
Signaling for Internet Telephony

Henning Schulzrinne
Columbia University

hgs@cs.columbia.edu
M/S 0401

1214 Amsterdam Avenue
New York, NY 10027

Jonathan Rosenberg
Bell Laboratories

jdrosen@bell-labs.com
Rm. 4C-526

101 Crawfords Corner Rd.
Holmdel, NJ 07733

January 31, 1998

Abstract

Internet telephony must offer the standard telephony services. However, the transition to Internet-
based telephony services also provides an opportunity to create new services more rapidly and with
lower complexity than in the existing public switched telephone network (PSTN). The Session Initiation
Protocol (SIP) is a signaling protocol that creates, modifies and terminates associations between Internet
end systems, including conferences and point-to-point calls. SIP supports unicast, mesh and multicast
conferences, as well as combinations of these modes. SIP implements services such as call forwarding
and transfer, placing calls on hold, camp-on and call queueing by a small set of call handling primitives.
SIP implementations can re-use parts of other Internet service protocols such as HTTP and the Real-
Time Stream Protocol (RTSP). In this paper, we describe SIP, and show how its basic primitives can be
used to construct a wide range of telephony services.

1 Introduction

Internet telephony requires a range of protocols, ranging from those needed for transporting real-time data
across the network, to quality-of-service-aware routing protocols, to resource reservation, QOS-aware net-
work management and billing protocols. In addition, Internet telephony, defined here as synchronous voice
or multimedia communication between two or more parties, requires a means for prospective communica-
tions partners to find each other and to signal to the other party their desire to communicate. We refer to
this functionality asInternet telephony signaling. The need for signaling functionality distinguishes Internet
telephony from other Internet multimedia services such as broadcast and media-on-demand services. In
addition, IPtel signaling can be used to integrate different Internet multimedia modalities, as discussed in
Section 6.

IPtel signaling as we understand it creates and managescalls. We define a call as a named association
between applications that is explicitly set up and torn down. Examples of calls are two-party phone calls,
a multimedia conference or a multi-player game. We do not require that calls have to have media streams
associated with them, but this is likely to be the common case.

Unlike traditional telephony signaling, we make the signaling of calls independent of the notion of
media “connections” or streams. Note that in contrast to systems such as H.323 [1], we do not require that
all participants within a conference have to be aware of the existence of a call. Conversely, a call participant
may not be generating media streams. For example, when a lecture is multicast, the initiator of the call may
not be sending or receiving data.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We see Internet telephony signaling encompassing a number of functions:Name translation and user
location involves the mapping between names of different levels of abstraction, e.g., a common name at a
domain and a user name at a particular Internet host. These translations may involve simple table lookups
at the server or may involve locating the party, as described in Section 4.2.

Feature negotiationallows a group of end systems to agree on what media to exchange and their respec-
tive parameters such as encodings. The set and type of media need not be uniform within a call, as different
point-to-point sessions may involve different media and media parameters. Many software codecs are able
to receive different encodings within a single conference and in parallel, for example, while being restricted
to sending one type of media for each stream.

Any call participant can invite others into an existing call and terminate associations with some (call
participant management). During the call, participants should be able to transfer and hold other users. The
most general model of a multi-party association is that of a full or partial mesh of invitations, with the
possible addition of multicast distribution between some or all participants.

Feature changesmake it possible to adjust the composition of media sessions during the course of a call,
either because the participants require additional or reduced functionality or because of constraints imposed
or removed by the addition or removal of call participants.

Not all of these functions have to be addressed by one protocol. For example, H.323 may be used to
establish sessions between the end system and the gateway, while the Session Initiation Protocol (SIP), the
protocol described here, might be responsible for gateway-to-gateway signaling.

Other conference management functions are beyond the scope of signaling. These include distributed
queue management for floor control and distributed counting for voting. Unlike signaling, both of these
require some form of reliable multicast; however, for small groups, a multipoint controller can perform the
replication. Signaling can be used to introduce this functionality into conferences as needed.

In Section 2, we discuss the basic architecture for telephony signaling services. In Section 3 we discuss
the basics of SIP operation, its addressing structure, message syntax and transport. In Section 4, we discuss
how SIP can be used for telephony services, focusing on how services are constructed from simple primitive
tools. We then briefly discuss, in Section 6, the interaction of telephony signaling with stored media control
protocols. We then mention related work in Section 7, and conclude in Section 8.

2 Internet Telephony Architecture

2.1 Separation of Signaling Functionality

Unlike circuit-switched telephony, Internet telephony services are built on a range of packet switched pro-
tocols, as illustrated in Fig. 1. For example, the functionality of the SS7 telephony signaling protocol
encompasses routing, resource reservation, call admission, address translation, call establishment, call man-
agement and billing. In an Internet environment, routing is handled by protocols such as BGP [2], re-
source reservation by RSVP [3] or other resource reservation protocols [4]. SIP, described here, translates
application-layer addresses, establishes and manages calls. There is currently no Internet telephony billing
protocol in the Internet, although RADIUS [5], in combination with SIP authentication, may initially serve
that purpose.

This separation of concerns affords greater architectural flexibility. For example, Internet telephony
may be used without per-call resource reservation in networks with sufficient capacity; billing may not be
necessary in a PBX-like environment. On the other hand, removing the “atomicity” of call setup found in
the current telephone system also breaks assumptions: since call setup and resource reservation are distinct,
one may succeed, while the other may fail. If resources are reserved first, the caller may incur a cost for
holding those resources while “the phone rings”, even though the call is not answered. (If the network does
not charge for reservations that are not actually used, the network becomes vulnerable to denial-of-service

2

signaling quality of service media transport
li

nk
ne

tw
or

k
ph

ys
ic

al
tr

an
sp

or
t

ap
pl

ic
at

io
n

da
em

onH.323 RSVPSIP

PPP

Sonet ATM

AAL3/4 AAL5 PPP

V.34

UDP

Ethernet

TCP

ke
rn

el

RTSP

IPv4, IPv6

RTCP

RTP

(H.261, MPEG)
media encaps.

Figure 1: Protocol architecture for Internet multimedia services

attacks, where the attacker can block others from making reservations.) Also, in the phone system, the
resource needs for a single leg of a call are known ahead of time; this is clearly not the case for Internet
telephony calls, where the callee may choose to communicate with only a subset of the media offered by the
caller.

2.2 Internet Multimedia Sessions

We treat a two-party phone call as a special, if important, case of conferencing. In contrast to other con-
ferencing architectures, members of Internet conferences are not “connected” at the level of a conference
control protocol. Amedia sessionis defined by the membership in a multicast group or a two-party UDP
port/address association. Members are identified through the upper-layer transport protocols, e.g., the RTP
CNAME [6]. A sessionconsists of several media sessions and exists only as a common abstraction in each
participant, not in a central registry. A conference is an example of a session. Not all participants in a
conference need to be in every media session. Access control is through encryption. This session model
is often called the “light-weight session model” [7]; unlike central-registry models, it scales to very large
conferences and survives network partitions.

A potential participant in such a conference or Internet phone call has to somehow become aware of the
existence of a session. We can distinguish two mechanisms: in the first, the potential participant actively
seeks out potential sessions of interest, for example, by perusing a web page with conference listings, lis-
tening to a multicast group carrying session announcements or subscribing to a mailing list or newsgroup
announcing conferences. All these mechanisms have in common that the creator of the session does not
know if and when a particular person receives the description of the session. One could imagine sending
email to the intended participants of a session. However, as it is typically delivered and read at intervals mea-
sured in minutes, email is unsuitable for the equivalent of a phone call. Email also does not offer a ready
indication that the recipient has read the message and cannot easily indicate a willingness to participate in a
conference.1

In current Internet multimedia applications using the light-weight session model, sessions and their
attributes are announced using a well-known multicast address and a simple textual description (SDP) [8].

1SIP can use email as a last-resort delivery mechanism, which is useful for inviting users to long-running conferences.

3

This directory model is well suited for public and private pre-planned group events, but does not support
telephone calls or inviting participants to a session, nor does it deal with controlling multimedia streams. The
“light-weight” conferences depend on the availability of receiver-oriented multicast, where new receivers do
not have to acquire the current list of participants.

2.3 The Role of SIP

While we will use the term “Internet telephony” or “IP telephony” (IPtel) throughout the paper, it should
be understood that all of the protocols mentioned are applicable not just to voice, but to general multimedia
services, including video, text “chat”, collaborative browsing, and application sharing. This is also true for
SIP.

SIP is independent of the conference model and size. It works in the same manner whether calling a
single party for a “classic” phone call, setting up a small conference or inviting another participant into an
existing large multicast session with thousands of members. (In the ITU conferencing architecture, separate
protocols, H.323 and H.332, respectively, are used.)

Besides the difference between the circuit-switched and packet-switched carriage of voice and other
media, the public switched telephone system (PSTN) and IPtel as described here differ in a number of
control aspects. ISDN, SS7 and SIP all separate the control path from the data path, but to differing degrees.
ISDN signaling (Q.931) is closely associated with the data channel, in that they are carried in the same
lower-layer multiplex. SS7 signaling is physically separate from the data path, but tied hop-by-hop, so that
the signaling protocol traverses the same switching nodes as the voice traffic. SS7 traffic uses a different
physical network, typically 64 kb/s redundant links between service control points. SIP, on the other hand,
completely separates the control path: a SIP request may travel a completely different route from the data
traffic, yet SIP requests use the same Internet infrastructure as the data.

SIP adds another separation of functionality, namely between call establishment and call description.
The SIP requests described in Section 3 deal with a “call” as an association between two or more parties as
a whole, without being concerned with what media constitutes the call. The makeup of the call is described
using the session description contained in the request. SIP conveys the type of the description and allows
server and client to negotiate acceptable description formats, but makes no other assumptions about the
content. This allows session formats to evolve independently of the signaling protocol and allows SIP to be
used in applications beyond IT.

Due to the limited signaling abilities of PSTN end systems, PSTN addresses (phone numbers) are over-
loaded with at least four functions: end point identification, service indication, indication of who pays for
the call and carrier selection. The PSTN also ties call origination with payment, except as modified by
the address (800 numbers). SIP addresses, in contrast, could incorporate these functionalities, but in gen-
eral it is probably preferable to, for example, indicate carrier preference through name mapping and use
authentication as a means to indicate willingness to pay.

Internet telephony signaling needs to be able to establish sessions between IP-connected end systems,
between an end system and a gateway to another network such as the PSTN or an H.323-controlled system
and finally between gateways. While separate protocols could be used for each of these, SIP tries to address
all three modes.

Table 1 shows the possible combinations of unicast and multicast signaling and communications. For
example, inviting somebody to a multicast conference (e.g., of the type found on the Mbone [9]) requires
unicast signaling. For automatic call distribution (ACD), where a caller wants to reach the first available
person, multicast signaling may be useful. Finally, one may want to invite groups of people to a multicast
conference. The last mode differs in that, to avoid request implosion, invitees should not respond to the
invitation, except possibly in a carefully rate-controlled way [10]. Multicast signaling also requires that
potential invitees already expect an invitation, i.e., subscribe to the multicast group. Currently, the Mbone

4

uses multicast announcements to distribute information about upcoming conferences and other multicast
events [11]. It is possible to integrate conference announcements and invitation, although the semantics
differ slightly: conference announcements are usually for some time in the future and do not generally alert
the user, while invitations request immediate communications. However, the combination of SIP and SDP
supports both immediate and future sessions.

signaling conference
unicast multicast

unicast Internet telephony conference invitation
multicast ACD group invitation

Table 1: Unicast and multicast signaling and conferences

3 The Session Initiation Protocol

3.1 Overview

SIP is a client-server protocol, with requests issued by the client and responses returned by the server. A
single call may involve several servers and clients, as requests may be forwarded. This is similar to the
HTTP model of clients, origin and proxy servers. Unlike HTTP, SIP servers do not cache data. SIP servers
may cache call state or search results. A single host may well act as client and server for the same request,
as discussed in Section 3.5.

As in HTTP, the client requests invokemethodson the server. Requests and responses are textual (see
Section 3.7) and contain header fields which convey call properties and service information. SIP reuses
many of the header fields used in HTTP, such as the entity headers (e.g.,Content-type) and authentication
headers. This allows for code reuse, and simplifies integration of SIP servers with web servers.

Calls in SIP have the following properties: Thelogical call sourceindicates the entity that is requesting
the call (the originator). This may not be the entity that is actually sending the request, as proxies may send
requests on behalf of other users. In SIP messages, this property is conveyed in theFrom header field. The
logical call destinationcontained in theTo field names the party who the originator wishes to contact (the
recipient). Themedia destinationconveys the location (IP address and port) where the media (audio, video,
data) are to be sent for a particular recipient. This address may not be the same address as the logical call
destination. Media destinations are conveyed as part of the payload of a SIP message.Media capabilities
convey the media that a participant is capable of receiving and their attributes. Media capabilities and media
destinations are conveyed jointly as part of the payload of a SIP message. Currently, the Session Description
Protocol (SDP) [12] serves as the common format, although others are likely to find use in the future. SDP
expresses lists of capabilities for audio and video and indicates where the media is to be sent to. It also allows
to schedule media sessions into the future and schedule repeated sessions. Each call is logically identified
by a globally (in time and space) uniquecall identifier, carried in theCall-ID field. The call identifier is
created by the creator of the call and used by all call participants.

SIP defines several methods, described in detail below. The first three manage or prepare calls:INVITE
invites a user to a conference,BYE terminates a connection between two users in a conference,OPTIONS
solicits information about capabilities, but does not set up a call.STATUS informs another server about the
progress of signaling actions that it has requested via theAlso header (see below).ACK is used for reliable
message exchanges for invitations. Finally,REGISTER conveys location information to a SIP server.

5

3.2 SIP Transport

SIP makes minimal assumptions about the underlying transport protocol. It can directly use any datagram
or stream protocol, with the only restriction that a whole SIP request or response has to be either delivered
in full or not at all. SIP can thus be used with UDP or TCP in the Internet, and with X.25, AAL5/ATM,
CLNP, TP4, IPX or PPP elsewhere. Network addresses within SIP are also not restricted to being Internet
addresses, but could be E.164 (PSTN) addresses, OSI addresses or private numbering plans. SIP also does
not tie a session to the existence of a TCP connection, allowing to maintain calls even across reboots of
some of the participants, as long as the end systems maintain call identifiers.

3.3 Addressing and Naming

To be invited and identified, the called party has to be named. Since it is the most common form of user
addressing in the Internet, SIP chose an email-like identifier of the form“user@domain”, “user@host”,
“user@IP address”or “phone-number@gateway”. The domain name can be either the name of the host
that a user is logged in at the time, an email address or the name of a domain-specific name translation
service. Addresses of the form“phone-number@gateway”designate PSTN phone numbers reachable via
the named gateway.

SIP uses these addresses as part of SIP URLs, such assip://j.doe@example.com . This URL
may well be placed in a web page, so that clicking on the link initiates a call to that address, similar to a
mailto [13] URL today.2

We anticipate that most users will be able to use their email address as their published SIP address.
Email addresses already offer a basic location-independent form of addressing, in that the address does not
have to designate a particular Internet host, but can be a domain, which is then resolved into one or more
possible domain mail server hosts via DNS MX (mail exchange) records. This not only saves space on
business cards, but also allows re-use of existing directory services such as LDAP [14], DNS MX records
(as explained below) and email as a last-ditch means of delivering SIP invitations.

For email, finding the mail exchange host is often sufficient to deliver mail, as the user either logs in
to the mail exchange host or uses protocols such as IMAP or POP to retrieve her mail. For interactive
audio and video communications, however, participants are typically sending and receiving data on the
workstation, PC or Internet appliance in their immediate physical proximity. Thus, SIP has to be able to
resolve“name@domain”to “user@host”. A user at a specific host will be derived through zero or more
translations. A single externally visible address may well lead to a different host depending on time of day,
media to be used, and any number of other factors. Also, hosts that connect via dial-up modems may acquire
a different IP address each time.

3.4 Directory Services and SIP

The reader may wonder about the relationship between DNS, directory services such as LDAP and SIP. All
can map an initial key to one or more values, such as network addresses. In this section, we describe how
they compare and relate to SIP.

DNS offers a one-to-many mapping from a globally unique, hierarchical identifier to one or more host
names or IP addresses. Lookups are by single (primary) key only, not generalized boolean queries across
several parameters. Thus, because of the hierarchical nature and the restriction to primary keys only, DNS
is not suited for looking up individual subscribers. DNS can, however, be used [15] by SIP to map the name
of a domain to the name of a server for a specific request, further the published SIP address from the details
of service provision.

2Most browsers currently do not allow to add handlers for non-HTTP protocols, unfortunately.

6

LDAP is a true directory service with search of attributes to a record. Given suitable schema, it answers
questions like “what are the records matching a name Smith residing in New York City and older than 40
years”. Such a database is appropriate to obtain a globally unique user “handle” from a set of attributes, but
it appears likely that it will be used about as frequently as telephone directory services. For regular phone
calls, it is far too cumbersome to provide sufficient information to obtain a small set of responses from
the global set of available network addresses. SIP servers can make use of LDAP servers, however. For
example, a SIP server may try to look up matches for “John.Smith” or “J.Smith” or “Smith” in a corporate
database accessed via LDAP and return possible choices.

SIP can also provide a “programmable” directory service, where the response may depend on the identity
of the caller, the type of media the caller wants to send or receive, the time of day, how many other calls the
callee is currently engaged in, constellation of the stars or whatever else the server deems worthwhile. These
dependencies are not easily cast into the framework of a relational database service, as the combination of
attribute values is large, but sparse. Unlike a database, where updates tend to be infrequent and require action
by an outside entity, a SIP response may yield different results with each call, without intervention of the
callee. On the other hand, there is no real query language, but rather theserverchooses which parameters
of the call to interpret in handling the call. The call handling programs may well be stored in a database for
large user populations.

3.5 Basic Operation

The most important SIP operation is that of inviting new participants to a call. A user first obtains an address
where the user is to be called, of the formname@domain. The user then tries to translate this domain to an
IP address where a server may be found. This translation is done by trying, in sequence, DNS SRV records
[15] of type sip.udp andsip.tcp, MX, CNAME and finally A records. Once the server’s IP address has
been found, the user sends it anINVITE message using either UDP or TCP.

The server which receives the message is not likely to be the host where the user is actually located.
Because of this, we define three different server types: proxy, redirect and user agent. Aproxy server
receives a request and then forwards the request towards the current location of the callee. For exam-
ple, the server responsible forexample.com may forward the call forjohn.doe@example.com to
doe@sales.example.com . A Via header traces the progress of the invitation from server to server, al-
lows responses to find their way back and helps servers to detect loops. Aredirect serverreceives a request
and informs the caller of the next hop server. The caller then contacts the next-hop server directly. Finally,
a user agent serverresides on the host where the user is situated. It is capable of querying the user about
what to do with the call: accept, reject, or forward. Figures 3.5 and 3.5 show the behavior of SIP redirect
and proxy servers, respectively.

Proxy servers can forward the invitation to multiple servers at once, in the hopes of contacting the user at
one of the locations. They can also forward the invitation to multicast groups, effectively contacting multiple
next hops in the most efficient manner.

Once the user agent server has been contacted, it sends a response back to the client. The response has
a response code and response message. The codes fall into classes 100 through 600, similar to HTTP.

Unlike other requests, invitations cannot be answered immediately, as locating the callee and waiting
for a human to answer may take several seconds. Calls may also be queued, e.g., if the callee is busy.
Responses of the 100 class (denoted as 1xx) indicate call progress; they are always followed by other
responses indicating the final outcome of the request.

While the 1xx responses are provisional, the other classes indicate the final status of the request: 2xx
for success, 3xx for redirection, 4xx, 5xx and 6xx for client, server and global failures, respectively. 3xx
responses list in aLocation header alternate places where the user might be contacted. The response is
always sent to the entity which sent the message to the server, not the originator of the request. To ensure

7

INVITE henning@cs.columbia.edu
From: cz@cs.tu-berlin.de
To: henning@cs.columbia.edu
Call-ID: 19970827@lion.cs 2

200 OK

1

Call-ID: 19970827@lion.cs
To: henning@cs.columbia.edu
From: cz@cs.tu-berlin.de

?

he
nn

in
g

hg
s@

pl
ay

cs.columbia.edu

tunelion

hgsplay

location server

ACK hgs@play
From: cz@cs.tu-berlin.de
To: henning@cs.columbia.edu

From: cz@cs.tu-berlin.de
200 OK

To: henning@cs.columbia.edu

200 OK

200 OK

3

cz@cs.tu-berlin.de

cs.tu-berlin.de

6

4
5

7

8

11

9

10

ACK henning@cs.columbia.edu
Call-ID: 19970827@lion.cs

INVITE hgs@play
From: cz@cs.tu-berlin.de
To: henning@cs.columbia.edu
Call-ID: 19970827@lion.cs

Call-ID: 19970827@lion.cs

Call-ID: 19970827@lion.cs

Figure 2: SIP invitation in proxy mode

1 2 3

4

5

6

9

7

cz@cs.tu-berlin

?

he
nn

in
g

pl
ay

.c
s.

co
lu

m
bi

a.
ed

u

play
hgs@play

cs.columbia.edu

tune

cs.tu-berlin.de

lion

200 OK
From: cz@cs.tu-berlin.de
To: henning @cs.columbia.edu
Call-ID: 970827@lion.cs

INVITE hgs@play.cs.columbia.edu
From: cz@cs.tu-berlin.de
To: henning@cs.columbia.edu
Call-ID: 970827@lion.cs

Call-ID: 970827@lion.cs
To: henning @cs.columbia.edu
From: cz@cs.tu-berlin.de
Location: hgs@play.cs.columbia.edu
302 Moved temporarily

Call-ID: 970827@lion.cs
To: henning@cs.columbia.edu
From: cz@cs.tu-berlin.de
INVITE henning@cs.columbia.edu

Call-ID: 970827@lion.cs

200 OK

location server

8
ACK hgs@play.cs.columbia.edu

Figure 3: SIP invitation in redirect mode

reliability even with unreliable transport protocols, the server retransmits final responses until the client
confirms receipt by sending anACK request to the server.

All responses can include more detailed information. For example, a call to the central “switchboard”
address may return a web page that includes links to the various departments in the company, providing

8

navigation more appropriate to the Internet than an interactive voice response system (IVR).

3.6 SIP Message Reliability

As mentioned earlier, SIP makes minimal assumptions on the underlying transport protocol. Also, SIP
operation is the same whether the transport protocol is reliable or not. Reliability is achieved by having
the client retransmit requests every 0.5 seconds until either a progress report (1xx) or final status (� 200)
response has been received.3 It is expected that the server responds immediately with a progress report or
possibly an error indication upon receipt of an invitation, but then may take a considerable amount to time
until returning a final status, e.g., if it is ringing the phone. The server retransmits responses until the client
acknowledges its receipt with anACK. In effect, this amounts to a three-way handshake similar to setting
up a TCP connection, requiring a total of 1.5 round-trip times and 3 messages to set up a call if no packets
are lost. Pending invitations can be cancelled with aBYE request. The client and server state machines are
shown in Fig. 3.6 and 3.6, respectively.

There is no “acknowledgement of acknowledgement” problem, since any response to theACK has no
significance to either side. It can be sent for reasons of symmetry with other requests, but is not required. The
server simply retransmits the original final status response until anACK is received. The client retransmits
andACK for every final status message.

Using application-layer reliability rather than TCP has the advantage that timers can be adjusted accord-
ing to the requirements of a signaling application rather than being at the mercy of a kernel protocol stack.
For example, standard TCP retransmits SYN packets after 6 and 24 packets, far too long for reasonable
“post-dial delay” should a packet be lost. TCP features such as a flow- and congestion-controlled reliable
byte stream are not particularly helpful, as SIP messages are likely to be short and sporadic. Unlike TCP, the
problem with sequence number re-use is avoided by assigning each call an identifier which is unique across
all hosts and never re-used in time. Servers are required to support both UDP and TCP, while a thin client
such as a standalone “Internet telephone” may only support UDP.

Protocol operation is simplified by making each request idempotent; the recipient of the request simply
checks if it has already executed the required action. For example, during an invitation, if the caller changes
her mind as to details of the request, the latest request will be used.

An earlier version of SIP used a simple retransmission scheme, where requests would be re-sent peri-
odically until a final response arrived, with no retransmission of responses. However, for invitations, this is
undesirable for reasons of responsiveness and network load. If requests are widely spaced, the callee has
no way of knowing quickly when a call attempt has been aborted. If responses are not retransmitted, the
callee may have picked up the call and expects to find a media connection, but the caller does not find out
until the next retransmission of the invitation. The caller’s application would still be generating ring-back.
If retransmissions are spaced closely enough to eliminate this uncertainty (with a retransmission interval of
around a second, say), a single call attempt may generate dozens of invitation packets, increasing network
traffic and impacting all servers in the path. Just retransmitting responses withoutACK adds additional
network overhead, since the callee has no way of knowing when it can stop retransmitting responses. The
simple retransmission also makes implementation of long-lived connection attempts such as call queueing
(see Section 4.1) very inefficient and difficult.

TheACK request primarily avoids unnecessarily retransmitting responses, but also eliminates the race
condition where the caller gives up on a call just as the callee picks up the phone. The callee would not
enable the transmission of data until theACK has been received.

When interoperating with Q.931 ISDN signaling, theACK request corresponds to the “Connect Ack”
message.

3Most network paths suitable for interactive voice conversation will have delays smaller than this value.

9

-

INVITE
T1

INVITE
T2

ACK
status

ACK
status

event
request sent

Calling

Initial

INVITE

1xx
ACK
status

1xx

Completed

Call proceeding

Figure 4: SIP state machine for client

1xx
INVITE

1xx
INVITE

event
message sent

200
BYE

callee picks up
200

failure
>= 300

ACK
status

ACK
status

INVITE T3
statusstatus

Confirmed

Final Status

Call proceeding

Initial

Figure 5: SIP state machine for server

3.7 SIP Message Syntax

In the past, upper-layer Internet protocols evolved largely independently, with little re-use of syntax and
semantics between protocols. (For example, ftp, SMTP, NNTP, POP and IMAP all are text-based protocols

10

exchanging data between clients and servers across TCP connections, yet they allow little reuse of security
features, for example.)

It appears that during the initial discussions for each new application-specific Internet protocol, there is
a heated debate on the general format of the protocol, namely, “Internet-style” binary, ASN.1, text-based
or layering on top of an RPC mechanism like CORBA or DCOM. Here, Internet-style binary refers to C-
like structures with elements aligned on word size multiples or type-length-value tuples. In addition to the
core Internet protocols, RTP [6], RSVP [3] and the RADIUS accounting protocol [16] are examples of this
approach. This works well as long as protocol requests are flat lists of integers, with few optional parameters
and variable-sized structures.

ASN.1 allows the specification of nested data structures with optional elements and a wide variety of
basic data types. It can be storage-efficient if the packed encoding rules (PER) are used. The basic encoding
rules (BER), which have the advantage of describing the datatypes(not names) of data elements, are fairly
verbose. Parsing of ASN.1 is cumbersome, as it requires a parser for both the description and the binary
format. Tools for parsing PER are rare and cost around $30,000. The only ASN.1-based protocols in
widespread Internet use are SNMP and H.323.

Most current Internet application protocols including NNTP, SMTP, ftp, and HTTP are text-based. The
parameter-value structure works well where parameters are not structured and values are simple lists, pos-
sibly modified by attributes. Binary data is not important for the control protocols discussed here, but can,
with loss of efficiency, be carried encoded as base 64. A general parser for headers of that type can be
implemented in about 500 lines of C, far less than a general ASN.1 parser. Textual formats are generally
less space-efficient than ASN.1 PER or Internet binary formats, but for both protocols discussed here, the
number of data bytes exchanged is likely to far exceed those produced by the control protocol. However,
space efficiency is still a concern, as it is highly desirable to avoid UDP packet fragmentation. This limits
the maximum message size to 1500 bytes.

While the author is not aware of any performance comparisons, it is anticipated that for both SIP and
RTSP, the header parsing and space overhead would be a very small. However, the largest advantage is
the low cost of entry, since simple client and server implementations can be rapidly built using scripting
languages such as Perl or Tcl whose “natural” data type is text. Unlike ASN.1 and Internet binary, headers
are self-describing, simplifying debugging and extensions. ASN.1 definitions are usually extensible in a
backward-compatible way, but only by updating the central description. If two vendors add a new, optional
field to BER or PER encodings without coordination, applications will get confused. For headers, the name
of the header will often provide a hint as to its meaning. Many of the currently used email headers, for
example, have evolved through such individual additions.

On the downside, HTTP and SMTP implementations have suffered from a number of security breaches
when implementations made unwarranted assumptions about the maximum length of header fields. In the
past, text-based protocols were restricted to US-ASCII or, at best, ISO 8859-1 (for HTTP); SIP and RTSP
are not burdened by this legacy and can express any ISO 10646 (Unicode) character in the UTF-8 encoding
[17]. (UTF-8 is a variable-length character set encoding that is upward compatible with US-ASCII.)

The final design alternative is to recognize that most control functionality can be modeled as remote-
procedure calls. Thus, systems like the OMG’s CORBA or Microsoft’s DCOM could provide the underlying
foundation, removing the need for each new protocol design to specify data representation and transport
reliability. Indeed, one could probably replace most of the Internet application-layer protocols such as HTTP,
NNTP, SMTP, LDAP and ftp with CORBA implementations. It appears unlikely for this to happen any time
soon, because of the relative immaturity of current implementations and their lack of interoperability or
widespread cross-platform availability. For reasons that deserve study but are beyond the scope of this paper,
RPC protocols have never been widely used for general-purpose applications beyond NFS. The principal
additional deterrents in our case were the lack of security support and the high cost of entry.

Based on the discussion above, a text-based approach was chosen for the design of SIP and RTSP. Rather

11

than inventing a new protocol representation from whole cloth, reusing the most successful Internet protocol,
HTTP, seemed the more appropriate choice. By using HTTP as a base, the protocols can immediately re-
use a number of evolving protocols for electronic commerce [18], authentication [19], content labels and
client-side access control [20], protocol extensions [21], state management [22] and content negotiation [23].
Also, servers, proxies and firewalls, all already tuned for high performance, manageability and reliability,
can be easily modified to accommodate these new protocols. The commonality between SIP and RTSP
also simplifies implementations as many clients and servers can be expected to implement both, given the
scenarios described in Section 1.

3.8 Protocol Extensions

Since IPtel is still immature, it is likely that additional signaling capabilities will be needed in the future.
Also, individual implementations and vendors may want to add additional features. SIP is designed so
that the client can either inquire about server abilities first or proceed under the assumption that the server
supports the extension and then “back off” if the assumption was wrong.

Methods: As in HTTP, additional methods can be introduced. The server signals an error if a method
requested by a client is not supported and informs it with thePublic andAllow response headers about
the methods that it does support. TheOPTIONS request also returns the list of available methods.

Request and response headers:As in HTTP or SMTP, client and server can add request and response
headers which are not crucial to interpreting the request or response without explicit indication. The
entity receiving the header simply silently ignores headers that it does not understand. However, this
mechanism is not sufficient, as it does not allow the client to include headers that are vital to inter-
preting the request. Rather than enumerating “need-to-know” non-standard headers, the SIPRequire
header indicates those features that the client needs from the server. The server must refuse the re-
quest if it does not understand one of the features enumerated. Feature names are either registered with
the Internet Assigned Number Authority (IANA) or derived hierarchically from the feature owner’s
Internet domain name, giving hints as to where further information might be found. SIP uses this
to ascertain whether telephony call-control functions are supported, avoiding the problem of partial
implementations that have unpredictable sets of optional features.

Status codes:Status codes returned in responses are classified by their most-significant digit, so that the
client knows whether the request was successful, failed temporarily or permanently. A textual sta-
tus message offers a fall-back mechanism that allows the server to provide further human-readable
information.

3.9 Security

Signaling requires security, primarily authentication, to prevent spoofing of calls, denial-of-service attacks
and the equivalent of commercial unsolicited email (“spam”). This is particularly important since the tra-
ditional means of ensuring some privacy by unlisting telephone numbers is not directly applicable to IPtel
signaling as long as email addresses are (semi) public.

SIP can make use of standard HTTP authentication mechanisms including basic (that is, clear-text pass-
word) and digest (challenge-response). Since TCP-based security protocols such as TLS [24] are not directly
applicable to SIP if run over UDP, we are investigating whether cryptographically signed requests, e.g., using
a variant of PGP or S/MIME, might add additional security.

For telephony, third-party signing of requests may be particularly useful. While a callee is unlikely to
recognize, say, an individual employee at his local bank, having the call signed as originating from within
that organization provides him with an additional means to filter and process calls.

12

We are currently investigating whether SIP and SDP should be extended to also support the generation
of keys for encrypting media streams, e.g., using Diffie-Hellman key exchange.

3.10 Transport Issues

Signaling protocols such as H.323/H.225.0 and ISUP assume a reliable transport mechanism. SIP, on the
other hand, may use any transport protocol that offers either reliable byte stream, reliable or unreliable
datagram service, including TCP, RDP [25], UDP, IPX, or AAL5. While assuming a reliable transport
protocol would simplify the SIP state machine somewhat, using TCP significantly increases call setup delay.
First, the three-way handshake adds 1.5 round trip times of delay. Also, current TCP implementations
are very conservative in their retransmission of the initial SYN packet, with retransmit delays of 6 and 24
seconds. Thus, even a single packet loss can lead to unacceptable call setup delays. Since SIP is primarily of
interest for networks whose delay is low enough to allow interactive communications, we set the retransmit
timeout to 500 ms. Finally, for some signaling operation such as searching, it is desirable to multicast SIP
requests, making UDP preferable.

TCP features such as flow and congestion control are not particularly helpful for this application. How-
ever, for firewalls and transport-layer security protocol such as TLS [26], use of TCP may be required, so
SIP allows both.

Even if TCP is used, SIP does not tie the existence of a call to that of the signaling connection. In
contrast, H.323 assumes that the call is terminated when the H.245 [27] connection is closed. Avoiding
relying on a TCP connection to maintain a call also simplifies hand-off in application-layer mobility.

4 Services

The model for development of telephony services (such as multi-party calls, call transfer, hold, etc.) using
SIP is substantially different from other telephony architectures, such as H.323 and Q.931. These differ-
ences stem from the need for extensibility and growth. The Internet has thrived because it enabled rapid
development and deployment of new applications without centralized control or “forklift upgrades” of all
systems involved. Similarly, we would like the protocols that provide Internet telephony services to allow
for quick development and deployment of new services. Furthermore, we would like these services to be
available to existing endpoints, if possible.

To realize this goal, we have defined a set of tools that a SIP client has at its disposal in order to construct
services. The behavior of a server in response to the invocation of these tools is also well defined. This allows
clients to construct services by applying particular tools in a certain order.

The tools fall into two categories. The first are request methods. There are three request types which
can be used as tools for creating services:INVITE, BYE, andOPTIONS. The other SIP request methods
are not used for creating call services directly. The second type of tool are the header fields, primarilyCall-
Disposition, Also, Location, andReplaces. Each header field causes the server to perform a well-defined
operation. Server behavior in response to receiving any combination of these three are also well defined.
There are other header fields, of course, but these are either independent of those used for call services (the
authentication headers being an example), or provide additional information which may be needed for call
services (Call-ID, for example).

The header fields and message types are orthogonal. That is, the semantics defined for the four call
service header fields are independent of which request or response message they are present in. This both
simplifies implementation and allows for richer service offerings.

The next section discusses these tools and their operation. The sections which follow show how these
tools can be used to construct a variety of advanced telephony services. For brevity, “A invites (drops)B

13

with Also: C” means that partyA sends anINVITE (BYE) request to partyB, with theAlso header value
of C. “A accepts” indicates thatA returns a response of200 OK.

4.1 Primitives

The tools described here essentially allow for constructing and destroying pieces of acall mesh, where this
mesh represents the endpoints involved in the call (which may be users, bridges, media players, or any other
relevant device), and the branches represent the logical connections which have been established between
them.

The message tools areINVITE, OPTIONS, andBYE. Each of these request messages are sent from a
client to a server. The server behavior in each of the three cases is simple.

The INVITE request indicates that client wishes to establish communication, or change some aspect of
the communication, with the server. The server knows which is the case based on theCall-ID field. If the
Call-ID field in the message is new (that is, the server has no other calls with thatCall-ID), the call is new.
If the Call-ID is not new, and the originator of the request is already in the call, the message is either a
duplicate (known by theCseq field, which is a simple sequence number), or contains an update about the
call. An update is usually silently executed by the server, without informing the user, as the user has already
accepted the call. If theCall-ID is not new, but the originator of the request is not in the call, then this is a
new party being added to the existing call.

TheBYE message indicates that the client wishes to terminate communication with the server. TheBYE
message must contain aCall-ID which is already active with the originator of the request.

TheOPTIONS message is a null operation. It does not establish or tear down a call between client and
server. However, several things do happen. First, the server returns an OK response to the client containing
SDP which describes its capabilities. Secondly, the server will execute the actions specified by the header
fields in the message. For example, anOPTIONS message can contain anAlso field.

In conjunction with these messages, the header fields provide tools for additional services. Perhaps the
most powerful of these is theAlso header. This header contains a URL (generally a SIP URL, but not
necessarily), which contains another entity that the server should call (by sending anINVITE to that URL).
There may be manyAlso header fields, in which case the server should send anINVITE to all. When the
server (now acting as a client) sendsINVITE messages in response to anAlso, it uses the sameCall-ID
from the originalINVITE. Furthermore, the server will insert theRequested-By field into the invitation,
containing the SIP URL of the client who sent the original request. This allows for some advanced services,
some of which will be described below. TheAlso header can be present in any query.

As authoritative responses from theAlso spawned invitations come back, the server should send provi-
sional responses back to the client, indicating the result of those invitations. When an authoritative response
has been received from all entities listed inAlso fields, the server sends an authoritative response back to the
client, indicating the number of parties in theAlso fields which were finally connected. Since the informa-
tional responses may delay the transmission of the authoritative response, the client can specify whether the
server should send the informational responses, or just send an authoritative response indicating the status
of the client server connection. This service is specified with the Call-Disposition header.

The Location header is similar in function to theAlso header when present in a request, except that
it indicates alternatives to be tried until the first success. Thus, when there is only oneLocation header
in the query, its function is identical toAlso. When there are multipleLocation headers in the request or
response, the recipient chooses one of the URLs, and sends it anINVITE. The Location addresses may
refer to different modes of communicating with the same person, or to different people. Since theLocation
header involves a choice, it can include parameters for providing the recipient with information in order to
make that choice. These parameters include callee preference, priority, mode of communication (e.g., fax,

14

pager, PSTN or Internet telephony) language spoken, whether the URL is for a mobile user, or whether the
URL is for home or business.

TheReplaces field is best described by analogy –Also is to INVITE asReplaces is to BYE. When
present, theReplaces header indicates that the user should send aBYE to the parties indicated. It is allowed
for the Replaces header to include a * as the URL. This indicates that this connection replaces all other
connections with other parties with the sameCall-ID.

In any message, there must be onlyAlso header fields orLocation header fields. There may also be
Replaces header fields. In that case, the recipient of the message should first execute theAlso or Location
invitations. Then, when authoritative responses have been received, theReplaces is executed. This ordering
can be reversed by so indicating in theCall-Disposition header.

TheCall-Disposition header has been mentioned repeatedly. It is a powerful mechanism for expressing
client preferences about call handling. The client can indicate that the call should not be forwarded (“do-not-
forward”). It may also request that the call should be queued if the callee is busy (“queue”), implementing
a type of camp-on services. A disposition of “status” asks the server to send back informational responses
about the status of theAlso invitations. New values can be added as needed, with a well-defined mechanism
(see Section 3.8) to ensure that the client requests are understood.

The orthogonality of the functions provided by these headers and messages achieves two goals simul-
taneously. First, it simplifies processing, since complex relationships need not be tested and. they can be
executed one at a time. Second, the orthogonality causes an exponential increase in the number of possible
services which can be created by including these fields.

Using these logical building blocks, we can construct a wide variety of services. The following sections
discuss some of the possibilities for forwarding, user location, transfer and conferencing services, but are by
no means exhaustive.

4.2 Forwarding and User Location Services

The telephone network defines a range of forwarding and number translation services for different condi-
tions, such ascall forwarding busy, call forwarding no response, andselective call forwarding. 800 and
900-number services are also examples of such services. SIP generalizes forwarding to these and any other
observable condition, result of a user location query or user preference. User preference can be expressed
as rules or manual response to a call, e.g., by clicking on a “do not disturb” button when a call arrives.

The forwarding location can be determined in a number of ways. First, a SIP user agent can let the
SIP server of a domain know of its presence via aREGISTER message. Other methods include the finger
protocol [28], database accesses, for example PSTN Intelligent Network databases, or a query multicast on
a local network.

All call-forwarding functions are usually instantiated with theLocation header field, sent in the 300-
class response to the originalINVITE message. TheLocation field contains the possible destinations where
the call should be forwarded to. The callee’s user agent server or a server can send a redirection response
based on any number of reasons, such as the caller, the time of day or availability of callee. When the
decision to send a redirect response is made at the user agent end, the decision logic can be programmed
in any desired way, with or without user interaction. When the decision is made by a redirect server, the
decision can be made based on local policy at the redirect server, and by user specified preferences. We
are proposing that user specified preferences are indicated by uploading a simple call processing directive
function to the SIP server. This upload is accomplished by using the SIPREGISTER message. As SIP
messages can contain any MIME type, theREGISTER message contains the directive, expressed as some
script. When a call arrives for that user, the SIP server executes the script to arrive at a decision. This is
much like the operation of the PSTN Intelligent Network, except the features are exposed to clients in a
simple and scalable manner.

15

The caller invites the addresses listed in theLocation headers. TheLocation header, as mentioned in
Section 4, contains additional fields which can help the caller decide which address to use. These decisions
can either be automated, or made through user interaction.

SinceLocation URLs can contain any URL, not just SIP URLs, calls can be forwarded between com-
munication domains, for example, to a regular PSTN phone number, a web page for further information, an
RTSP URL [29] for an answering machine or amailto URL to leave an email.

The redirect mechanisms described here, when used several times, enable a host of forwarding functions
which can range from simple forwards to personal mobility, i.e., the ability of a callee to be reached under
one address regardless of the terminal being used). As an example, subscriber Alice may maintain a perma-
nent, life-time “phone number” with a professional organization, say “alice@ieee.org”. When she changed
jobs, she notifies that organization to forward her calls to, say, “alice@employer.com”. The SIP server at
employer.com has access to the personnel database and forwards calls to Alice’s department. Alice, in
turn, programs her PC to forward calls to her wireless laptop she takes to classes at Columbia University,
with the addressalice@cs.columbia.edu . If she is currently disconnected, one of the alternatives
offered in aLocation header may bepager://1-800-BEEPER?PIN=12345 .

There may be cases where a user wishes to find out where another user is actually located, and what
media they can understand there, without actually making a call. Thisuser location servicecan be invoked
by sending anOPTIONS message to the user, instead of anINVITE. The same set of forwarding and
redirect functions are available, but no call is actually set up.

5 Buddy Lists

Buddy lists is the term used to describe software that lets users be aware when friends are logged-on and
available for communications. It had its origin in consumer on-line services like America Online, where
“instant messaging” and textual chat are among the more popular services. Currently, there are products
including ICQ (“I seek you”) that perform similar functionality in the Internet. A primitive form of a buddy
list is also found in the current Microsoft NetMeeting conferencing software, where a so-called ILS server
records who is on-line and using the software [30].

Buddy lists are primarily suited for environments such as dial-up Internet services where people are
only sporadically available through the network. However, in a more general sense, they can also serve
as an indication of the willingness to communicate with different sets of people. People may prefer such
indication to being interrupted by phone calls during a meeting. The SIP queueing mechanism already
offers a form of communication awareness, of the form “I want to talk to you as soon as you are available”.
However, there are other cases where a colleague may want to be notified of another’s presence, and then
decide whether to establish contact. Also, it may be desirable to tie together the presence of several people;
one might, for example, want to meet electronically when five out of the group of eight have come in in the
morning, including the group leader.

In local environments, a number of CSCW systems providing awareness of other’s people presence have
been developed For example, Gaver [31] describes a system where connecting to and disconnecting from
somebody’s camera generates the sounds of a door creaking open and shutting. The Montage system [32]
present the hallway model of awareness, with reciprocal and gradual video awareness.

While these awareness mechanisms are observer-triggered and require explicit action by the person
wanting to “visit” somebody, buddy lists are triggered by actions of the person being waited for. A person
lets it be known that he or she is available for communications, and some number of other people are notified
of this fact more or less intrusively. Buddy systems like ICQ allow participants to put up “do not disturb”
signs, require notification when somebody is watching or even require approval to be watched by a particular
person.

16

The willingness to communicate can be detected either automatically or manually. Examples of auto-
matic detection include computer keyboard activity, passive infrared (PIR) occupancy sensors, chair pressure
mats or the presence of speech.

In SIP-based systems, theREGISTER request provides a basic mechanism to indicate presence. Just
like calls, registrations are identified by aCall-ID. Two new request,HERE andGONE, request updates
about the coming and goings of a particular individual, respectively. They both have the same reliabil-
ity mechanism asINVITE, i.e., using 1xx informational responses and a final response acknowledged by
ACK. Registrations and notifications are cancelled usingBYE and expire automatically after a certain time
enforced by the server.

Say, Alice wants to be notified when Bob is available to talk. Alice issues a “HERE Bob” request to
Bob’s home server. Bob’s server initially answers with “100 Trying”. If Bob is already registered, the server
responds with “200 OK”. If not, the server will delay that response until Bob shows up. Once Alice’s client
has received the “200 OK” response, it now wants to monitor when Bob leaves again, so it automatically
issues a “GONE Bob” request.

The call processing language included in the registration can indicate how new notification requests
should be handled, e.g., by disallowing them altogether, allowing them if notification is mutual, generating
an email notification, (web-based) approval or by forwarding it to some other server. Forwarding would
allow somebody to watch, say,member@ieee.org , yet have the actual matching be done by a server
closer to the user’s current location. In all likelihood,WATCH requests would not be forwarded to the user’s
terminal, but stop at a user-designated constant “home location register”.

One problem with these buddy list mechanism is the scaling of registration and notification for large
domains. For example, all 10 million members of America Online have the same domain name,aol.com.
There are at least two ways to to address this. First, registrations and observations could all go to a single
server, that then redirects both according to some private algorithm. Another alternative would be to embed
scaling into the name resolution: A client would count the number of DNS entries with equal priority for
the SIP registration server, sayn, compute a hashh across the user name and then pick theh (mod n)th
server.

5.1 Group Invitations

Existing telephony signaling protocols typically only support the invitation of a single individual. SIP aims
to also allow calls that reach either the first available individual from a group, similar to automatic call
distribution (ACD), or a whole group of callees, e.g., the whole department. To simplify error reporting and
the client state machine, we limit each call to reaching a single individual, either through unicast, described
in this section, or multicast, described later in Section 5.3.4. (There is one exception, namely using SIP to
distribute announcements of scheduled events, where receivers are prohibited from generating responses.)

We refer to the calling of the first available individual as “reach-first” and to inviting a whole group as
“reach-all”. In both modes, the destination user name is actually the name of a list of individual addresses,
to be resolved by the server. Examples of such names might besales@acme.com or ietf@ietf.org .
Just as for email addresses, there is no way that a user can know for certain whether an address is that of a
list or of an individual. Since email is a distribution service, email only knows the equivalent of “reach-all”,
while for telephony both services make sense. By default, a caller expects a single individual to answer a
call; reaching a group requires explicit setting of a flag in theCall-Disposition header. We first describe the
reach-all service in Section 5.1.1 and then the reach-first service in Section 5.1.2.

17

5.1.1 Reach All

The caller declares its intention to set up a group call by setting theall flag in theCall-Disposition argument
in its invitation. Reach-all service is then implemented in two stages. First, the caller sends an invitation
to the named server. The server returns a “Multiple Choices” (300) response and enumerates the members
of the list in Also headers. (Note thatLocation headers refer to multiple possible locations of a single
individual, whileAlso headers list distinct individuals.) Employing the normal behavior for theAlso header,
the caller simply invites each listed individual, but with the same call identifier. It is up to the caller to decide
whether to set up a mesh or create a multicast group. For the mesh case, the caller includesAlso with the
group address in the invitation, so that every group member goes through the same resolution process. (Since
all will use the same call id, a callee that has rejected an earlier invitation from another group member will
not be bothered again.)

5.1.2 Reach First

Reach-first appears not only in ACD systems, but is also useful for residential services such as having a
single number ring at two different locations. Some phone companies offer this service when customers
move from one residence to another; it is also useful for professionals that may work both at home and at an
office or for a common phone number in a main and vacation residence.

5.2 Call Transfer Services

There are a number of different instances of transfer services possible, depending on whether the new con-
nection is established before or after the disconnection and whether the initiator of the transfer is kept
informed as to its progress. In all cases, it is immaterial as whether the caller or callee of the original call
initiates the transfer.

The simplest type isblind transfer. In this scenario, userA is in a conversation with a set of usersBi,
i 2 1 : : : n. A would like to disconnect from the call and ask userC to connect with allBi’s instead. The
transfer is called “blind” since UserA does not need any confirmation of whether the transfer toC has
succeeded. To implement this service,A drops allBi’s with C named in either theLocation or Also header.
Prompted by this header, allBi’s invite C as normal. Except for theRequested-By header indicatingA,
this looks like a normal call toC. If it is desired,A can ask to be informed about the status of the call
by setting theCall-Disposition flag. However, these transfers are limited in that even if the transfer is not
successful, the originating party is still disconnected.

An alternative transfer service which does not suffer this problem is possible, using a “make-before-
break” approach. Here, the party initiating the transfer asks the other original call party to call the transfer
destination. For example, customerC is in a call with secretaryS. S wishes to transferC to B1 or B2,
shouldB1 not be available. To do this,S invitesC, with the sameCall-ID as their existing call, “Also: B1”
and “Call-Disposition: status”. This will causeC to inviteB1, with the “Requested-By: S”. If B1 is a
busy, this response is echoed toS. Now,S invitesC again, this time with “Also: B2”. OnceS finds out the
call C � B2 has been set up, it can now dropC. Note that neitherBi norC needs to know anything about
this alternate transfer service.

In theoperator-assisted call transferservice, the transferring user (say, a secretaryS), wants to confer
with the transfer recipient (here, bossB) to confirm that the transfer of the caller (customerC) is acceptable.
Also, it wantsB to initiate the call toC. The secretary can then either leave or stay in the call. The customer
C invites the secretaryS, who in turn initiates a new call toB asking for permission. If granted,S invitesB
again, this time with “Also: A”, the Call-ID of theC-S call and “Call-Disposition: status”. The secretary
may then leave the conference by droppingC andB, may terminate the call withC, but remain connected
to the boss, or may remain in the call, which has now become a three-way call. Compared to traditional

18

telephony, all parties have a much clearer picture as to who is currently participating and what the status of
the call transfer is.

Theauto-dialerservice is a variation on the operator-assisted call transfer. Here, the auto-dialerA takes
the place of the secretary above and calls a potential customerC (usually at dinner). After the customer has
answered,A then calls a third user, the telemarketerT . Upon success,A wants to connectT andC and
drop out of the call.

This service is also easily implemented (in many ways, in fact) with the above mechanisms. The auto-
dialer first invitesC (Fig. 5.2). IfC accepts, the auto-dialer invites the telemarketer withAlso: C, and
“Call-Disposition: status”. The telemarketer then callsC, using the sameCall-ID as for the connection
betweenC andA. This causes the customer’s application to treat this is a new party in the call, so it is
accepted. The telemarker then indicates to the autodialer that the call has been completed. This causes the
auto-dialer to drop the customer and the telemarketer.T andC are now connected.

5

1 customerauto-dialer

telemarketer

A C

T

3

42(C)

INVITE(Also:)
BYE(Also:)

Figure 6: Auto-dialer (telemarketing) service

There are other ways to implement this service. The previous approach has the drawback that it causes
the customer to first “see” the autodialer, then the telemarketer and the autodialer, and then just the tele-
marketer. This transition can be made instantaneous to the customer as follows. The auto-dialer invites
the customer. When the customer picks up, the autodialer invites the telemarketer with “Also: C”. The
telemarketer then invites the customer with the “Replaces: A”. The customer will accept the call (as it is
just adding a new party to an existing call), and then immediately drop the autodialer. Through the inclusion
of theRequested-By header, the auto-dialer can distinguish the case that the customer is actually talking
to the telemarketer, if usually briefly, from being disconnected immediately.

5.3 Multi-Party Conferences

One of the advantages of SIP based telephony is that it enables a wide variety of multi-party conferencing
scenarios. These include multicast conferences, bridged conferences, and full-mesh conferences. In a full-
mesh conference, each participant sends media data to every other participant and mixes the media from all
other participants locally. While network multicast is more efficient for multi-party conferences, a full-mesh
may be appropriate for, say, three-party calls or where a bridge or multicast is not available. If DVMRP
is used as a multicast routing protocol, small groups are very inefficient, as packets will be periodically
broadcast to the whole Internet. Also, it is far easier to eavesdrop on a multicast session. A single SIP
conference can combine multicast, full-mesh and a bridge. These services are all possible using only the
tools described in Section 4.

19

5.3.1 Unicast-Based Conferences: Bridges and Meshes

Consider the simplest case, that of a dial-in bridge. In this scenario, users call up a number which represents
a bridge. This bridge mixes the media from all users connected to it, and then returns it to each user. In SIP,
such a bridge is represented with a SIP URL like any other, e.g.,sip://conf3224@mcus.com . The
caller may not even be aware that this URL is actually a bridge. Each user invites the bridge. The acceptance
response describes the media that the bridge can understand, and the port number to send the media to, as
with any other call. All users who send anINVITE to the same URL are considered part of the conference.
Their media is mixed, and the result is sent to each user in a format they can understand.

RTCP is used to learn about what other parties are in the conference, and to pass around notes (such as
far end mute indications) for simple conference functions.

SupposeA who is part of the bridged conference at MCUM would like to callB, not through the
bridge, and then inviteB to join the bridged conference. To do this,A invitesB. After the two connect and
talk,A invitesB again (sameCall-ID), with Also: M . Note that userA’s SIP application does not know, or
need to know, thatM is actually performing a bridge function. In response to theAlso,B sends anINVITE
to the MCU, with “Requested-By: A”. This lets the MCU know that it wasA that invitedB to join the
bridge, and it is thus possible thatA is still connected toB directly. To change this, the MCU invitesB,
with Replaces: A. This causesB to dropA.

If the client does not useRequested-By, the bridge has no way to know which user to place in the
Replaces field. To deal with this case, the bridge can use “Replaces: *”, which will tell B to disconnect
any mesh that existed outside the bridge.

For a full-mesh conference, a participant gets a new participantN to join the mesh by sending it a list
of all the other participants it knows about in anAlso header (Fig. 5.3.1). (As in [33], we could have each
existing party thatN calls list the participants it knows about, repairing partially connected meshes.)

INVITE

Also: A,B

3
2

1

session

2

BYE

Also: B
1

A B

CD

A BBA

CD CD

Figure 7: Establishing a full mesh of conference participants

5.3.2 Multicast Conferences

In general, multicast conferences use network resources more efficiently than meshes and bridges. To tran-
sition from full mesh to multicast, one user (A) obtains a multicast address, and invites all others in the
conferences, with the invitation containing an SDP description which indicates thatA wishes to receive its
media on the multicast group. Other endpoints which are multicast capable reply with a 200-class response,
others that cannot, reply with a 600-class response. This will allowA to know from which users it can expect
to receive data through multicast, and which through unicast. Participants which are multicast capable treat
the invitation as an opportunity to send a similar invitation themselves. As each participant in the conference
sends a multicast invitation to each other, the participants will learn which participants can receive on the

20

multicast group, the media capabilities of each participant in the group. Those participants which cannot
receive multicast will continue to receive unicast from each of the other participants. Furthermore, since
each participant will know the media capabilities of those receiving from the group, each can send using
codecs from the intersection of those capabilities.

If one user (A) wishes to invite a new participant (B) to the conference, the operation is just as if the
conference were full mesh.A invites with theAlso header listing the other participants in the conference.
The SDP in the invitation contains the multicast address, and the media thatA is capable of. IfB is
multicast capable, it replies with an SDP description echoing the multicast address, and indicating its own
media capabilities. IfB is not multicast capable, it returns an error code to this effect.A can then resend the
invitation indicating a unicast address instead. In response to theAlso, B will invite the other participants
in the conference, indicating unicast or multicast in the SDP, as appropriate.

Even though this conference is multicast, it is stilltightly coupled, in the sense that when a new partic-
ipant is invited to the group, it must explicitly invite itself with every other participant. This does not scale
well to very large conferences. To deal with this, at any point in time, a participant who wishes to invite a
new user may switch to aloosely coupledconference mode. To do this,A invitesB, as before, but omits
theAlso list. B will eventually learn about the other group members through RTCP or other media-specific
membership announcement mechanism.

The loosely coupled conference model scales better since new members need not know anything about
the other members in the conference. However, the new member cannot participate if it is not multicast
capable, and it will not be able to communicate with those conference participants who were still connected
with a unicast mesh. Note that the decision to switch from tight coupling can be made independently by
each participant. There is no need for synchronization.

5.3.3 Switching from a Mesh to a Bridged Conference

To switch from a full mesh to a bridged conference, some user in the conference (A), locates a bridge
B, using a mechanism outside the scope of SIP, and invites the bridge, withAlso enumerating the other
conference participants, similar to a call transfer (Fig. 5.3.3). As the bridge works through the invitation
list, it includes all the successfully bridged members in theReplaces header to the new invitees. The
SDP description in each of the invitations indicates the capabilities and receive ports of the bridge. Any
participant may then invite new members to the conference in the same fashion as for the dial-in bridge
scenario described above.

56

3

4

Replace: A,B

BYE INVITE

1
Also: B Replace: A

2

B

D C

A B

D C

A

session

MCU MCU

Figure 8: Transitioning from a full-mesh conference to a bridged conference

21

Note that except for the initiator and bridge, none of the conference participants need know how to
interact with a bridge. The participants will all transition to a bridge as a natural consequence of the behavior
defined by theAlso andReplaces fields. There also is no disruption of the conference. The result of the
transition may well be a mixture of a bridged and meshed conference.

5.3.4 Multicast Signaling

SIP also allows a client to send requests via multicast. We can envision a number of different applications
for multicast invitations to a conference:

� The client wishes to invite a group of friends, represented by a single identifier (friends@isp.com ,
for example) which maps to a multicast address. Each member of this group listens to the address,
and can therefore receive invitations. This is awide area reach-allapplication.

� A client wishes to invite all members of the department to a conference, without having to keep track
of the department members. It would be efficient to send an invitation to a local multicast group
representing the department. This is an example of alocal area reach-allapplication.

� A researcher wishes to speak to speak to a system administrator, but does not know which one is
available. Instead of calling each sequentially, the client can multicast an invitation, and a single
administrator responds. This is a version of any-cast, which we refer to as thelocal area reach-first
application.

� A client wishes to speak to a member of the board of directors of a club, but does not care which one.
The client multicasts an invitation, and a single director responds. This is an example of awide area
reach-firstapplication.

� A client wishes to advertise a multicast session, inviting any users who are listening to join the session.
The client does not want responses from the users it invites. This is an example of awide area
advertiseapplication.

Mapping a SIP URL to a multicast group is beyond the scope of this work; it may involve static config-
uration for local-area applications or directory services.

In order to scale the reach first and reach all applications for both local and wide area usage, we define
some basic rules and protocol mechanisms for multicast usage. Since many parties may send SIP messages
to a multicast group (particularly in the advertise application), clients must implement a back-off algorithm
before sending a message. This algorithm is calledreconsideration[10, 34]. It allows for fair distribution of
bandwidth among senders in a multicast group with a minimal amount of state storage or complexity. Before
a client sends, it listens to the group to see if anyone else is sending. If so, it reschedules its transmission
of the request based on the number of other senders heard. In the case of the advertising application, it is
desirable to send the message periodically. Reconsideration defines the mechanism by which each client
determines the period of the message transmission.

Once the message is multicast, there must be an indication of whether it is to reach all, reach first, or
advertise. This is indicated in theCall-Disposition header.

In the case ofadvertise, the servers which receive the request do not respond. Since the request is an
INVITE message with a multicast group listed for the conference, the servers can join the group immediately
and participate in the session. In the case ofreach first, things are more complicated. We desire just
one response among all receivers that get the invitation. We observe that this is the same as the “NAK-
suppression problem” in reliable multicast [35]. Therefore, when a server receives a multicast invitation
with a reach-first disposition, it waits a random amount of timeT , and then multicasts a response. Should

22

the receiver hear another server respond before it sends its own response, it cancels its own response. If
multiple servers send responses back to the group, the one with the lowest unicast address is considered the
“winner”. To acknowledge this, the client sends its ACK message to the multicast address (to make sure
everyone has a consistent view of who the winner was), listing the designated winner in theTo field. The
winner responds to this message with a unicast response, not multicast.

In networks with lots of servers listening to a multicast address, and where network delays are large,
additional means are needed to reduce the response flood. To do this, we mandate that the random variable
T is not distributed uniformly (as is done in protocols like IGMP [36] and SRM [35]), but rather has a
skewed distribution. The skew makes it more likely that a response is sent later rather than earlier. This
allows for responses to be sent only sporadically in the beginning, with the response rate picking up as time
goes on. However, since a response suppression algorithm is being used, this behavior is desirable - the bulk
of users towards the end of the distribution will never send since their response will be suppressed.

In the case of reach-all, we apply the samereconsiderationalgorithm to the responses. Since the client
wishes to receive all of the responses, a suppression algorithm is not appropriate. Reconsideration will
allow each server to send a response, but will spread them out uniformly over time. Furthermore, a variation
of reconsideration, calledunconditional reconsideration, is particularly effective at preventing floods of
packets when many users simultaneously send a response [34], as they are likely to try to do here. The
ACK and the responses which result are also sent in the same fashion. This will allow a client to establish a
signaling relationship with all of the members of a multicast group in a scalable fashion.

Using multicast invitations is a logical next step in growing a conference beyond the multicast-media
conferences discussed above. As the number of members of such a conference becomes very large, a
member can multicast an invitation withCall-Disposition set to advertise. This will allow potentially
thousands of members to join the group. In this way, SIP provides a flexible framework for signaling
for both small conferences and very large conferences alike, allowing for a migration from one to the other.
Thus, there is no need for a separate announcement protocol such as SAP [11], although the style of user
interaction may well be different. For an advertisement, for example, it is likely that these would only be
listed in some temporal or subject ordering, rather than alerting the recipient.

5.4 Mute and Hold Services

The mechanisms described in Section 4 support a wide range of mute and hold services. Near end mute,
where the client continues to receive media but does not generate it, requires no protocol assistance. To
implement far end mute, a participant need only send anINVITE to another participant, indicating a null
set of receive capabilities for any of the media. This will cause the other participant to cease sending that
particular media.

Putting another user on hold is trivially supported by ceasing to send media. RTCP can be used to send
a note, such as “holding” to assure to user that they are still connected, but put on hold. More interesting
services are also possible. Instead of simply ceasing transmission, a user can send anotherINVITE indicating
a multicast address. This multicast address could be fed by a media server which is streaming background
music. Since SDP can contain pointers to RTSP [29] content, it is even possible to give users remote control
over the music they hear while waiting.

6 Interaction with Stored Media

Since Internet telephony shares protocols and infrastructure with other Internet multimedia services, it is of
interest to explore new combinations of services that span several of these. In this section, we look at several
examples. While in no way required for use with SIP, the Real-Time Streaming Protocol (RTSP) [29] is a

23

SIP
RTSP

create URL entry for

email URL
or media

voice

record
message

prompts

voice message

media playerRTSP server

SIP server

RECORD msg
PLAY
SETUP

ogm

PLAY

INVITE

Figure 9: Implementation of voice mail using SIP and RTSP

natural complement to SIP. RTSP’s role is to control the delivery of stored multimedia content, including
precise control of playback and recording suitable for remote digital linear editing.

Perhaps the best example of this is voice mail. Instead of treating voice mail as a special-case service for
telephony only, we can treat it as nothing but a recording and playback service controlled by the IPtel end
system or server. There are a number of ways in which the voice-mail service can be accessed. In the most
direct approach, a SIP server sends a redirect response back to the client. TheLocation header contains an
RTSP URL. The client then communicates with the RTSP server, recording a message. Here, the client has
to be able to understand RTSP.

As an alternative approach, shown in Fig. 6, the SIP server can return a SIP URL which points to a
specialized voice-mail server. This server will answer SIP invitations, and establish an actual SIP session
with the caller. The voice-mail server can then send RTSP commands to the RTSP server to play the outgoing
message, and record whatever media is received from the caller.

After completing the recording, there are several methods by which the recording can be made available
to the recipient:

� The server can mail the multimedia file as a MIME attachment to the recipient, so that it appears
integrated with the remainder of the user’s email and can be filed, forwarded and replied to. (Again,
the use of email addresses for SIP helps here.)

� The server can email an RTSP URL to the recipient, pointing to the recording, avoiding the transmis-
sion of possibly large multimedia files.

� The server can email an HTTP URL to the recipient. This HTTP URL actually points to a Java applet.
This applet contains a user interface and RTSP implementation that contacts the media server. This is
similar to the previous approach, but avoids the need for the user to even have an RTSP implementation
in their mail reader.

24

� The server can transfer the message to a traditional telephony voice-mail server. (The method of such
a transfer is outside the scope of this paper.) The user can access voice-mail messages in an integrated
fashion.

RTSP can also play a role in conferences as a device for recording and playback of conferences. A con-
ference participant can invite a SIP-speaking RTSP server, bringing it into an existing conference, appearing
as just another participant in the conference. Alternatively, for multicast conferences, an RTSP server can
simply be given the same session description as was used for invitations.

7 Related Work

Efforts to design multimedia applications and protocols for packet-switched networks [37, 38] date back to
the early days of the Internet; systems have been developed for various combinations of packet-switched and
circuit-switched networks [39, 40]. In particular, the set of tools commonly known as the Mbone conferenc-
ing tools [9, 41, 42, 43] has achieved widespread use. Examples of multimedia control include Etherphone
[44], Rapport [45] and MMCC [46, 47]. Etherphone and MMCC are based on a centralized control model,
while SIP has no notion of a conference controller or similar device. MMCC did not incorporate call con-
trol functionality. The H.323 protocol suite [1], based on the ISDN Q.931 protocols, is being defined as a
framework for Internet telephony call control services. SIP attempts to offer a generalized set of services
which is not encumbered by H.323’s ISDN legacy. SIP is based on work reported in [48] and [49].

8 Conclusion and Future Work

We have described a protocol for Internet telephony signaling, the Session Initiation Protocol. SIP provides
a framework for complex and rich telephony services, including user location, forward, transfer, multiparty,
mute and hold. It is simple, flexible, extensible, and based on existing architectures, such as HTTP and DNS.
We have described how to instantiate specific services with the primitives provided by SIP. Space does not
permit to describe other services that SIP can support, including automatic call distribution and interactive
voice response systems, as well as possibly a light-weight form of terminal mobility. The more open service
creation environment requires cryptographic security rather than relying on the physical separation and
trusted providers in the PSTN; work is under way to extend the S/MIME and PGP email security mechanisms
to SIP to support authenticated and/or private signaling. Our work continues on defining additional services,
and extending the multiparty scenarios into more advanced cases.

SIP is currently being standardized within the Internet Engineering Task Force (IETF) [50].

References

[1] International Telecommunication Union, “Visual telephone systems and equipment for local area networks which
provide a non-guaranteed quality of service,” Recommendation H.323, Telecommunication Standardization Sec-
tor of ITU, Geneva, Switzerland, May 1996.

[2] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” RFC 1771, Internet Engineering Task Force, Mar.
1995.

[3] B. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation protocol (RSVP) – version 1
functional specification,” RFC 2205, Internet Engineering Task Force, Oct. 1997.

[4] P. Pan and H. Schulzrinne, “Yessir: A simple reservation mechanism for the internet,” Technical Report RC
20697, IBM Research, Hawthorne, New York, Sept. 1997.

25

[5] C. Rigney, “RADIUS accounting,” RFC 2139, Internet Engineering Task Force, Apr. 1997.

[6] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time applications,”
RFC 1889, Internet Engineering Task Force, Jan. 1996.

[7] V. Jacobson, S. McCanne, and S. Floyd, “A conferencing architecture for light-weight sessions,” Nov. 1993.
MICE seminar series (transparencies).

[8] M. Handley and V. Jacobson, “SDP: Session description protocol,” Internet Draft, Internet Engineering Task
Force, Mar. 1997. Work in progress.

[9] H. Eriksson, “MBONE: The multicast backbone,”Communications ACM, vol. 37, pp. 54–60, Aug. 1994.

[10] J. Rosenberg and H. Schulzrinne, “Timer reconsideration for enhanced RTP scalability,” Internet Draft, Internet
Engineering Task Force, July 1997. Work in progress.

[11] M. Handley, “SAP: Session announcement protocol,” Internet Draft, Internet Engineering Task Force, Nov. 1996.
Work in progress.

[12] M. Handley, “SDP: Session description protocol,” Internet Draft, Internet Engineering Task Force, Nov. 1997.
Work in progress.

[13] L. Masinter, P. Hoffman, and J. Zawinski, “The mailto URL scheme,” Internet Draft, Internet Engineering Task
Force, Oct. 1997. Work in progress.

[14] T. Howes, S. Kille, and M. Wahl, “Lightweight directory access protocol (v3),” RFC 2251, Internet Engineering
Task Force, Dec. 1997.

[15] A. Gulbrandsen and P. Vixie, “A DNS RR for specifying the location of services (DNS SRV),” RFC 2052,
Internet Engineering Task Force, Oct. 1996.

[16] C. Rigney, “RADIUS accounting,” RFC 2059, Internet Engineering Task Force, Jan. 1997.

[17] F. Yergeau, “UTF-8, a transformation format of unicode and ISO 10646,” RFC 2044, Internet Engineering Task
Force, Oct. 1996.

[18] D. E. Eastlake, “Universal payment preamble,” Internet Draft, Internet Engineering Task Force, Oct. 1996. Work
in progress.

[19] J. Franks, P. Hallam-Baker, and J. Hostetler, “An extension to HTTP: digest access authentication,” RFC 2069,
Internet Engineering Task Force, Jan. 1997.

[20] T. Krauskopf, J. Miller, P. Resnick, and W. Treese, “PICS label distribution label syntax and communication
protocols, version 1.1,” W3C Recommendation REC-PICS-labels-961031, World Wide Web Consortium, Cam-
bridge, Massachusetts, Oct. 1996.

[21] D. Connolly, “PEP: an extension mechanism for HTTP,” Internet Draft, Internet Engineering Task Force, Jan.
1997. Work in progress.

[22] D. Kristol and L. Montulli, “HTTP state management mechanism,” RFC 2109, Internet Engineering Task Force,
Feb. 1997.

[23] K. Holtman and A. Muntz, “Transparent Content Negotiation in HTTP,” Internet Draft, Internet Engineering
Task Force, Nov. 1997. Work in progress.

[24] C. Allen and T. Dierks, “The TLS protocol version 1.0,” Internet Draft, Internet Engineering Task Force, Oct.
1997. Work in progress.

[25] B. Hinden and C. Partridge, “Version 2 of the reliable data protocol (RDP),” RFC 1151, Internet Engineering
Task Force, Apr. 1990.

[26] C. Allen and T. Dierks, “The TLS protocol version 1.0,” Internet Draft, Internet Engineering Task Force, Nov.
1997. Work in progress.

[27] International Telecommunication Union, “Control protocol for multimedia communication,” Recommendation
H.245, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, Mar. 1996.

26

[28] D. Zimmerman, “The finger user information protocol,” RFC 1288, Internet Engineering Task Force, Dec. 1991.

[29] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol (RTSP),” Internet Draft, Internet Engi-
neering Task Force, Oct. 1997. Work in progress.

[30] R. Williams, “User location service,” Internet Draft, Internet Engineering Task Force, Feb. 1996. Work in
progress.

[31] W. W. Gaver, “Sound support for collaboration,” inProceedings of the Second European Conference on
Computer-Supported Cooperative Work (ECSCW’91)(L. Bannon, M. Robinson, and K. Schmidt, eds.), (Ams-
terdam, The Netherlands), pp. 293–308, Amsterdam, Sept. 1991.

[32] J. C. Tang and M. Rua, “Montage: Providing teleproximity for distributed groups,” inProc. of, (Proceedings of
the Conference on Computer Human Interaction (CHI) ‘94), pp. 37–43, Apr. 1994.

[33] C. Elliott, “A ’sticky’ conference control protocol,”Internetworking: Research and Experience, vol. 5, pp. 97–
119, 1994.

[34] J. Rosenberg and H. Schulzrinne, “Timer reconsideration for enhanced RTP scalability,” inProceedings of the
Conference on Computer Communications (IEEE Infocom), (San Francisco, California), March/April 1998.

[35] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “Reliable multicast framework for light-weight ses-
sions and application level framing,” inSIGCOMM Symposium on Communications Architectures and Protocols,
(Cambridge, Massachusetts), pp. –, Sept. 1995.

[36] B. Fenner, “Internet group management protocol, version 2,” Internet Draft, Internet Engineering Task Force,
Oct. 1997. Work in progress.

[37] D. T. Magill, “Adaptive speech compression for packet communication systems,” inConference record of the
IEEE National Telecommunications Conference, pp. 29D–1 – 29D–5, 1973.

[38] Anonymous, “Special issue on packet switched voice and data communication,”IEEE Journal on Selected Areas
in Communications, vol. SAC-1, Dec. 1983.

[39] Arangoet al., “Touring machine system,”Communications ACM, vol. 36, pp. 68–77, Jan. 1993.

[40] E. M. Schooler and S. L. Casner, “A packet-switched multimedia conferencing system,”SIGOIS (ACM Special
Interest Group on Office Information Systems) Bulletin, vol. 10, pp. 12–22, Jan. 1989.

[41] V. Jacobson, “Multimedia conferencing on the Internet,” inSIGCOMM Symposium on Communications Archi-
tectures and Protocols, (London, England), Aug. 1994. Tutorial slides.

[42] R. Frederick, “Experiences with real-time software video compression,” inSixth International Workshop on
Packet Video, (Portland, Oregon), Sept. 1994.

[43] H. Schulzrinne, “Voice communication across the Internet: A network voice terminal,” Technical Report TR
92-50, Dept. of Computer Science, University of Massachusetts, Amherst, Massachusetts, July 1992.

[44] P. V. Rangan and D. C. Swinehart, “Software architecture for integration of video services in the Etherphone
environment,”IEEE Journal on Selected Areas in Communications, vol. 9, pp. 1395–1404, Dec. 1991.

[45] S. R. Ahuja and J. R. Ensor, “Call and connection management: making desktop conferencing systems a real
service,”ACM Computer Communication Review, vol. 22, pp. 10–11, Mar. 1992.

[46] E. M. Schooler, S. L. Casner, and J. Postel, “Multimedia conferencing: Has it come of age?,” inProceedings of
the 24th Hawaii International Conference on System Science, vol. 3, (Hawaii), pp. 707–716, IEEE, Jan. 1991.

[47] E. Schooler and S. L. Casner, “An architecture for multimedia connection management,”ACM Computer Com-
munication Review, vol. 22, pp. 73–74, Mar. 1992.

[48] H. Schulzrinne, “Personal mobility for multimedia services in the Internet,” inEuropean Workshop on Interactive
Distributed Multimedia Systems and Services, (Berlin, Germany), Mar. 1996.

[49] M. Handley and E. Schooler, “Session invitation protocol,” Internet Draft, Internet Engineering Task Force, Feb.
1996. Work in progress (expired).

[50] M. Handley, H. Schulzrinne, and E. Schooler, “SIP: Session initiation protocol,” Internet Draft, Internet Engi-
neering Task Force, Nov. 1997. Work in progress.

27

