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Abstract
Data encryption has become an increasingly important

factor in everyday work. Users seek a method of securing
their data with maximum comfort and minimum additional
requirements on their part; they want a security system that
protects any files used by any of their applications, without
resorting to application-specific encryption methods. Per-
formance is an important factor to users since encryption
can be time consuming. Operating system vendors want
to provide this functionality but without incurring the large
costs of developing a new file system.

This paper describes the design and implementation of
Cryptfs — a file system that was designed as a stackable
Vnode layer loadable kernel module[5, 15, 19]. Cryptfs
operates by “encapsulating” a client file system with a layer
of encryption transparent to the user.

Being kernel resident, Cryptfs performs better than
user-level or NFS based file servers such as CFS[2] and
TCFS[3]. It is 2 to 37 times faster on micro-benchmarks
such as read and write; this translates to 12-52% appli-
cation speedup, as exemplified by a large build. Cryptfs
offers stronger security by basing its keys on process ses-
sion IDs as well as user IDs, and by the fact that kernel
memory is harder to access. Working at and above the
vnode level, Cryptfs is more portable than a file system
which works directly with native media such as disks and
networks. Cryptfs can operate on top of any other native
file system such as UFS/FFS[8] and NFS[11, 16]. Finally,
Cryptfs requires no changes to client file systems or remote
servers.

1 Introduction

There is no easy way for users to transparently protect files.
Security systems such as Pretty Good Privacy (PGP)[23]
require a lot of application-specific support, consume a lot
of CPU cycles, are often incompatible with other systems,
and ask the user to be directly involved with their setup and
maintenance. Furthermore, many applications are not well
integrated (or at all) with security systems. Today’s users

find themselves in the ironic position of having powerful
workstations and fast networks, yet they are unable to rea-
sonably protect their data with minimal effort and a small
performance impact.

If the file system is kernel resident, it benefits from in-
creased performance because of the reduced number of
context switches and from running in privileged mode. A
kernel based file system can offer better security than user-
level file systems and encryption tools because information
that is kernel resident is harder to get at, and the kernel has
better access to private resources not available elsewhere.
Encryption as part of the file system automatically offers
a uniform encryption for all applications that access files,
and reduces the user’s involvement.

A file system that transparently allows access to en-
crypted data is an appealing idea. The idea has long been in
existence and was implemented first by Blaze[2] (CFS) and
later by Cattaneo and Persiano[3] (TCFS). However, these
prior realizations have suffered from poor performance and
they are harder to use; TCFS also suffers from limited
availability. Consequently, transparent cryptographic file
systems have not received wide use. We have remedied
these problems in Cryptfs.

Cryptfs is implemented as a kernel-resident file system,
and can be mounted on any directory and on top of any
other file system such as UFS and NFS — without requir-
ing other daemons running. Users authenticate themselves
by using a tool that prompts them for a passphrase which
is cryptographically hashed using MD5[14] to form a key
which is then passed to and stored in memory by Cryptfs.
No information related to encryption is stored permanently,
making Cryptfs both easier to use and more secure. Cryptfs
uses the Blowfish[18] encryption algorithm and determines
key access in one of two modes. In the first mode, it looks
up the key based on the real user ID (UID) of the access-
ing process; this allows a user on one machine to provide
a key only once throughout the lifetime of the mount. In
the second mode, Cryptfs uses both the UID and the pro-
cess session ID to lookup keys. This mode offers greater
security because only the process authenticated to Cryptfs
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and all future child processes will have access to the key —
as they all share the same session ID. Attackers who break
the user’s account or can become that UID will not be able
to easily decrypt that user’s data because they could not
join the same session. Cryptfs also achieves greater perfor-
mance by running in the kernel and by avoiding the NFS
(V.2) protocol overheads[11] such as asynchronous writes.

1.1 The Stackable Vnode Interface

Cryptfs is implemented as a stackable vnode interface. A
Virtual Nodeor “vnode” is a data structure used within
Unix-based operating systems to represent an open file, di-
rectory, device, or other entity (e.g., socket) that can appear
in the file system name-space. A vnode does not expose
what type of physical file system it implements. The “vn-
ode interface” allows higher level operating system mod-
ules to perform operations on vnodes uniformly.

One notable improvement to the vnode concept is “vn-
ode stacking,”[5, 15, 19] a technique for modularizing file
system functions by allowing one vnode interface to call
another. Before stacking existed, there was only a single
vnode interface; higher level operating systems code called
the vnode interface which in turn called code for a specific
file system. With vnode stacking, several vnode interfaces
may exist and may call each other in sequence: the code
for a certain operation at stack levelN typically calls the
corresponding operation at levelN − 1, and so on.
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Figure 1: A Vnode Stackable File System

Figure 1 shows the structure for a simple, single-level
stackable encryption file system. In this one, system calls
are translated into vnode level calls, and those invoke their
Cryptfs equivalents. Cryptfs again invokes generic vnode
operations, and the latter call their respective “lower level”
file system specific operations such as UFS.

The rest of this paper is divided as follows. Next, Section
2 provides discussion on the design of Cryptfs. Following,
Section 3 details the implementation. Section 4 evaluates
Cryptfs’ performance and security among others. We sur-
vey related file systems in Section 5 and conclude with a

summary and future directions in Section 6.

2 Design

Cryptfs is designed to be simple in principle. The file sys-
tem interposes (mounts) itself on top of any directory, en-
crypts file data before it is passed to the interposed-upon
file system, and decrypts it in the reverse direction. Our
explicit design goals were:

• Performance: Cryptfs should exceed the perfor-
mance of other encrypting file systems.
• Ease-of-use: Users should find Cryptfs simple to use

or they may opt not to encrypt any files.
• Security: Cryptfs should offer strong enough secu-

rity against most trivial and moderately sophisticated
attacks; its design should not be complicated by the
desire to protect against very sophisticated attacks.
• Portability : Cryptfs should be more portable than

other kernel based file systems, by using a stackable
vnode interface. It should not require modifications to
other file systems or user applications, and it should
keep the underlying file system valid.

The next five issues are treated in the following sections:

1. How to make it more difficult for others to decrypt
data without authorization while at the same time pro-
viding simple encryption services transparently to au-
thorized users?

2. Should encrypted bytes depend on the previously en-
crypted ones?

3. Does encryption affect file offsets or sizes and if so,
how?

4. Should file names be encrypted?
5. How to keep the structure of all affected Unix file sys-

tems valid while encryption takes place?

2.1 Key Management

We decided that only the root user would be allowed to
mount an instance of Cryptfs, but could not automatically
encrypt or decrypt files. To thwart an attacker who gains
access to a user’s account or to root privileges, Cryptfs
maintains keys in an in-memory data structure that asso-
ciates keys not with UIDs alone but with the combination
of UID and session ID. To succeed in acquiring or chang-
ing a user’s key, an attacker would not only have to break
into an account, but also arrange for his processes to have
the same session ID as the process that originally received
the user’s passphrase. This is a more difficult attack, re-
quiring session and terminal “hijacking” or kernel-memory
manipulations.

Using session IDs to further restrict key access does not
burden users during authentication. Login shells and dae-
mons usesetsid(2) to set their session ID and detach
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from the controlling terminal. Forked processes inherit the
session ID from their parent. So a user would normally
have to authorize themselves only once in a shell. From this
shell they could run most other programs that would work
transparently and safely with the same encryption key.

We made two small additional design decisions here.
First, we decided to check for real UIDs and not effective
ones. That way a user could run setuid programs and they
would work with the runner’s UID, not the file’s owner.
Secondly, if users find it too inconvenient, Cryptfs can
be mounted with processing of keys based on UIDs alone
(though we do not recommend it.)

We designed a user tool which prompts users for
passphrases that are at least 16 characters long. The tool
hashes passphrases using MD5[14] and passes them to
Cryptfs using a specialioctl(2) . The tool can also in-
struct Cryptfs to delete or reset keys.

Our design decouples key possession from file owner-
ship. For example, a group of users who wish to edit a
single file would normally do so by having the file group-
owned by one Unix group and add each user to that group.
However, Unix systems often limit the number of groups a
user can be a member of to 8 or 16. Worse, there are often
many subsets of users who are all members of one group
and wish to share certain files, but are unable to guaran-
tee the security of their shared files because there are other
users who are members of the same group; e.g., many sites
put all of their staff members in a group called “staff”, stu-
dents in the “student” group, guests in another, and so on.
With our design, you can further restrict access to shared
files only to those users who were given the key.

One disadvantage of this design is reduced scalability
with respect to the number of files being encrypted and
shared. Users who have many files encrypted with dif-
ferent keys will have to switch their effective key before
attempting to access files that were encrypted with a differ-
ent one. We did not perceive this to be a serious problem
for two reasons. First, the amount of Unix file sharing of
restricted files has always been limited. Most shared files
are generally world readable and thus do not require en-
cryption. Secondly, with the proliferation of windowing
systems, users can associate different keys with different
windows.

An alternative design option that would allow simulta-
neous access to multiple keys was to require that each user
separately mount an instance of Cryptfs with a different
key. This design option was rejected for two reasons. First,
users would either require root privileges to mount or the
file system would have to allow any user to mount Cryptfs.
Secondly, this would not scale well with respect to the num-
ber of mounts required on a busy multi-user system.

2.2 Encryption Algorithm and Mode

To provide strong enough encryption it is necessary to en-
crypt as much data together in a chaining fashion that in-

cludes bit substitutions and transpositions, such that each
byte encrypted depends on some of the prior ones. At the
extreme, we could have designed Cryptfs to encrypt the
whole file in this mode; but doing so would mean that each
time we need to decrypt a single byte anywhere in the file,
all prior bytes would have to be decrypted as well — a ma-
jor performance problem. We decided to encrypt blocks of
data in a size that is natural to the operating system used
— 4096 or 8192 bytes. These values were chosen because
they are the most common virtual memory subsystem page
sizes, making it easier to handle memory-mapped opera-
tions (described in Section 3.4.)

Next we picked the algorithm. We rejected patented or
licensed ones, and also rejected DES[20] because it is too
big and slow. We picked Blowfish[18] — a 64 bit block
cipher that was designed to be fast, compact, and simple.
Blowfish is suitable in applications where the keys do not
change often such as in automatic file decryptors. It can
use variable length keys as long as 448 bits. We kept the
default 128 bit long keys.

We selected the Cipher Block Chaining (CBC)[17] en-
cryption mode because it allows us to encrypt byte se-
quences of any length — suitable for encrypting file names.
However, we decided to use CBC only within each block
encrypted by Cryptfs. This way ciphertext blocks (of 4-
8KB) would not depend on previous ones, allowing us to
decrypt each block independently. This choice also mini-
mizes potential data loss: if one byte is corrupted in a file,
at most one page worth of data could not be properly de-
crypted.

2.2.1 File Offsets

Many programs read or write arbitrary data within files.
They seek to a specific offset within the file and perform
the read or write operation starting there. Some encryp-
tion algorithms may change the size of the input being en-
crypted — generally increasing it. If the encryption algo-
rithm changes data size, it becomes difficult and costly to
perform file operations at arbitrary offsets. The Blowfish
algorithm was chosen also to avoid this cost. This algo-
rithm does not change the size of the data being encrypted,
making offsets in encrypted and decrypted files the same.
Furthermore, since the Blowfish algorithm does not change
the total size of the file, operations likestat(2) (getting
file attributes such as size) can be handled simply by pass-
ing them on to the interposed-upon file system layer.

2.3 File Names

Users often choose comfortable file and directory names
describing the nature of the data stored within. An attacker
who discovers the names of files — even if they cannot
access the file data — can still infer much about the nature
of the data itself. Therefore, we decided to encrypt all file
and directory names as well.
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Encryption algorithms use a large subset of possible
characters for the ciphertext. This strengthens the encryp-
tion by “randomizing” any possible patterns in the cleart-
ext. But when encrypting strings that represent Unix file
names, several characters may result that are illegal in file
names, such as a forward slash (/ ) or a null. Such en-
crypted file names cannot be stored verbatim in the normal
directory structures as they will corrupt the underlying file
system. In addition, there are many non-printable charac-
ters that, while legal characters after encryption, are diffi-
cult to display on the screen (e.g., the output ofls ) or may
affect the terminal settings.

We decided that after encrypting file names, we will
uuencode them to eliminate the unwanted characters and
guarantee that all file names consist of printable charac-
ters. The uuencoding algorithm chosen is simple and fast.
It converts every 3 byte encrypted sequence into a 4 byte
sequence ofASCII characters from a set of 64 characters
ranging from 48-111. Since each character in the chosen
range requires only 6 bits, we were able to convert exactly
3 bytes of encrypted data chosen from a 256 character set
to 4 bytes chosen from 64 printable characters.

The above choice also meant that file names become one
third longer. This was necessary but it did not have the
same ramifications as changing offsets of data within files.
Since file names are always read whole and from the be-
ginning of the file name, we can read them from the under-
lying storage, apply our uudecoding algorithm, and finally
the decrypting algorithm. The resulting string would be the
original file name and be returned to the caller.

Special consideration was given to the two directories
that always exist: the “.” and “..” directories. The encryp-
tion algorithm leaves them unchanged for two reasons:

1. If these two directories do not exist in the interposed-
upon file system, normal directory operations such as
changing directories to the parent one and other recur-
sive operations would fail.

2. Since everyone knows that these two must always ex-
ist in Unix file systems, encrypting them may reduce
the level of security by supplying a potential attacker
with known decrypted strings as well as a small set of
encrypted ones. An attacker would know that two of
the encrypted strings must decrypt to result in “.” and
“..” — and may try a known-plaintext attack.

Finally, we decided that along with file names, we will
also encrypt directory names, symbolic links and the val-
ues they point to, and all other special files. The targets
of symbolic links will always be encrypted — regardless
if they point to “.” or “..”. These measures provide added
security.

2.4 Mount Points

A stackable file system is similar to a loopback file system
(lofs) in that the mount point and the directory mounted

upon are separate. Cryptfs can provide transparent en-
cryption for, say /home/ezk/private mounted on
/mnt/ezk . Anyone accessing files directly through the
mounted directory,/home/ezk/private , will see en-
crypted files and directories with nothing but normal Unix
permissions to stop a potential attacker. Only access
through the mount point,/mnt/ezk , by a valid authen-
ticated user, will provide transparent decryption and en-
cryption of data — which would still be subject to Unix
permission checks.

Providing access to the “raw” encrypted files is impor-
tant for backups: the backup operator should not have to
decrypt files because it is CPU intensive and it is insecure
to keep plaintext data on backup media. Having this access,
however, provides an attacker who gains root privileges or
the owner’s privileges with the ability to corrupt data files
or remove them. For this reason it was also desirable for
Cryptfs to overlay the mounted directory with the mount
point, making both of them the same. Since overlaying
the mount point will prevent backups, we came up with
a combined compromise solution: Cryptfs will overlay the
mount point by default, will allow valid authenticated users
to decrypt files using their keys, deny unauthenticated non-
root users any access, and would otherwise behave like a
read-only loopback file system to root users who did not
provide a key to Cryptfs. In other words, unauthenticated
root users who access files via Cryptfs would get to see
their encrypted names and data, but will not be allowed to
make any changes. This allows backups to proceed quickly
and safely, and prevents attackers from corrupting data or
removing files.

An additional design decision borne out of these was that
the underlying storage must remain a valid file system of
whatever type it was before. This is a must for backup
programs and other tools to be able to browse the encrypted
directories unabated.

3 Implementation

The implementation of Cryptfs proceeded based on the de-
sign with one notable exception: memory mapped opera-
tions complicated the code further and exposed some gen-
eral problems with the vnode interface; these problems are
discussed in detail in Section 3.4.

Our first implementation concentrated on the Solaris
2.5.1 operating system for several reasons:

• Solaris provides a standard vnode interface that is well
understood and is not likely to change soon.

• We have access to kernel sources and other commer-
cial quality file systems offered by Solaris 2.5.1.

• Solaris provides loadable kernel modules, making de-
veloping new file systems easier. This was a not a re-
quirement for developing Cryptfs, but a practical de-
cision that sped up the edit-compile-test-debug cycle.
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To test a new or modified file system, we unmounted
any existing instances of a previous implementation,
unloaded the kernel module, loaded a new one, and
remounted the file system.

• Solaris is a popular and well supported commercial
operating system. Any work we do on such a system
is likely to be used by others.

Our next two implementations were for the Linux 2.0
and FreeBSD 3.0 operating systems. We chose these two
for the following reasons:

• Linux is sufficiently different than Solaris and it is also
very popular; Linux uses a different vnode interface
than Solaris. FreeBSD represents the pure BSD sec-
tion of the Unix market, many variants of which exist.

• Full system sources are also available.

• Loadable kernel modules are supported.

By implementing Cryptfs for these three systems we
hoped to prove that practical non-trivial stackable file sys-
tems are portable to sufficiently different Unix operating
systems. The discussion in the rest of this section con-
centrates mostly on Solaris, unless otherwise indicated. In
Section 3.5 we specifically discuss the differences in im-
plementation between Linux and Solaris; Section 3.6 dis-
cusses the differences for the FreeBSD port.

3.1 A Wrapper File System

We began the implementation by creating a “wrapper” file
system called “wrapfs” that was initially very similar to the
Solaris loopback file system (lofs). Lofs passes all Vn-
ode/VFS operations to the lower layer, but it only inter-
poses on directory vnodes. Wrapfs interposes on every vn-
ode, and makes identical copies of data blocks and pages
in its own layer. The reason for this data copy was to make
Wrapfs identical to Cryptfs with the exception of the actual
encryption of bytes; this allowed us to measure the cost of
full stacking separately from the cost of encryption.

3.2 In-Kernel Data Encryption

We used a reference implementation of the Blowfish en-
cryption algorithm1 and ported it to the kernel. Porting
Blowfish to the kernel was easy. Most encryption code
(written in C) uses simple arithmetic manipulations and
uses very few system calls or C library functions. That
made the Blowfish code highly portable.

Next we applied the encryption algorithm to the read and
write vnode operations. As per the design, we perform
encryption on whole blocks of size matching the Ultra-
SPARC native page size (8192 bytes.) Whenever a read
for a range of bytes is requested, we compute the extended

1SSLeay from Eric A. Young

range of bytes up to the next page boundary, and apply the
operation to the interposed file system using the extended
range. Upon successful completion, the exact number of
bytes requested are returned to the caller of the vnode op-
eration. Writing a range of bytes is more complicated than
reading. Within one page, bytes depend on previous bytes,
so we have to read and decode parts of pages before writing
other parts of them.

Throughout the rest of this paper we will refer to the
interposing (wrapping) vnode asV , and to the interposed
(hidden or wrapped) vnode asV ′. We useF to represent a
file at the interposer’s level andF ′ at the interposed one;P
andP ′ refer to memory mapped pages at these two levels,
respectively. The following example2, depicted in Figure
2, shows what happens when a process asks to write bytes
of an existing file from byte 9000 until byte 25000. Let us
also assume that the file in question has a total of 4 pages
(32768) worth of bytes in it.

0 8K 16K 24K 32K

Page 0 Page 1 Page 2 Page 3

Read 1 and decode

9000 25000

Original bytes to write

Read 2 and decode

Bytes read, decoded, and discarded

Final pages to encrypt

Actual bytes to write

Figure 2: Writing Bytes in Cryptfs

1. An operationwrite is called on vnodeV for the
range 9000-25000.

2. Compute the extended page boundary for this range as
8192-32767 (3 pages.)

3. Locate the interposed-upon vnodeV ′ fromV .

4. Allocate 3 empty pages. (Page 0 ofV is untouched.)

5. Read bytes 8192-8999 (page 1) fromV ′, decrypt
them, and place them in the first allocated page. We
do not need to read or decode the bytes from 9000 on-
wards in page 1 because they will be overwritten by
the data we wish to write anyway.

6. Skip any intermediate pages of data that will be over-
written by the overall write operation. In this case,
we ignore page 2 of the opened file (which is also the
second page in our write request.)

7. Read bytes 24576-32767 (page 3 of the file) from
V ′, decrypt them, and place them in the third al-
located page. This time we have to read and de-
crypt the whole page because we need the last
32767−25000=7767 bytes and these bytes depend on
the first 8192−7767=426 bytes of that page.

2simplified because it does not take into account sparse files.
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8. Copy the bytes that were passed to us into the 3 allo-
cated pages. The range of bytes inV ′ of 9000-25000
is trivially offset and copied into the allocated pages
starting at offset 9000−8192=808.

9. Finally, we have 3 valid data pages that contain unen-
crypted data. We encrypt the data and call the write
operation onV ′ for the same starting offset (9000),
but this time we write the bytes all the way to the last
byte of the last page processed (byte 32767.) This is
necessary to ensure validity of the data past file offset
25000.

3.2.1 Appending to Files

Files opened for appending only (usingO APPEND) do not
provide the vnode interface write function any information
regarding the real size of the file and where writing begins.
If the size of the file before an append attempt is requested
is not an exact multiple of a page size, data corruption will
occur, since we will begin a new encryption sequence not
on a page boundary.

The way we solve this problem is by detecting when a
file is opened with an append flag on, turn off that flag be-
fore the open operation is passed on toV ′, and replace it
with flags that indicate toV ′ that the file was opened for
normal reading and writing. We save the initial state of the
file opened, so that any other operation onV would be able
to tell that this file was originally opened only for append-
ing.

Whenever we write bytes to a file that was opened in
append-only mode, we first apply the vnodegetattr op-
eration to find the true size of the file, and add that to the file
offsets being written to. The interposed layer’s vnodeV ′

does not know that a file has been opened for append-only
at the layer above it. For example, an append operation of
430 bytes to a file with an existing size of 260 bytes is con-
verted into a write operation of bytes 261-690 of the whole
file, and the procedure described in Section 3.2 continues
unchanged.

3.3 File Names and Directory Reading

Every operation that deals with file names (for example
“lookup”) was modified such that the file nameF is en-
crypted and uuencoded first. The modified file nameF ′ is
passed on toV ′.

A complication we faced here was the “readdir” vn-
ode operation. Readdir is implemented in the kernel as
a restartable function. A user process calls the readdir
C library call, which is translated to repeated calls to the
getdents(2) system call, passing it a buffer of a given
size. The buffer is filled by the kernel with enough bytes
representing files in a directory being read, but no more. If
the kernel has more bytes to offer the process (i.e. the di-
rectory has not been completely read) it will set a special
EOF flag to false. As long as the C library call sees that the

flag is false, it must callgetdents(2) again. Each time
it does so, it will read more bytes starting at the file offset
of the opened directory as was left off during the last read.

The important issue with respect to directory reading is
how to continue reading the directory from exactly the off-
set it was left off the last time. This is accomplished by
recording the last position and ensuring that it is returned
to us upon the next invocation. The way we implemented
readdir was as follows:

1. A readdir vnode operation is called onV for N bytes
worth of directory data.

2. Call the same vnode operation onV ′ and read backN
bytes.

3. Create a new temporary buffer of a size that is as large
asN .

4. Loop over the bytes read fromV ′, breaking them into
individual records representing one directory entry at
a time (struct dirent .) For each such entry, the
file name within is uudecoded and then decrypted, re-
sulting in the original file name. A new directory entry
record is constructed with the decoded file name, and
is added to the temporary buffer allocated.

5. We record the offset to read from on the next call to
readdir ; this is the position past the last file name
we just read and decoded. This offset is stored in
one of the fields of thestruct uio (representing
data movement between user and kernel space) that
is returned to the caller. A new structure is passed to
us upon the next invocation of readdir with the offset
field untouched. This is how we were able to restart
the call from the correct offset.

6. The temporary buffer is returned to the caller of the
vnode operation. If there was more data to read from
V ′, then the EOF flag would be set to false before re-
turning from this function.

The caller ofreaddir asks to read at mostN bytes.
When we uudecode and decrypt the file names we reduce
the size of the file name — converting every 4 byte se-
quence into 3. On average, file names are shortened by
25% from the encrypted and uuencoded forms. This means
that the total number of bytes we pass back to the caller
is less thanN . That is all right, because the specifications
for directory reading operations call for reading at mostN
bytes.

The only side effect of reducing the number of bytes re-
turned to the caller is a small inefficiency in the overall
number of timesreaddir must be called. Since we are
returning less thanN bytes, it is possible that the buffer
supplied by the user process has enough space to fill in
a few more directory entries. When taking into account
large directories, it is possible that severalgetdents(2)
system call invocations could be saved. With fewer con-
text switches, overall performance could be improved. We
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did not deem this loss of performance significant since
most Unix directories are not very large and the additional
code to completely fillN bytes worth of data was going to
complicate Cryptfs, increase the overhead, and inevitably
lengthen the time required to develop it. (See Section 4.1
for an evaluation of the performance of Cryptfs.)

3.3.1 Multi-User Keys

Next we added support for multi-user keys as described in
Section 2.1. Keys are set by a newioctl(2) added to
Cryptfs, and may be reset or removed by an authorized
user within the same session. The user is prompted for
a passphrase and the tool converts it into keys passed to
Cryptfs.

We noticed a problem with listing directories containing
file names that were encrypted using different keys. De-
cryption of the directory data occurs not using the original
key but the key for the real UID of that session. When a
stringS is encrypted using keyK1 but decrypted using a
different keyK2, the result is a completely different string
that may contain any number of characters that are illegal
in file names such as a forward-slash “/” or nulls. The lat-
ter confuse string operations that expect their input to be
null terminated. We solved this problem by adding a 2-
byte checksum to the encrypted strings and one more byte
indicating original unencrypted length, before we uuen-
code them. After adding these 3 bytes, we uuencode the
sequence using our special uuencoding algorithm. When
strings are read from the interposed-upon file system dur-
ing directory reading operations, we first uudecode them,
then decrypt them, and validate the checksum. If it does not
match, then we know this file name was encrypted using a
different key and we skip the listing of that file altogether.

This solution not only avoids the possible data mishan-
dling of file names, but also has a side effect of a slightly
increased security “through obscurity.” When a user lists a
directory they only get to see files that they encrypted with
the proper key. All other files are invisible and inaccessible
to that user.

3.4 Memory Mapping

To be able to execute binaries we had to implement
memory-mapping vnode functions. We had to decide if
and how to cache memory mapped pages. In order to im-
prove performance, we decided that Cryptfs shall have its
own copy of cached decrypted pages in memory, and that
we would leave the encrypted pages in the interposed-upon
file system untouched.

3.4.1 Putpage and Getpage

When a page fault occurs, the kernel calls the vnode op-
erationgetpage . This function retrieves one or more
pages from a file. We followed other implementations in

Solaris and created a function that retrieves a single page
— getapage ; this function gets called repeatedly by one
of the Paged Vnodes interface functions:pvn getpages .
The Paged Vnodes interface functions are not an explicit
part of the vnode interface, but are there to assist it when
dealing with memory mapped files. This unfortunate but
necessary use of operating system specific interfaces ex-
posed portability problems in our stackable file system.

The implementation ofgetapage appeared simple:

1. Check if the page is in the cache. If it is, return it.

2. If the page is not in the cache, create a new pageP .

3. Find V ′ from V and call thegetpage operation
on V ′, making sure that the operation applied toV ′

would return only one pageP ′.

4. Copy the (encrypted) data fromP ′ toP .

5. Map P into kernel virtual memory and decrypt its
bytes in place.

6. UnmapP from kernel VM, insert it intoV ’s cache,
and return it.

Similarly, putpage was written using the Paged Vn-
odes interface functions. In practice we also had to care-
fully handle two additional details, to avoid deadlocks and
data corruption. First, pages contain several types of locks,
and these locks had to be held and released in the right or-
der and at the right time. Secondly, the MMU keeps mode
bits indicating status of pages in hardware, especially the
referenced and modified bits. We had to update and syn-
chronize the hardware version of these bits with their soft-
ware version kept in the pages’ flags. For a file system to
have to know and handle all of these low-level details fur-
ther blurred the distinction between the file system and the
VM system.

3.4.2 Zero-Filled Pages

To save space, some Unix file systems support files with
“holes” — pages that are not allocated on disk because they
contain all zeros. When such a page is read into memory,
the VM system fills it with zeros; only when it is modi-
fied does the page get physical disk space allocated. When
we performgetapage on V ′, we expect to get a page
that was previously encrypted with our algorithm and key.
When we get a zero-filled page, we have no way of know-
ing that it was zero-filled and therefore should not be de-
crypted. (For a given key, there is a valid sequence of bytes
that is not all-zeros, which when encrypted, will result in a
sequence of all-zero bytes of the same length.) Our solu-
tion was to avoid holes in files. The only way to create a
file with holes is to open it for write/append,lseek(2)
past the end of the file, and write something there. We de-
tected this condition inwrite and forced a write of all
zeros (after encrypting them.)
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3.5 Linux

When we began the Solaris work we referred to the im-
plementation of other file systems such as lofs. Linux did
not have one as part of standard distributions, but we were
able to locate a prototype one and used it in our port. Also,
the Linux Vnode/VFS interface contains a different set of
functions and data structures than Solaris, but it operates in
a similar fashion.

In Linux, much of the common file system code has been
extracted and moved to a generic (higher) level. Many
generic file system functions exist that can be used by
default if the file system does not define its own version
thereof. This leaves the file system developer to deal with
only the core issues of the file system. For example, the
way Solaris moves data between user and kernel space
is via structures called User I/Os (UIO). These structures
contain various fields that must be updated carefully and
consistently. Linux simplifies data movement by passing
vnode functions such asread and write a simple al-
located (char * ) buffer and an integer describing how
many bytes to read into or write out of the buffer passed.

Memory mapped operations are also easier in Linux.
The vnode interface in Solaris includes functions that must
be able to manipulate one or more pages. In Linux, the
file system handles one page at a time, leaving page clus-
tering and multiple-page operations to the higher and more
generic code. The Linux 2.0 kernel, however, does not in-
clude aputpage vnode operation (version 2.1 does.) We
had to implement it usingwrite . Thewrite vnode oper-
ation uses different and somewhat incompatible arguments
thanputpage . We had to create the missing information
and pass it to thewrite() operation. Since we store in-
formation vital for stacking in arguments passed to us, and
we had to “fake” some of it here, this limited us to a single
level of stacking file systems.

Linux’s way of copying between user and kernel mem-
ory is a bit outmoded. Some operations default to manip-
ulating user memory and some manipulate kernel memory.
Operations that need to manipulate a different context have
to set it before and restore it to its previous state afterwards.
Solaris simply passes flags to these functions to tell them if
to operate on kernel or user memory.

Directory reading was surprisingly simpler in Linux. In
Solaris, we had to read a number of raw bytes from the
interposed-upon file system, and parse them into chunks of
sizeof(struct dirent) , set the proper fields in this
structure, and append the file name bytes to the end of the
structure. In Linux, we provided the kernel with a callback
function for iterating over the entries in a directory. This
function was called by higher level code and asked us to
simply process one file name at a time.

There were only two caveats to the portability of the
Linux code. First, Linux keeps a list of exported ker-
nel symbols (inkernel/ksyms.c ) available to load-
able modules. In order to make Cryptfs a loadable mod-

ule, we had to export additional symbols to the rest of
the kernel, for functions mostly related to memory map-
ping. Secondly, most of the structures used in the file sys-
tem (inode , super block , andfile ) include a private
field into which file system specific opaque data could be
placed, which we used to store information pertinent for
stacking. We had to add a private field to only one structure
which was missing it, thevm area struct , which rep-
resents custom per-process virtual memory manager page-
fault handlers. Since Cryptfs is the first fully stackable file
system for Linux, we feel that these changes are small and
acceptable, given that more stackable file systems are likely
to be developed.

3.6 FreeBSD

FreeBSD 3.0 is based on BSD-4.4Lite. We chose it as the
third port because it represents another major section of
Unix operating systems — the BSD ones. FreeBSD’s vn-
ode interface is very similar to Solaris’ and the port was
straightforward. FreeBSD’s version of the loopback file
system is called “nullfs”[12] — a useful template for writ-
ing stackable file systems. Two major deficiencies (bugs) in
nullfs required attention. First, writing large files resulted
in some data pages getting zero-filled on disk; this forced
us to perform all writes synchronously. Secondly, mem-
ory mapping through nullfs panics the kernel, so we had to
implement MMAP functions ourselves. We implemented
getpages andputpages usingread andwrite , re-
spectively, because calling the lower-level’s page functions
resulted in a UFS pager error. (When we chose the latest
snapshot of FreeBSD 3.0, we knew we were dealing with
unstable code, and expected to face bugs.)

4 Evaluation

When evaluating Cryptfs, we compared it to CFS[2] (also
using Blowfish) on all three systems and TCFS[3] on Linux
ones.3 The purpose of our work was primarily to create a
practical and portable stackable file system. Performance
and portability were more important to us than security be-
cause the design was such that stronger or weaker security
measures could be put in place with relative ease.

We used two sets of performance tests. The first set mea-
sured specific common operations such as reading and writ-
ing files of various sizes. The second set used a more real-
istic test of building a large package inside the file system.

3All machines listed in this paper had 32MB RAM. TheSPARC5 ones
ran at 85Mhz, and the x86 ones ran at 90Mhz. Solaris hosts included
all recommended patches including the “jumbo” kernel patches 103640-
20 (SPARC) and 103641-18 (x86). Linux systems were a vanilla RedHat
5.1 system. FreeBSD 3.0 machines were installed from the “980520”
snapshot.
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4.1 Performance

For most of our tests, we included figures for a native disk-
based file system because disk hardware performance can
be a significant factor. This number should be considered
the base to which other file systems compare to. Since
Cryptfs is a stackable file system, we also included fig-
ures for Wrapfs (our full-fledged stackable file system) and
for lofs (the low-overhead simpler one), to be used as a
base for evaluating the cost of stacking. When using lofs,
Wrapfs, or Cryptfs, we mounted them over a local disk
based file system. CFS and TCFS are based on NFS, so we
included the performance of native NFS. All NFS mounts
used the local host as both server and client (i.e. mounting
localhost:/path on /mnt ,) and used protocol ver-
sion 2 over a UDP transport.

CFS is implemented as a user-level NFS file server.
TCFS is a kernel module, but it accesses two user-level
servers:nfsd andxattrd . Furthermore, the NFS server
in Linux 2.0 is implemented completely in user level, fur-
ther slowing down performance. As such, we expected that
both CFS and TCFS would run slower due to the number
of additional context switches that must take place when a
user-level file server is called by the kernel to satisfy a user
process request, and due to NFS V.2 protocol overheads
such as synchronous writing. Lastly, TCFS does not sup-
port the Blowfish algorithm so we had to use DES instead;
DES consumes more CPU resources than Blowfish.

For the first set of tests, we concentrated on the x86 plat-
form since it was common to all ports. We ran tests that
represent common operations in file systems: opening files
for reading or writing. In the first test we wrote 1024 dif-
ferent new files of 8KB size each. The second test wrote
8 new files of 1MB size each. Then we read one 8KB
file 1024 times, and one 1MB file 8 times. The intent of
these tests was that the total amount of data read and writ-
ten would be the same. Finally we included measurements
for reading a directory with 1024 entries repeatedly for 100
times; while that is a less popular operation, cryptographic
file systems encrypt file names and thus can significantly
affect the performance of reading a directory. All times
reported are elapsed, in seconds, and measured on an oth-
erwise quiet system.

Since Linux is the only platform on which TCFS runs,
we tested all file systems on it, as reported in Table 1. For
Solaris and FreeBSD, we only included figures for the file
systems relevant to comparing Cryptfs to CFS; these are
reported in Tables 2 and 3, respectively.

Concentrating on Linux (Table 1) first, we see that lofs
adds a small overhead over the native disk-based file sys-
tem, and wrapfs adds another overhead due to stacking on
all vnodes and due to performing data copies. The dif-
ference between Cryptfs and Wrapfs is that of encryption
only. Writing files is 6-12 times faster in Cryptfs than in
CFS/TCFS. The main reasons for this are the additional
context switches that must take place in user-level file

File Writes Reads 1024×
System 1024× 8× 1024× 8× readdir

8KB 1MB 8KB 1MB
ext2fs 3.33 3.06 0.17 0.34 1.49
lofs 3.40 3.35 0.30 0.34 1.51
wrapfs 3.48 3.58 0.18 0.34 1.57
cryptfs 9.27 8.33 0.26 0.34 3.18
nfs 26.85 17.67 0.47 3.17 16.27
cfs 101.90 50.84 0.89 8.77 118.35
tcfs 110.86 84.64 6.45 7.94 34.83

Table 1: Linux x86 Times for Repeated Calls (Sec)

servers, and that NFS V.2 writes are synchronous. When
reading files, caching and memory sizes come into play
more than the file system in question. That is why the dif-
ference in file reading performance for all file systems is
not as significant as when writing files. The reason lofs
is slower than wrapfs is that the original lofs we used on
Linux does not cache data, while Wrapfs and Cryptfs do.
Reading a directory with 1024 files one hundred times is
10-37 times faster in Cryptfs than in TCFS or CFS, mostly
due to context switches. When Cryptfs is mounted on top
of ext2fs, it slows performance of these measured opera-
tions 2-3 times. But since these are fast to begin with, users
hardly notice the difference; in practice overall slowness is
smaller, as reported in Table 4.

File Writes Reads 1024×
System 1024× 8× 1024× 8× readdir

8KB 1MB 8KB 1MB
ufs 4.88 3.98 0.48 0.38 0.52
cryptfs 63.95 11.10 10.72 7.23 7.14
nfs 54.17 18.82 1.69 0.38 0.28
cfs 140.78 140.98 27.68 24.57 18.02

Table 2: Solaris x86 Times for Repeated Calls (Sec)

File Writes Reads 1024×
System 1024× 8× 1024× 8× readdir

8KB 1MB 8KB 1MB
ufs 12.55 6.04 1.00 1.01 0.15
cryptfs 56.59 22.55 1.04 1.05 0.29
nfs 55.69 21.63 1.31 1.09 0.33
cfs 99.34 31.80 2.09 4.80 0.87

Table 3: FreeBSD x86 Times for Repeated Calls (Sec)

Native file systems in Linux perform their operations
asynchronously, while Solaris and FreeBSD do so syn-
chronously. That is why the performance improvement
of Cryptfs over CFS/TCFS for Solaris and FreeBSD is
smaller; when writing vnode operations are passed from
Cryptfs to the lower level file system, they must be com-
pleted before returning to the caller. For the operations
measured, Cryptfs improves performance by anywhere
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from 50% to 2 times, with the exception of writing large
files on Solaris, where performance is improved by more
than an order of magnitude.

File SPARC Intel P5
System Solaris Linux Solaris Linux FreeBSD

2.5.1 2.0.34 2.5.1 2.0.34 3.0
ext2/ufs 1242.3 1097.0 1070.3 524.2 551.2
lofs 1251.2 1110.1 1081.8 530.6 n/a
wrapfs 1310.6 1148.4 1138.8 559.8 667.6
cryptfs 1608.0 1258.0 1362.2 628.1 729.2
nfs 1490.8 1440.1 1374.4 772.3 689.0
cfs 2168.6 1486.1 1946.8 839.8 827.3
tcfs n/a 2092.3 n/a 1307.4 n/a

Table 4: Time to Build a Large Package (Sec)

For the next set of tests, we decided to use as our perfor-
mance measure a full build of Am-utils[21], a new version
of the Berkeley Amd automounter. The test auto-configures
the package and then builds it. The configuration runs
several hundred (600-700) small tests, many of which are
small compilations and executions. The build phase com-
piles about 50,000 lines of C code spread among several
dozen files and links about a dozen binaries. The whole
procedure contains a fair mix of CPU and I/O bound oper-
ations as well as file system operations: many writes, bina-
ries executed, small files created and unlinked, a fair num-
ber of reads and lookups, and a few directory and symbolic
link creations. We felt that is a more realistic measure of
the overall file system performance, and would give users
a better feel for the expected impact Cryptfs might have
on their workstation. For each file system measured, we
ran 10 successive builds on a quiet system, measured the
elapsed times of each run, and averaged them. The results
are summarized in Table 4. Results of TCFS are available
on the only platform it runs, Linux. Also, there is no na-
tive lofs for FreeBSD (and the nullfs available is not fully
functional.)

First we need to evaluate the performance impact of
stacking a file system. Lofs is only 0.7-1.2% slower
than the native disk based file system. Wrapfs adds an
overhead of 4.7-6.8% for Solaris and Linux systems, but
that is comparable to the 3-10% degradation previously
reported.[5, 19] On FreeBSD, however, Wrapfs adds an
overhead of 21.1% compared to UFS; that is because of
limitations of nullfs, we were forced to use synchronous
writes exclusively. Wrapfs is more costly than lofs because
it stacks over every vnode and keeps its own copies of data,
while lofs stacks only on directory vnodes, and passes all
other vnode operations to the lower level verbatim.

Wrapfs is used as the baseline for evaluating the perfor-
mance impact of the encryption algorithm. The only differ-
ence between Wrapfs and Cryptfs is that the latter encrypts
and decrypts data and file names. Cryptfs adds an overhead
of 9.2-22.7% over Wrapfs. That is a significant overhead

but is unavoidable. It is the cost of the Blowfish encryption
code, which while designed as a fast software cipher, is still
CPU intensive.

Next we measure the overhead of CFS and TCFS and
compare them to Cryptfs. When compared to NFS, TCFS
is 45.3-69.3% slower on Linux, and CFS is 3.2-45.5%
slower. Cryptfs is 40-52% faster than TCFS on Linux.
Since TCFS uses DES and Cryptfs uses Blowfish, however,
it would be fairer to compare Cryptfs to CFS. Cryptfs is
12-30% faster than CFS. In order to improve performance,
CFS precomputes large stream ciphers for the attached di-
rectories. Cryptfs, on the other hand, has not been tuned or
optimized yet.

Operating Synchronous Asynchronous
System brk open unlink open unlink
Solaris x86 813 59342 36216 1280 928
SolarisSPARC 176 15800 10236 862 517
Linux x86 86 - - 286 106
Linux SPARC 108 - - 300 162
FreeBSD x86 144 16448 2930 - -
Frequency 890 185 3 185 3

Table 5: System Call Speeds and Frequencies for One
Compilation (microseconds)

A complete and detailed comparison of various operat-
ing systems and the performance of their native file system
is beyond the scope of this paper. Nevertheless, several
interesting observations became apparent from Table 4. It
was surprising to find that SPARC Linux surpassed the per-
formance of every Solaris file system on the same SPARC
architecture by 3.5-45.9%. Even the performance of the
native disk-based performance was 13.2% faster on Linux,
and NFS was 12.7% faster.

When we compare x86 based operating systems, Linux
and FreeBSD appear comparable. NFS and CFS are 1.4-
10.7% slower on Linux 2.0 because the NFS server is in
user-level. On the other hand, all other file systems are
5.2-19.3% faster on Linux because of their asynchronous
nature.

Solaris x86 is 78-132% slower that Linux. The asyn-
chronous nature of Linux cannot explain why Solaris x86
is 71-136% slower than FreeBSD on identical hardware,
since FreeBSD is also synchronous. To find the reason for
this, we traced the system calls executing during several
compilations of single C source file from the building of
Am-utils. These are reported in Table 5. We found out that
more than 95% of the time spent by the kernel on behalf of
the compiler was spread among three system calls:open ,
unlink , andbrk (to allocate more memory to a running
process.) The most frequently called system call,brk , was
called almost 900 times — more than 4 times the frequency
of all other calls. We have found that the cost of a single
call to brk on Solaris x86 is 813 microseconds; that is 5.6
times slower than FreeBSD, and almost 10 times slower
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than on Linux x86. Given the frequency of this call, and
how slow it is on Solaris x86, it is not surprising that our
compilations reported in Table 4 took twice as long on that
platform. Luckily, memory allocation speed is not directly
impacted by the file system in use.

To be certain, we turned off the default synchronous be-
havior of Solaris x86, and reran some tests. As expected,
the speeds ofread andunlink improved manyfold, and
were brought more in line with their speeds on Linux and
FreeBSD. Sincebrk is a more dominant call during com-
pilation, and is unaffected by the asynchronous vs. syn-
chronous nature of file systems, we did not expect turning
off synchronous operations on Solaris x86 to result in sig-
nificantly improved speeds. Indeed, when we ran a full
build of Am-utils with Solaris x86 using asynchronous op-
erations, the performance as reported in Table 4 improved
by less than 6%.

4.2 Security and Ease-of-Use

We used the Blowfish[18] encryption algorithm with the
default 128 bit key length. 56 bit encryption had al-
ready been broken and efforts are underway to break 64 bit
encryption[9]. We felt that 128 bit keys were large enough
to be secure for years to come, and at the same time they
were not too large to require excessive CPU power. (In-
creasing the key size would be a simple matter of recom-
pilation.) Blowfish is a newer cipher than DES[20], and
as such has not survived the test of time that DES had,
but Blowfish is believed to be very secure[18]. At this
time, Cryptfs can only use Blowfish. CFS offers the widest
choice of ciphers, including DES.

Cryptfs requires a session ID to use keys after they were
supplied, to ensure that only processes in that session group
get access to the key and thus to the unencrypted data.
Requiring a session ID to use an encryption key prevents
attackers from easily decrypting the data belonging to a
valid user, even if the user’s account was compromised on
the same machine Cryptfs was mounted. All an attacker
could do, even with root privileges, is read the ciphertext,
but could not modify or remove files, since we overlay
the mount point (see Section 2.4.) In comparison, CFS
and TCFS are more vulnerable to the compromising of the
users’ accounts on the same host because they associate a
key with a UID alone, not with a session ID.

Changing keys in Cryptfs is more cumbersome, since
only one active key can be associated with a given session.
Users have to use a special program we provide that sets
a re-encryption key, reads files using old keys, and writes
them back using the new key. CFS offers a more flexible
solution that allows the user to change the passphrase with-
out re-creating or copying the secure directory.

Cryptfs uses one Initialization Vector (IV) per mount,
used to “jump start” a sequence of encryption. If not spec-
ified, a predefined IV is used. The superuser mounting
Cryptfs can choose a different one, but that will make all

previously encrypted files undecipherable with the new IV.
Files that use the same IV and key produce identical cipher-
text blocks that are subject to analysis of identical blocks.
CFS’ default mode uses no IVs, and we also felt that using
a fixed one produces sufficiently strong security.

Both CFS and TCFS use auxiliary files to store encryp-
tion related information such as encrypted keys, types of
encryption used, IVs4, and more. CFS is the only file sys-
tem that can store all of these on a more secure “smart
card.” TCFS uses login passwords as default keys and
those are generally considered insecure and easily guess-
able. Cryptfs does not store any auxiliary information on
disk, because we believe doing so could potentially create
security vulnerabilities; it only has a modified instance of
the key in use in kernel memory, for the duration of the
session, or until the user chooses to remove it.

Since CFS and TCFS use NFS V.2, they are vulnerable
to known (or yet undiscovered) attacks on NFS and related
servers such as port mappers or mount protocol daemons.
Cryptfs does not suffer from these problems.

All three cryptographic file systems suffer from a few
similar yet unavoidable problems. At given times, cleart-
ext keys and file data exist in the memory of user processes
and in kernel memory and are thus vulnerable to an attack
with root privileges through/dev/kmem ; a sophisticated
attacker aided by source access could read kernel memory
to follow data structures representing processes, users, file
systems, and vnodes — until he reaches plaintext keys and
data. Also, if the system pages to an insecure device, there
is a chance that parts of active processes containing cleart-
ext will page to an insecure system, but that is not a Cryptfs
problem per se.

We conducted a series of tests with a set of users such
as letting them store mail and other important files under
directories encrypted using Cryptfs. Over a period of one
month, these users reported that they found Cryptfs to have
a useful balancing of security and convenience. They liked
Cryptfs’ transparency; once the key was provided, they
were able to perform normal file operations without notic-
ing any difference or impact on their workstations.

4.3 Functionality and Portability

Cryptfs encrypts all file and directory data, names, and
symbolic link values. In comparison, CFS does not support
special files or named pipes. Sparse files’ holes get filled in
by Cryptfs and encrypted because it was a necessary part
of the implementation; however, it also has the benefit of
reducing the chance that an attacker could guess the type
of file by noticing that it is sparse.

By encrypting and encoding file names into a reduced
character set, cryptographic file systems lengthen file
names on disk; this reduces the maximum allowed path
name and component name lengths at the cryptographic

4CFS uses symbolic links to store IVs in the value of the link.
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file systems’ level. On average, TCFS and CFS halve the
lengths of component names and maximum path names.
Cryptfs reduces the length only by 25%. In practice,
component names are 255 bytes long, and maximum path
names are 1024 or more bytes long, so even a reduction
of 50% in their lengths is not likely to seriously affect any
users.

Solaris and FreeBSD have similar vnode interfaces, but
both differ from Linux. Most of the Cryptfs code could
not be directly shared between them. 20% of the code we
wrote (about 4000 lines for Solaris) were general subrou-
tines shared among all ports. The other 80% of the code
was not all a “loss” when it came to other ports. Most of
the vnode functions are very similar in behavior: find the
interposed vnodeV ′ from the current oneV and apply the
same vnode operation onV ′ in some order. The code looks
different and the symbol names are not the same, but at its
core the same stackable vnode operations occur in all three
ports.

It took us almost a year to fully develop Wrapfs and
Cryptfs together for Solaris, during which time we had to
overcome our lack of experience with Solaris kernel inter-
nals and principles of stackable file systems. In compari-
son, we were able to complete the Linux port in under 3
weeks, and took one week to port to FreeBSD.

5 Related Work

There are two popular Cryptographic file systems in exis-
tence: Matt Blaze’s CFS[2] and Cattaneo and Persiano’s
TCFS[3]. Both are compared to Cryptfs in Section 4. The
other works mentioned below suffer from one of two prob-
lems: their performance is poor, or they are not portable
enough to be readily available on systems used these days.

5.1 CFS

CFS[2] is a portable user-level cryptographic file system
based on NFS. It is used to encrypt any local or remote di-
rectory on a system, accessible via a different mount point
and a user-attached directory. Users first create a secure
directory and choose the encryption algorithm and key to
use. Any file or directory in a secure one is encrypted.

When users wish to use the secure directory, they run
a tool and provide a private key to attach their encrypted
directories via CFS. Then they access their cleartext files
through the attached point. Once attached, file access is as
transparent as any other directory. CFS determines if a user
is allowed to access an attached directory based on the UID
of the caller.

File data and meta data (symbolic links, file names, etc.)
are encrypted. A wide choice of ciphers is available and
great care was taken to ensure a high degree of security. A
single CFS server can manage multiple directories as well

as several users using different keys and ciphers per direc-
tory. CFS’ performance is limited by the number of context
switches that must be performed and the encryption algo-
rithm used.

5.2 TCFS

TCFS[3] is a modified client-side NFS that communicates
with a remote NFS server as well as a special RPC based
attributes server. TCFS requires the installation of mod-
ules and tools on the client, as well as a special attributes
daemon on the server. TCFS is available only for Linux
systems; both client and server must run a Linux operating
system.

TCFS offers a smaller choice of ciphers than CFS does,
one of which must be chosen and statically compiled into
the file system module. All files are encrypted with the
same cipher. User keys default to login passwords that
are less secure than passphrases. Encrypted user keys are
stored in the file/etc/tcfspasswd which further re-
duces security. All files belonging to one user are encrypted
using the same key.

TCFS allows individual files or directories to be en-
crypted by turning on or off a new and special flag ’X’ on
the file or directory in question. This provides finer grained
control over which files should or should not be encrypted.

5.3 Truffles

Truffles[13] is a distributed file system that uses the Fi-
cus system developed at UCLA to offer replication and file
sharing[4, 6]. Truffles uses Privacy Enhanced Mail (PEM)
as the method of securely communicating file data over a
network. PEM provides authentication and encryption of
the data. Truffles was designed to allow users to securely
share files without special setup and with minimal system
administrator intervention.

Ficus is not as readily available as other network based
file systems such as NFS, nor is it very portable because it
requires specialized operating system stackable layers sup-
port. Also, basing network negotiation on an electronic
mail system results in long delays and significantly reduced
performance.

5.4 Other Stackable File Systems

Several other operating systems offer a stackable file sys-
tem interface. Such operating systems have the potential
of easy development of file systems offering a much wider
range of services than just encryption. Their main disad-
vantages are that they are not portable enough, not suffi-
ciently developed or stable, or they are not available for
common use. Also, new operating systems with new file
system interfaces are not likely to perform as well as ones
that are several years older.
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The “Herd of Unix-Replacing Daemons” (HURD) from
the Free Software Foundation (FSF) is a set of servers run-
ning on the Mach 3.0 microkernel[1] that collectively pro-
vide a Unix-like environment. HURD file systems are im-
plemented at user level. The novel concept introduced by
HURD is that of the translator. A translator is a program
that can be attached to a pathname and perform specialized
services when that pathname is accessed. Writing a new
translator is a matter of implementing a well defined file
access interface and “filling in” such operations as opening
files, looking up file names, creating directories, etc.

Spring is an object-oriented research operating system
built by Sun Microsystems Laboratories[10]. It was de-
signed as a set of cooperating servers on top of a micro-
kernel. Spring provides several generic modules that offer
services useful for a file system: caching, coherency, I/O,
memory mapping, object naming, and security. Writing a
file system for Spring requires defining the operations to
be applied on the file objects. Operations not defined are
inherited from their parent object.

One work that has resulted from Spring is the Solaris
MC (Multi-Computer) File System[7]. It borrowed the ob-
ject oriented interfaces from Spring and integrated them
with the existing Solaris vnode interface to provide a dis-
tributed file system infrastructure through a special file sys-
tem called thepxfs– the Proxy File System. Solaris MC
provides all of the benefits that come with Spring, while re-
quiring little or no change to existing file systems; those can
be gradually ported over time. Solaris MC was designed to
perform well in a closely coupled cluster environment (not
a general network) and requires high performance networks
and nodes.

6 Conclusions

Cryptfs proves that a useful, non-trivial vnode stackable file
system can be implemented on modern operating systems
without having to change the rest of the system. Better per-
formance and stronger security were achieved by running
the file system in the kernel. Cryptfs is more portable than
other kernel-based file systems because it interacts with a
mostly standard vnode interface, as the quick ports to Linux
and FreeBSD showed.

Most complications discovered while developing
Cryptfs stemmed from two problems:

1. The vnode interface is not self-contained. The VM
system offers memory mapped files, but properly han-
dling them requires some manipulation of lower level
file systems and MMU/TLB hardware.

2. Several vnode calls are poorly designed, most likely
due to the need to keep compatible with past imple-
mentations that were made when resources were more
scarce. Thereaddir vnode operation on Solaris and
FreeBSD requires special parsing of the file names

within the data provided by the file system. Also, it
forced us to maintain lots of state to be able to imple-
ment it as a restartable operation.

We believe that a truly stackable file system inter-
face could significantly improve portability, especially if
adopted by the main Unix vendors and developers. We
think that the interface available in Spring[10] is very suit-
able. If that interface becomes popular, it might result
in many more practical file systems developed. We hope
through Cryptfs to have proven the usefulness and practi-
cality of non-trivial stackable file systems.

6.1 Future

We plan to add Cryptfs support for other ciphers, especially
DES. We also intend to port Cryptfs to newer versions of
existing operating systems (Solaris 2.7 and Linux 2.1 in
particular,) to take advantage of new system features of-
fered.

The work described in this paper is part of an ongoing
research effort to develop “FiST” (File System Transla-
tor) — a system that will be used to describe a file sys-
tem using a high-level language and generate a working
implementation for the target operating system from that
description[22].
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