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This article lies at the intersection of computational physics and theoretical computer science� Over the

last �� years there has been a stream of negative results announcing undecidability� non�computability� and

intractability� Are these impossibility results relevant to physics� I will discuss two of the negative results

and provide arguments regarding their relevance�

A number of physicists and astronomers including Robert Geroch and James Hartle�� Roger Penrose��

and John Barrow� have been concerned about the occurrence of non�computable numbers in physical theories

and in the equations of mathematical physics�

Should non�computability be of concern to physicists� I am not convinced and will present arguments

for my skepticism�

Typically� the problems of mathematical physics cannot be analytically solved and we resort to numerical

computation� Theoretical computer scientists have conjectured that the time required to solve many discrete

problems grows exponentially with the number of objects� They�ve proved that the time required to solve

many continuous problems grows exponentially in the number of variables� When the resources required to

solve a computational problem grow exponentially� we say the problem is intractable�

Should intractability be of concern to physicists� I�ll argue that the question is open� A question with

a similar 	avor is whether G
odel�s theorem should be of concern to physicists� I believe that the answer to

this question is also open and defend my answer elsewhere�

My answers to the questions regarding non�computability and intractability depend on which abstract

model of the computer is used� Physicists who have thought about this seem to favor the Turing machine�

For example� Penrose� devotes some �� pages to a description of this abstract model of computation and its

implications� But there is another model of computation which might be more appropriate�

Should physicists consider alternatives to the Turing machine model of computation� I believe that since

real and complex numbers are used in mathematical physics� physicists should consider using the real�number

model of computation� I present my arguments in the next section� I�ll also provide the reader with a primer

on the computational complexity of continuous problems�

Should Physicists Consider Alternatives to the Turing Machine Model of Computation�

A central dogma of computer science is that the Turing machine is the appropriate abstraction of a

digital computer� I will discuss whether it is the appropriate abstraction when a digital computer is used for

scienti�c computation�

First� I�ll introduce the four �worlds that will play a role� see Figure �� Above the horizontal line are

two real worlds� the world of physical phenomena and the computer world� where simulations are performed�
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Below the horizontal line are two formal models� a mathematical model of the physical phenomenon and a

model of computation which is an abstraction of a physical computer� We get to choose both the mathematical

model and the model of computation� What type of models should we choose�

Real�World Phenomena Computer Simulation

Mathematical Model Model of Computation

Figure �� Four Worlds

The mathematical model� which is often continuous� is chosen by the physicist� Continous models range

from the dynamical systems of classical physics to the operator equations and path integrals of quantum

mechanics� That is� mathematical physics uses number �elds such as the real and complex numbers� For

simplicity I will refer only to the reals in what follows� It is well�understood that the real numbers are an

abstraction� That is� it would take an in�nite number of bits to represent a single real number� an in�nite

number of bits are not available in the universe� Real numbers are utilized because they are a powerful and

useful construct� Let us accept that today continuous models are central to mathematical physics and that

they will continue to occupy that role for at least the foreseeable future� But the computer is a �nite state

machine� What should we do when the continuous mathematical model meets the �nite�state machine�

I will compare and contrast two models of computation� the Turing machine and the real�number model�

In the interest of full disclosure I want to tell you that I�ve always used the real�number model in my work but

will do my best to present balanced arguments� I will assume the reader is familiar with the Turing machine

as an abstraction of a digital computer� Alan Turing was one of the intellectual giants of the twentieth

century who de�ned this machine model to prove a result from logic�� In the real�number model we assume

that we can store and perform arithmetic operations and comparisons on real numbers exactly and at unit

cost� Of course� this is an abstraction and the test is how useful and close the abstraction is to reality�

The real�number model has a long history� Alexandre Ostrowski uses it in his seminal work on the

computational complexity of polynomial evaluation in ����� I used the real�number model for research

on optimal iteration theory in ����� Shmuel Winograd and V
olker Strassen used the real�number model

in their seminal work on algebraic complexity in the late sixties� Henryk Wo�zniakowski and I used it in

our ���� monograph on information�based complexity� Lenore Blum� Michael Shub� and Steven Smale

provided a formalization of the real�number model for continuous combinatorial complexity and established

the existence of NP�complete problems over the reals�
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What are the pros and cons for these two models of computation� I�ll begin with the pros of the Turing

machine model� It is desirable to use a �nite�state abstraction of a �nite�state machine� Moreover� the Turing

machine�s simplicity and economy of description are attractive� Another plus is that it is universal� It is

universal in two senses� The �rst is the Church�Turing thesis� which states that what a Turing machine can

compute may be considered a universal de�nition of computability� �Computability on a Turing machine is

equivalent to computability in Church�s lambda calculus�� Of course� one cannot prove this thesis� it appeals

to our intuitive notion of computability� It is universal in a second sense� All �reasonable machines are

polynomially equivalent to Turing machines� �Informally� if the minimal time to compute an output on a

Turing machine is T �n� for an input of size n and if the minimal time to compute an output on any other

machine is S�n�� then T �n� and S�n� are polynomially related�� Therefore� one might as well use the Turing

machine as the model of computation�

I�m not convinced by the assertion that all reasonable machines are polynomially equivalent to Turing

machines� but I�ll defer my critique for the cons of the Turing machine� See Table � for a summary of the

pros of the Turing machine model�

� Desirable to use �nite�state model for �nite�state machine

� Universal

� Church�Turing thesis

� All �reasonable machines are polynomially equivalent to Turing machines

Table �� Pros of the Turing Machine Model�

I�ll turn to cons of the Turing machine model� I believe it is not natural to use this discrete model

in conjunction with continuous mathematical models� Furthermore� estimated running times on a Turing

machine are not predictive of scienti�c computation on digital computers� One reason for this is that scienti�c

computation is usually done with �xed�precision 	oating point arithmetic� The cost of arithmetic operations

is independent of the size of the operands� Turing machine operations depend on number size�

Finally� there are interesting models which are not polynomially equivalent to a Turing machine� Con�

sider the example of a UMRAM� The acronym reveals the important properties of this model of computation�

It is a random access machine where multiplication is a basic operation and memory access and the opera�

tions of multiplication and addition can be performed at unit cost� This seems like a reasonable abstraction

of a digital computer since multiplication and addition on �xed�precision 	oating point numbers cost about
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the same� But the UMRAM is not polynomially equivalent to a Turing machine� �However a RAM� which

does not have multiplication as a fundamental operation is polynomially equivalent to a Turing machine��

Using the example of linear programming� Wo�zniakowski and I� showed that the real number model is also

not equivalent to the Turing machine�

The cons of the Turing machine are summarized in Table ��

� Not natural to use a discrete model of computation in conjunction with the continuous

models of physics

� Not predictive of running time of scienti�c computation on a digital computer

� Not all �reasonable machines are equivalent to Turing machines

Table �� Cons of the Turing Machine Model�

I now turn to the pros of the real�number model� As I�ve stated above� the mathematical models of

physics are continuous and use real �and complex� numbers� That is� physicists assume a continuum� It seems

natural to me to use the real numbers in analyzing the numerical solution of the problems of mathematical

physics on a digital computer� For example� investigation of the computational complexity of path integrals

has recently been initiated by Greg Wasilkowski and Wo�zniakowski�� They use a real�number model� I

believe a Turing machine model would not be natural�

Most scienti�c computation uses �xed�precision 	oating point arithmetic� Modulo stability� computa�

tional complexity in the real number model is the same as for �xed�precision 	oating point� Therefore the

real�number model is predictive of running times for scienti�c computation�

A third reason for using the real�number model is that it permits the full power of continuous mathe�

matics� We�ll see one example below when I discuss a result on non�computable numbers and its possible

implications for physical theories� Using Turing machines the result takes a substantial part of a monograph

to prove� With analysis� an analogous result is established in a page�

The argument for using the power of analysis is already made in ���� by John von Neumann� one of the

leading mathematical physicists of the century and a father of the digital computer� In his Hixon Symposium

lecture�� von Neumann argues for a �more speci�cally analytical theory of automata and of information�

He writes�

�There exists today a very elaborate system of formal logic� and speci�cally� of logic as applied to

mathematics� This is a discipline with many good sides� but also serious weaknesses� � � Everybody who has
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worked in formal logic will con�rm that it is one of the technically most refractory parts of mathematics�

The reason for this is that it deals with rigid� all�or�none concepts� and has very little contact with the

continuous concept of the real or of the complex number� that is� with mathematical analysis� Yet analysis

is the technically most successful and best�elaborated part of mathematics� � � The theory of automata� of the

digital� all�or�none type as discussed up to now� is certainly a chapter in formal logic� It would� therefore�

seem that it will have to share this unattractive property of formal logic� These observations may be used

mutatis mutandis as an argument for the real�number model�

An eloquent argument for the real number model is given in the �Manifesto by Blum� Felipe Cucker�

Shub� and Smale�� They write� �Our point of view is that the Turing model� � � is fundamentally inadequate

for giving a foundation to the theory of modern scienti�c computation�

The pros of the real number model are summarized in Table ��

� �Natural for continuous mathematical models

� Predictive of computer performance on scienti�c problems

� Utilizes the power of continuous mathematics

Table �� Pros of the real�number model�

The con of the real�number model is that the digital representation of real numbers does not exist in

the real world� Even a single real number would require in�nite resources to represent exactly� Thus the

real�number model is not �nistic� The Turing machine is also not �nistic since it utilizes an unbounded

tape� It is therefore potentially in�nite� Thus� to paraphrase George Orwell� the Turing machine model

is less in�nite than the real�number model� It would be attractive to have a �nite model of computation�

�The Turing machine is discrete but unbounded�� There are �nite models� such as circuit models and linear

bounded automata� but they are special�purpose�

The con of the real�number model is given in Table ��

� The real�number model is in�nite� it is preferable to use a �nite�state abstraction of

a �nite�state machine�

Table �� Con of the real�number model�

A Primer on Information�Based Complexity
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Since my answers concerning non�computability and intractability depend on concepts and results from

information�based complexity� I�ll provide a very brief introduction and also show how it relates to the

rest of computational complexity� See the monographs by Wasilkowski� Wo�zniakowski and me	� Arthur

Werschulz�
� and Leszek Plaskota��� and expository papers����� for more material on information�based

complexity� which I�ll abbreviate as IBC�

Computational complexity measures the minimal computational resources required to solve a mathe�

matically posed problem� For brevity� I�ll often use �complexity� The resource I�ll be concerned with is time�

Consider all possible algorithms for solving a problem� those known and those existing only in principle� The

complexity is the minimal cost over all possible algorithms�

Computational complexity may be split into combinatorial complexity and information�based complex�

ity� see Figure ��

Computational Complexity

� �

Combinatorial Complexity Information�based Complexity �IBC�

Figure �� Schema of Computational Complexity

A typical combinatorial problem is the well�known Travelling Salesman Problem �TSP�� The input is

the location of n cities and the desired output is the minimal route� the city locations are usually represented

by a �nite number of bits� The complexity of this problem is unknown but almost everyone believes that it is

exponential in the number of cities� A problem whose complexity grows exponentially with the �size of the

input is said to be computationally intractable� This means that the problem cannot be solved in principle�

I�m not considering here possible new forms of computing such as quantum computers� It is conjectured that

many combinatorial problems are intractable�

I�ll contrast this with IBC� Typical problems are high�dimensional integration� path integration� ordinary

and partial di�erential equations� and nonlinear optimization� that is� the problems of scienti�c computation�

Let�s consider an initial�value partial di�erential equation� Typically the initial value is given by a function�

it cannot be entered into a digital computer� We discretize the initial value by� say� sampling it at a �nite

number of points� Thus the information the computer has about the actual mathematical problem is partial�

The complexity of mathematical models with partial information is studied in IBC� �In particular� continuous

models have only partial information�� Since the computer doesn�t known the actual mathematical problem

we can�t hope to solve it exactly�the best we can hope for is an ��approximation� As is appropriate for

scienti�c computation� IBC uses the real number model of computation�
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It has been proven that the complexity of most multivariate problems studied in IBC is exponential

in the number of variables� They are known to be computationally intractable� The reason we know the

complexity of continuous problems but not of discrete problems is that partial information permits us to

argue at the �information level�

The intractability results are for the worst�case setting� That is� we require an error at most � for every

input �in some class of inputs�� The only chance for breaking intractability is by replacing the worst�case

guarantee by a stochastic assurance�

I�ll mention two stochastic settings here and illustrate the ideas with a particular example� high�

dimensional integration� In Monte Carlo the expected error� with respect to the distribution on the sample

points� is less than �� Then the computational complexity is independent of the dimension� intractability

has been broken�

A second setting is the average case deterministic setting� Assume a Wiener measure on the continuous

functions� The stochastic guarantee is that the expected error is less than �� By discovering a relation

between this problem and number theory� Wo�zniakowski in ���� obtained the complexity of multivariate

integration on the average� Experimentation on ����dimensional integrals arising in mathematical �nance

by Anargyros Papageorgiou and me indicated that the deterministic methods consistently beat Monte Carlo

for the high dimensional integrals of mathematical �nance�

So we have very good news� For high dimensional integration intractability can be broken by weakening

the worst�case guarantee to a stochastic assurance� But� unfortunately� there are other mathematical prob�

lems which remain intractable no matter how we weaken the assurance� Examples are provided by certain

Fredholm integral equations and by the approximation problem�
�

Should Non�Computability be of Concern to Physicists�

I remind you that a number is computable if there is a mechanical procedure for approximating it to

arbitrary precision� see� for example� Turing� or Geroch and Hartle�� An example of a computable number

is �� However� most real numbers are non�computable� A number of physicists have expressed surprise and

concern about non�computable numbers in physics� In their seminal paper� Geroch and Hartle� ask whether

the occurrence of a non�computable but measurable number in a physical theory indicates a di�culty with

the theory� Penrose� is concerned by the result that the wave equation with computable initial conditions

can have non�computable solutions� he calls this a �rather startling result� Faced with the same result

Barrow� concludes� �The answer to these di�culties� if they can be found� surely lie in an enlarged concept

of what we mean by a computation�
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It seems to me that there are two issues with respect to non�computable numbers in physics�

� Is it an impediment to comparing experiment with theory�

� Does it indicate a 	aw in a physical theory if measurable observables are non�computable�

I�ll �rst consider the question of agreement of theoretical predictions with experiment� Although experi�

mental resuls are known to only limited accuracy� computability is an asymptotic concept� Non�computability

does not a�ect any �xed �nite number of digits�

What does matter in drawing conclusions from theoretical models is the computational complexity of

computing the ith digit� that is the minimal cost of computing the ith digit� Assume� for example� that

computing the ith digit of x must cost ���
i operations� We will never be able to compute more than the

�rst few digits of x even if x is a computable number� Thus� a possible impediment to comparing theory

with experiment is computational complexity rather than non�computability�

To illuminate the second question� we discuss several examples� First� consider the paper by Geroch and

Hartle� They de�ne measurability and computability very generally and then consider a particular observable

in quantum gravity� They present arguments to suggest a certain observable may be non�computable� They

also discuss why they are quite far from proving this observable is non�computable�

Next� consider partial di�erential equations with computable initial conditions but non�computable

solutions� The equations are very simple� Examples are the wave equation and the backwards heat equation�

The wave equation is assumed to have initial conditions which are not twice di�erentiable�

These partial di�erential equations are special cases of ill�posed problems� Recall the de�nition of ill�

posed problems� in the sense of Hadamard� If we seek to compute Lu where L is a linear operator then the

problem is said to be ill�posed i� L is unbounded� Marian Pour�El and Jonathan Richards�� showed that if

a problem is ill�posed� then computable inputs might be take into non�computable outputs� They devote a

large part of a monograph to prove this result using computability theory�

An analogous result using information�based complexity over the reals was established by Werschulz���

Werschulz�s proof utilizes the power of analysis and is about one page in length� His approach has several

other advantages� as we shall see�

Although Werschulz�s result holds on normed linear spaces� for simplicity I�ll describe it for function

spaces� He assumes that the function u �in the case of di�erential equations this might be the initial

condition� cannot be entered into a digital computer� He discretizes u by evaluating it at a discrete number

of points� Werschulz proves that if the problem is ill�posed it is impossible to compute an ��approximation

to the solution at �nite cost even for arbitrarily large �� Thus the problem is unsolvable� Note that this is a

much stronger result than non�computability�

But the best is yet to come� In information�based complexity it is natural to consider the average case�

The following surprising result was recently established� Every ill�posed problem is well�posed on the average
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for every Gaussian measure� The measure here is on the inputs u� e�g�� on the initial conditions� Werschulz

and I�� surveyed the work leading to this result� We see that the non�solvability of ill�posed problems is a

worst�case phenomenon� It melts away in the average case for reasonable measures�

A number of physicists have told me of their unease with the occurrence of non�computable numbers in

physical theories� but couldn�t give convincing reasons� I�m not convinced that non�computability need be

of concern�

Should Intractability be of Concern to Physicists�

As we�ve seen� the complexity of many discrete problems is conjectured to grow exponentially with the

number of objects� while the complexity of many continuous problems is known to grow exponentially with

dimension� These negative conjectures and theorems are for the worst case� Although some continuous

problems become tractable if we are willing to live with a stochastic assurance of computing an approximate

solution there are others that remain stubbornly intractable�

Many problems of computational physics involve large numbers of objects or variables� Might intractabil�

ity set fundamental impediments�

Perhaps not� Scienti�c questions do not come equipped with a mathematical model� Examples of

scienti�c questions include�

� Will there be major climate changes due to human activities�

� Will the universe stop expanding�

� How do physical processes in the brain give rise to subjective experience�

For a scienti�c question we get to choose the mathematical model� To rigorously demonstrate an

impediment due to intractability we should show that every mathematical model that captures the essence

of a scienti�c question is intractable� This may be a possible attack in principle but it is far from evident

that it could actually be carried out for any non�trivial question� Note� however� that in establishing the

computational complexity of a mathematical model we do permit all possible algorithms to compete�

Based on our current knowledge I feel that the question stated as the title of this section is open�

The research reported here was supported in part by the National Science Foundation� I appreciate the

comments of J�B� Altzman on the manuscript�
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