
Columbia University Computer Science Department Technical Report CUCS-033-99, December1999 1

Snowball: Extracting Relations from Large Plain-Text Collections

Eugene Agichtein Luis Gravano
Department of Computer Science

Columbia University
1214 Amsterdam Avenue

New York, NY 10027-7003, USA
feugene, gravano g@cs.columbia.edu

ABSTRACT
Text documents often contain valuable structured data that is
hidden in regular English sentences. This data is best exploited
if available as a relational table that we could use for answering
precise queries or for running data mining tasks. We explore a
technique for extracting such tables from document collections
that requires only a handful of training examples from users.
These examples are used to generate extraction patterns, that in
turn result in new tuples being extracted from the document col-
lection. We build on this idea and present ourSnowballsystem.
Snowballintroduces novel strategies for generating patterns and
extracting tuples from plain-text documents. At each iteration
of the extraction process,Snowballevaluates the quality of these
patterns and tuples without human intervention, and keeps only
the most reliable ones for the next iteration. In this paper we also
develop a scalable evaluation methodology and metrics for our
task, and present a thorough experimental evaluation ofSnow-
ball and comparable techniques over a collection of more than
300,000 newspaper documents.

KEYWORDS: Text databases, information extraction, bootstrapping.

1 INTRODUCTION
Text documents often hide valuablestructured data. For exam-
ple, a collection of newspaper articles might contain information
on the location of the headquarters of a number oforganiza-
tions. If we need to find the location of the headquarters of, say,
Microsoft, we could try and use traditional information-retrieval
techniques for finding documents that contain the answer to our
query [15, 14]. Alternatively, we could answer such a query
more precisely if we somehow had available atable listing all
the organization-location pairs that are mentioned in our docu-
ment collection. Atuple< o; ` > in such table would indicate
that the headquarters of organizationo are in location`, and
that this information was present in a document in our collec-
tion. Tuple<Microsoft, Redmond > in our table would

then provide the answer to our query. The web contains millions
of pages whose text hides data that would be best exploited in
structured form. If we could build structured tables from the
information hidden in unstructured text, then we would be able
to run more complex queries and analysis over these tables, and
report precise results.

In this paper we develop theSnowballsystem for extracting
structured data from plain-text documents withminimal human
participation. Our techniques build on the ideas and general ap-
proach introduced by Brin [2], which we describe next.

DIPRE: Dual Iterative Pattern Expansion To extract a struc-
turedrelation (or table) from a collection of HTML documents,
Brin introduced the DIPRE method [2]. DIPRE works best in an
environment like the World-Wide Web, where the tabletuples
to be extracted will tend to appear in uniform contexts repeat-
edly in the collection documents (i.e., in the available HTML
pages). DIPRE exploits this redundancy and inherent structure
in the collection to extract the target relation with minimal train-
ing from a user. In fact, DIPRE requires that the user just pro-
vide a handful of valid tuples of the target relation, with no other
training. (This is in contrast to the way traditional information
extraction systems operate.) We describe the DIPRE method,
which forms the basis for theSnowballsystem that we present
in Section 2.

As in the rest of the paper, we focus the presentation on the
organization-location scenario defined above. Hence, in this
context DIPRE’s goal is to extract a table with all the organization-
location tuples that appear in a given document collection. Ini-
tially, we provide DIPRE with a handful of instances of valid
organization-location pairs. For example, we may indicate that
<Microsoft, Redmond> is a valid pair, meaning that Mi-
crosoft is an organization whose headquarters are located in Red-
mond. Similarly, we provide DIPRE with a few other exam-
ples, as Table 1 shows. In addition, the user provides a general
regular expression that the entities must match. For example,
a potential organization value must match a regular expression
[A�Z0�9][A�Za�z0�9:; :0 #!?;&]f4; 45g[A�Za�z0�9].
This regular expression says that an organization must begin ei-
ther with a capital letter (e.g., Microsoft), or with a number,
(e.g., 3Com), and be followed by four to 45 characters, end-
ing in a letter or a number. This is all the training that DIPRE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Columbia University Computer Science Department Technical Report CUCS-033-99, December1999 2

requires from the user.

Organization Location of Headquarters
MICROSOFT REDMOND
EXXON IRVING
IBM ARMONK
BOEING SEATTLE
INTEL SANTA CLARA

Table 1: User-provided example tuples for DIPRE.

Computer servers atMicrosoft ’s headquarters inRedmond...
Exxon, Irving , said it will boost its stake in the...
In midafternoon trading, shares ofIrving -basedExxon fell ...
TheArmonk -basedIBM has introduced a new line ...
...operate fromBoeing’s headquarters inSeattle.
Intel , Santa Clara, cut prices of its Pentium...

Figure 1: Occurrences of the initial example tuples in
text documents.

After this initial training phase, DIPRE looks for instances of
the example organizations and locations in the text documents.
Some occurrences of the example tuples in documents are listed
in Figure 1. Then, DIPRE examines the text that surrounds the
initial tuples. For example, DIPRE inspects the context sur-
rounding Microsoft and Redmond in “computer servers
at Microsoft ’s headquarters in Redmond” to con-
struct a pattern “<STRING1>’s headquarters in
<STRING2>.” Other possible patterns are listed in Figure 2.

The DIPRE algorithm for generating the patterns is described in
detail in [2]. Briefly, the algorithm represents an occurrence
of a seed tuple as a seven-tuple:< o; `, order, url,
left, middle, right >, whereurl is the URL of the
source document where< o; ` > was found,order is 1 if
o appeared beforèand 0 otherwise, andleft , middle , and
right are the parts of the context that surrounds the occur-
rence of< o; ` > in the document. A pattern (represented
as a five tuple<order, urlprefix, left, middle,
right >) is created by grouping together occurrences that all
have equalmiddle string andorder , and then setting the
urlprefix , left , andright of the pattern to the longest
common substrings of all theurl , left , andright strings,
respectively. The patterns are then filtered by requiring that each
pattern be supported by more then one seed tuple, and thaturl-
prefix , left , middle , andright all be non-empty.

Finally, after generating a number of patterns from the initial
seed tuples, DIPRE scans the available documents in search of
segments of text that match the patterns. As a result of this pro-
cess, DIPRE generates new tuples and uses them as the new
“seed.” DIPRE starts the process all over again by searching
for these new tuples in the documents to identify new promising
patterns.

As we have seen, unlike most machine-learning systems for
information extraction, DIPRE requires no training other than

<STRING1>’s headquarters in <STRING2>
<STRING2>-based <STRING1>
<STRING1>, <STRING2>

Figure 2: Initial DIPRE patterns. <STRING1>
and <STRING2> are regular expressions that would
match an organization and a location, respectively.

providing a handful of initial seed tuples and specifying the
general pattern that the elements of the extracted tuples must
match. By acquiring additional training examples automatically,
DIPRE aims at capturing most of the tuples mentioned in the
collection. A key assumption behind this method is that the ta-
ble to be extracted appears redundantly in the document collec-
tion in question. As a result of this assumption, the patterns that
DIPRE generates need not be overly general to captureevery
instanceof an organization-location tuple. Instead, a more crit-
ical goal is to discard patterns that are not selective enough, and
that may generate invalid tuples. (To combat this problem, [2]
suggests assigning weights to patterns and tuples, and notes a
potential relationship of this problem to Latent Semantic Index-
ing [7].) In effect, a system based on the DIPRE method will
perform reasonably well even if certain instances of a tuple are
missed, as long as the system captures one such instance.

Related Work Brin’s DIPRE method and ourSnowballsystem
that we introduce in this paper both address issues that have
long been the subject of information extraction research. Our
task, though, is different in that we do not attempt to extractall
the relevant information from each document, which has been
the goal of traditional information extraction systems [10]. One
of the major challenges in information extraction is the neces-
sary amount of manual labor involved in training the system for
each new task. This challenge has been addressed in different
ways. One approach is to build a powerful and intuitive graphi-
cal user interface for training the system, so that domain experts
can quickly adopt the system foreach new task [16]. Neverthe-
less, these systems still require substantial expert manual labor
to port the system to each new domain. In contrast,Snowball
and DIPRE require only a handful of example tuples for each
new scenario.

Another approach is to train the system over a largemanually
taggedcorpus, where the system can apply machine learning
techniques to generate extraction patterns [8]. The difficulty
with this approach is the need for a large tagged corpus, which
again involves a significant amount of manual labor to create. To
combat this problem, some methods have been proposed to use
an untagged corpus for training. [12] describes generating ex-
traction patterns automatically by using the training corpus that
consists of sets of documents, which were manually separated
into the relevant vs. irrelevant set for the topic. This approach
requires less manual labor than to tag the documents, but never-
theless the effort involved is substantial. [5] describes machine
learning techniques for creating a knowledge base from the web,
consisting of classes of entities and relations, by exploiting the

Columbia University Computer Science Department Technical Report CUCS-033-99, December1999 3

content of the documents, as well as the link structure of the
web. Their method requires training over a large set of web
pages, with relevant document segments manually labeled, as
well as a large training set of page-to-page relations.

Finally, a number of systems use unlabeled examples for train-
ing. This direction of research is closest to our work. Specif-
ically, the approach we are following falls into the broad cat-
egory of bootstrapping techniques. Bootstrapping has been an
attractive alternative in automatic text processing. [17] demon-
strates a bootstrapping technique for disambiguating senses of
words by starting with a small set of seed collocations for each
word (e.g., seed collocation “life” to disambiguate the biological
sense of the noun “plant”), and iteratively classifies the occur-
rences of the word into one of the appropriate senses. [4] uses
bootstrapping to classify named entities in text. They exploit
two orthogonal features for classifying named entities, i.e., the
spelling of the entity itself (e.g., having a suffix “Corp.”), and the
context in which the entity occurs. They present an algorithm
that classifies named entities with highaccuracy. [13] presents
a bootstrapping technique to extract patterns to recognize and
classify named entities in text. [1] present a methodology and
theoretical framework for combining unlabeled examples with
labeled examples to boost performance of a learning algorithm
for classifying web pages. While the underlying principle of
using the systems’ output to generate the training input for the
next iteration is the same for all of these approaches, the tasks
are different enough to require specialized methodologies.

Our Contributions As we have discussed, [2] describes a method
for extracting relations from the web using bootstrapping. Our
Snowballsystem, which we present in this paper, builds on DIPRE.
Our main contributions include:

� Techniques for generating patterns and extracting tuples:
We propose the use of named-entity tags for anchoring the search
of new tuples in the documents. Also, we develop a new strat-
egy for defining and representing patterns that is at the same
time flexible, so that we capture most of the tuples that are hid-
den in the text in our collection, and selective, so that we do not
generate invalid tuples (Sections 2.1 and 2.2).
� Strategies for evaluating patterns and tuples: Since the
amount of training thatSnowballrequires is minimal, it is cru-
cial that the patterns and tuples that are generated during the ex-
traction process be evaluated. This way,Snowballwill be able
to eliminate unreliable tuples and patterns from further consid-
eration. We develop strategies for estimating the reliability of
the extracted patterns and tuples (Section 2.3).
� Evaluation methodology and metrics: Evaluating systems
like Snowballand DIPRE is challenging: these systems are de-
signed to work over large document collections, so manually
inspecting all documents to build the “perfect” table that should
be extracted is just not feasible. We introduce a scalable evalua-
tion methodology and associated metrics (Section 3), which we
use in Sections 4 and 5 for large-scale experiments over collec-
tions of training and test documents. These collections have a
total of over 300,000 real documents.

2 THE SNOWBALLSYSTEM
In this section we present theSnowballsystem, which develops
key components of the basic DIPRE method that we described
in the previous section. As Figure 3 shows, theSnowballarchi-
tecture follows the general DIPRE outline. However, we will
see thatSnowballintroduces key ideas that result in substan-
tially better performance. More specifically,Snowballpresents a
novel technique to generate patterns and extract tuples from text
documents, which we describe in Sections 2.1 and 2.2. Also,
Snowballintroduces a strategy for evaluating the quality of the
patterns and the tuples that are generated in each iteration of the
extraction process (Section 2.3). Only those tuples and patterns
that are regarded as being “sufficiently reliable” will be kept by
Snowballfor the following iterations of the system (Section 2.3).
These new strategies for generation and filtering of patterns and
tuples improve the quality of the extracted tables significantly,
as the experimental evaluation in Section 5 will show.

Generate Extraction Patterns

Seed Tuples

Generate New Seed Tuples Tag Entities

Augment Table

Find Occurrences of Seed Tuples

Figure 3: The main components of Snowball.

2.1 Generating Patterns
As we observed in Section 1, a crucial step in the table extraction
process is the generation of patterns that will be used to find new
tuples in the documents. Ideally, we would like patterns both to
be selective, so that they do not generate incorrect tuples, and
to have highcoverage, so that they identify many new tuples.
In this section, we introduce a novel way of generating such
patterns from a set of seed tuples and a document collection.

Snowballis initially given a handful of example tuples. For ev-
ery such organization-location tuple< o; ` >, Snowballfinds
segments of text in the document collection whereo and` occur
close to each other, just as DIPRE does, and analyzes the text
that “connects”o and ` to generate patterns. A key improve-
ment ofSnowballfrom the basic DIPRE method is thatSnow-
ball’s patterns include named-entity tags. An example of such
a pattern is<LOCATION>-based <ORGANIZATION>. This
pattern will not match any pair of strings connected by “-based.”
Instead,<LOCATION>will only match a string identified by
a tagger as an entity of typeLOCATION. Similarly, <ORGA-
NIZATION> will only match a string identified by a tagger as
an entity of typeORGANIZATION. To understand the impact
of using named-entity tags in theSnowballpatterns, consider
the pattern<STRING2>-based <STRING1> . This pattern
matches the text surrounding correct organization-location tu-
ples (e.g., “the Armonk-based IBM has introduced...”). Unfor-
tunately, this pattern will also match any strings connected by “-

Columbia University Computer Science Department Technical Report CUCS-033-99, December1999 4

based,” like “computer-based learning ” or “ alcohol-
-based solvents. ” This might result in the inclusion of
invalid tuples<learning, computer > and<solvents,
alcohol > in our organization-location table. When used to
generate patterns, these tuples may in turn result in wrong pat-
terns.

In contrast, by using the version of the same pattern that in-
volves named-entity tags,<LOCATION>-based <ORGANI-
ZATION>, we have a better chance of avoiding this kind of
spurious matches. Figure 4 shows additional patterns thatSnow-
ball might generate, based on the examples in Figure 1, which
involve named-entity tags.

<ORGANIZATION>’s headquarters in <LOCATION>

<LOCATION>-based <ORGANIZATION>

<ORGANIZATION>, <LOCATION>

Figure 4: Patterns that exploit named-entity tags.

A key step in generating and later matching patterns like the one
above is finding where<ORGANIZATION>and<LOCATION>
entities occur in the text. For this,Snowballuses a state-of-
the-art named-entity tagger, The MITRE Corporation’s Alembic
Workbench [6]. In addition toORGANIZATIONand LOCA-
TION entities, Alembic can identifyPERSONentities, and can
be trained to recognize other kinds of entities. (See Section 6
for further discussion.)

Once the entities in the text documents are tagged,Snowballcan
ignore unwanted entities (e.g.,PERSONs), focus on occurrences
of LOCATIONand ORGANIZATIONentities (Figure 5), and
analyze the context that surroundseach pair of such entities to
check if they are connected by the right words and hence match
our patterns.

To define patterns precisely,Snowballcould follow DIPRE’s ap-
proach, and have a pattern consist of aleft , a middle , and
a right string. An occurrence of anORGANIZATIONand a
LOCATIONentity would be regarded as a match for a pattern if
the text surrounding the entities matches the three strings in the
pattern exactly. As we will see, this approach results in some-
what selective patterns (i.e., most of these patterns tend not to
generate invalid tuples), yet it suffers from limited coverage (i.e.,
these patterns might not capture all instances of valid tuples).
Hence,Snowballrepresents the context around theORGANI-
ZATION andLOCATIONentities in the patterns in a more flex-
ible way. As a result, minor variations such as an extra comma
or a determiner will not stop us from matching contexts that are
otherwise very close to our patterns. More specifically,Snow-
ball represents the left, middle, and right “contexts” associated
with a pattern analogously as how the vector-space model of in-
formation retrieval represents documents and queries [15, 14].
Thus, theleft , middle , andright contexts are three vec-
tors associating weights (i.e., numbers between 0 and 1) with
terms (i.e., arbitrary strings of non-space characters). These
weights indicate the importance of each term in the correspond-
ing context. We describe how to compute these weight vectors

later in this section.

Definition 1 A Snowball patternis a 5-tuple<left, tag1,
middle, tag2, right> , wheretag1 andtag2 are named-
entity tags, andleft , middle , andright are vectors asso-
ciating weights with terms.

An example of aSnowballpattern is the 5-tuple<f<the, 0.2 >g,
LOCATION, f<-, 0.5 >, <based, 0.5 >g,
ORGANIZATION, fg>. This pattern will match strings like
“the Irving-based Exxon Corporation,” where the word “the”
(left context) precedes a location(Irving), which is in turn fol-
lowed by the strings “-” and “based” (middle context) and an
organization. What appears to the right of the organization in
the string is unimportant in this case, hence the empty right con-
text in the pattern. Slight variations of the given string will also
match the pattern to a smaller extent. (We introduce a notion of
“degree of match” later in this section.) For example, a string
“...she said. Redmond-based Microsoft reportedly...” will tend
to match our example pattern, even when the location, Red-
mond, is not preceded by any of the terms in the left context
(i.e., “the”). This extra flexibility results in better coverage of
the patterns.

To match text portions with our 5-tuple representation of pat-
terns,Snowballalso associates a 5-tuple with each document
portion that contains two named entities with the correct tag
(i.e., LOCATIONand ORGANIZATIONin our scenario). Af-
ter identifying two such entities in a stringS, Snowballcreates
three weight vectorslS , rS , andmS from S by analyzing the
left, right, and middle contexts around the named entities, re-
spectively.lS has a non-zero weight foreach term in thew-term
window to the left of the leftmost named entity inS, for some
predefined window sizew. Similarly,rS has a non-zero weight
for each term in thew-term window to the right of the rightmost
named entity inS. Finally,mS has a non-zero weight foreach
term in between the two named entities inS. The weight of a
term in each vector is a function of the frequency of the term
in the corresponding context. These vectors are scaled so their
norm is one. Finally, they are multiplied by a scaling factor to in-
dicate each vector’s relative importance. From our experiments
with English-language documents, we have found the middle
context as the most indicative of the relationship between the el-
ements of the tuple. Hence we will typically assign the terms in
the middle vector higher weights than the left and right vectors.

After extracting the 5-tuple representation of stringS, Snowball
matches it against the 5-tuple pattern by taking the inner product
of the corresponding left, middle, and right vectors.

Definition 2 The degree of matchMatch(tP ; tS) between two
5-tuplestP =< lP , t1, mP , t2, rP > (with tagst1 andt2) and
tS =< lS , t01,mS , t02, rS > (with tagst01 andt02) is defined as:

Match(tP ; tS) =�
lP � lS +mP �mS + rP � rS if the tags match

0 otherwise

Columbia University Computer Science Department Technical Report CUCS-033-99, December1999 5

The <ENAMEX TYPE=LOCATION>Armonk</ENAMEX>-based <ENAMEX TYPE= ORGANIZATION>IBM
</ENAMEX> has introduced a new line...
<ENAMEX TYPE=ORGANIZATION>Intel</ENAMEX>, <ENAMEX TYPE= LOCATION>Santa Clara,
</ENAMEX>, cut prices of its Pentium...

Figure 5: Portions of a document where LOCATIONand ORGANIZATIONentities occur near each other.

In order to generate a pattern,Snowballgroups occurrences of
known tuples in documents, if the contexts surrounding the tu-
ples are “similar enough.” More precisely,Snowballgenerates
a 5-tuple for each string where a seed tuple occurs, and then
clusters these 5-tuples using a simple single-pass clustering al-
gorithm [9], using theMatch function defined above to com-
pute the similarity between the vectors, with minimum similar-
ity threshold�sim. The left vectors in the 5-tuples of clus-
ters are represented by acentroid �ls. Similarly, we collapse
themiddle andright vectors into �ms and �rs, respectively.
These three centroids, together with the original tags (which are
the same for all the 5-tuples in the cluster), form aSnowballpat-
tern< �ls; t1; �ms; t2; �rs >, which will be later used to find new
tuples in the document collection. Figure 6 shows the complete
algorithm for computing patterns using clustering. (We will ex-
plain Line (3) in Section 2.3.)

sub GeneratePatterns
foreach (< oseed; `seed >, str) in Occurrences

(1) tS =< ls; t1;ms; t2; rs > = makeOccurrence(str);
(2) cluster best = FindClosestCluster(tS , �sim);

if(best)
best.Add(tS);
best.UpdateCentroid(tS);
best.AddTuple(< oseed; `seed >);

else
CreateNewCluster(< oseed; `seed >, tS);

(3)Patterns = FilterPatterns(Clusters, �sup);
return Patterns;

Figure 6: Clustering algorithm for generating patterns
from tuple occurrences in the text documents.

2.2 Generating Tuples
After generating patterns (Section 2.1),Snowballscans the col-
lection to discover new tuples. The basic algorithm is outlined
in Figure 7.

Snowballfirst identifies sentences that include an organization
and a location, as determined by the named-entity tagger. For a
given text segment, with an associated organizationo and loca-
tion `, Snowballgenerates the 5-tuplet =< lc; t1;mc; t2; rc >.
A candidate tuple< o; ` > is generated if there is a patterntp
such thatMatch(t; tp) � �sim, where�sim is the clustering
similarity threshold of Section 2.1.

Each candidate tuple will then have a number of patterns that
helped generate it, each with an associated degree of match.
Snowballuses this information, together with information about
the selectivity of the patterns, to decide what candidate tuples to

actually add to the table that it is constructing. This filtering pro-
cess will become clear in the next section, where we address the
crucial issue of how to evaluate candidate tuples and patterns.

sub GenerateTuples(Patterns)
foreach text segment in corpus

(1) f< o; ` >;< ls; t1;ms; t2; rs >g =
= CreateOccurrence(text segment);

TC = < o;` >;
SimBest = 0;
foreach p in Patterns

(2) sim = Match(< ls; t1;ms; t2; rs >; p);
if (sim � �sim)

(3) UpdatePatternSelectivity(p, TC);
if(sim � SimBest)

SimBest = sim;
PBest = p;

if(SimBest � �sim)
CandidateTuples [TC].Patterns [PBest] =

= SimBest;
return CandidateTuples;

Figure 7: Algorithm for extracting new tuples using a
set of patterns.

2.3 Evaluating Patterns and Tuples

Generating good patterns is challenging. For example, we may
generate a pattern<fg, ORGANIZATION, <‘‘,’’, 1>,
LOCATION, fg> from text occurrences like “Intel, Santa Clara,
announced...” This pattern will be matched by any string that
includes an organization followed by a comma, followed by a
location. Unfortunately, a sentence “It’s a great time to invest in
Microsoft , New York-based analyst Jane Smith said” will then
generate a tuple<Microsoft, New York> , which would
be incorrect because Microsoft’s headquarters are in Redmond.
In summary, the pattern above is not selective, since it might
generate incorrect tuples.Snowballwill try to identify such pat-
terns and not trust them, and instead focus on other more se-
lective patterns. Under our redundancy assumption that tuples
occur in different contexts in our collection,Snowballcan af-
ford to not use the less selective pattern above and still be able
to extract the tuple<Intel, Santa Clara> from our ex-
ample in Section 1 through a different, more selective pattern.
Estimating theselectivityof the patterns, so that we do not trust
patterns that tend to generate wrong tuples, is one of the prob-
lems that we address in this section. We can weigh theSnowball
patterns based on their selectivity, and trust the tuples that they
generate accordingly. Thus, a pattern that is not selective will
have a low weight. The tuples generated by such a pattern will
be discarded, unless they are supported by selective patterns.

Columbia University Computer Science Department Technical Report CUCS-033-99, December1999 6

Organization Location of Headquarters
3COM CORP SANTA CLARA
3M MINNEAPOLIS
AIR CHINA BEIJING
FEDERAL EXPRESS CORP MEMPHIS
FRUIT JELLIES APPLE
MERRILL LYNCH & CO NEW YORK
NETSCAPE MOUNTAIN VIEW
NINTENDO CORP TOKYO

Table 2: Some tuples discovered during Snowball’s
first iteration.

The case for tuples is analogous. Consider for example the can-
didate tuples in Table 2, which were generated duringSnow-
ball’s first iteration. It is clear that not all of these tuples are
valid. For example, the tuple<Fruit Jellies, Apple>
is invalid, and was generated because Alembic incorrectly tagged
“Apple” as a location and “Fruit Jellies” as an organization. So,
if we use all of these tuples as the new seed tuples for the next
Snowballiteration, we may generate extraneous patterns that in
turn might result in even more wrong tuples in the next itera-
tion. We have explored different pruning schemes to select the
new seed tuples that are likely to be valid. We only keep tuples
with highconfidence. The confidence of the tuple is a function
of the selectivity and the number of the patterns that generated
it. Intuitively, the confidence of a tuple will be high if it is gen-
erated by several highly selective patterns.

The pattern and tuple evaluation is the key part of our system,
and is responsible for most of the improvement over the DIPRE
scheme. As an initial filter, we eliminate all patternssupported
by fewer than�sup seed tuples (Step (3) in the algorithm in Fig-
ure 6). We experimentally evaluated alternative methods for
defining�sup and concluded that a simple static value for�sup
works well. In addition to the filter based on the number of seed
tuples that generated the patterns, we compute theselectivityof
each pattern in Step (3) of the algorithm in Figure 7. In that step,
the call to functionUpdatePatternSelectivity checks
each candidate tuplet =< o; ` > generated by the pattern in
question. If there is a high confidence tuplet0 =< o; `0 > gen-
erated during an earlier iteration of the system for the same orga-
nizationo as int, then this function compares locations` and`0.
If the two locations are the same, then the tuplet is considered
a positivematch for the pattern. Otherwise, the match isnega-
tive. Intuitively, the candidate tuple that a pattern generates for
the “known” organizations should match the locations of these
organizations. Otherwise, the confidence in this pattern will be
low. Note that this confidence computation assumes that orga-
nization is a key for the relation that we are extracting (i.e., two
different tuples in a valid instance of the relation cannot agree
on the organization attribute). Estimating the confidence of the
Snowballpatterns for relations without such a single-attribute
key is part of our future work (Section 6).

Definition 3 Theconfidenceof a patternP is:

Conf (P) =
P:positive

(P:positive + P:negative)

whereP .positive is the number of positive matches forP and
P .negative is the number of negative matches.

As an example, consider the patternP = <ORGANIZATION>,
<LOCATION> referred to in the previous section. Assume that
this pattern only matches the three lines of text below:

“Exxon, Irving , said”
“ Intel , Santa Clara, cut prices”
“invest inMicrosoft , New York-based analyst Jane Smith said”

The first two lines generate candidate tuples<Exxon, Irving >

and<Intel, Santa Clara >, which we already knew
from previous iterations of the system. The third line generates
tuple<Microsoft, New York >. The location in this tuple
conflicts with the location in tuple<Microsoft, Redmond >,
hence this last line is considered a negative example. Then, pat-
ternP has confidenceConf(P) = 2

2+1
= 66%.

Our definition of confidence of a pattern above is only one among
many possibilities. An alternative that we evaluate experimen-
tally in Section 5 is to account for a pattern’s coverage in addi-
tion to its selectivity. For this, we adopt a metric originally pro-
posed by Riloff [12] to evaluate extraction patterns generated by
the Autoslog-TS information extraction system according to the
formulaRlogF (p) = relevance rate(p)�log2(frequency(p)).
We can defineConfRlogF (p) of patternp similarly.

Definition 4 TheRlogFconfidence of patternp is:

ConfRlogF (p) =
p:positive

(p:positive + p:negative)
�log2(p:positive)

Pattern confidences are defined to have values between 0 and
1. Therefore, we normalize theConfRlogF values by dividing
them by the largest confidence value of any pattern.

Having scored the patterns, we are now able to evaluate the new
candidate tuples. Recall that for each tuple we store the set of
patterns that produced it, together with the measure of similarity
between the context in which the tuple occurred, and the match-
ing pattern. Consider a candidate tupleT and the set of patterns
P = fPig that were used to generateT . For simplicity assume
thatT matched each of the patternsPi perfectly, i.e., with de-
gree of match equal to one. Let us assume for the moment that
we know the probabilityProb(Pi) with which each patternPi
generates valid tuples. If these probabilities are independent of
each other, then the probability that T is valid,Prob(T), can be
calculated as:

Prob(T) = 1� Prob(All Patterns F ired Incorrectly)

= 1�

jP jY
i=0

(1� Prob(Pi))

Columbia University Computer Science Department Technical Report CUCS-033-99, December1999 7

Our confidence metricConf (Pi) was designed to be a rough
estimate ofProb(Pi), the probability of patternPi generating a
valid tuple. We also account for the cases whereT has occurred
in contexts that did not match our patterns perfectly. For this,
we scale eachConf (Pi) term by the degree of match of the
corresponding pattern and context:

Definition 5 Theconfidenceof a candidate tupleT is:

Conf(T) = 1�

jP jY
i=0

(1� fConf(Pi) �Match(Ci; Pi)g)

whereP = fPig is the set of patterns that generatedT andCi

is the context associated with an occurrence ofT that matched
Pi.

For example, suppose that we just generated a tuple<Netscape,
Mountain View> using the patterns “<ORGANIZATION>,
<LOCATION>” and “<ORGANIZATION> of <LOCATION>.”
These patterns have been found to have confidences of 0.5 and
0.6, which means that individually, these patterns are almost as
likely to generate valid tuples as they are to generate invalid tu-
ples. However, the confidence of the tuple that is generated by
bothof these patterns is:

Conf (Tnew) = 1� ((1� 0:5) � (1� 0:6)) = 1� 0:5 �0:4 = 0:8

Note that when we described the calculation of the pattern con-
fidence, we ignored any confidence values from previous itera-
tions ofSnowball. To control the learning rate of the system, we
set the new confidence of the pattern as:

Conf (P) = Conf new (P)�Wupdate+Conf old(P)�(1�Wupdate)

The parameterWupdate can be used to control the speed of learn-
ing from new examples. IfWupdate < 0:5 then the system in ef-
fect trusts new examples less on each iteration, which will lead
to more conservative patterns and have a damping effect. For
our experiments we setWupdate = 0:5.

Similarly, we often rediscover tuples that we have already ex-
tracted on previous iterations. In this case, we also set the new
confidence of the tuple as:

Conf (T) = Conf new (T)�Wupdate+Conf old(T)�(1�Wupdate)

After determining the confidence of the candidate tuples using
the definition above,Snowballdiscards all tuples with low con-
fidence. These tuples could add noise into the pattern gener-
ation process, which would in turn introduce more invalid tu-
ples, degrading the performance of the system. The set of tu-
ples to use as the seed in the nextSnowballiteration is then
Seed = fT jConf (T) > �tg, where�t is some prespecified
threshold.

For illustration purposes, Table 3 lists three representative pat-
terns thatSnowballextracted from the document collection that
we describe in Section 4.1.

Conf middle right
1 <based, 0.53 > <, , 0.01 >

<in, 0.53 >

<’, 0.42 > <s, 0.42 >

0.69 < headquarters, 0.42 >

<in, 0.12 >

0.61 <(, 0.93 > <), 0.12 >

Table 3: Actual patterns discovered by Snowball. (For
all three of these patterns, the left vectors are empty,
tag1= ORGANIZATION, and tag2= LOCATION.)

3 EVALUATION METHODOLOGY AND METRICS
The goal ofSnowballis to extract as many valid tuples as pos-
sible from the text collection. As we have discussed, we do not
attempt to capture everyinstanceof such tuples. Instead, we ex-
ploit the fact that these tuples will tend to appear multiple times
in the types of collections that we consider. As long as we cap-
ture one instance of such a tuple, we will consider our system
to be successful for that tuple. Our system extracts tuples from
all of the documents in the collection and combines them into
one table. To evaluate this task, we adapt the recall and preci-
sion metrics from information retrieval to quantify how accu-
rate and comprehensive ourcombined table of tuplesis [15, 14].
Our metric for evaluating the performance of an extraction sys-
tem over a collection of documentsD is based on determining
Ideal, the set of all the tuples that appear in the collectionD

(Section 3.1). After identifyingIdeal, we compare it against
the tuples produced by the system,Extracted, using the adapted
precision and recall metrics (Section 3.2).

3.1 Methodology for Creating the Ideal Set
For small text collections, we could inspect all documents man-
ually and compile theIdeal table by hand. Unfortunately, this
evaluation approach does not scale, and becomes infeasible for
the kind of large collections over whichSnowballis designed
to operate. To address this problem, we start by considering a
large, publicly available directory of organizations provided on
the “Hoover’s Online” web site1. Although the directory does
not cover every organization there is, it is large enough for our
purposes, covering over 13,000 mostly publicly traded corpora-
tions. From this well structured directory, we generate a table of
organization-location pairs. Unfortunately, we cannot use this
table as is, since some of the organizations in it might not occur
at all in the text collection that we use in our experiments.

To determine the target set of tuplesIdeal from the Hoover’s-
compiled table above, we need to keep only the tuples that have
the organization mentioned together with their location in the
collection. To find all such instances, we identify all the vari-
ations of each organization name in the Hoover’s table as they
may appear in the collection, and then check if the headquarters
of the test organization are mentioned nearby.

For this task, we generate a list of all organization-location pairs

1http://www.hoovers.com

Columbia University Computer Science Department Technical Report CUCS-033-99, December1999 8

that occur in the same line of text in our collection. We then use
Whirl [3], a research tool developed at AT&T Research Labora-
tories for integrating similar textual information, to match each
organization name, as it occurs in the collection, to the organi-
zation in the Hoover’s table. For example, “Microsoft,” “Mi-
crosoft Corporation,” and “Microsoft Corp.” are all references
to the same organization (“Microsoft”), and if the company’s lo-
cation (“Redmond”), is mentioned in the same line withanyof
variations of the organization name, the tuple<Microsoft,
Redmond>should be counted as occurring in the collection and
hence it will be included in theIdeal table.

3.2 The Ideal Metric
Now that we have created theIdeal table, we can use it to eval-
uate the quality of theSnowballoutput, theExtractedtable. If
the initial directory of organizations from Hoover’s contained all
possible organizations, then we could just measure what frac-
tion of the tuples inExtractedare inIdeal (precision) and what
fraction of the tuples inIdealare inExtracted(recall). Unfortu-
nately, a large collection will contain many more tuples that are
contained in any single manually compiled directory. (In our es-
timate, our training collection contains more then 80,000 valid
organization-location tuples.) If we just calculated precision as
above, all the valid tuples extracted bySnowball, which are not
contained in ourIdealset, will unfairly lower the reported value
of precision for the system.

To address this problem we create a new table,Join, as the join
of tablesIdeal and Extractedon a unique key (i.e., organiza-
tion). For each tupleT =< o; ` > in the Ideal table, we find a
matching tupleT 0 =< o0; `0 > in theExtractedtable (if any),
such thato ' o0. (We describe how to deal with variations in the
organization names in Section 3.3.) Using these values, we now
create a new tuple< o; `; `0 > and include it in theJoin table.

Given the tableIdealand theJoin table that we have just created,
we can define recall and precision more formally. We define
Recallas:

Recall =

PjJoinj
i=0 [`i = `0i]

jIdealj
� 100% (1)

where [̀ i = `0i] is Iverson notation that is equal to 1 if the test
value`i matches the extracted value`0i, and 0 otherwise. Thus,
the sum in the numerator is the number ofcorrect tuples of the
Ideal set that we extracted, which we divide by the size of the
Ideal table to obtain our recall. Similarly, we definePrecision
as:

Precision =

PjJoinj
i=0 [`i = `0i]

jJoinj
� 100% (2)

An alternative to using ourIdeal metric to estimate precision
could be to sample the extracted table, and check each value in
the sample tuples by hand. (Similarly, we could estimate the re-
call of the system by sampling documents in the collection, and
checking how many of the tuples mentioned in those documents
the system discovers.) This evaluation method is time consum-
ing, potentially error-prone, and will have to be redone foreach

new collection. Indeed, our system is specifically designed for
large collections, where it is not possible for a human to man-
ually examine any significant portion of the collection. In this
sense, the sampling technique is inferior to theIdealmetric that
we proposed. However, by sampling the extracted table we can
detect invalid tuples whose organization is not mentioned in the
Hoover’s directory that we used to determineIdeal, for example.
Similarly, we can detect invalid tuples that result from named-
entity tagging errors. Hence, we also report precision estimates
using sampling in Section 5.

3.3 Matching Location and Organization Names
A problem with calculating theIdealmetric above is introduced
by the proliferation of variants of organization names. We com-
bine all variations into one, by using aself-joinof theExtracted
table with itself. We use Whirl to match the organization names
to each other, to create the tableExtracted’. We pick an arbitrary
variation of the organization name,os, as the “standard,” and
pick a location,̀ max, from the set of matching organization-
location tuples, with the highest confidence value. We then in-
sert the tuple< os; `max > into theExtracted’table.

Similarly, we need to decide when the location extracted for an
organization is correct. For example, our system might con-
clude that California is the location of the headquarters of In-
tel. This answer is correct, although not as specific as could
be. Our scoring system will in fact consider a tuple<Intel,
California > as correct. Specifically, we consider tuple<
o; ` > to be valid if (a) organizationo is based in the U.S. and
` is the city or state whereo’s headquarters are based; or (b) or-
ganizationo is based outside of U.S. and` is the city or country
whereo’s headquarters are based.

4 EXPERIMENTAL SETTING
We describe the training and text collections that we used for
experiments in Section 4.1. We also enumerate the different ex-
traction methods that we compare experimentally (Section 4.2).

4.1 Training and Test Collections
Our experiments use large collections of real newspapers from
the North American News Text Corpus, available from LDC2.
This corpus includes articles from Los Angeles Times, The Wall
Street Journal, and The New York Times for 1994 to 1997. We
split the corpus into two collections: training and test. Thetrain-
ing collection consists of 178,000 documents, all from 1996.
The test collection is composed of 142,000 documents, from
1995 and 1997 (Table 4).

Both Snowballand DIPRE rely on tuples appearing multiple
times in the document collection at hand. To analyze how “re-
dundant” the training and test collections are, we report in Ta-
ble 5 the number of tuples in theIdeal set for each frequency
level. For example, 5455 organizations in theIdealset are men-
tioned in the training collection, and 3787 of them are mentioned
in the same line of text with their location at least once. So,

2http://www.ldc.upenn.edu

Columbia University Computer Science Department Technical Report CUCS-033-99, December1999 9

Collection Document Source Documents Year
The New York Times 96,000 1996

Training The Wall Street Journal 56,000 1996
Los Angeles Times 26,000 1996
The New York Times 44,000 1995
The Wall Street Journal 43,000 1995

Test Los Angeles Times 35,000 1995
Los Angeles Times 20,000 1997

Table 4: The document collections used for experi-
ments.

if we wanted to evaluate how our system performs on extract-
ing tuples that occur at least once in the training collection, the
Idealset that we will create for this evaluation will contain 3787
tuples.

Organization-Location Pairs
Occurrences: Training Collection Test Collection

0 5455 4642
1 3787 3411
2 2774 2184
5 1321 909
10 593 389

Table 5: Occurrence statistics of the test tuples in the
experiment collections.

The first row of Table 5, corresponding to zero occurrences, de-
serves further explanation. If we wanted to evaluate the perfor-
mance of our system onall the organizations that were men-
tioned in the corpus, even if the appropriate location never oc-
curred near its organization name anywhere in the collection, we
would include all these organizations in ourIdealset. So, if the
system attempts to “guess” the value of the location for such an
organization, any value that the system extracts will automati-
cally be considered wrong in our evaluation.

4.2 Evaluating Alternative Techniques
We comparedSnowballwith two other techniques, theBaseline
method and our implementation of the DIPRE method. These
two methods require minimal or no training input from the user,
and hence are comparable withSnowballin this respect. In
contrast, state-of-the-art information extraction systems require
substantial manual labor to train the system, or to create a hand-
tagged training corpus.

The first method,Baseline, is based purely on the frequency of
co-occurrence of the organization and the location. Specifically,
Baselinereports the location that co-occurs in the same line with
each organization most often as the headquarters for this orga-
nization. Baselineuses as input lines of text in the collection,
tagged with the Alembic named entity tagger, and creates an in-
dex of the organizations and locations that occur in the same
line. Then,Baselinesimply selects the most frequent location
for each organization. Despite its simplicity, the method works
surprisingly well in this setting.

The second method is our implementation of DIPRE, which we
described in Section 1. We did not have access to the original
implementation, so we had to reimplement it. After testing our
implementation on the “author-title” task, which is to the best
of our knowledge the only application of the DIPRE method
reported in the literature[2], we had to make some modifica-
tions, motivated by the nature of our collections. The original
DIPRE implementation, usesurlprefix to restrict pattern genera-
tion and application. Since all of our documents came from just
three sources, DIPRE was not able to use this feature, which
was originally intended to generate patterns that would apply
only to the documents with the URLs that match theurlprefix
of each pattern. The second, and more important, modification
had to do with the fact that DIPRE was designed to extract tu-
ples from HTML-marked data, which is inherently more struc-
tured than the plain text that we used for experiments. With-
out HTML tags, DIPRE could not find occurrences of the seed
tuples in plain text that were surrounded by exactly the same,
non-empty, left, middle, and right contexts. To solve this prob-
lem, we used the named entity tagger to pre-tag the input to
DIPRE. This way, all the organizations and locations were con-
sistently surrounded by named entity tags. DIPRE could incor-
porate these tags as part of the surrounding context, and generate
patterns that take advantage of these named-entity tags. Because
the original DIPRE implementation had very low recall (hav-
ing no access to the named-entity tags), the results we report
for DIPRE arenot for the original DIPRE implementation, but
are rather results achieved by using the DIPRE method together
with named-entity tags.

4.3 Snowball
As we described in Section 2, the basicSnowballprocess re-
quires finding occurrences of the seed tuples in the corpus. For
efficiency, we have indexed our collections using the Glimpse
search engine [11], which supports boolean queries. Our scheme
is to issue a boolean “AND” query foreach seed tuple, requir-
ing all elements of the tuple to be present in the same text seg-
ment. For example, a query “Microsoft AND Redmond ”
will be issued to find all the contexts in which the seed tuple
<Microsoft, Redmond> appears in the collection. In our
experiments we required the tuple elements to occur in the same
line of text, but our approach can be used to retrieve occurrences
of the example tuples within arbitrary text segments.

Once these example occurrences are retrieved,Snowballcan act
differently based on a number of parameters. We have attempted
to determine the best combination of parameters by running the
Snowballsystem on the training corpus. Some of the parameters
we experimented with include:

� Use of Punctuation: We experimented with discarding punc-
tuation and other non-alphanumeric characters from the contexts
surrounding the entities. Our hypothesis was that punctuation
may just add noise but carry little content to help extract tu-
ples. We report results forSnowballandSnowball-Plain, where
Snowballuses punctuation, andSnowball-Plaindiscards it.
� Choice of Pattern Scoring Strategies:We tried variations

Columbia University Computer Science Department Technical Report CUCS-033-99, December1999 10

on the basic framework for weighing patterns, as described in
Section 2, with or without using theRlogFmetric described in
[12]. We will refer to the strategies that use theRlogFmetric as
“RlogF-*” . Additionally, we can normalize both patterns and
tuples by dividing by the largest value of each. The normalized
strategies will be referred to as“*-Norm” , and the not normal-
ized ones as“Raw” . Thus, we have a list of four strategies:
Raw, RlogF, Norm, andRlogF-Norm. The choice of the weight-
ing strategy can have a significant effect on the quality of new
seed tuples that we use to start the next iteration of the system.
� Choice of Pattern Similarity Threshold (�sim): This thresh-
old controls how flexible the patterns are, both during the pattern
generation stage (i.e., how similar the occurrences of the exam-
ple tuples have to be in order to be grouped into one cluster),
as well as during the tuple extraction stage, where�sim controls
the minimum similarity between the context surrounding the po-
tential tuple and a pattern, determining whether a tuple will be
generated.
� Choice of Tuple Confidence Threshold (�t): This threshold
determines the minimum confidence a tuple must have to be in-
cluded in the seed set to start the next iteration.

5 EXPERIMENTAL RESULTS

In this section, we experimentally compare the performance of
Snowballand the alternative techniques that we discussed in
Section 4.2. Our experiments use the training and test collec-
tions of Section 4.1. In Section 5.1 we use the training collec-
tion to determine the test settings for theSnowballparameters of
Section 4.3. Then, in Section 5.2 we compare the performance
of Snowball, DIPRE, andBaselineon the test collection.

5.1 Training Phase

Figure 8 summarizes the experimental results on the training
collection. As discussed in Section 3, we consider tuples inIdeal
in different groups, based on their number of occurrences in the
collection. (DIPRE andSnowballassume a scenario where tu-
ples occur redundantly in the collection.) Figure 8 (a) reports
the average recall of the techniques as a function of the mini-
mum number of times that a tuple must appear in the training
collection in order to be included inIdeal. For example, if we
focus only on tuples that occur two or more times in the training
collection and defineIdealaccordingly,Baselineachieves an av-
erageRecallof around 70% whileSnowball’s value is highest at
80% (Figure 8 (a)). From this figure, we can see that the average
recall of DIPRE andSnowballimproves as we require tuples to
occur more times in the collection. This is consistent with the
design principles underlying DIPRE andSnowballtailored to
collections with redundancy. Figure 8 (a) also shows that it is
important to use punctuation in the extraction process: the re-
call of Snowballis more than twice as high as that ofSnowball-
Plain. Figure 8 (b) reports the average precision values for the
various techniques.

We ran experiments on the training collection to determine opti-
mal values for�sim , �t, �sup, and the optimal weight distribution
Wleft , Wmiddle, andWright for the left, middle, and right con-

Parameter Value Description
�sim 0.6 minimum degree of match (Section 2.1)
�t 0.8 minimum tuple confidence (Section 2.3)
�sup 2 minimum pattern support (Section 2.1)
Imax 3 number of iterations ofSnowball
Wmiddle 0.6 weight for themiddlecontext (Section 2.1)
Wleft 0.2 weight for theleft context (Section 2.1)
Wright 0.2 weight for theright context (Section 2.1)

Table 6: Parameter values used for evaluating Snow-
ball on the test collection.

text vectors of each pattern. Among the pattern scoring strate-
gies,RlogF-Normperformed the best in terms of precision and
recall, producing enough new seed tuples to allowSnowballto
sustain an acceptable rate of acquiring new patterns. In Sec-
tion 5.2 we report results on the tables extracted after one itera-
tion of the various techniques. As we will see, the performance
of DIPRE tends to deteriorate after one iteration, while that of
Snowballremains stable.

5.2 Test Phase
As we discussed, the only input to theSnowballsystem during
this evaluation on the test collection were the five seed tuples of
Table 1. All the extraction patterns were learned from scratch by
running theSnowballsystem using the operational parameters
listed in Table 6, which worked best on the training collection.
The RlogF-Normmetric was used to score patterns for gener-
ating the set of seed tuples for the next iteration. The results
are reported in Figure 9. The plot shows the performance of the
systems as we attempt to extract test tuples that are mentioned
more times in the corpus. As we can see,Snowballperforms
increasingly well as the number of times that the test tuples are
required to be mentioned in the collection is increased. Also, no-
tice that while DIPRE has better precision thanSnowballon the
0-occurrence level (72% vs. 67% forSnowball), Snowballhas
at all occurrence levels significantly higher recall than DIPRE
andBaselinedo. This is consistent with the training results.

We attempted to determine if we could remedy DIPRE’s low
recall by running it for more iterations. Unfortunately, after the
first iteration both recall and precision decreased. Figure 10 also
demonstrates thatSnowballis stablein a sense that it converges
to some reasonable values, while DIPRE quickly diverges. The
reason for DIPRE’s behavior is that DIPRE has no way of se-
lecting reliable tuples as the seed for its next iteration, while
Snowballtakes advantage of the tuple confidence metric for this.
We report data for only two iterations for theSnowball-Plainbe-
cause it converged after iteration 2 (i.e., it did not produce any
new seed tuples).

As discussed in Section 3.2, we complete our evaluation of the
precision of the extraction systems by manually examining a
sample of their output. For this, we randomly selected 100 tu-
ples from each of the extracted tables, and manually checked
whether each of these tuples was a valid organization-location
pair or not. We separate the errors into three categories: errors

Columbia University Computer Science Department Technical Report CUCS-033-99, December1999 11

(a) (b)
Figure 8: Recall (a) and precision (b) of Baseline, DIPRE, and Snowball(training collection; Table 6 parameter settings).

(a) (b)
Figure 9: Recall (a) and precision (b) of Baseline, DIPRE, Snowballand Snowball-Plain(test collection).

(a) (b)
Figure 10: Recall (a) and precision (b) of Baseline, DIPRE, Snowball, and Snowball-Plainas a function of the number of
iterations (Ideal tuples with occurrence � 2; test collection).

Columbia University Computer Science Department Technical Report CUCS-033-99, December1999 12

due to mistagging a location and assigning it to a valid organi-
zation (“Location” error), errors due to including a non-existing
organization (“Organization” error), and errors due to deducing
an incorrect relationship between a valid organization and loca-
tion (“Relationship” error). These different types of errors are
significant because they highlight different “culprits”: the “Lo-
cation” and “Organization” errors could be prevented if we had
a perfect named-entity tagger, whereas the “Relationship” errors
are wholly the extraction system’s fault (Table 7).

The last column in Table 7 (PIdeal) is precision, calculated by
ignoring the “Organization” errors and computing the fraction
of valid organizations for which a correct location was found.
These values, in effect, correspond to the values of precision we
would have calculated if ourIdeal table included all the valid
organizations in the random samples. These figures, however,
do not capture invalid tuples generated due to improper tagging
of a string as an organization. From our manual inspection of a
random sample of 100 tuples fromeach extracted table, we ob-
served that DIPRE’s sample contained 74 correct tuples and 26
incorrect ones.Snowball’s sample contained 52 correct tuples
and 48 incorrect tuples, whileBaselinehas a majority of incor-
rect tuples (25 vs. 75). As we can see from the breakup of the
errors in the table, virtually all ofSnowball’s errors are tagging
related (i.e., “Location” or “Organization” errors). If we prune
the Snowball’s final output to only include those tuplest with
Conf (t) � 0:8 = �t, then most of these spurious tuples disap-
pear. In effect, from a random sample of 100 tuples from this
pruned table, 93 tuples are valid and only 7 are invalid. Further-
more, none of the invalid tuples are due to “Relationship” errors
(third row of Table 7).

So far, the results that we have reported forSnowballare based
on a table that contains all the “candidate” tuples generated dur-
ing Snowball’s last iteration. As we saw in Table 7, the precision
of Snowball’s answer varies dramatically if we prune this table
using the tuple confidence threshold�t. Of course, this last-step
pruning is likely to result in lower recall values. In Figure 11 we
explore the tradeoff between precision and recall for different
values of this last-step pruning threshold. A user who is inter-
ested in high-precision tables might want to use high values for
this threshold, while a user who is interested in high-recall tables
might want to use lower values of the threshold. For example,
by setting�t = 0:4 and filtering theExtractedtable accordingly,
we estimate the absolute precision ofSnowball’s output to be
76% and recall to be 45%, both of which are higher than the
corresponding metrics of DIPRE’s output.

In summary, bothSnowballand DIPRE exhibit significantly higher
precision thanBaseline. In effect, Baselinetends to generate
many tuples, which results in high recall at the expense of low
precision.Snowball’s recall is at least as high as that ofBaseline
for most of the tests, with higher precision values.Snowball’s
recall is generally higher than DIPRE’s, while the precision of
both techniques is comparable.

6 CONCLUSIONS AND FUTURE WORK
This paper presentsSnowball, a system for extracting relations
from large collections of plain-text documents that requires min-
imal training for each new scenario. We introduced novel strate-
gies for generating extraction patterns forSnowball, as well as
techniques for evaluating the quality of the patterns and tuples
generated at each step of the extraction process. Our large-scale
experimental evaluation of our system shows that the new tech-
niques produce high-quality tables,according to the scalable
evaluation methodology that we introduce in this paper. Our
experiments involved over 300,000 newspaper articles.

We only evaluated our techniques on plain text documents, and
it would require future work to adopt our methodology to HTML
data. While HTML tags can be naturally incorporated intoSnow-
ball’s pattern representation, it is problematic to extract named-
entity tags from arbitrary HTML documents. In effect, state-of-
the-art taggers rely on textual clues from the text surrounding
each entity, which may be absent in HTML documents that rely
on visual formatting to convey information, for example. Han-
dling arbitrary HTML documents is an important part of our
future work. On a related note, we have assumed throughout
that the attributes of the relation we extract (i.e., organization
and location) correspond to named entities that our tagger can
identify accurately. As we mentioned, named-entity taggers like
Alembic can be extended so that they learn to recognize entities
that are distinct in a context-independent way (e.g., numbers,
dates, proper names). For some other attributes, we will need
to extendSnowballso that its pattern generation and matching
could be anchored around, say, a noun phrase as opposed to a
named entity as in this paper. In the future, we will also general-
ize Snowballto relations of more than two attributes. Finally, a
crucial open problem is how to generalize our tuple and pattern
evaluation strategy of Section 2.3 so that it does not rely on an
attribute being a key for the relation.

ACKNOWLEDGMENTS
We thank Ralph Grishman and Vasilis Hatzivassiloglou for their
helpful comments, and Eleazar Eskin for many fruitful discus-
sions.

REFERENCES
1. Avrim Blum and Tom Mitchell. Combining labeled and unlabeled

data with co-training. InProceedings of the 1998 Conference on
Computational Learning Theory, 1998.

2. Sergey Brin. Extracting patterns and relations from the World-
Wide Web. InProceedings of the 1998 International Workshop
on the Web and Databases (WebDB’98), March 1998.

3. William Cohen. Integration of heterogeneous databases without
common domains using queries based on textual similarity. In
Proceedings of the 1998 ACM International Conference on Man-
agement of Data (SIGMOD’98), 1998.

4. Michael Collins and Yoram Singer. Unsupervised models for
named entity classification. InProceedings of the Joint SIGDAT
Conference on Empirical Methods in Natural Language Process-
ing and Very Large Corpora, 1999.

5. M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell,

Columbia University Computer Science Department Technical Report CUCS-033-99, December1999 13

Type of Error
Correct Incorrect Location Organization Relationship PIdeal

DIPRE 74 26 3 18 5 90%
Snowball(all tuples) 52 48 6 41 1 88%
Snowball(�t = 0:8) 93 7 3 4 0 96%
Baseline 25 75 8 62 5 66%

Table 7: Manually computed precision estimate, derived from a random sample of 100 tuples from each extracted table.

(a) (b)
Figure 11: Recall (a) and estimated precision (b) as a function of the threshold �t used for the last-step pruning of the
Snowballtables (Ideal tuples with occurrence � 1; test collection).

K. Nigam, and S. Slattery. Learning to construct knowledge bases
from the World Wide Web.Artificial Intelligence, 1999.

6. David Day, John Aberdeen, Lynette Hirschman, Robyn Kozierok,
Patricia Robinson, and Marc Vilain. Mixed-initiative develop-
ment of language processing systems. InProceedings of the Fifth
ACL Conference on Applied Natural Language Processing, April
1997.

7. Scott Deerwester, Susan Dumais, George Furnas, Thomas Lan-
dauer, and Richard Harshman. Indexing by latent semantic anal-
ysis. Journal of American Society for Information Science, 1990.

8. D. Fisher, S. Soderland, J. McCarthy, F. Feng, and W. Lehn-
ert. Description of the UMass systems as used for MUC-6.
In Proceedings of the 6th Message Understanding Conference.
Columbia, MD, 1995.

9. William B. Frakes and Ricardo Baeza-Yates, editors.Information
Retrieval: Data Structures and Algorithms. Prentice-Hall, 1992.

10. Ralph Grishman. Information extraction: Techniques and chal-
lenges. InInformation Extraction (International Summer School
SCIE-97). Springer-Verlag, 1997.

11. Udi Manber and Sun Wu. Glimpse: A tool to search through
entire file systems. InProceedings of the 1994 Winter USENIX
Conference, January 1994.

12. Ellen Riloff. Automatically generating extraction patterns from
untagged text. InProceedings of the Thirteenth National Confer-
ence on Artificial Intelligence, pages 1044–1049, 1996.

13. Ellen Riloff and Rosie Jones. Learning dictionaries for informa-
tion extraction by multi-levelbootstrapping. InProceedings of the
Sixteenth National Conference on Artificial Intelligence, 1999.

14. Gerard Salton.Automatic Text Processing: The transformation,
analysis, and retrieval of information by computer. Addison-
Wesley, 1989.

15. Gerard Salton and Michael J. McGill.Introduction to modern
information retrieval. McGraw-Hill, 1983.

16. Roman Yangarber and Ralph Grishman. NYU: Description of the
Proteus/PET system as used for MUC-7. InProceedings of the
Seventh Message Understanding Conference (MUC-7). Morgan
Kaufman, 1998.

17. D. Yarowsky. Unsupervised word sense disambiguation rivaling
supervised methods. InProceedings of the 33rd Annual Meeting
of the Association for Computational Linguistics, pages 189–196.
Cambridge, MA, 1995.

