 5.4.7 is an example of a deadlock situation. If the messages FOO() and BAR() arrive at
the object at the same time, the execution order of statements cannot be determined because of
the circularity (1)->(2)->(3)->(4)->(1).

CLASS Foo ::=
a,b,c,d : INTEGER;

METHODS:

FOO()--> {
a := b + 1; {* (1) *}
c := a * 2; {* (2) *}
}

BAR()--> {
d := c + 2; {* (3) *}
b := d + 4; {* (4) *}
}

END CLASS FOO

Figure 5-4: Deadlock Example Fragment

5.4.8. Seventh Rule of Data Dependency - Recursion Rule

There is no data dependency between two activations of the same method because of the
possibility of deadlock; the methods are treated separately.

5.4.9. Race Condition

A race condition is the possibility for some unpredictable outcome to occur as the result of two
or more interacting concurrent processes. The example in figure 5.4.7 would have caused a
deadlock if both messages arrived at exactly the same time. However, if message FOO arrives
slightly earlier than message BAR, then statement (1) might have gotten executed before dynamic
data dependency is applied; and if BAR arrives slightly earlier, statement (3) will be executed
first. These cases lead to three different results solely because of the timing of messages,
therefore a race condition exists.

Race conditions are sometimes difficult to avoid, you may need to resort to atomic or sequential
blocks to control the interaction of concurrent methods.

MELD PROGRAMMING LANGUAGE 44

MELD PROGRAMMING LANGUAGE 45

6. Constraints
As we have seen already, statements defined in a class can be associated with a selector as part
of a method, or they can be constraints, without a selector. In this chapter, we will further
explore the constraint statements and their uses. A constraint defines a relation between instance
variables in the class. The relation will hold true through the life-time of the object. Technically
speaking, constraints are declarative with the highest priority of execution, so the constraints will
be evaluated whenever the associated input instance variables are changed. There are three types
of constraints: equation constraints, change-type constraints and conditional constraints.

6.1. Equation Constraints

An equation constraint defines an equation relation between a set of input instance variables and
one output instance variable. During the lifetime of an object, whenever the values of input
variables change, the value of the output variable will be updated so that the relation is
maintained. The syntax is:

output := expression-inputs

where output is an instance variable declared in the class; expression-inputs is an expression with
input instance variables. The expression may be any valid MELD expression. See figure 6.1 for
example.

CLASS Temp::=
c,f : REAL;

METHODS:

c := (f - 32.0) * 5.0 / 9.0;

INC(x : REAL) --> f := f + x;

END CLASS Temp

Figure 6-1: Constraint Program Fragment

6.2. Change-Type Constraints

Instead of defining a relation between the output instance variable and the input instance
variables, a change-type constraint defines a relation between a fact or action and the input
instance variable. Change-type constraints do not have an output instance variable defined in the
statement. A change-type constraint defines an action that will be evaluated at the time of the
object creation and whenever the input instance variables are changed. The action can be a
regular C procedure call, an asynchronous send statement or a synchronous send statement.

A special case of a change-type constraint is a constraint with no inputs. This constraint is
evaluated only at object creation, and is useful for initializations.

MELD PROGRAMMING LANGUAGE 46

6.2.1. C procedure Constraints

A C procedure constraint is a C procedure call that has one or more than one input parameters.
The input parameters should be the instance variables declared in the class. Some examples are
described below.

• Change-type constraints might be used to define the relation between the internal
data and the screen display: Assume a point on the screen that is represented as X
and Y in a class. Whenever X or Y is changed, the point will be moved to the proper
location. A C procedure constraint can be defined to simplify the program.

CLASS TerminalGraphics ::=
x, y: INTEGER;

METHODS:

Move(x, y);

Move_X(d : INTEGER) --> x := x + d;

Move_Y(d : INTEGER) --> y := y + d;

END CLASS TerminalGraphics

where Move(X, Y) is a C procedure constraint; Move_X() and Move_Y() are
methods defined in class Coor. Move(x, y) will move the point in the screen to
the location (x, y).

• C procedure constraints might be used to display messages associated with some
instance variables. For example:

CLASS Bank ::=
money : INTEGER;

METHODS:

printf("the money is %d\n",money);

Deposit(x : INTEGER) --> money := money + x;

END CLASS Bank

In sequential programming, in order to trace the history of money, printf statements
would need to be inserted wherever the instance variable money is changed. Here,
only one printf statement is needed.

6.2.2. Asynchronous-Send Constraints

An asynchronous-send constraint is a send statement that will send a message to an object and
activate a method. The syntax is the same as that defined in a method.

SEND message TO object;

Here, message can be either a symbolic message or a string message and object is an object
identifier. One example is to use a send constraint to self initialize an object.

MELD PROGRAMMING LANGUAGE 47

CLASS sort ::=

METHODS:

SEND Randomize() to $SELF;

Randomize()--> { srand(0); }

END CLASS Sort

As we can see, the message Radomize() in the constraint has no input parameter, so that the
constraint will be evaluated exactly once when the object is created.

In some cases, an object wants to notify other objects when some instance variables are changed.
CLASS Bank ::=
money : INTEGER;

METHODS:

SEND Display(money) TO Display_Object;

Deposit(x : INTEGER) --> money := money + x;

END CLASS Bank

CLASS Display ::=

Display(x : INTEGER) --> printf("%d\n",x);

END CLASS Display

6.3. Conditional Constraints

The syntax is the same as the conditional statement used in methods (see section 3.3.2). There
are two sets of constraints associated with a conditional constraint: if-set and else-set. Only one
set of statements is considered active at any time. For example:

CLASS Foo
balance : INTEGER;
debug : BOOLEAN;

METHODS:

IF (debug) THEN
printf("Balance is now %d\n",balance);

ELSE
printf("debug disabled\n");

The change-type constraint printf("Balance is now %d\n",balance) is active
when debug is TRUE. The constraint printf("debug disabled\n"); is active when
debug is FALSE, and is executed only once, when debug changes to FALSE. Only one of
these two constraints is active at any time. The value for balance will be printed out when

MELD PROGRAMMING LANGUAGE 48

debug is set to TRUE and from then one when balance is changed, or the message "debug
disabled" will be printed out when debug changes from TRUE to FALSE.

6.4. Limitations

Some limitations for using constraints:
1. There is no block structure. Except for the blocks associated with if-then-else

constraints, no block (parallel block, sequential block, etc.) is allowed in
constraints.

2. Only parallel blocks can be used to enclose if-set statements and else-set
statements in conditional constraints.

3. The implementation disallows synchronous-sends in constraints.

6.5. A Small Example

Figure 6.5 shows an example program using the three types of constraints discussed in this
chapter.

FEATURE Bank

INTERFACE:

IMPLEMENTATION:

OBJECT:
CitiSaver : Savings_Account := Savings_Account.CREATE;

CLASS Savings_Account ::=
cash_flow : INTEGER := 0;
balance : INTEGER := 0;
debug : BOOLEAN := FALSE;

METHODS:

if (debug) then
printf("balance is now %d\n",balance);

else
printf("debugging is disabled\n");

"[Dd]ebug %s"(s : STRING) -->
debug := strcmp(s,"on");

"Deposit %d"(cash : INTEGER) --> {
balance := balance + cash;

}

END CLASS Saving_Account
END FEATURE Bank

Figure 6-2: Constraint Example

MELD PROGRAMMING LANGUAGE 49

II Reference Manual

MELD PROGRAMMING LANGUAGE 50

MELD PROGRAMMING LANGUAGE 51

7. MELD Reference Manual

7.1. Introduction

The MELD language is an active research project at Columbia. This manual tries to provide a
reference point for questions and issues arising from the use of the language, however, the final
arbiter is the source code and your own test programs. In particular you can look at the compiler
and preprocessor source code in the project directories /proj/meld/baseline/compiler
and /proj/meld/baseline/preproc.

The implementation of MELD generates C code, which is then compiled into an executable
program. Restrictions of the C language and compiler may therefore affect your program. For
example, using the C reserved word void as a MELD identifier will produce a C compilation
error, but not a MELD compilation error. This manual does not itemize all such restrictions, so
the MELD programmer must remain aware of the inherent limitations of the compilation process.

This manual describes the MELD programming language as of June 1989.

7.2. Syntax Notation

The syntactic notation used in this manual is a modified BNF form. Syntactic categories
(nonterminals) are presented in italics, for example expression. The subscript opt means the
symbol is optional. For example,

remote-list ::= remote-list remote-object-declopt

denotes a repetition of one or more remote-object-decl. Zero or more repetitions of a symbol is
*represented with a star superscript, as in externals .

Literal words (terminals) are written in a typewriter style and capital letters, e.g., BEGIN, END.

Lexical categories, such as integer, string, etc., are presented in uppercase italics, for example
INTEGER. All lexical categories are defined using regular expressions based on their lex
counterpart definitions.

7.3. Lexical Conventions

There are six lexical categories: identifiers, keywords, constants, strings, operators, and
punctuation. Each of these lexical categories is described in detail below.

White space, consisting of space, tab, and newline characters, as well as comments, is ignored by
the lexical analyzer and serves only to delimit input tokens as necessary.

7.3.1. Comments

The characters {* start a comment that must be ended with *}.

MELD PROGRAMMING LANGUAGE 52

7.3.2. Identifiers

A identifier is any number of letters, digits, and underscore characters (_) starting with a letter or
underscore. Uppercase and lowercase letters are distinct.

IDENTIFIER ::= [a-zA-Z_][a-zA-Z_0-9]*

7.3.3. Keywords

The following identifiers are reserved for use as keywords:

$SELECTOR $SELF $SENDER
ALL AND ARRAY
AS AT BEGIN
BOOLEAN BY CHAR
CLASS DEFAULT DELAYUNTIL
DOUBLE ELSE END
END EXPORTS FALSE
FEATURE HIGH IF
IMPLEMENTATION IMPORTS IN
INSIST INTEGER INTERFACE
IS-PROD KEY LOW
MERGES METHODS NAME
NIL NOT OBJECT
OF OR ORDERED
ORDERED-SET OVERRIDE PERSISTENT
REAL RECORD REMOTES
RETURN SEND SET OF
STRING THEN TO
TRUE UNION USES
VIEWS XOR

Note: because MELD generates C, all C reserved words are also illegal as identifier names, and
will cause C compiler errors.

7.3.4. Constants

7.3.4.1. System Constants

There are several constants predefined by the MELD compiler:

TRUE 1
FALSE 0
NIL 0
NULL 0

7.3.4.2. Integer Constants

An integer constant consists of a sequence of digits 0 through 9 and is always interpreted in base
10.

INTEGER ::= [1-9][0-9]*
| [0]

Note: this format is different from C, which allows hexadecimal and octal integer constants.

MELD PROGRAMMING LANGUAGE 53

7.3.4.3. Floating Point Constants

Floating point constants consist of an integer (the integer part), a decimal point, and an integer
(the fraction part). Both the integer part and the fraction part must be present.

FLOATP ::= [0-9]+"."[0-9]+

Note: this format differs from C, which allows an exponent, and either the integer or the fraction
part (but not both) to be missing.

7.3.4.4. Character Constants

A character constant is a printable character surrounded by single quotation marks, as in ’g’.

CHARACTER ::= [’][\40-\176][’]

This format only allows a single printable character, not a backslash followed by a number; the
backslash form above is only used to describe the valid range of character inputs.

Note: There is currently no facility for entering characters outside the printable range of 40
(space) to 176 (tilde) ascii. This deficiency exists in the tokenizer meld.l that only accepts
[’][\40-\176][’] (i.e. one character in quote marks) as a character constant. However, it
should be possible to allow the fuller C syntax for character constants since MELD generates C
code.

7.3.5. Strings

A STRING is a sequence of characters starting and ending with quotation marks, and possibly
including backslash quoted quote marks as in C.

7.3.6. Embedded C Code

The characters %{ start a block that must be ended with %}. All text between %{ and }% is sent
directly to the generated C file, and therefore you may include arbitrary C code between the
delimiters.

7.4. Meld Programs

A MELD program is a named feature (i.e., modular unit or package), consisting of name,
interface, and implementation. A feature usually consists of related classes bundled together to
provide a coherent functionality. The feature name may be any arbitrary string of
IDENTIFIERS, for example: Double Pane Window Manager.

The feature may also end with some arbitrary string of IDENTIFIERS, but not necessarily the
same string.

Note: You cannot use a MELD reserved word, such as AND, in the IDENTIFIERS string. This is
a bug.

The INTERFACE: part is used to declare any imported or exported classes and variables; the

MELD PROGRAMMING LANGUAGE 54

IMPLEMENTATION: part consists of the storage and class declarations.

program ::= FEATURE identifiers
INTERFACE: externalsopt
IMPLEMENTATION: bodyopt

END FEATURE identifiersopt

identifiers ::= IDENTIFIER
| identifiers IDENTIFIER

7.4.1. Interface

The interface clause consists of an optional declaration specifying the imported features,
exported classes and objects:

externals ::= EXPORTS port-listopt
| IMPORTS port-listopt
| externals externals

The EXPORTS clause lists those classes defined in the implementation that may be used
externally.

The IMPORTS clause lists those features whose exported classes may be used internally. Import
supports reuse through data abstraction and information hiding in the same fashion as Ada
packages. The imported classes may be used in the implementation body as (1) the types of
instance variables, (2) the types of global objects, and (3) within a merges clause.

In the EXPORTS clause, the port-list IDENTIFIER denotes an exported class or global object.
When a class is exported, the names within braces denote instance variables and methods that
will be visible outside the defining feature. In the IMPORTS clause the IDENTIFIER denotes a
feature, and names within braces denote classes that will be used inside the current feature.

port-list ::= IDENTIFIER
| IDENTIFIER [identifier-list]opt
| port-list port-list

identifier-list ::= IDENTIFIER
| identifier-list IDENTIFIER

7.4.2. Implementation

The body of the IMPLEMENTATION part consists of global object definitions, class declarations
and merge clauses. These components may be used in any order and repeated as many times as
desired.

body ::= class-decl
| merge-decl
| object-decl
| body body

MELD PROGRAMMING LANGUAGE 55

7.4.3. Object Declaration

The object-decl is used to define and initialize global object variables. These objects are
accessible to all methods in the feature, but in order to be used by other features they must be
included in the EXPORTS statement.

Objects may be initialized to a constant value or via a method such as CREATE. If no initializer
is specified then the value will be set to the nil object.

The object declaration portion begins with the keyword OBJECT and then any number of object
definitions, of the form

object : type := initializer

A list of objects of the same type may be declared in one statement:

*object-decl ::= OBJECT: object-def

object-def ::= identifier-list : type-specifier ;
| identifier-list : type-specifier := signed-constant ;
| identifier-list : type-specifier := identifier . CREATE ;

A signed-constant is defined in section 7.4.10. The identifier in identifer.CREATE must be a
class name.

7.4.4. Merges

The merges-decl clause provides the inheritance mechanism for MELD. Merging permits objects
to inherit instance variables and methods defined in the imported features. The syntax for the
merges clause is:

merge-decl ::= MERGES identifier-list AS IDENTIFIER

The merges clause combines the classes and instance variables of any number of features into a
single new class (the class named after the AS).

The MERGES clause is separate from any class declarations so that it is simple to define a class
that is solely the combination of two or more other classes.

If an instance variable or a method with the same name is inherited from more than one MELD

superclass, MELD automatically merges the code in each method using dataflow dependencies.

7.4.5. Class Declarations

The class declaration is used to specify the methods (procedures) and instance variables (private
object storage) of a class. The declaration includes the optional keyword PERSIST, described
below, the class name, which may be any valid IDENTIFIER, the object definitions for instance
variables, and the methods themselves:

MELD PROGRAMMING LANGUAGE 56

class-decl ::= PERSIST CLASS IDENTIFIER :=opt
*object-def

methods-partopt
END CLASS identifiersopt

*methods-part ::= METHODS method

The PERSIST keyword is used to preserve any class objects across executions. This is
implemented with the aid of a file stored in the users connected directory (see section 4.2.1).

The object-def defines types and (optional) initial values for instance variables. Instance
variables are accessible only by the methods of the class they are defined in. Each object (an
instance of the class) manages a private copy of these variables.

The methods-part starts with the keyword METHODS and is followed by any number of method
declarations and constraints.

7.4.6. Methods

Methods are the basic program unit in MELD, similar to a C subroutine but invoked with a
message instead of a procedure call. A method consists of a selector and statements to be
executed when a message matching the selector is received:

selector --> statement

selector : result-type --> statement

A method without a selector is called a constraint and is defined in section 7.4.7.

method ::= method-attr constraintopt
| method-attr sym-selector selector-type --> statementopt opt
| method-attr str-selector --> statementopt
| method-attr any-selector --> statementopt

method-attr ::= OVERRIDE
| DEFAULT
| INSIST
| OVERRIDE DEFAULT
| OVERRIDE INSIST

selector-type ::= : type-specifier

The method-attr field defines the behavior of the method when used in a MERGES statement:

OVERRIDE On a method of the new class, means you use only the methods described by
the new class and not any of the other methods of the same name.

DEFAULT On a method of the merged classes, means this method is the default action
to be taken if no other (non default) method of the same name occurs in any
of the other merged classes. If two default methods occur they get merged.

MELD PROGRAMMING LANGUAGE 57

Not that DEFAULT on the new class only applies to classes that later
MERGES new class.

INSIST On a method of the merged classes, means the subclass cannot override it.

Because MELD is strongly typed, you must specify a selector-type, that is a result datatype, if the
method returns a value.

The selector may be a symbolic, string, or a special form. These are described below.

Note: A string selector can only be called asynchronously (with the SEND statement), and a
string selector method cannot return a value.

7.4.6.1. Selectors

When a message is received by an object, the run-time system searches for a matching selector
and invokes the appropriate method. The symbolic selector is designed for internal use by
programs and resembles a procedure header:

sym-selector ::= IDENTIFIER (param-list)opt

Here IDENTIFIER is the selector identifier, and the param-list specifies the names and types of
the formal parameters:

param-list ::= identifier-list : type-specifier
| param-list ; param-list

The string selector is intended for external use (i.e., input from users of MELD programs). When
a string message is sent to an object, it is matched against all of the object’s string selectors and
all matching selectors are invoked. The string selector format is:

str-selector ::= regular-exp
| regular-parm-exp (param-list)

A regular-exp and regular-parm-exp are quoted strings containing a regular expression as
described in the manual entry for ed(1).

regular-exp ::= STRING

regular-parm-exp ::= STRING

A regular-parm-exp allows parameters through the use of "%x" placed within the regular
expression indicating the occurrence of parameters. The implementation supports:

%d Integer
%f Real
%s String

For example:
"x is %d" (x : Integer) -->

MELD PROGRAMMING LANGUAGE 58

The any-selector is a special form that matches only when no other symbolic selector matches:

any-selector ::= *

7.4.7. Constraints

Constraints are statements in the METHODS part of a class definition that have no associated
selector; they are not invoked directly by a message. Constraints define a relation between
variables and actions. When the value of a variable changes some predefined action is triggered.
Constraints are declarative. They are executed whenever the associated input variables are
changed, and not by some explicit command. There are three types of constraint equations:

constraint ::= equation-constraint ;
| change-constraint ;
| condition-constraint ;

7.4.7.1. Equation Constraints

An equation-constraint defines a relation between a set of input instance variables and one
output instance variable. The syntax is that of an assignment statement:

equation-constraint
::= variable := expression

where IDENTIFIER is the output instance variable defined by the class, and expression is a C
expression. When any input (i.e., right hand side) variable changes value, the expression is
reevaluated and assigned to the output variable.

7.4.7.2. Change Type Constraints

A change type constraint does not have an output variable. This constraint defines an action that
will be evaluated when the class object is created and whenever the input instance variables are
modified. The action can be a C procedure call, a synchronous send or an asynchronous send.
The parameter list of variables are the input instance variables in a change type constraint.

change-constraint
::= send-statement
| function-call

7.4.7.3. Conditional Constraints

Constraints in the form of an if statement are called conditional constraints. A conditional if is
recomputed in response to changes in the arguments to the conditional expression:

condition-constraint
::= if-statement

See section 7.4.9.3 for the if-statement syntax.

7.4.8. Type Specifiers

There are six basic types in MELD:

MELD PROGRAMMING LANGUAGE 59

basic-type ::= INTEGER
| BOOLEAN
| CHAR
| STRING
| REAL
| DOUBLE

The type-specifier is

type-specifier ::= basic-type
| ARRAY [INTEGER .. INTEGER] OF basic-type
| ARRAY [INTEGER .. INTEGER] OF IDENTIFIER
| IDENTIFIER

7.4.9. Statements

statement ::= block ;opt
| assignment ;
| if-statement ;
| object-def ;
| function-call ;
| send-statement ;
| delay-statement ;
| RETURN expression ;

statements ::= statement
| statements statement

7.4.9.1. Compound Statement, or Block

Several statements can be used anywhere one is expected by surrounding the sequence of
statements by the delimiters described below. The delimiters define the type of concurrency
(parallel or sequential) and whether the block is executed atomically.

block ::= BEGIN statements END
| { statements }
| [statements]
| (statements)

The statement block consists of zero or more statements enclosed by delimiters. The runtime
execution of the statements is determined by the delimiters as follows:

BEGIN parallel END
Equivalent to { statements }.

{ parallel } The statements are (potentially) executed in parallel according to the partial
ordering of data dependencies.

[sequential] The statements enclosed in the block are executed sequentially.

(atomic) The statements enclosed in the block are executed without interleaving with
any statements outside the block. By default the statements are executed in
data-flow order, but a sequential block may be nested inside an atomic block
to provide sequential execution without interleaving with other statements.

MELD PROGRAMMING LANGUAGE 60

An atomic block executes without interruption from statements outside the block. Normally, a
method may have more than one thread of execution running at one time; the atomic block
allows entry of only one thread of execution at a time.

7.4.9.2. Assignment Statement

The assignment statement sets variable to be the value of expression. The variable may be a
global, instance or local variable:

assignment ::= variable asgn-operator expression

asgn-operator ::= := | +:= | -:= | *:=
| /:= | %:= | >>:= | <<:=
| &:= | ^:= | |:=

The operators have the same meaning as in C (the C form is the same, but without the colon).

7.4.9.3. Conditional Statement

if-statement ::= IF (expression) THEN statement1
| IF (expression) THEN statement ELSE statement1 2

The expression is evaluated and if it is non-zero then statement is executed. If ELSE is used1
then statement is executed only when the expression evaluates to FALSE (0). As is normally2
the case, any ambiguity is resolved by associating the ELSE with the closest else-less IF.

7.4.9.4. Procedure Call

The procedure call is a synchronous message to a MELD object, when the dotted form is used, or
a subroutine call to an external C subroutine.

In the dotted form object is an instance, global, or local variable (or system defined object name,
such as $SENDER) containing the object that will receive the message, and symbolic-message
consists of the method name and parameters.

procedure ::= object . symbolic-message
| symbolic-message

Note: a string message is not allowed in this form, use the SEND statement.

When calling C procedures, the parameter types are converted as follows:

MELD C
----- -----
INTEGER int
REAL float
STRING char *
BOOLEAN int
CHAR char
DOUBLE double

MELD PROGRAMMING LANGUAGE 61

No type checking is performed on the arguments for external procedure calls.

7.4.9.5. Send Statement

The SEND statement sends a message to an object and immediately continues execution (i.e., the
message is sent asynchronously).

send-statement ::= SEND symbolic-message TO variable
| SEND string-selector TO variable

The symbolic-message is a selector identifier with a sequence of parameters.

symbolic-message ::= IDENTIFIER (exp-list)opt

exp-list ::= expression
| exp-list exp-list

The string-message is a string with a sequence of optional parameters.

string-message ::= STRING
| STRING (exp-list)

7.4.9.6. System Variables $Sender, $Self and $Selector

Two system defined variables are provided for referencing the object itself ($SELF) and the
message sender ($SENDER). These variables cannot be used on the left hand side of assignment
statements.

$SELECTOR
The entire string message that invoked this method. For symbolic selectors $SELECTOR holds
the selector name as a string. When used with the * selector you may inspect $SELECTOR to
see what the message received was.

7.4.9.7. Delay Statement

The DELAYUNTIL statement is used to wait for a message to be received by the current method.
The syntax is:

DELAYUNTIL selector-name

where selector-name is a symbolic selector that does not need to be defined in the current
method. The statement causes the current thread of execution to wait for a message that matches
the selector-name, and then continues executing. That is, when a message is received by an
object, any methods in the current object that were using DELAYUNTIL on that method will
continue their execution.

7.4.9.8. Return Statement

A method returns a result by means of the return-statement.

return-statement ::= RETURN expression

MELD PROGRAMMING LANGUAGE 62

7.4.10. Constant

A constant in MELD consists of a user specified number, string or character, or one of the system
constants:

constant ::= TRUE
| FALSE
| NIL
| NULL
| FLOATP
| INTEGER
| STRING
| CHARACTER

See section 7.3 for the lexical definitions of these constant types. FLOATP, INTEGER, STRING
and CHARACTER are lexical classes of constants.

A signed-constant is a constant with an optional unary sign:

signed-constant ::= constant
| + constant
| - constant

MELD PROGRAMMING LANGUAGE 63

8. Complete Grammar
program ::= FEATURE identifiers

*INTERFACE: externals
IMPLEMENTATION: bodyopt

END FEATURE identifiersopt

externals ::= EXPORTS port-listopt
| IMPORTS port-listopt

port-list ::= IDENTIFIER
| IDENTIFIER [identifier-list]
| port-list port-list

body ::= class-decl
| merge-decl
| global-object-decl

merge-decl ::= MERGES identifier-list AS IDENTIFIER

*global-object-decl ::= OBJECT: object-def

class-decl ::= PERSIST CLASS IDENTIFIER :=opt
*object-def;

methods-partopt
END CLASS identifiersopt

*methods-part ::= METHODS: method

object-def ::= identifier-list : type-specifier
| identifier-list : type-specifier := signed-constant
| identifier-list : type-specifier := variable . CREATE

method ::= method-attribute constraintopt
| method-attr sym-selector selector-type --> statementopt opt
| method-attr str-selector --> statementopt
| method-attr any-selector --> statementopt

method-attr ::= OVERRIDE
| DEFAULT
| INSIST
| OVERRIDE DEFAULT
| OVERRIDE INSIST

selector-type ::= : type-specifier

MELD PROGRAMMING LANGUAGE 64

sym-selector ::= IDENTIFIER (param-list)opt

param-list ::= identifier-list : type-specifier
| param-list ; param-list

str-selector ::= regular-exp
| regular-parm-exp (param-list)

regular-exp ::= STRING

regular-parm-exp ::= STRING

any-selector ::= *

constraint ::= equation-constraint ;
| change-constraint ;
| condition-constraint ;

equation-constraint
::= IDENTIFIER := expression

change-constraint
::= send-statement
| function-call

condition-constraint
::= if-statement

signed-constant ::= constant
| + constant
| - constant

basic-type ::= INTEGER
| BOOLEAN
| CHAR
| STRING
| REAL
| DOUBLE

type-specifier ::= basic-type
| ARRAY [INTEGER .. INTEGER] OF basic-type
| ARRAY [INTEGER .. INTEGER] OF IDENTIFIER
| IDENTIFIER

block ::= BEGIN statements END
| { statements }
| [statements]
| (statements)

MELD PROGRAMMING LANGUAGE 65

statement ::= block ;opt
| assignment ;
| if-statement ;
| object-def ;
| function-call ;
| send-statement ;
| delay-statement ;
| return-statement ;

statements ::= statement
| statements statement

if-statement ::= IF (expression) THEN statement1
| IF (expression) THEN statement ELSE statement1 2

assignment ::= variable asgn-operator expression

asgn-operator ::= := | +:= | -:= | *:=
| /:= | %:= | >>:= | <<:=
| &:= | ^:= | |:=

function-call ::= variable . symbolic-message
| symbolic-message

delay-statement ::= DELAYUNTIL IDENTIFIER

return-statement ::= RETURN(expression)

send-statement ::= SEND symbolic-message TO variable
| SEND string-message TO variable

symbolic-message ::= IDENTIFIER (exp-list)opt

string-message ::= STRING
| STRING (exp-list)

MELD PROGRAMMING LANGUAGE 66

variable ::= IDENTIFIER
| IDENTIFIER [expression]
| variable . variable

object ::= IDENTIFIER
| IDENTIFIER [expression]

primary ::= variable
| function-call
| constant
| (expression)

expression ::=
| primary
| + expression
| - expression
| (basic-type) expression
| expression operator expression

operator ::= - | + | *
| <> | != | || | && | >= | <=
| << | >> | < | > | % | !
| / | | | ^ | == | =

constant ::= TRUE
| FALSE
| nil
| NULL
| FLOATP
| INTEGER
| STRING
| CHARACTER

exp-list ::= expression
| exp-list exp-list

identifier-list ::= IDENTIFIER
| identifier-list IDENTIFIER

identifiers ::= IDENTIFIER
| identifiers IDENTIFIER

MELD PROGRAMMING LANGUAGE 67

9. Unimplemented Features and Bugs
The MELD implementation is incomplete. A number of features have been discussed in the
literature but are not present in the current implementation. This section outlines the missing
features.

9.1. C Loops

All of the C loop statements should be added to MELD.

9.2. Type Specifier

A number of the sophisticated types are missing from type-specifier, including:

type-specifier ::= basic-type
| RECORD BEGIN objdecl-part END
| SET-OF type-specifier KEY IDENTIFIER
| ORDERED-SET-OF type-specifier KEY IDENTIFIER

ORDERED direction BY IDENTIFIER

9.3. Views

Views are not present:

assignment ::=
| var := VIEWS: IS-PROD (IDENTIFIER)
| var := VIEWS: IS-PROD (IDENTIFIER)

BOOLOP express

9.4. Union

The notion of union [Kaiser 87a; Kaiser 89a] is not present:

body-unit ::= union

union GETS IDENTIFER := IDENTIFER * IDENTIFER

9.5. Data Dependency Bug

BALANCE := BALANCE + CASH;
SEND "the balance is %d"(BALANCE) TO STDOUT;

There is a bug in the data dependency analysis. This example will output the old balance. The
proper behavior may be obtained by using printf rather than SEND to do the output, i.e.
printf("the balance is %d", BALANCE);.

9.6. FEATURE name

The FEATURE name may be a list of words, but if you include a reserved word in that list (such
as AND) you get a very obtuse error message. Try naming a feature "Savings and Loan" and see
what happens!

MELD PROGRAMMING LANGUAGE 68

9.7. Comments

The comment characters are {* comment *}. /* comment */ should also be allowed.

9.8. Object Class

There is no system defined type hierarchy, and no Object class.

9.9. Feature Names

Feature names consist of an arbitrary string of identifiers, but you cannot include a MELD

reserved word in that list!

9.10. Type checking

Since there is no type checking on procedures, lint should be called as part of the MELD script.

9.11. Bug in string selectors

The selector:
"Open the %s doors HAL"(what : STRING) -->

printf("match 1 ’%s’\n",what);

does not match the string "Open the cargo doors HAL". This seems like a bug.

MELD PROGRAMMING LANGUAGE 69

Appendix I
Running Meld

The procedure for compiling and linking a Meld program is simple. The command
/proj/meld/bin/meld foo.m

will compile the single file foo.m and link it with the runtime library, producing an a.out file.
The command

/proj/meld/bin/meld -o foo foo.m

will work the same way, but will produce an executable file named foo rather than one named
a.out. The command

/proj/meld/bin/meld foo.m bar.m

will compile both files and link them into a single a.out file. A switch may be added, as
above, to change the name of the executable file. For true separate compilation, use the
command

/proj/meld/bin/meld -c foo.m

This compiles foo.m, but without producing an a.out file. The switch is similar to the one in
the C compiler that performs the analogous function. Compilation produces three files: foo.o,
foo.mo (used by ml to build its tables), and FooFeat.fo (if the feature contained in foo.m is
named FooFeat -- this file contains a listing of the feature’s exports). If you have previously
compiled foo.m and bar.m in this way, you should then use the command

/proj/meld/bin/ml foo.o bar.o

which will generate some tables necessary for linking separately compiled Meld files and link
everything together, producing an a.out file. The name of the executable file may be changed,
as in the compiler examples above, by using the -o switch.

There are other switches. The switch -v prints out messages as each compiler phase runs, and
-t times each phase.

MELD PROGRAMMING LANGUAGE 70

MELD PROGRAMMING LANGUAGE 71

Appendix II
Bibliography

[Broy 85] Manfred Broy (editor).
Control flow and data flow: concepts of distributed programming.
Springer-Verlag, New York, 1985.

[Goldberg 85] Adele Goldberg.
Smalltalk-80.
Addison-Wesley, Reading, Mass., 1985.

[Hseush 88a] Wenwey Hseush and Gail E. Kaiser.
Concurrent Breakpointing.
Technical Report CUCS-402-88, Columbia University Department of

Computer Science, October, 1988.

[Hseush 88b] Wenwey Hseush and Gail E. Kaiser.
Data Path Debugging: Data-Oriented Debugging for a Concurrent

Programming Language.
In ACM SIGPlan/SIGOps Workshop on Parallel and Distributed Debugging,

pages 236-246. Madison WI, May, 1988.
Special issue of SIGPlan Notices, 24(1), January 1989.

[Kaiser 87a] Gail E. Kaiser and David Garlan.
MELDing Data Flow and Object-Oriented Programming.
In Object-Oriented Programming Systems, Languages and Applications

Conference, pages 254-267. Orlando FL, October, 1987.
Special issue of SIGPlan Notices, 22(12), December 1987.

[Kaiser 87b] Gail E. Kaiser and David Garlan.
MELD: A Declarative Notation for Writing Methods.
In 6th Annual International Phoenix Conference on Computers and

Communications, pages 280-285. Scottsdale AZ, February, 1987.

[Kaiser 87c] Gail E. Kaiser and David Garlan.
Composing Software Systems from Reusable Building Blocks.
In 20th Annual Hawaii International Conference on System Sciences, pages

536-545. Kona HI, January, 1987.

[Kaiser 87d] Gail E. Kaiser and David Garlan.
Melding Software Systems from Reusable Building Blocks.
IEEE Software :17-24, July, 1987.

[Kaiser 88] Gail E. Kaiser.
Concurrent MELD.
September, 1988
Presented at the Workshop on Object-Based Concurrent Programming.

Available from the author.

[Kaiser 89a] Gail E. Kaiser and David Garlan.
Synthesizing Programming Environments from Reusable Features.
Software Reusability.
Addison-Wesley, Reading MA, 1989, pages 35-55, Chapter 2.

MELD PROGRAMMING LANGUAGE 72

[Kaiser 89b] Gail E. Kaiser.
Object-Oriented Programming Language Facilities for Concurrency Control.
Technical Report CUCS-439-89, Columbia University Department of

Computer Science, April, 1989.
Submitted for publication.

[Kaiser 89c] Gail E. Kaiser, Steven S. Popovich, Wenwey Hseush and Shyhtsun Felix Wu.
Melding Multiple Granularities of Parallelism.
In Stephen Cook (editor), 3rd European Conference on Object-Oriented

Programming, pages 147-166. Cambridge University Press, Nottingham,
UK, July, 1989.

[Keene 85] Sonya E. Keene and David A. Moon.
Flavors: Object-oriented Programming on Symbolics Computers.
In Common Lisp Conference. December, 1985.

[Moon 86] David A. Moon.
Object-Oriented Programming with Flavors.
In Object-Oriented Systems, Languages, and Applications Conference, pages

1-8. Portland, OR, September, 1986.
Special issue of SIGPlan Notices, 21(11), November 1986.

[Popovich 88] Steven S. Popovich and Gail E. Kaiser.
MELDing Parallel and Distributed Programming.
Technical Report CUCS-402-88, Columbia University Department of

Computer Science, October, 1988.

[Sharp 85] J. A. Sharp.
Data flow computing.
Halsted Press, New York, 1985.

[Stroustrup 86] Bjarne Stroustrup.
The C++ programming Language.
Addison-Wesley, Reading, Mass., 1986.

[Wadge 85] William W. Wadge and Edward A. Ashcroft.
Lucid, the dataflow programming language.
Academic Press, New York, 1985.

MELD PROGRAMMING LANGUAGE 73

Index
! 21

& 21

< 21
<= 21

= 21
== 21

> 21
>= 21

CLASS 56
EXPORTS 32, 54
FEATURE 54
any-selector 32, 58
asgn-operator 22, 60
assignment 60
basic-type 59
block 37, 59
body 54
change-constraint 58
class-decl 56
condition-constraint 58
constant 62
constraint 58
equation-constraint 58
exp-list 61
externals 54
IDENTIFIER 52
identifier-list 54
identifiers 54
if-statement 60
method 56
methods-part 56
object-decl 55
object-def 55
param-list 57
port-list 54
procedure 60
program 7, 54
regular-exp 57
regular-parm-exp 57
return-statement 61
selector 6
selector-type 56
send-statement 61
signed-constant 62
statement 37, 59
statements 37, 59
str-selector 57
string-message 61
sym-selector 57
symbolic-message 61
type-specifier 59
IMPLEMENTATION: 54
IMPORTS 32, 54
INTERFACE: 54
MELD program 53
MELD, how to execute 5
MERGES 55
OBJECT 55
PERSIST 56
$SELECTOR 20, 61
$SELF 20, 61
$SENDER 20, 61

MELD PROGRAMMING LANGUAGE 74

CREATE, and named objects 26
GET, and named objects 26
IMPLEMENTATION 54

Action equations 8
AND 21
Array 18
Assignment statement 22, 60
Asynchronous-send constraints 46
Atomic block 37, 39, 59

Block 59
Block, atomic 37, 39
Block, parallel 37, 38
Block, sequential 37, 39

C code, embedded 53
C interface 23
C procedure constraints 46
Change type constraints 58
Change-type constraints 45
Character constant 53
Classes 25
Comments 23, 51
Compilation, separate 32
Compound types 18
Conditional constraints 47, 58
Conditional statement 22, 60
Constant 62
Constant, character 53
Constant, integer 52
Constants 18, 52
Constants, floating point 53
Constants, string 53
Constants, system 52
Constraint 6
Constraints 13, 45, 58
Constraints, asynchronous-send type 46
Constraints, C procedure type 46
Constraints, change type 58
Constraints, change-type 45
Constraints, conditional 58
Constraints, conditional type 47
Constraints, equation 58
Constraints, equation type 45
Constraints, limitations 48
Create 25

Data dependency 8, 38, 40, 41
Data dependency, and constraints 42
Data dependency, and deadlock 42
Data dependency, and if-then-else 41
Dataflow programming 2
Deadlock 42
Debugging 14
Declarations 17
Declarations, class 55
Declations, object 55
Delay statement 30, 61

Equation constraints 45, 58
Examples, a note on 2
Expressions 21

Floating point constants 53
Function call 11, 28

Identifier 52
Inheritance 35
Instances 25

MELD PROGRAMMING LANGUAGE 75

Integers 52
Interface clause 54

Keywords 52

Lexical conventions 51
Literals 17, 18
Looping statements 67

Merge-decl 55
Merges statement 35
Message 11
Messages 10
Method interleaving 14
Methods 28, 56

Named objects 26
Naming Service 26
NOT 21

Object declation 55
Object Oriented Programming Languages 1
OOPLS 1
Operators 21
OR 21

Parallel block 8, 37, 38, 59
Persistent classes 25
Procedure call 60

Race condition 43
Race conditions 16
Remote Objects 26
Return statement 23

Selectors 30, 56, 57
Selectors, special 32
Selectors, string 31
Selectors, symbolic 30
Send statement 28, 61
Send, synchronous 28
Separate compilation 32
Sequential block 37, 39, 59
Statements 21
String selectors 31
Strings 53
Symbolic selectors 30
Synchronous message 11
Synchronous send 28
Syntax 51
System constants 52
System variables 61

Type specifier 58
Types 8, 17
Types, compound 18

Unimplemented features 67

Variables 8, 17, 19
Variables, system 61
Variables, system defined 20
Views 67

{* comment *} 23

| 21

MELD PROGRAMMING LANGUAGE 76

MELD PROGRAMMING LANGUAGE i

Table of Contents
Notes to the Reader 1
I Tutorial 3
1. A Tutorial Introduction 5

1.1. Getting Started 5
1.2. Variables and Types 8
1.3. Action Equations and Data Dependency 8
1.4. Messages to Objects 10
1.5. Constraints 13
1.6. Method Interleaving 14

2. Declarations, Variables, Literals and Types 17
2.1. Declarations 17
2.2. Types 17

2.2.1. Compound Types 18
2.3. Constants (Literals) 18
2.4. Variables 19

2.4.1. System Variables 20

3. Operators, Expressions and Statements 21
3.1. Operator Summary 21

3.1.1. Arithmetic Operators 21
3.1.2. Relational Operators 21
3.1.3. Logical Operators 21

3.2. Expressions 21
3.3. Statement Summary 21

3.3.1. Assignment Statement 22
3.3.2. Conditional Statement 22
3.3.3. Return Statement 23
3.3.4. C Interface 23

3.4. Comments 23
3.5. A Small Example 23

4. Classes, Objects, Methods and Messages 25
4.1. Overview 25
4.2. Classes and Instances 25

4.2.1. Persistent Classes 25
4.2.2. Remote Objects 26

4.3. Methods 28
4.3.1. Send Statement 28
4.3.2. Synchronous Send 28
4.3.3. DelayUntil Statement 30

4.4. Selectors 30
4.4.1. Symbolic Selectors 30
4.4.2. String Selectors 31
4.4.3. Line-Oriented Matching 32
4.4.4. More Than One Matching 32
4.4.5. Special Selectors 32

4.5. External Methods and Variables 32
4.6. Merges Statement 35

5. Block Structure 37
5.1. Parallel Block 38

5.1.1. Partial Ordering of Data Dependency 38
5.2. Sequential Block 39
5.3. Atomic Block 39

MELD PROGRAMMING LANGUAGE ii

5.4. The Rules of Data Dependency 40
5.4.1. First Rule of Data Dependency - Assignment Rule 40
5.4.2. Second Rule of Data Dependency -- If-Then-Else Rule 41
5.4.3. Third Rule of Data Dependency -- Change-Type Rule 41
5.4.4. Fourth Rule of Data Dependency - sequential block rule 41
5.4.5. Fifth Rule of Data Dependency -- Constraint Rule 42
5.4.6. Sixth Rule of Data Dependency - Dynamic Rule 42
5.4.7. Data Dependency Deadlock 42
5.4.8. Seventh Rule of Data Dependency - Recursion Rule 43
5.4.9. Race Condition 43

6. Constraints 45
6.1. Equation Constraints 45
6.2. Change-Type Constraints 45

6.2.1. C procedure Constraints 46
6.2.2. Asynchronous-Send Constraints 46

6.3. Conditional Constraints 47
6.4. Limitations 48
6.5. A Small Example 48

II Reference Manual 49
7. MELD Reference Manual 51

7.1. Introduction 51
7.2. Syntax Notation 51
7.3. Lexical Conventions 51

7.3.1. Comments 51
7.3.2. Identifiers 52
7.3.3. Keywords 52
7.3.4. Constants 52

7.3.4.1. System Constants 52
7.3.4.2. Integer Constants 52
7.3.4.3. Floating Point Constants 53
7.3.4.4. Character Constants 53

7.3.5. Strings 53
7.3.6. Embedded C Code 53

7.4. Meld Programs 53
7.4.1. Interface 54
7.4.2. Implementation 54
7.4.3. Object Declaration 55
7.4.4. Merges 55
7.4.5. Class Declarations 55
7.4.6. Methods 56

7.4.6.1. Selectors 57
7.4.7. Constraints 58

7.4.7.1. Equation Constraints 58
7.4.7.2. Change Type Constraints 58
7.4.7.3. Conditional Constraints 58

7.4.8. Type Specifiers 58
7.4.9. Statements 59

7.4.9.1. Compound Statement, or Block 59
7.4.9.2. Assignment Statement 60
7.4.9.3. Conditional Statement 60
7.4.9.4. Procedure Call 60
7.4.9.5. Send Statement 61
7.4.9.6. System Variables $Sender, $Self and $Selector 61
7.4.9.7. Delay Statement 61
7.4.9.8. Return Statement 61

MELD PROGRAMMING LANGUAGE iii

7.4.10. Constant 62

8. Complete Grammar 63
9. Unimplemented Features and Bugs 67

9.1. C Loops 67
9.2. Type Specifier 67
9.3. Views 67
9.4. Union 67
9.5. Data Dependency Bug 67
9.6. FEATURE name 67
9.7. Comments 68
9.8. Object Class 68
9.9. Feature Names 68
9.10. Type checking 68
9.11. Bug in string selectors 68

Appendix I. Running Meld 69
Appendix II. Bibliography 71
Index 73

