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Abstract

Software Development Environments (SDE) require sophisticated database transaction models due to
the long-duration, interactive, and cooperative nature of the software engineering activities.  Such
Extended Transaction Models (ETM) have been proposed and implemented by building
application-specific databases for the SDEs. 

With the development of World Wide Web (WWW), there have been a number of efforts to build  SDEs
on top of the WWW.  Using web servers as the databases to store the software artifacts provided us with
a new challenge: how to implement the ETMs in such web-based SDEs without requiring the web
servers to be customized specifically according to the application domains of the SDEs. 

This paper presents our experiences of integrating transaction services into web based SDEs.  We
evolved from the traditional approach of building a transaction management component that operated
on top of a dedicated database to the external transaction server approach.  A transaction server, called
JPernLite, was built to operate independently of the web servers and provide the necessary extensibility
for SDEs to implement their ETMs.  The transaction server can be integrated into the SDE via a number
of interfaces, and we discuss the pros and cons of each alternative in detail. 

Topics: Middleware, Groupware/CSCW 

Keywords: Transaction Service, Extended Transaction Model, Software Development Environment,
Component Integration 

1 Introduction

Software Development Environments (SDEs) provide a wide range of services to their users, such as
software processe enactment, automation, scheduling, communication between collaborative users, and
distributed tool services and data repository services.   Accesses to shared data must be moderated by the
SDE’s concurrency control (CC) component, usually called the transaction manager.  Traditionally, the
transaction manager is part of the database used by the SDE. 

Traditional databases normally enact the serializable, atomic transaction model [Bernstein87]: all the
operations in one transaction must be executed successfully or nothing is done.  This transaction model
was developed to fulfill the needs from application domains such as banking, where updates are frequent
and fast, and transactions are short.  However it has been found insufficient for application domains such
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as software engineering and CAD/CAM.  In the past decade, researchers have proposed a number of
Extended Transaction Models (ETM) [Elmagarmid92] that extend the atomic transaction model in a
variety of ways.  Such extensions include ensuring application specific data consistency rules rather than
traditional serializability, providing finer control of transaction operations rather than atomicity, and
allowing collaborative users to share data rather than isolating their transactions. 

In the past, such ETMs have been implemented by customizing the underling databases used by the
SDEs,   by modifying the transaction managers in the databases.  This approach was adopted by the SDE
developers in the early days [Barghouti92], partly because they used object-oriented model and needed
object-oriented databases (OODB), but there was no commercial OODBs available or the available
OODBs offered much poorer functionality than the they wanted. 

With the development of OODB technology,  more and more SDE developers found that they wanted to
take advantage of the commercial OODBs for their robustness and to avoid duplicated effort in
developing their own OODBs.  But the transaction model supported by those commercial OODBs is still
the traditional atomic one.  In an previous work of our lab [Heineman95],  we developed the technology
to implement ETMs by adding an extra transaction management layer on top of the underling database
system.  The transaction management layer utilizes the atomic transaction facilities provided by the
underling database, provides a flexible programming interface for the SDEs to customize the CC
policies to implement the desired ETM.  Such SDEs have a dedicated database that tightly couples with
the transaction management layer. 

The World Wide Web (WWW) adds more opportunities and challenges to SDE development.  A huge
number of web servers (over 2.2million servers according to [Netcraft98]) and web pages emerge on the
ubiquitous and distributed infrastructure, accessible via a simple and efficient communication protocol
HTTP.  Therefore, the WWW has been an attractive underling infrastructure for SDE developers
[Baentsch95, Dossick95, Bentley97, Miller98].  However, although a few web servers support write
(PUT or POST) operations, most of them do not have the basic CC capabilities such as locking and
versioning, let alone support for distributed transaction operations such as two phase commit which are
important to SDE developers.  Because different SDEs need different CC policies to coordinate their
users and have different "views" [Yang95] of the web objects, web servers should not hard-wire any
specific CC policies so that they can provide a better accessibility to various SDEs. 

This paper presents our experiences in integrating transaction services into web-based SDEs.  In an
earlier work of our lab, we developed a web-based SDE, called WebCity [Jiang97], with a built-in
transaction manager component, and a dedicated database.  Artifacts stored on the web servers are
cached in the local database, and concurrency control policies are enforced for operations of those
locally stored web objects.  Recently, we developed an external transaction server technology [Yang98],
where an independent transaction server, called JPernLite,  is responsible for enacting the CC policies,
and the data accessed by the SDE are stored in web servers on the WWW. 

We integrated the transaction server into our GroupSpace framework for collaborative environments
[Kaiser98] and experimented with two integration models: a loose integration model where the
transaction services are provided by the independent JPernLite server which enacts the CC policies, and
a tight integration model where JPernLite serves as the transaction management component of the SDE. 

In Section 2, we describe how we integrated transaction services in WebCity.  From this background
information, we show some problems of such architecture and in Section 3 we describe our transaction



server solution.  In Section 4 we present our experiences and evaluation of the integration alternatives. 
Finally, Section 5 concludes with performance statistics and analysis. 

2 Built-in Transaction Manager in WebCity

WebCity is an instance of our web-based, process centered SDE framework Oz [Ben-Shaul93].  Oz is a
generic SDE framework that can be instantiated by defining the specific software process of an SDE via
a rule-based formalism.  WebCity supports the design, coding and testing phases of software
development, with rules such as check-in and checkout the source code, edit, compile, link, code review,
debug, review the design documents, update design documents,  finding the related documentation,
manuals and so forth.  For simplicity, we will use WebCity to refer to both the framework and the
instantiated SDE in the rest of this paper. 

In WebCity, software artifacts such as design documents and C source files can be originated from the
WWW.  WebCity models and caches the web originated documents in a local, dedicated OODB called
Darkover.  We added a special class called WebObject in Darkover.  Whenever an object of class
WebObject or any of its subclasses is read, Darkover checks its local cache and fetches the content of
the web object if necessary.  Similarly, when a web object is written, Darkover automatically uploads it
to the originating web server via HTTP PUT. 

The transaction management layer of WebCity, called Pern, exploits the locking and recovery features
of Darkover.  For example, Darkover offers an "undo" interface:  each data operation (create, delete,
move, set_attribute etc.) in Darkover is given a unique ID.  Whenever possible, Darkover can undo an
action given its ID. 

To implement sophisticated ETMs, Pern provides a "callback" customization interface.  Each transaction
operation, such as begin, abort, commit of a transaction or lock, unlock of an object, has a "before" and
an "after" callback.  For example, the before callback of the "lock" operation is called the "lock_before"
callback.  If any of such callbacks are defined, they will be executed before or after a transaction
operation.  The callbacks can alter the execution of the transaction operations by telling the transaction
operations to return certain status, changing internal state information of the transactions or even
sending notification messages to clients.  By default, Pern implements the atomic transaction model, but
with the callbacks, one can implement sophisticated ETMs.  Examples of implementing Altruistic
Locking and Epsilon Serializability are described in [Heineman96]. 

Figure 1.  Integrating Transaction Services in WebCity



Figure 1 shows the architecture of WebCity, which consists of a Process Engine, a Transaction Manager
and an OODB.  The WWW acts as a "dumb" storage facility, serving the documents.  The dedicated
OODB, Darkover, models and caches the web objects, and provide locking, undo services on those
"shadow" objects.  The transaction manager Pern utilizes the specific features provided by the underling
OODB to offer transaction services, and finally the process engine customizes Pern by using callbacks. 
This depicts our first attempt to build web-based SDEs.  Although WebCity was operational,  we found
that the architecture was not flexible or powerful enough in general. 

First of all, since the database (Darkover) does not know the CC features that a web server provides, the
transaction manager could not exploit those features via the OODB.  For example,  the internet drafts
WEBDAV [WEBDAV97] and TIP [TIP97] proposed protocols for the web servers to support locking,
versioning and distributed transaction operations.  In order to exploit such new features of the web
servers,  we must extend the architecture so that the transaction manager can be customized to use
whatever the CC features available for web objects from different web servers. 

Second, by using and modifying Darkover, our own OODB, we gain a lot of advantages by  adding
specific functionality and interface into the database to handle web objects.  This is not generally true if
an SDE is based on a commercial database. 

Last, but not least, the transaction manager Pern is tightly integrated in the SDE so that it is dedicated to
WebCity, being customized to support the transaction model needed by WebCity.   Therefore, if
multiple SDEs want to share data stored in the same web servers, they have to know each other in
advance, and customize their transaction managers to coordinate with each other a priori. 

3 Extensible Transaction Server

In order to solve the problems we mentioned in Section 2, we developed a novel transaction server
architecture for web-based SDEs.  The core of the architecture  is a transaction server that operates
independently of the web servers and SDEs.  The transaction server directly accesses the web servers,
therefore it has the opportunity to leverage possible CC features provided by the web servers.  The
transaction server can also be customized by the SDEs to realize various ETMs.  The customization
mechanisms include changing the lock table, writing CC policies callbacks, and writing data access
modules to utilize the CC features provided by the web servers. 

3.1 Middleware Approach

There have been attempts to build CC capabilities such as locking, check-out/check-in, and even
distributed transactions into the WWW infrastructure.  There are two major approaches, categorized
according to where the bulk of the functionality is placed, the server side or the client side.  The server
approach [TIP97] introduces CC functionality into the web servers so that the clients can explicitly
submit operations as part of a transaction;  a collection of cooperating web servers can then realize
distributed transactions.  The client approach [Ciancarini96, Transarc96, Little97] places CC policies
into the clients, but still often requires the servers to provide very basic CC building blocks such as locks
or versions. 

Neither of these approaches addresses the problem of how to dynamically customize the ETM available
to the SDEs.  Hardwiring CC policies into either the server or the client greatly limits scalability and



flexibility. 

Figure 2.  External Transaction Server Architecture

Figure 2 describes our proposal of a third, middleware approach: the CC policies are realized in a new
component, the external transaction server.  The SDEs make requests to the transaction server, which
carries out the concurrency control policies in the process of obtaining the data from the web servers on
behalf of the SDEs.  The web servers are not required to provide any CC support at all, although any
support they do happen to provide can also be exploited.  The major advantages of this approach are: 

The transaction server can easily be tailored to implement the desired ETM that the SDEs want. 
The approach does not require any changes to the servers, and the SDEs that use it only need to
know how to speak HTTP.   On the other hand, the CC features provided by the web servers can
be exploited by the transaction server to accomplish more sophisticated ETMs. 
Coordination among SDEs that share data can be done in the transaction server.  Furthermore,
resolving the difference between the ETMs used by these SDEs is made possible. 

We have a proof of concept implementation of the transaction server, called JPernLite.  The name
"JPernLite" consists of three parts: "J" for the transaction server is written in Java, "Pern", for we
inherited the callback ideas from our previous transaction manager, "Lite" for the lack of a configuration
scripting language, which is in our future work.  JPernLite can be treated as a normal web server where
special URLs are treated as transaction requests.  Figure 3 shows sample request and reply messages
between a potential SDE and JPernLite. 

Figure 3. Sample Communication between JPernLite and SDE

The request is to lock an object whose URL is http://www.cs.columbia.edu  in Read-only (R) mode. 
The values of PernSessionID  and Transaction  ID were previously obtained from JPernLite.  The
reply message shows the successful execution of such a request, and the message tells the SDE that the
object has been locked, and the lock ID is DATAOP://TX://Transaction/1/1 . 



3.2 Customizing JPernLite

The CC policies of JPernLite can be customized to implement the ETMs that the SDEs desire.  The
customization can be done in a number of areas. 

Lock Table:  JPernLite uses a lock compatibility table to describe the different lock modes used by
the ETM it implements.  The default lock table contains the two standard modes: Read-only and
read-Write.  Additional lock modes can be added, and their mutual compatibility can be
customized by setting the lock table entries correctly.  JPernLite will automatically carry out the
lock compatibility when there are multiple lock requests on an object. 
Lock Semantics: The fine-grained semantics of each lock mode is defined in the callback code that
the administrators of each SDEs write.  Such callback code can be transferred to JPernLite
dynamically provided that the JPernLite server recognizes the SDE.  The callbacks are similar to
those of Pern [Heineman95], and we give an example of how one might implement two-phase
locking in Figure 4.  In the "unlock_after" callback, we set the flag "started_unlock" to true, and
check the flag before a lock is attempted (in "lock_before" callback). 

 
Figure 4. Callback Code for 2-Phase Locking

 

Transaction Modeling: The ETMs are implemented by a combination of customizing the lock
table and writing the necessary callback code.   For example, to implement an
"access-notification" feature that lets a transaction to be notified whenever other transactions
access some specific objects.   This is done by adding a third lock mode "E" to the lock table
shown in Figure 5.  In Figure 5, R, W, E are the three lock modes, Read-only, read-Write, and
Event-notification, respectively.   Y indicates two lock modes are compatible and N the opposite. 
As the table shows, E mode does not conflict with any other modes, therefore it does not interfer
with the normal semantics of the R and W locks.  In the "lock_after" callback, one can send a
notification to the owner user of the E lock on the object. 



Figure 5. Lock Table for Access Notification

Exploiting CC Features provided by the Web Servers: JPernLite also has a number of callbacks
that the SDE administrator can set up to access the web servers.  Such callbacks can be used to
allow JPernLite to use the CC features provided by the web servers, such as locking a web page,
starting a two-phase commit, or spawning a new version of the web page. 

4 Integration Alternatives

Given the transaction server architecture and the flexibility that JPernLite offers, we integrated the
transaction service into our GroupSpace collaborative work framework [Kaiser98] to build an SDE.  The
SDE is not yet fully functional because the sophisticated rule chaining mechanisms are still under
construction.  However, we gain a lot of experience in integrating the transaction service into the
framework, working with a weaker version of the process engine. 

We categorize the integration alternatives according to how tightly they are integrated with the SDE.  A
loose integration model separates the transaction server from the SDEs.  The SDEs make transaction
requests to the transaction server through HTTP.  The transaction server can either act as a normal web
server or a proxy server.  A tight integration model that matches the traditional way of integrating
transaction services to SDEs, namely the transaction server is degraded to a component of the SDE.  In
this section, we discuss the pros and cons of each model, and show some of the actual APIs of such
integration. 

4.1 Loose Integration (1): Independent Server

Running JPernLite as an independent web server is the most natural way of integrating it into SDE
frameworks.   Figure 2 and Figure 3 showed the architecture and the actual communication between the
SDE and JPernLite running as an independent server. 

The independent server does not require the SDEs to use HTTP as the communication protocol.  In fact,
either well known distributed computing techniques such as Java RMI and CORBA, or application
specific communication protocols are all plausible candidates.   The interface exposed to the SDE via
such communication channel contains various transaction operations, such as begin, abort, commit, of a
transaction and lock, unlock of an object; customization interface, such as setting up the lock table, CC
policy callbacks, and data access callbacks. 

4.2 Loose Integration (2): Proxy Server

The independent server approach provides the SDEs a simple interface.  However, it is sometimes
desired to have the transaction server to act as a web proxy server in order to gain transparency and the
capability to chain with other web proxies.  A web proxy server accepts requests of web pages from the
clients (which are the SDEs in our context), redirects the request to the real web server that serves the



page and sends the page back to the clients. 

The actual communication among SDEs and the proxy JPernLite server looks very similar to the
independent server approach.  The SDEs issue an HTTP proxy request instead of a normal HTTP GET
request, and the proxy server transparently applies various transaction operations to the data access
requests from the SDE. 

For example, when the SDE issues a GET request, the transaction server automatically tries to lock the
web page in read-only mode; similarly, PUT requests are accompanied by read-write lock attempts.  
Transaction information can be passed to the proxy transaction server via additional headers similar to
the independent server approach. The proxy transaction server can be made to daisy chain through other
proxies as well.  Figure 6 shows how a proxy transaction server tunnels through a firewall by daisy
chains into a firewall proxy server. 

Figure 6.  Daisy Chain of Proxy Servers

In short, the additional complexity of implementing the HTTP proxy protocol buys the SDEs the
capability to apply transaction operations transparently to the data access requests and the capability to
go through other proxy servers for any special purposes. 

4.3 Tight Integration: Java Component

The JPernLite transaction server can also be used as a Java component, integrated to the SDE tightly via
Java APIs.   In our GroupSpace framework for SDEs, the JPernLite fulfills the role of a transaction
manager, providing transaction services via a Java interface.  The Java API includes methods to request
transaction operations, customize the transaction server by setting the lock table, and supply the callback
code. 

In this approach, customization needs not to be done in the same way that is done in the loose
integration models.  That is, the SDE can directly extend the Transaction  class to create new
transaction types, which carry the desired callback code.   Similarly, accessing different types of web
servers that provide different CC capabilities is done by extending the DataObject  class, so that the
ExternalOp  method of the extended class knows how to contact the specific kinds of web servers to
exploit their CC capabilities. Lock table is also directly configured to JPernLite by giving it the file path
to the lock table file. 

Such tightly integrated transaction server loses the opportunity to coordinate multiple SDEs sharing the



web pages stored in the same web servers.  Similar to our lab’s previous work in federating software
process engines [Ben-Shaul95], we plan to extend the transaction servers so that they can establish
alliances among each other.  Of course, the performance of such tightly integrated transaction servers is
much better:  the network traffic between the SDEs and the transaction server now becomes local Java
calls. 

However, we are not sure if such performance improvement have any observable effects in SDEs.  The
normal tasks of a SDE user lasts for hours and days, and if each task, such as an editing or compiling,
issues a couple transaction operations, the time spent on the network traffic can be neglegible. 

Another advantage of the tightly integrated approach is security.  In the loosely integrated model, the
transaction server "trusts" all the recognized SDE administrators so that they can send callback codes for
the transaction server to execute.   If the SDE tightly integrates the transaction server, it does not need to
risk the possible bugs from the other SDEs’ callback code that might affect their own data integrity. 

5 Performance and Conclusion

5.1 Performance Simulation

In order to analyze the performance of our JPernLite transaction, we performed a series of simulation
tests.  The response of each transaction operation consists of two parts: network traffic and processing
time.  Because the roundtrip time on the network depends on the condition of the internet (or LAN if the
SDE and the transaction server run in the same local network), the simulating the network traffic part
would not be of our interest.   One interested in such network traffic statistics should turn to internet
surveys that concerning the performance of regular HTTP servers. 

Therefore, we focused on the processing time of each transaction request.  In order to simulate the
transactions issued by N users, we randomly generated N sessions, each session randomly generated a
sequence of operations, such as starting transaction, locking data objects, reading/writing objects and so
on.  The length of each session is randomly decided by whether or not a session starts a new transaction
after the current one aborts or commits.  To simulate the real-world situation where a small set of data is
accessed much more frequently than others, we also selected the a subset of the data to be accessed
much more frequently by the transactions. 

We simulated the cases of 10, 100, 1000 users using a single JPernLite server.  The average process time
for a single transaction operation are 120, 145, 450 milliseconds, respectively.  The increase of average
processing time results from the increasingly large data structures used by JPernLite to maintain the
status of the transactions.  With larger data structures, the time used to access and update each
transaction becomes larger.  Also, the interactions among the transactions due to the share of data
objects become more complicated with larger number of transactions.   The statistics turns out to be
quite satisfactory: the process time grows much slower than the number of users, thus showing
JPernLite’s potential scalability. 

5.2 Conclusion

We have presented our experiences in integrating transaction services into web-based SDEs through our
WebCity and JPernLite development experiences. WebCity adopts a traditional approach where



transaction manager is built as part of the SDE, utilizing a local database which stores shadow copies of
web objects.  The CC policies of the SDE is applied to the shadow objects in the local database.  Sharing
and collaboration among SDEs are difficult and hard to accomplish. 

JPernLite, our extensible transaction server, provides transaction services to SDEs independently of the
web servers.  It uses the callback mechanism to customize its CC policies and data access modules
which exploits the possible CC features the web servers provide. 

We also investigated three possible ways to integrate JPernLite into SDE frameworks.  The loose
integration models integrate JPernLite as either a web server or a proxy server, providing the
opportunity to coordinate multiple SDEs.  The tight integration model helps improving performances
and has better security control.  We also simulated the situation of a large number of users using the
transaction server, and the statistics showed that the JPernLite server we implemented scales up quite
well. 
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