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Abstract

In this proposal, we present comprehensive and systematic approaches of building systems
that can automatically generate coherent visual discourse for interactive envirornments. A visual
discourse refers to a series of connected visual displays. A coherent visual discourse requires
smooth transitions between displays, consistent designs within and among displays, and effec-
tive integration of various components. Our research focuses in part on establishing a general
framework by abstracting various generation systems and providing a reference model in which
a specific system is considered an instantiation of the framework. In other words, any automated
graphics generation system must contain a knowledge base, an inference engine, a visual real-
izer and an interaction handler. As a consequence, not only can a general framework serve as a
template from which a specific generation system can be instantiated, but the framework also
can be used as a base for comparing or evaluating different systems.

We concentrate on the basic issues involved in establishing these four core components. In
particular, we identify various knowledge sources and determine effective knowledge represen-
tation paradigms in constructing the knowledge base. We emphasize the efficiency, usability, and
flexibility issues in modeling the inference engine. We are concerned with portability and paral-
lelization issues in building the visual realizer, and we also take into account interaction capabil-
ities for interactive environments. To demonstrate the generality and comprehensiveness of the
framework, we address its application to the design of coherent visual discourse for heteroge-
neous information in interactive environments. Within such discussions, heterogeneous informa-
tion refers to both quantitative and qualitative, or static and dynamic information. In addition, we
assume that the system aims to support a wide variety of visual techniques, ranging from indi-
vidual 2D displays to interactive 3D animation sequences.

We describe a system called IMPROVISE (Illustrative Metaphor Production in Reactive
Object-oriented VISual Environments) that serves as a proof-of-concept prototype. IMPRO-
VISE is built based on our framework, aiming to automatically generate coherent visual dis-
course for various application domains in interactive environments. IMPROVISE has been used
in two testbed application domains to demonstrate its generality and flexibility. Examples from
both domains will be given to illustrate IMPROVISE’s generation process and to identify the
future research areas.
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CHAPTER 1 Introduction

One picture is worth ten thousand words. — F. R. Barnard

For many years, graphic forms or visual presentations have been used to
make information more understandable by humans. However, as the complexity
and volume of the information grows, our ability to hand-craft customized visual
presentation lags far behind our ability to process the information. A new genera-
tion of computational techniques and tools is required to automate the visualiza-
tion of useful information. These techniques and tools are the subject of the
emerging field of automated information visualization or knowledge-based infor-
mation visualization.

During the past two or three decades, most presentations created by com-
puters were carefully designed and constructed by hand. Systems like the TeX for-
matting system, give the experienced user very precise control of the layout, but
overload the casual user. Considering that not everyone has had training in graphic
design and assuming the sole purpose of creating visual presentations is to aid
information understanding, a reasonable compromise was found in the creation of
style sheets (or template-based presentations). While the majority of the layout
styles, color schemes, or fonts were carefully chosen ahead of time by trained pro-
fessional layout artists, and the content was supplied by the user. However, when
the scale of data manipulation, exploration, and inference grows beyond human
capacities, this template-based strategy is no longer feasible to cope with a great
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deal of information in a timely, customized manner. Therefore, researchers are now investi-
gating how to use computer technology to automate the process of designing visual presen-
tations.

Within the past ten years, automated generation of visual presentations has become an
active research topic. Systems such as APEX [Feiner, 1985], APT [Mackinlay, 1986], SAGE
[Roth and Mattis, 1991], and IBIS [Seligmann, 1993] have been developed to demonstrate
the significance and feasibility of some of the research ideas. However, much of the research
done in the area of automated graphics generation has been focused on designing individual
presentations (e.g., [Mackinlay, 1986; Roth and Mattis, 1991]), or planning sequences of
predominantly static presentations (e.g., [Feiner, 1985; Seligmann, 1993]). In contrast,
designing coherent visual discourse has not received the full attention that it deserves. We
use the term visual discourse to refer to a series of connected visual displays. To remain
coherent, a visual discourse must ensure smooth transitions between displays, maintain con-
sistent designs within and among displays, and achieve effective visual unifications among
various components.

Complementing the work for automated generation of individual presentations or
sequences of static presentations, our research focuses on establishing a comprehensive and
systematic paradigm for automatically generating coherent visual discourse. In our work, we
propose a general framework for building such systems. We suggest that the framework con-
sist of four essential components: knowledge base, inference engine, visual realizer, and
interaction handler. More importantly, we emphasize how to assemble a working system
based on the instantiation of each individual component. Furthermore, a working system
IMPROVISE (Illustrative Metaphor Productions in Reactive Object-oriented VISual Envi-
ronments) has been implemented to demonstrate the generality and feasibility of the estab-
lished framework.

1.1 Problems

There are two main research issues in building automated generation systems for
coherent visual discourse: understanding the cause of incoherence and searching for solu-
tions of ensuring coherence.

Incoherence within visual discourse could arise in several situations. While physical
displays are not large enough to accommodate all information at one time, information has
to be presented in successive displays. Lack of smooth transitions between displays or
inconsistent designs within or among displays will result in incoherent visual discourse.
Another problem with incoherent visual presentations is caused by ineffective integration of
various information into a coherent whole. Ineffective integration not only results in visual
clutter or visual noise, but it also degrades the true value of using visual representations as
an information interpretation tool that aids the user to perform tasks.

Visual presentations express information in their own specific channel. We often
employ visual presentations to express and communicate information to the user and guide
him/her to perform tasks. Cognitive psychology studies have demonstrated that incoherent
visual discourse can greatly impair user performance. The user might be “lost” in a display
network [Woods, 1984], confused due to inconsistent design [Marks, 1991b], or over-
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whelmed by information overload caused by a lack of efficient information integration [Nor-
man et al., 1986].

Different measurements have been proposed to relate human performance to the effec-
tiveness of visual displays. As a result, guidelines can be formulated to lead effective visual
presentation designs. Woods [Woods, 1984] uses visual momentum to measure the user’s
ability to extract and integrate information across displays. Similarly, another measurement
visual scope is used by Norman et al. [Norman et al., 1986] to evaluate the user’s ability to
integrate information across a display of multiple windows or screens and grasp the whole
of whatever is being presented. While the visual momentum is created by providing smooth
transitions between displays, visual scope is established by matching the surface layout (i.e.,
visual presentation structures) against the user’s cognitive layout. Intuitively, the problem of
ensuring visual discourse coherence becomes the problems of identifying the user’s cogni-
tive layout for a particular task, and investigating the mapping between a visual representa-
tion and such layout. As we search for computational approaches to these problems, we find
ourselves entangled in four research areas: knowledge engineering, inference modeling,
visual realization, and interaction handling.

First, to automatically design visual presentations, a system needs to have certain
knowledge that it can reason about. The knowledge base should contain information such as
general visual design principles, the specific domain model, and the expected user or situa-
tion (e.g., display device, and time constraints) context. In addition, the knowledge must be
represented and organized in a form such that it can be efficiently accessed or modified.
Thus, knowledge engineering, namely, determining knowledge sources and their representa-
tion formalism becomes our first problem.

Second, automated graphics generation is a computationally complex task. Neverthe-
less, the time takes to search and infer a design becomes the computation bottleneck. To
make a system applicable, an efficient inference model is needed to reduce the system’s
response time as it enhances the system’s usability. To investigate and develop an efficient
inference approach—inference modeling, becomes the key in building a practical automated
graphic design component.

Third, converting a design into visual displays on the screen is not a trivial problem
either. We use the term visual realization to refer to the process that actually translates the
planned design into human perceivable visual displays on the screen. During this translation
process, several issues are involved: specifying the graphic design, translating the design
into the target graphics language, and performing the rendering. As automated graphics gen-
eration system is computationally costly, the upgradability of an automated generation sys-
tem becomes one of the important issues in system design. In particular, such systems
should be made easily portable and be parallelized to take full advantage of parallel process-
ing and networking technologies. Such portability and parallelism require the design and
realization components to be disentangled and independent of each other. Therefore, the
capabilities of visual realization reaches far beyond the point where it is concerned only
with rendering routines and their performance. Visual realization needs to deal with issues
that interface the two major processes (i.e., design and realization) to enforce the desired
system portability and parallelism, and concerns with providing necessary information
needed by different components (e.g., design process and rendering process might require
information to be expressed in different format).
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Finally, as a system is targeted for an interactive environment, allowing certain user
interactions becomes one of the desired features. Determining what types of interaction
should be allowed and how to handle various user interaction events become the topics of
interaction handling.

So far, we have introduced four problems/tasks that need to be taken care of before an
automated graphics generation system could be assembled. The crux of the matter is that
solving the four tasks results in four structural components of automated graphics generation
systems. They are knowledge base, inference engine, visual realizer, and interaction handler.
Therefore, a general framework for building automated graphics generation systems can be
established by making an abstraction of each of these four components. Then each practical
system, which is made up of instantiations of each of the four components, would be consid-
ered as a specific instance of the framework.

1.2 Approach

The conceptual model for building a system that automatically generates visual dis-
course is shown in Figure 1-1, which illustrates the flow of a complete presentation genera-
tion process. The inference engine infers a visual design based on the information stored in
the knowledge base. Upon completion of the design process, the design is carried out by a
visual realizer. In the course of the presentation, an interaction handler processes user
events. Next, we discuss each of these four components and how to assemble a system that
includes them.

Knowledge Base. An automated graphics generation system generates visual representa-
tions based on certain information it knows about. How efficient and effective the generation
would be depends upon what types of knowledge the system has and how efficiently the
knowledge could be utilized. Thus, there are two issues involved in constructing a knowl-
edge base: identifying knowledge sources and determining representation mechanisms.
There are at least four types of knowledge required in the process of visual design: domain
knowledge, visual design knowledge, situation knowledge, and meta knowledge.

Figure 1-1 Framework for automated graphics generation systems

Knowledge Base

Visual Realizer

Interaction Handler

Inference Engine
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A generation system not only needs to possess certain knowledge, but it should also be
able to reason about it based on what it knows. Due to the diverse nature of the knowledge
that we are dealing with, our work focuses on finding a combination of different knowledge
representation formalisms to facilitate knowledge acquiring, retrieving, and reasoning. The
mixed representation paradigm should meet three criteria [Barr and Feigenbaum, 1989]:
understandability, modularity, and extensibility.

Understandability refers to the ability to acquire or store knowledge in a form that is
natural and straightforward to humans, who serve as the source of knowledge. Modularity
implies the ability to manipulate a piece of data independently of the rest of the knowledge
base. Extensibility indicates the easiness to expand the current knowledge base and accom-
modate new types of information. Based on these three criteria, we employ an object-ori-
ented representation formalism as our primary knowledge representation paradigm,
supplemented by procedural and production rule representations.

Inference Engine. To accomplish visual tasks, a graphics generation system should be
able to reason about what it knows about, make decisions and infer the visual presentation
design. An efficient inference engine inherently employs an effective problem solving
method to guide the reasoning process. There are several factors that must be taken into
account in choosing or developing such an inference engine.

Efficiency is inarguably one of the most important factors. A generation system should
be able to generate effective presentations within a reasonable time frame. Usability indi-
cates that whether an inference model is suitable for a particular domain, in our case, the
domain of designing visual presentations. No matter how efficient the inference process is, if
it can not provide what the application expects, the model is useless for this particular appli-
cation. Flexibility is another factor that needs to be taken into account as it measures how
easily the model could be modified or improved to address new tasks or new platforms.
Based on these criteria and the analysis of our problem domain, we have decided that a con-
structive planning approach would be adequate for our application.

In our approach, a visual discourse is a sequence of visual actions. A visual action is an
encoded graphic design technique (e.g., moving an object). We use a hierarchical planner
[Cohen and Feigenbaum, 1989] to generate the sequence of actions. Compared to search-
based approaches, hierarchical planning achieves computational efficiency by reducing the
amount of search needed [Yang and Tenenberg, 1990]. It also eases the task of knowledge
encoding [Wilkins, 1988] by reusing the actions that are common to many design tasks. In
addition, we adopt a top-down hierarchical decomposition strategy [Young et al., 1994] to
facilitate the interleaving of planning and execution [Wilkins, 1988] and to ensure both local
and global coherence within a visual discourse.

Visual Realizer. A complete graphics generation cycle includes planning a design and
realizing it. In order to be realized, the design must be represented in a form that can either
be understood by a rendering package directly, or be easily translated into the rendering lan-
guage. It is nonetheless desirable to separate the process of design from the process of real-
ization. In other words, both the design and realization processes should not be affected by
the other’s representation or functionality. In addition, the separation will contribute towards
the desired system portability or parallelism. Bearing these criteria in mind, we decide that
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an intermediate language should be developed to represent the design, and this design
should be easily translated into the language understood by the graphics package. To switch
to a different graphics package, we only need to write another translator.

Determining which graphics package to use is another challenge task. Ideally, the
package should be platform independent. In addition, we often want to deal with graphics
objects at a high level of abstraction, but retain the right to access the lowest level primitive
functions when necessary. Fortunately, architecture-independent graphics packages have
become available, including both high-level object-oriented specifications (e.g., OpenInven-
tor [Wernecke, 1994]) and low-level primitive manipulation functions (e.g., OpenGL
[Neider et al., 1993]).

Interaction Handler. At any given time, the user wishes to have control over what s/he is
viewing. Thus user interaction is desired in an information visualization system. In our case,
the user should be able to explore the information as s/he wishes, or to stop the ongoing
visual presentation at any given time and resume it as s/he prefers. Thus, an interactively
inviting and interruptible visual discourse should be produced.

While designing interactively attractive visual presentations involves analyzing vari-
ous interaction metaphors and interaction styles, providing an interruptible visual discourse
requires reactive planning [Wilkins et al., 1994]. In order to resume, the system must main-
tain a presentation execution history to record when the interruption occurred, what actions
have been performed and what actions are yet to be carried out. Furthermore, the system
replans based on the result of the current user interaction. As the ability to be able to replan
in an uncertain environment (e.g., when and what the user is going to do is unknown to the
system) is a whole research topic of reactive planning.

Next, we outline our major contributions.

1.3 Contributions

This thesis establishes a framework which captures comprehensive and systematic
approaches to building systems that automatically design coherent interactive visual dis-
course for heterogeneous information. To demonstrate the feasibility and generality of these
approaches, we have also designed and implemented a working prototype system called
IMPROVISE that can automatically generate coherent visual discourse in two application
domains. From these approaches and the implemented system, we highlight the following
contributions:

I. Development of approaches for generating coherent visual discourse

❑ To ensure visual discourse coherence, we have established a set of expressiveness
and effectiveness criteria [Mackinlay, 1986]. Based on these criteria, a coherent
visual discourse is expressive enough to allow a user to attend selectively to the
local information and perceive all information cohesively as a whole. It will also be
effective enough to ensure smooth transitions between displays, maintain design
consistency within and among displays, and unify various components into an
organic whole.
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❑ To ensure coherence, we design an inferencing process based in part on hierarchi-
cal-decomposition partial-order planning algorithms. We incorporate heuristic strat-
egies (e.g., achievability and consistency preferences) into our inferencing process.
In this inferencing paradigm, visual discourse is represented as action sequences;
and visual design techniques are employed as problem-solving operators. Guided by
heuristic strategies and a top-down refinement strategy, the generation process not
only ensures the global coherence of the visual discourse, but also improves the
design efficiency.

II. Development of approaches for versatile visual discourse

❑ To represent heterogeneous information, we have established a six-dimensional data
characterization taxonomy to relate the information characteristics to different
visual properties. Based on the relationships between the data properties and the
visual attributes, we are able to develop mapping methods that comprehensively and
systematically map the data onto different visual objects.

❑ To represent heterogeneous information, we would like to employ a wide range of
visual forms (e.g., graphs, charts, and animations) effectively. We establish a visual
hierarchy to categorize various visual representation forms and define their compo-
sition principles at different levels of abstraction using their syntax, semantics and
pragmatics. In particular, we have developed a visual lexicon, which is a compact
and comprehensive representation formalism, to effectively capture the relation-
ships between atomic domain objects and their different visual representations.

❑ To carry out different visual tasks effectively, we have also developed a visual task
hierarchy. Based on this hierarchy, we analyze the characteristics of each type of
task by their visual accomplishments and visual implications. As a result, we are
able to establish mappings between the high-level presentation intents and the visual
tasks, and between the visual tasks and the underlying visual techniques.

III. Development of approaches for generating interactive visual discourse

❑ To construct interactive visual discourse, we incorporate many conventional user-
interface interaction metaphors (e.g., buttons and menus) and styles into visual pre-
sentation design so that the visual presentations present certain visual affordances to
encourage user interaction.

❑ We are also exploring possible reactive planning approaches so that we can present
an interruptible visual discourse. Moreover, such a discourse could also properly
respond to a user by modifying the current presentation plan.

IV. Design and Implementation of working system IMPROVISE

❑ IMPROVISE automatically generates coherent visual discourse to represent hetero-
geneous information using a variety of visual techniques and visual media, ranging
from static 2D graphs to 3D animation sequences.

❑ IMPROVISE composes interactive visual presentations that enable users to interact
with and control the visual discourse.
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❑ IMPROVISE employs a sophisticated planner (PREVISE) to efficiently create
visual presentations and guarantees both local and global cohesiveness as a result of
a top-down, gradual refinement design process [Zhou and Feiner, 1997b].

❑ IMPROVISE generates visual presentations for two different domains: a computer
network management application and a health care application, which demonstrates
the modifiability and the extensibility of the system.

1.4 Organization

The rest of the proposal will be organized as follows: Chapter 2 discusses related work
in the area of automated graphics generation. Chapter 3 briefly illustrates the framework and
its components. Chapter 4 describes IMPROVISE and its components in detail. Finally,
Chapter 5 concludes with a discussion of remaining work and our schedule.
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CHAPTER 2 Related Work

Discovery consists of seeing what everybody has seen and thinking what nobody
has thought. — Albert von Szent-Györgyi

As a growing research area, automated graphics generation has been taking
advantage of progressively more sophisticated computational techniques.
Researchers have explored various computational paradigms, aiming to establish
a comprehensive and systematic treatment of the problem. Among the various
paradigms, most of them fall into one of two categories: parametric graphics syn-
thesis and constructive graphics synthesis.

Parametric graphics synthesis predefines a set of visualization models that
are characterized by functionalities and represented by sets of parameters. The
whole process involves analyzing the data attributes, matching the data against the
visualization models, and instantiating the visual parameters of the selected model
to interpret the data. Conversely, constructive graphics synthesis is a deductive
approach. It reasons about the logical operations that could be used to achieve the
high-level communicative intent, and attempts to carry out these logical opera-
tions using primitive visual objects. These primitive visual objects serve as build-
ing blocks, with which complex visual displays can be constructed. Unlike
parametric graphics synthesis, the constructive approach designs every visual pre-
sentation from scratch by gluing together the most basic visual variables
[Bertin, 1983] to form a coherent whole. Based on these two approaches, this
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chapter enumerates some of the representative research work in automated graphics genera-
tion, which are most closely related or most influential to our work.

2.1 Parametric Graphics Synthesis

Parametric graphics synthesis is based on the theory that comprehensive visual
model(s) can be built to reflect the user’s mental model and effectively convey information
to the user [Robertson, 1991]. Moreover, through a careful examination of the visual
attributes of the models and the data properties, the mapping between the visual attributes of
the models and the data properties can be established in a formal and systematic manner.
Most systems that employ this approach are largely identical but with minor differences in
how to map their data onto the defined visual models. Nevertheless, these systems can be
differentiated by the richness and flexibility of their visual models, as well as their capabili-
ties to combine primitive models into a composite one. In this section, we present several
representative systems in a chronological order.

AIPS. As early as in 1981, Zdybel et al. [Zdybel et al., 1981] developed a system that gen-
erates visual displays for information in a knowledge base. Templates are first constructed to
describe different types of visual displays. Each template includes information such as
visual attributes and positional information. The user can also define templates and specify
their usage. Generation process is a two-step process that maps information to an appropri-
ate template, and instantiates the template. To establish the mapping, AIPS specifies certain
information such as data properties, template properties and their semantics. AIPS automat-
ically matches the information to be presented against a set of templates and selects the most
appropriate one. The selected template is instantiated based on its syntax and the informa-
tion to be presented.

The major drawback of such a system is that as the information type varies, the tem-
plate types must be augmented to accommodate this new type of information.

Natural Scene Paradigm. Robertson’s natural scene paradigm (NSP) [Robertson, 1991]
is one of the most sophisticated parametric graphics synthesis systems. Robertson claims
that a user can easily interprete the data through the 3D surface structure by glancing the
scene. He proposes to map data variables to various features of the natural scene such as sur-
face condition, surface height, and density based on the characteristics of the data. To direct
such mapping, he conducts research on three aspects: analyzing the natural properties of var-
ious data and interpretation goals of such data, developing a catalogue that includes the
capability of each visual variable that can be used in the natural scene, and establishing the
mappings between the visual capabilities of the natural scene and the interpretation goals.
Here we briefly describe the significance and results in each of these three areas.

Robertson analyzes various data along its dimensionality and types (e.g., ordinal or
nominal). He also distinguishes three types of data interpretation intents as values at point,
local distribution of values, and global distribution of values. To map data properties to a
natural scene surface, Robertson presents a table that identifies the representation capabili-
ties of various natural scene properties based on the data dimensionality and type. For exam-
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ple, the surface height can be used to represent 2D, ordinal, continuous points. Finally, a
mapping to correlate the interpretation intents and the representation capabilities of the natu-
ral scene is established to generate the graphics.

NSP does not address how to represent non-quantitative information since it focuses
on representing scientific or statistical data sets. In contrast, we attempt to find a more com-
prehensive and systematic treatment for representing heterogeneous data sets, including
both quantitative and qualitative information. Moreover, under our general framework, NSP
can be considered as an instance of a specific visual design paradigm for particular presenta-
tion tasks (e.g., representing quantitative multivariate information).

VISTA. VISTA [Senay and Ignatius, 1994] is a knowledge-based visualization system that
suggests various visual techniques for a given data set and allows the user to modify the
design interactively. Compared to the systems described above, VISTA offers a much richer
set of visual techniques that can be used to effectively encode a wide range of scientific data.
Furthermore, a more sophisticated compositional design approach is employed to design a
composite visual display.

VISTA’s knowledge base contains information that is divided into five categories: data
characteristics, visualization vocabulary, primitive visualization techniques, compositional
rules and visual perception rules. Data characteristics describe certain presentation related
data properties such as data types, cardinality, and continuity. Since VISTA focuses on visu-
alizing scientific data, quantitative data set is further distinguished into subcategories includ-
ing scalar, vector and tensor. Visual vocabulary defines the most basic building blocks in
scientific data visualization techniques—marks and their composition. A mark can be cate-
gorized based on its three properties: positional, temporary, and retinal. A set of primitive
visual techniques is defined so a structured design paradigm can be applied. However, the
primitive visualization techniques are limited to scientific visualization techniques.

To accommodate multidimensional data, VISTA defines a set of compositional rules
to combine the primitive visualization techniques together effectively. The composition
rules specify the conditions under which two visualization techniques could be combined to
form a multidimensional display. The supported compositions include mark composition,
union composition, transparency composition, intersection composition. Visual perception
rules define the mapping from a data set onto a set of visualization techniques, based on both
expressiveness and effectiveness criteria [Mackinlay, 1986].

VISTA uses a three-step bottom-up design approach: partitioning a large data set into
simple sets of data, selecting unused primitive visualization techniques to represent each
small data set, and assembling all selected primitive visualization techniques together.
Decomposition of a data set into subsets is based on functional decomposition in relational
database theory. The selection of the primitive visualization technique for each partition is
guided by the visual perception rules. The visual properties of each mark is determined after
the selection is done. When each partition is mapped to a primitive visualization technique,
those primitive visualization techniques are composed together to form a coherent visual
display based on the composition rules.
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2.2 Constructive Graphics Synthesis

Instead of trying to fit the data to be presented into a set of predefined visual models,
constructive graphics synthesis is a more flexible, deductive approach. It applies graphical
operations to visual variables based on communicative intent or data properties to construct
a visual design from scratch. It initiates the design process by analyzing the communicative
goals or data properties, and attempts to select and apply a set of graphical operations to a
set of visual variables. Eventually, the most basic visual variables are composed together to
form a coherent visual display based on compositional rules. Visual presentations con-
structed based on this approach range from conventional 2D graphs such as bar graphs, line
graphs representing quantitative information to 3D animations depicting real-world objects
or actions.

To compose visual displays from scratch, not only does the system need to know the
particular compositional syntax of the visual techniques, but it also needs to maintain certain
criteria to ensure the design quality. Different design criteria have been developed to ensure
both visual and perceptual effectiveness. Moreover, various composition methods (e.g., top-
down vs. bottom-up) have been employed in the generation process. Due to limited compu-
tational capability, earlier graphics generation systems intend to focus on generating 2D
static pictures. More recent, generation systems have started to deal with real-time 3D
graphics generation, and to incorporate sophisticated dynamic visual cues (e.g., animation).
We have chosen several pieces of work that each has its unique features and can represent a
whole category of similar systems in its own territory. We characterize those systems by
roughly covering the following aspects: composition methods, data properties, visual pre-
sentation capabilities, and design criteria.

APT. Mackinlay’s APT is one of the earliest automated graphics design systems
[Mackinlay, 1986]. APT focuses on using 2D graphs or diagrams to represent relational
data. It is also the first system where both expressiveness and effectiveness criteria have been
explicitly established and used to guide the automated graphics design. In APT, graphical
presentations are viewed as sentences of graphical languages. Expressiveness determines the
capability of a graphical language to convey the desired information, while effectiveness sig-
nifies the language capability to convey exactly the desired information accurately and effi-
ciently. While expressiveness criteria is derived from the language definition, effectiveness
criteria is deduced from several factors, such as accuracy ranking and perceptual task rank-
ing of visual variables.

Mackinlay defines a set of primitive graphical languages based on Bertin’s visual
vocabulary [Bertin, 1983]. Syntactic structures are formulated for five major categories of
graphical languages including position languages, retinal-list languages, map languages,
connection languages and miscellaneous languages. Moreover, semantic properties of the
primitive languages defines the expressiveness criteria for those languages. Composition
principles and composition operators are also specified in APT to unify the primitive lan-
guages into a coherent whole. APT uses three types of composition operators: single-axis
composition, double-axis composition and mark composition.

APT uses a three-step bottom-up process: partition, selection and composition. Multi-
relational data set is first decomposed into simple data sets based on the importance order of
the data relations. Then primitive visual techniques are filtered or selected for each partition



12

Thesis Proposal 12/17/97

based on the specified expressiveness and effectiveness criteria. At last, composition opera-
tors are applied to compose individual designs into a unified presentation. The composition
process determines which composition operator to use and satisfies constraints that are intro-
duced during the composition. Unlike VISTA, APT does not have a set of predefined visual
presentation models. Instead, APT defines a set of primitive graphics sentences and com-
pose them together to form higher level, comprehensive visual presentations.

SAGE. Like APT, SAGE [Roth and Mattis, 1991] also generates 2D visual presentations of
quantitative information. However, the number or complexity of displays and data types
handled by SAGE has gone beyond APT. SAGE can successfully design effective visual dis-
plays for extended data sets to accomplish a larger set of tasks. Unlike APT, which designs
visual displays completely relying on the data characteristics, information seeking goals are
introduced as a factor in SAGE’s design process.

Roth and Mattis [Roth and Mattis, 1990] have proposed a systematic data character-
ization method for quantitative data. They have abstracted presentation related data proper-
ties in three categories: features of data objects, properties of data relations among the data
objects, and attributes of relationships among relations. In each category, they have carefully
analyzed and categorized data properties based on their subtle differences. In addition, they
have also developed a vocabulary to characterize information seeking goals that express the
user or application’s communicative intent.

Similar to APT, SAGE also adopts a bottom-up approach and select the appropriate
visual presentation techniques based on both expressiveness and effectiveness criteria. Its
design is a three-stage process: selecting a graphical technique, refining the technique, and
integrating the primitives to form a coherent design.

Unlike APT or other earlier systems, SAGE first selects a list of desired visual tech-
niques for a particular data set based on the expressiveness criteria; then it orders those can-
didates by effectiveness criteria and the information seeking goals. The information seeking
goal plays an important role in deciding which visual technique to use; for example, to view
a trend of car prices, a line graph would be picked over other possible choices. When a
visual technique has been chosen, the technique is refined and additional constraints for lay-
out or elements are formulated and propagated to guide the next stage of integration. In the
last design stage, SAGE attempts to integrate the individual displays into a single one for all
information. A set of synthesis rules are developed to guide the integration. In the process of
synthesis, SAGE not only deals with syntactic merging among compatible visual displays,
but also considers functional integration; for example, two objects can be merged if they per-
form the same function and have at least one data set in common.

APT and SAGE are representative systems that can automatically visualize informa-
tion using 2D displays. They all focus on generating individual displays but do not address
issues such as providing transition between displays or integrating new information into
existing displays. While much of the work in automated generation is devoted to individual
2D charts or diagrams, a few automated systems, discussed below have been built to depict
actions or objects using 2D icons or 3D realistic pictures.

The VIEW System. Friedell [Friedell, 1984] presents a system for automatically synthe-
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sizing graphical objects from high-level object specifications. The VIEW System can gener-
ate 2D iconic displays to depict information in a conventional database or create 3D realistic
scenes to represent real world object descriptions.

The synthesis process in VIEW requires four elements: object frames, synthesis oper-
ators, synthesis agenda and synthesis control. An object frame is a data structure to which
the synthesis operators are applied. It includes the basic graphics descriptions and their
structural relationships. Synthesis operators define how an object could be assembled or
modified. The synthesis agenda is a collection of sequential tasks that must be performed in
the synthesis process. The agenda comprises six steps, which perform a task that either
selects or applies a synthesis operator. The application of an operator is described in proce-
dural format. Synthesis control oversees the whole process of object synthesis. It is a hierar-
chical process that operates on three levels: task selection, component selection, and
operator selection.

Task selection determines the next task to perform based on the synthesis agenda.
Once a task is determined, control is passed to the second level—component selection,
which decides which component to process within the current object frame. Once a compo-
nent is chosen, operator selection occurs. The situation space is used as the basis for opera-
tor selection. The situation space is very similar to the situation information described in
Chapter 1. It stores the knowledge that is pertinent to the synthesis situation such as object
information, viewer identity and viewer’s task.

In short, the View System synthesizes objects based on the synthesis agenda and
guided by the situation space. Friedell uses a top-down approach in which complex objects
are decomposed into simpler subobjects. Structural-descriptions are used to relate objects
and their subobjects and specify how the subobjects are oriented with respect to each other.
Based on the structural descriptions, partial object descriptions are generated for primitive
subobjects, and those intermediate descriptions are assembled together bottom-up based on
their structural relations to form a complete object description.

APEX. APEX [Feiner, 1985] is one of the earliest systems that automatically generate 3D
realistic pictures individually or in series. APEX focuses on automatically creating pictorial
explanations to depict actions in a 3D world. APEX can generate an individual picture to
signify a single action or a series of pictures to depict a sequence of actions. To effectively
depict the actions, APEX makes decisions such as what objects to include, what visual cues
should be used and which level of details should be shown. Similar to Friedell’s VIEW sys-
tem, all 3D objects are hierarchically structured as trees of their parts and the interconnec-
tions between the parts.

APEX selects objects to be included based on the functional role of the objects and the
relationships among the objects (e.g., including an object’s parent to provide the context).
There are four types of real-world objects: frame objects, landmark objects, similar objects
and supporting objects. Each type of objects plays an important role in picture synthesis.
APEX makes decisions about which objects to include in this order: APEX first determines
the frame objects, which are the main actors in the resulting pictures and the actions to be
depicted are centered around them. Then the system finds a landmark object, which
becomes a good reference for locating the frame objects. To clearly disambiguate the frame
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objects from other similar objects and provide a base to compare them, APEX also includes
those similar objects in the scene. At last, supporting objects are included to provide neces-
sary context for the scene. Not only does APEX deal with real-world objects in the synthesis
process, but it also makes use of another special type of objects—meta-objects (e.g., indica-
tion arrows) to depict the dynamic aspects of the actions or refer to the real-world objects. In
addition to object inclusion, APEX also reasons about lower-level graphics decisions such as
the rendering style and the viewing specifications.

To depict a sequence of actions, APEX utilizes a one-to-one mapping between each
action and a picture frame. The system makes decisions about how to customize the
sequence of images to avoid unrelated or redundant details. Moreover, to make a series of
coherent illustrations, APEX attempts to deal with the continuity issues by taking the previ-
ous picture into account while it designs the next one.

IBIS. Like APEX, IBIS [Seligmann, 1993] is an automated graphics generation system that
uses 3D realistic pictures to depict actions or procedures. However, IBIS provides a richer
set of depiction models. Notably, IBIS can generate composite illustrations that are com-
posed of simple illustrations (e.g., single pictorial display), as well as interactive illustrations
that allow certain user interactions such as changing the viewing specification.

The input to IBIS is a set of communicative goals. The knowledge base in IBIS con-
sists of design rules, style rules and illustration procedures. The design process is a two-step
deductive process that maps a set of communicative goals to a set of illustration procedures.
First, design rules map a set of communicative goals to a set of style strategies. Style strate-
gies specify the visual effects and visual cues for the illustration. Style rules then map the
style strategies to illustration procedures. Illustration procedures are lower-level descriptions
of graphical techniques that produce the desired visual effects or render the visual cues.

IBIS uses a generate-and-test approach to design a sequence of static visual displays
for procedural explanations [Seligmann and Feiner, 1991]. In addition to the methods that
specify how to achieve a goal, there are evaluators that determine whether a goal has been
achieved. Thus, while each method suggests a possible solution, an evaluator asserts
whether a goal has been achieved already or a solution proposed by the method is adequate
or satisfactory.

IBIS has also designed composite illustrations and interaction illustrations [Seligmann
and Feiner, 1989]. If a single display becomes inadequate to fulfill the communicative
intent, IBIS attempts to use a composite picture. It decomposes the high-level goal into sub-
goals, and tries to generate a simple picture for each of the subgoals. This process goes on
and recursively breaks down a complex goal into simpler subgoals until its subgoals can be
achieved using a single picture. Then all simple pictures are composed together to form a
composite picture (e.g., a main picture with an inset). To enable user interactions, IBIS
allows the user to modify certain properties of the scene (e.g., the viewing specification), and
the system is able to redesign the picture and ensure that the satisfied constraints remain
intact as the user interacts with it.

To generate coherent pictures, IBIS maintains a certain degree of consistency between
related images. For example, it attempts to maintain a consistent viewing specification
whenever it is possible, and allow child illustrations to inherit visual properties from their
parent in the composite illustration hierarchy. It also achieves continuity by arranging the
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images in a logical order (e.g., the order in which depicted procedures are to be performed).
However, IBIS still mainly focuses on generating a series of static pictures of 3D worlds: it
does not deal with design consistency issues at the symbol encoding level (e.g., mapping
object attributes to visual variables), or explicitly address transition issues from one picture
to another in their generation, or deal with integrating new information into the existing pre-
sentations. Moreover, the prioritized goal input and the generate-and-test approach prevents
the system from efficiently searching for desired visual techniques and constructing
sequences of depict actions effectively [Russell and Norvig, 1995].

ESPLANADE. ESPLANADE [Karp and Feiner, 1990; Karp and Feiner, 1993] employs a
hierarchical planning approach to automatically generate animation sequences using film-
making heuristics.

The input to ESPLANADE is a script that contains a sequence of actions and a set of
goals that specifies the communicative intent. It adopts a top-down hierarchical planning
approach to construct animation sequences that illustrate the communicative intent. ESPLA-
NADE plans the animation by following a hierarchical process. First, it plans at the film level
to decide what the subjects of the animation. Next, the system plans at the scene level, at
which the scene that are part of film are determined. Below the scene level, ESPLANADE
decides the sequences that are part of the scene and selects the sequence structure formal-
ism. The lowest level—shot level plans the most basic unit in a film, which involves select-
ing the content, viewing specifications, and transitions. To ensure the smooth transitions,
ESPLANADE uses standard film-making strategies to transform from one picture to
another. A set of rules are also developed to guide the system to determine which transition
technique to apply under certain conditions.

Based on those film-making heuristics, ESPLANDADE incrementally plans the cam-
era placement and movement to automatically generate animations frame by frame. The
generated animation fulfills the communicative intent and certain effectiveness criteria (e.g.,
smooth transition between frames) that have been established by the film production pro-
cess. However, like APEX and IBIS, it uses realistic images of physical objects and gener-
ates presentations. ESPLANDADE also deals with little user interaction and does not deal
with consistency issues at the symbol encoding level and unity issues such as integrating
new information into the current scenario.



16

CHAPTER 3 Framework

The meaning of the whole is greater than the sum of the meaning of the parts
 —Szlichcinski

As described in Chapter 2, many researchers have developed a number of dif-
ferent system components in their automated graphics generation systems. How-
ever, no attempt was ever made to merge various system architectures and abstract
the commonalities to establish a general framework, which can systematically and
comprehensively guide the development of various generation systems. Without a
general framework, individual researchers have to establish their own system
framework and define every component from scratch. Without a common ground,
it is also difficult to compare and evaluate different systems comprehensively and
systematically. Therefore, our research focuses in part on establishing a general
framework by abstracting various generation systems and providing a reference
model in which a specific system is considered an instantiation of the framework.

There is a wide-spreaded discussion as to what it means for a system to be
“intelligent”, here we adopt a fairly common and simple definition [Barr and
Feigenbaum, 1989; Jackson, 1990]: an intelligent system exhibits its intelligent
behavior through performing reasoning over representations of human knowl-
edge, and solving problems by heuristics or approximate algorithms. By this defi-
nition, automated graphics generation systems are intelligent systems. The
amount of intelligence is determined by the amount and quality of the stored
knowledge, the sophistication and efficiency of the inference algorithm, the effi-
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ciency and reliability of the rendering component, and the capability of handling user inter-
actions. In other words, any automated graphics generation system must contain a
knowledge base, an inference engine, a visual realizer and an interaction handler. These
structural ingredients together deliver the intelligent behaviors. On the other hand, the
abstractions of these four components are clustered together to establish a framework that
serves as the reference model for all automated graphics generation systems in interactive
environments.

In the rest of this chapter, we briefly describe the general establishment of each compo-
nent in an automated visual discourse system.

3.1 Knowledge Base

To perform reasoning, an automated graphics generation system needs to have knowl-
edge with which to reason. The knowledge base is more or less the direct encoding of human
knowledge. There are two issues involved in constructing a knowledge base
[Reichgelt, 1991]: identifying knowledge sources and determining knowledge representa-
tion formalisms. Identifying knowledge sources involves deciding the types of knowledge
that the system must have in order to solve the problems as expected. Determining knowl-
edge representation formalisms, on the other hand, is concerned with how to represent vari-
ous knowledge sources so that they can be efficiently accessed and modified. In the
following section, we briefly describe each type of knowledge and its representation, while
Appendix A illustrates knowledge sources and their representation paradigms in detail.

 3.1.1 Knowledge Sources

Although there is a great deal of knowledge involved in a graphic design process [Roth
and Hefley, 1993; Beshers and Feiner, 1994], the knowledge can be roughly partitioned into
four chunks based on their origin: domain knowledge, visual design knowledge, situation
knowledge, and meta knowledge. Domain knowledge refers to knowledge about objects in a
specific application domain (e.g., computer network management domain) and the relation-
ships among them. Visual design knowledge encodes world-applicable visual design rules,
along with structural and functional descriptions of various visual forms. To tailor a visual
presentation to a specific user or a unique situation, situation knowledge is needed to store
user-specific information (e.g., the user’s information seeking goal), to model occasions
under which the system will be used, and to specify various constraints (e.g., time con-
straints) that may affect the presentation (e.g., a brief presentation is required). To explicitly
reason about the control of an inferring process, meta knowledge is needed
[Reichgelt, 1991]. Meta knowledge provides knowledge about the other three types of
knowledge mentioned above, including extent or origin of the knowledge, and the reliability
of the knowledge.

 3.1.2 Knowledge Representation Formalism

Different types of knowledge vary significantly in their nature, so should the representa-
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tion formalisms used to represent them. The ability to represent various types of human
knowledge in a natural and useful way is considered one of the fundamental aspects of an
intelligent system. The basic criteria used to evaluate a system’s knowledge representation
component are: efficiency, understandability, modularity, and extensibility [Barr and
Feigenbaum, 1989; Reichgelt, 1991].

Efficiency requires that a knowledge representation formalism store information in a
space-efficient way and retrieve information in a time-efficient way. Understandability
requires that the representation formalism organize knowledge to reflect its natural structure
in the real world so that the represented knowledge can be easily understood. Modularity
specifies that the representation should be modular so adding or deleting a piece of informa-
tion should not affect or have little impact on the rest of knowledge base. Extensibility
demands that the knowledge representation formalism be easily extended to support new
types of knowledge.

Given these four requirements, we have examined a variety of knowledge representation
formalisms [Barr and Feigenbaum, 1989; Jackson, 1990; Reichgelt, 1991] and believe that
there is no single formalism that can allow us to efficiently capture and access all the knowl-
edge we need. Therefore, we have chosen a hybrid representation formalism that primarily
uses a frame-based (i.e., object-oriented) formalism, supplemented by production rule and
procedural representation formalisms.

Object-Oriented Representation
Frame-based representation paradigm is described in [Minsky, 1975; Schank, 1975;

Bobrow and Winograd, 1977; Stefik, 1979]). Object-oriented representation is a more recent
term that evolves from the area of computer programming languages. However, object-ori-
ented representation is to a large extent based on frames. Hence, here we regard the two
terms “object-oriented” and “frame-based” interchangeable.

Organizing knowledge around objects is a very natural paradigm in which each piece of
information is considered as an object, and each object has a set of unique attributes. The
relationships among different pieces of information are modeled as relationships among var-
ious objects. In automated graphics generation systems, both domain and visual objects can
be captured using this representation paradigm. The main advantage of this paradigm is that
the natural structure of the knowledge is directly reflected in the knowledge base
[Minsky, 1975]. This feature makes the represented knowledge easily understood by a
domain expert and result in fewer difficulties in maintaining the knowledge base
[Jackson90]. Furthermore, due to the independent description of each object, the knowledge
base is also modular. This enables the knowledge base to be easily extended to include new
information with little impact on the rest of the knowledge base.

Production Rule Representation
Even though object-oriented representation formalism captures many types of knowl-

edge in a natural way, the formalism becomes awkward and inadequate when it is used to
represent so-called instructional knowledge [Jackson, 1990]. Instructional knowledge is also
known as condition-action or situation-action knowledge. In particular, these are condi-
tional statements about what to do when certain conditions are satisfied. Furthermore, this
type of statements are most frequently used by human experts to explain how they do their
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job.
As an automated graphics generation system simulates a human graphics designer’s

decision making process to construct visual presentations, visual design principles or poli-
cies naturally fall into the category of instructional knowledge to guide such a process. Thus,
we need a representation formalism other than the object-oriented paradigm to capture this
type of the knowledge in our knowledge base. The representation formalism that encodes
such knowledge through certain pattern regularities (i.e., IF situation THEN action) and
enables the system to perform a pattern-directed inference [Reichgelt, 1991], is known as
production rule representation formalism.

One of the strongest attractions in this formalism perhaps is the naturalness of the repre-
sentation and the modularity of the rules. In our case, visual design principles about what
visual objects to use (e.g., use a table chart) or design constraints to maintain when certain
conditions (e.g., need to list the information) are satisfied are naturally encoded into produc-
tion rules. Furthermore, related rules can be easily grouped together and individual rules can
be added, deleted or changed independently. Because rules don’t call each other directly,
changing one rule won’t have direct effects on the other rules.

Procedural Representation
Human knowledge can be divided into two types: what the facts or rules are, and how to

perform certain actions [Reichgelt, 1991]. We have discussed using object-oriented and pro-
duction-rule formalisms to represent what, and now we describe using procedural represen-
tation to represent how. Procedural representation is best when used to capture
knowledgeable about how to use certain knowledge, such as finding relevant information,
retrieving certain attributes, or executing certain actions [Barr and Feigenbaum, 1989]. Nat-
urally, the knowledge about retrieving certain information of a domain/visual object or exe-
cuting visual operations, can be encoded as procedures.

3.2 Inference Engine

An automated graphics generation system is indeed a problem-solving system [Barr and
Feigenbaum, 1989]: it reasons about the domain and visual information, and infers the
visual presentation by following visual design principles. As the knowledge base provides
all the information, inference engine performs reasoning and solves particular problems of
visual design. To efficiently solve the design problem, the inference engine must be
equipped with powerful problem-solving [Barr and Feigenbaum, 1989; Rich and
Knight, 1991] techniques. Thus, deciding which problem-solving technique to use and how
to utilize it in the visual design domain becomes the focus of this section.

 3.2.1 Hierarchical Decomposition Partial Order Planning

Let us first examine what a final visual design looks like: the final design will be in the
form of a visual discourse. Based on the syntactic definition of the visual discourse and
some of the top level visual objects (Figure 3-1), the design output will be a series of tempo-
rally ordered visual frames, which in turn can be either static or dynamic. Static frames are
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actually combinations of various visual objects, while dynamic frames refer to any of the
visual actions, which are encoded visual techniques (e.g., Enlarge). As any visual action
always acts upon certain objects (i.e., the operands), we could view static frames as the oper-
ands of a special visual action—Display. Thus, the final design is a temporally ordered
visual action sequences. Such a pattern is reminiscent of the similar result produced by plan-
ning approaches described in [Wilkins, 1988; Cohen and Feigenbaum, 1989; Russell and
Norvig, 1995]: planning is the process of developing a sequence of actions to achieve a goal.

Unlike search-based problem solving approaches, which consider unbroken sequences
of actions starting from the initial state and are forced to decide what to do at each state,
planning approaches are more flexible and can work on whichever part of the problem that is
most likely to be solvable given the current information. By making “important” decisions
first, planning approaches reduce the branching factor for future choices and reduce the need
to backtrack over arbitrary decisions.

As a consequence, an automated graphics generation system could be viewed as a plan-
ning system that can perform actions. In particular, the system models visual design princi-
ples as constraints, and employs visual actions as problem-solving operators to either
construct new visual objects or transform old visual objects into new ones. The final design
is a sequence of visual actions, which consist of both static display acts (e.g., Display) and
dynamic animation acts (e.g., Move and Scale). Furthermore, in an interactive visual environ-
ment, the system may need to maintain the user interaction context to respond properly to its
users and adhere to the human-computer interaction guidelines. A system based on goals
and plans is the most flexible since such a system can more easily decompose a complex
task into subtasks using the problem-solving operators, detect goal interactions and find the
order of the actions. Such plans not only provide the sequence of actions, but they also main-
tain the history and state of actions as steps are begun and completed. This representation
provides much-needed information for history information and facilitates future replanning.

As approaches to planning vary substantially [Cohen and Feigenbaum, 1989; Rich and
Knight, 1991], hierarchical planning stands out by reducing the amount of search needed to
achieve computational efficiency [Yang and Tenenberg, 1990], and by reusing the operators
that are common to many tasks to ease knowledge encoding [Wilkins, 1988]. Hierarchical
planning in essence generates a hierarchy of representations of a plan in which the highest
level is a simplification or abstraction of the plan, and the lowest is a detailed plan, sufficient
to solve the problem. In the course of planning, decomposition refers to the process of refin-

: Starting symbol

: Certain temporal constraints imposed onto A and B.

: Certain spatial constraints imposed onto A and B

Figure 3-1 Syntactic specification of high-level visual objects
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ing the vague parts of plan by replacing higher-level, abstract visual actions using lower-
level actions [Knoblock, 1993; Young et al., 1994]. Moreover, as the hierarchical planning
could go either way [Weld, 1994], a top-down strategy [Young et al., 1994] facilitates the
interleaving of planning and execution [Wilkins, 1988] and ensures both local and global
coherency within a visual discourse. In contrast, in a bottom-up approach (e.g.,
[Mackinlay, 1986]), partial designs are generated at the primitive level, and then are com-
posed together to form composite designs. Without considering the design constraints at a
higher-level, the partial designs are prone to failure and usually require redesign. In the
worst case, satisfying all local design constraints can not even guarantee the satisfaction of
the global design constraints. Please refer to Appendix B to see detail planning stages within
a hierarchical decomposition partial-order planner.

3.3 Visual Realizer

A visual realizer carries out the visual design and communicates it to the user. It needs to
understand the meaning of the design and render the design using the underlying graphics
language. For the sake of simplicity, from now on, we will use design process to refer to the
process that uses the inference engine and knowledge base to actually plans the visual pre-
sentation, and realization process to refer to the process that calls the visual realizer to carry
out the planned design.

As shown in Figure 3-2, there are two possible relationships between a design process
and a realization process. One is to embed the realization process inside the design process.
In this case, the design process carries out the plan by directly calling the rendering routines
as if it understood the rendering language. The other is to completely separate the two pro-
cesses through using a common language that can be understood by both parties. In other
words, the design process would write out the design in the common language, and the real-
ization process would take the intermediate output and realize it using whatever graphics

(a) (b)

Figure 3-2 Two arrangements between design and realization processes
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language it understands. Although the former strategy might be more efficient in some sense
by directly calling the realization without producing intermediate output, the latter one
would have more long-term advantages. With the advent of advanced multiprocessing and
networking technologies, computationally costly processes can be parallelized and distrib-
uted onto different processors to reduce computational time. From this point of view, a gen-
eration system can be parallelized by distributing the design and the realization process onto
different processors. Apparently, the parallelization would not be so easy if one process is
completely buried within another (Figure 3-2a).

Ensuring the portability of the renderer is also very important since the system may need
to immigrate to progressively more powerful platforms. If the output of the visual design or
the renderer is platform-specific, then the visual realizer would need to be completely
rewritten for a new platform. Therefore, separating the design and realization process and
designing platform-independent intermediate language become the two main issues in the
visual realizer.

Separating design from realization means that the two processes are independent of each
other, and they communicate with each other through an intermediate language. In this
architecture (Figure 3-2b), design process outputs the entire design specification in a lan-
guage that is understood by both processes, while the realization process only focuses on
translating the intermediate language into the target graphics language. Whereas the two
processes can be easily parallelized, adopting a new graphics language or porting it to a new
platform seems less difficult either under the assumption that the intermediate language is
platform-independent, and expressive enough to contain the high-level descriptions with
low-level common graphics primitives [Foley et al., 1990].

Based in part on Open Inventor file format [Wernecke, 1994] and VRML 2.0
[VRML, 1996], we have decided to design the intermediate language to satisfy these crite-
ria: simplicity, comprehensiveness, and uniformity. Simplicity refers to the fact that the syn-
tactic structures of the language is straightforward and easily understood. Comprehen-
siveness refers to the language’s ability to express both high level structures and low level
details. A uniform language represents various objects consistently, and it uses the similar
structures whenever it is possible.

3.4 Interaction Handler

It is desirable to allow certain user interactions in a visual presentation system as the
user always wishes to have certain control over the information accessing process. In the
context of automated visual presentation, supporting user interaction means two things:
First, the presentation should appear visually interactive so it can attract the user to voluntar-
ily participate in the presentation and explore the information as they wish. The other is to
give the user certain control over the presentation or presentation design by allowing them to
interactively specify their preferences.

To provide the interaction capabilities mentioned above, there are two issues involved:
design and control. The system needs to incorporate object interactivity into its design to
create the interactive look; and it also needs to provide the facility to control the presentation
once the user interaction occurs. Thus, the interaction handler in an automated presentation
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generation system has two duties: modeling user interactivities and supplying this informa-
tion to the design component, and reactively controlling the realization of the presentation
when responding to the user events.

 3.4.1 Designing an Interactive Presentation

Modeling user interactivities includes analyzing the user task profiles
[Shneiderman, 1992], characterizing information properties, and categorizing interactive
metaphors [Foley et al., 1990]. To design interactive presentations, the system needs to
know what types of tasks in which the user is most likely to take an active role, and what
interaction metaphor to use for representing the specific domain information.

Interaction Tasks
The major tasks requiring user participation are known as exploration tasks

[Shneiderman, 1992]. When presented with a large amount of information, the user might
not be to able to determine at once what s/he exactly needs. Usually, the user would prefer to
navigate the displayed presentation by either asking for more information or requesting the
same information presented in a different form. Another type of interaction task often seen is
the experimental task. To learn some uncertain effects of events, the user would like to expe-
rience different types of effects that are caused by experimenting various interaction tools
(e.g., changing the size of the object).

The type of tasks also determines what type of information could be accessed by the user
interactively. Once the user has grasped a piece of information completely through the pre-
sentation, it is unlikely that s/he would explore or perform experiments on that information.
This leaves the complicated, implied information to the user for further exploration or exper-
imenting.

Interaction Metaphors
To make presentations appear visually interactive, the system needs to employ a set of

interaction metaphors such as buttons, hyperlinks, and pull-down menus [Newman and
Lamming, 1995; Foley et al., 1990]. These metaphors visually imply the interactivity of the
presentation and provide an avenue to engage the user-system communication. In visual
design process, interaction metaphors become another type of functional building blocks to
lead the user to act upon what s/he sees, e.g., presenting affordances [Gibson, 1977].

Suppose that a composite object “Columbia University” is represented as part of a visual
design. If the system simply represents it using a textual label (Figure 3-3a), it is unlikely
that the user would pay more attention to it besides acknowledging its existence, let alone
explore what is hidden behind it. In contrast, if the system represents it as a button (Figure 3-
3b), it not only provokes the user to expect that certain information is hidden behind the but-

(a) (b)

Figure 3-3 Non-interactive versus interactive representation of same concenpt

Columbia University Columbia University
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ton, and it is likely that the user would press the button and find more information about
“Columbia University”.

In the context of automated graphics design, the system needs to automatically select the
appropriate interaction metaphors and utilize them following certain interaction styles. As
interaction styles [Shneiderman, 1992] vary with task profiles and information characteris-
tics, common styles such as menu selection and direct manipulation [Shneiderman, 1992],
could be directly incorporated into visual presentations.

 3.4.2 Controlling an Interactive Presentation

Once the system has successfully integrated the interaction metaphor into the presenta-
tion, certain user interactions are expected. Based on whether the user activities occur within
the presentation loop, the user events can be divided into two categories: isolated user inter-
action and combinatorial user interaction. Presentation loop refers to a time interval during
which the system starts to present the information to the user until the presentation is fin-
ished. During this time interval, the system might replay the whole presentation more than
once at the user’s request or might jump back and forth within a range of frames. And we
use the term loop to emphasize that such a process is not an end-to-finish straight-line pro-
cess.

Isolated user interaction occurs outside of the presentation loop. The interaction handler
does not need other historical information to deal with this type of events. But to guarantee
that there is no side effect caused by the action, the interaction handler always attempts to
restore the original state right after the action is performed. Unlike an isolated user interac-
tion, combinatorial user action does occur within the presentation loop. To handle the event
properly and continue with the unfinished presentation, the system needs to keep track of the
presentation events and user actions.

In this chapter, we have briefly discussed the four core components that are building
blocks of an automated graphics generation system: knowledge base, inference engine,
visual realizer, and interaction handler. In the next chapter, we will describe how an proto-
type system IMPROVISE puts all the theory into action and automatically generates visual
presentations for two different domains.
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CHAPTER 4 IMPROVISE

The world can only be grasped by action, not by contemplation. . . . The hand is
the cutting edge of the mind. — Jacob Bronowski

Based on our general framework, we are developing IMPROVISE (Illustrative
Metaphor Production in Reactive Object-oriented VISual Environments) as a
proof-of-concept prototype system. To demonstrate the generality and compre-
hensiveness of the framework, IMPROVISE aims to automatically design coher-
ent visual discourse for heterogeneous information in interactive environments.
Within such discussion, heterogeneous information can be quantitative or qualita-
tive, static or dynamic. Quantitative information refers to discrete or continuous
numerical scales or ranges, while qualitative information abstractly describes var-
ious aspects of domain objects (e.g., a tall person). Whereas the static information
remains unchanged, dynamic information varies with time. We also assume that
IMPROVISE intends to support a wide variety of visual techniques, ranging from
individual 2D displays to interactive 3D animation sequences. As an instantiation
of the general framework, IMPROVISE consists of a knowledge base, an infer-
ence engine, a visual realizer, and an interaction handler. Each of these four com-
ponents has been either fully or partially developed. Furthermore, IMRPOVISE
has also been used in two testbed application domains to demonstrate its general-
ity and flexibility. One is a computer network management application that visual-
izes a network’s structure and behavior [Crutcher et al., 1995]. The other is a
hospital information application that provides a care giver with a multimedia sum-
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mary of a patient’s medical record [Dalal et al., 1996a].
Before we further dissect the structure and examine the functions of IMPROVISE, we

briefly present high-level background information about the two application domains,
including their major domain tasks and expected audience. Then we present a detailed view
of the key design modules of IMPROVISE through its system architecture to show how all
four core components can be exploited and coordinated for presentation design. We will
briefly explain the function of each module and how the modules collaborate together to
assemble a cohesive working system. Following the architecture walkthrough, we will ana-
lyze two examples from each of the application domains to demonstrate how the system
actually plans the design and comes up with the desired solution. At last, a hypothetical
example is given to illustrate what a completed IMPROVISE is capable of in related to the
research tasks to be conducted.

4.1 Problem Domains

To demonstrate the generality and flexibility of the framework, we have used IMPRO-
VISE in two different application domains: computer network management and patient
medical record summary. In this section, we will describe domain tasks and expected audi-
ence.

Computer Network Management
Computer network management is a complex task. Visualizing network structure and

behavior could help network researchers or network managers understand aspects of net-
work activities [Crutcher et al., 1995]. Moreover, the notion of using spatial or temporal
metaphors enables the targeted audience to directly interpret objects and operations as they
directly experience the visual manipulation results in 3D space.

Management Tasks. There are two types of tasks: interactively exploring network entity
structures and monitoring network traffic status. The first type of task involves examining
the structure of various network entities (e.g., nodes and links) at different abstraction levels.
In particular, we have modeled an ATM network in our experiment. In Figure 4-1(a), the ini-

(a) (b)

Figure 4-1 Exploring the internal structure of a network node
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tial view of a network node (i.e., node Denver) could be symbolized by a simple sphere, the
second view of the same node could be “exploded” to reveal its internal structure, which
might include its port structure and the connectivities of the ports (Figure 4-1b). Gradually
exposing the different levels of detail at the user’s request enables the user to organize man-
agement information hierarchically but also gives the user freedom to access any part of the
information interactively.

Traffic monitoring tasks, on the other hand, are directly linked to a network entity. For
example, the user is always interested in learning the traffic status within a link, or the traffic
passing through a particular network routing path within a given time interval. Compared to
exploring network entities, this type of activity involves more dynamic information since
network traffic data varies over time. To simulate real network traffic monitoring, IMPRO-
VISE has been connected to a network emulator [Chan et al., 1995] to obtain dynamically
changing network traffic data.

Audience. The expected audience in this domain is network management researchers. A
presentation tool helps them to establish network service hierarchy, and develop and verify
their network management algorithms [Crutcher et al., 1995].

Patient Medical Record Summary
In a hospital, a number of patient medical records have been entered in a database and

made available to care givers through computer access. However, most information is not in
a form that the care giver can conveniently access or interpret. Thus, the task of this domain
is to effectively organize such information and present them coherently as a multimedia
summary [Dalal et al., 1996a]. As the multimedia summary contains coordinated text,
speech, and visual presentations, constructing a working system is an collaborative effort
among several research areas including knowledge representation, natural language genera-
tion and graphics generation. Amid various components in an experiment system [Dalal
et al., 1996b], IMPROVISE serves as the graphics generator, which is responsible for
deploying appropriate visual media to effectively represent and organize information.

Summary Tasks. To effectively present the patient information summary to the care givers,
summary tasks can be approximately divided into three categories based on the purpose of
the summary: overview, detail summary, and special report.

Overview is used to brief care givers about patient’s information at a very high level
without going into depth about that information. Information details can be brought up at the
user’s request (e.g., through user interaction). This type of summary usually is concise but
comprehensively covers different aspects of the patient information.

Detail summary describes the patient information at a high level, then drills down to the
details of that information. For example, a report could first describe the overall medication
that has been given to a patient, then it brings up the specific details such as the drug usage
that has been administered (e.g., time and dosage).

Special report focuses on an abnormal or emergency situation. This type of report aims
to catch the care giver’s immediate attention so that s/he can act upon the situation properly.

It is common that more than one type of the summary may coexist in a report, as a mix-
ture of summaries is needed to provide a comprehensive coverage of patient information.

Audience. In our application, the system aims to address two types of care givers: nurses
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Figure 4-2 IMPROVISE System Architecture
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and doctors. Based on their needs, the type of information and the style of the summary may
vary. For example, a nurse might prefer to see information arranged spatially related to a
patient’s physical body, while a doctor may be interested in examining important events
arranged along the time line when they occurred.

4.2 System Architecture

As shown in Figure 4-2, IMPROVISE has four main modules: task analyzer, visual pre-
sentation planner, visual realizer, and interaction handler. A full cycle of presentation
design starts with a communicative task (i.e., goal). The task analyzer is responsible for
interpreting and formulating domain tasks (e.g., examine a network node structure) into cor-
responding visual tasks [Wehrend and Lewis, 1990]. To accomplish the visual tasks, the
visual presentation planner starts the design process. The design process is an interleaving
process between two submodules: visual content planner and visual designer. The visual
content planner selects and organizes the content that needs to be presented, while the visual
designer makes decisions about what visual cues to use and how to coordinate various visual
components into a coherent whole. Once the design is finished, it is written out in an inter-
mediate language and eventually is converted to the target graphics language to be realized.
The user then may interact with the generated presentation. The user interaction events are
captured and processed by the interaction handler. The processed events are formulated as
new communicative goals, and the resulting goals are passed to the task analyzer where a
new design cycle begins. Next, we explain the functionality of each module in more detail.

 4.2.1 Task Analyzer

Communicative tasks, also known as communicative acts, describe the communicative
intent of the visual presentation to be designed. These high-level communicative intents are
usually represented in a form of rhetorical structure (e.g., Inform patient record) and do not
always explicitly specify or directly reflect the related visual goals that need to be achieved.
Visual presentation designing, on the other hand, is a process motivated by fulfilling the
required visual goals. For example, a high-level communicative task of informing a patient’s
information to a nurse could be interpreted as the following combination of visual goals:
clustering related information spatially around the patient’s physical body, locating the
important information, and emphasizing the details of certain information. The visual tasks
such as clustering, locating, and emphasizing all refer to various visual effects caused by dif-
ferent visual acts. It is the task analyzer’s responsibility to perform task analysis and corre-
late the communicative tasks with visual goals.

Task Representation
To translate high-level communicative tasks into visual tasks, we represent both types of

tasks in a similar structure. Each task is represented in two parts: act and object. Act speci-
fies what type of task it is, while object augments the task specification by stressing the types
of information to be conveyed. For example, a task representation may specify that the sys-
tem needs to inform the user about a patient’s blood replacement therapy instead of his/her
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lab reports.
We have adopted the taxonomy from natural language discourse or dialog theory

[McKeown, 1985; Grosz and Sidner, 1986; Mann and Thompson, 1988] to depict the com-
municative acts. Conversely, the visual task taxonomy is in part based on [Wehrend and
Lewis, 1990] and picture functions suggested by various researchers in cognitive studies
(e.g., [Levin et al., 1987; Sutcliffe and Darzentas, 1994]). However, our current task charac-
terization taxonomy is still coarse, we need to refine the taxonomy to describe both commu-
nicative and visual tasks more comprehensively and precisely.

Task Analysis
Analyzing communicative tasks and proposing corresponding visual goals is the main

responsibility of the task analyzer. As visual goals can be viewed as the effects of various
visual actions, the task analyzing process becomes a conventional planning process: the task
analyzer employs visual actions as planning operators, and makes decision about which
visual action(s) to use to accomplish the communicative tasks. The output of this planner is
a set of partially ordered visual actions. These high-level visual actions (i.e., visual tasks) are
sent to the visual presentation planner for further processing. Although, the task analysis
process uses visual actions to fulfill communicative intent, it is different from an actual
visual presentation design process. The task analyzer only specifies what visual tasks need
to be carried out by proposing a set of visual goals instead of dealing with the issue of how
to use visual techniques to accomplish the visual goals.

While interpreting communicative tasks involves a great deal of domain information, the
general-purpose visual tasks are domain independent. As different domain tasks are formu-
lated into various combinations of domain-independent visual tasks, it relieves the visual
presentation planner from performing a considerable amount of domain-related reasoning.
Correlating communicative tasks with corresponding visual goals is not an easy task. It
demands careful analysis about both rhetorical structures and visual functions. As part of
our future research plan, we will concentrate on one or two types of communicative task
(e.g., inform) and study the underlying relationships between this task and various visual
tasks (e.g., display or emphasize).

 4.2.2 Visual Presentation Planner

The main task of the visual presentation planner is to plan the visual presentation to
accomplish the visual tasks proposed by the task analyzer. The planning task is distributed
into two subcomponents: visual content planner and visual designer. These two subcompo-
nents interact with each other and together they determine the content and the style of the
visual presentation. As a part of one complex planning process, each module performs plan-
ning on its own but all modules consistently use one planner—PREVISE (Planning in REac-
tive VISual Environments), which has been developed based in part on [Wilkins, 1988] and
[Young et al., 1994].

Visual Content Planner
The visual content planner makes decision about what to include in the visual presenta-

tion and how to organize them into perceptual groups. In particular, if the information to be
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presented is very complex, the visual content planner plans to select, partition and group var-
ious pieces of information into reasonably sized chunks so that the user will not be over-
whelmed due to information overload or an ill-formed presentation. For example, presenting
a patient’s information to a nurse involves conveying various types of information such as
patient identity, medical history and treatment. How to visually organize all information
effectively will have a direct impact on the nurse’s reaction to critical information. In this
case, the most important (e.g., abnormal or urgent) information might be grouped together in
one frame and presented first, followed by the routine information about the patient. More-
over, to provide or maintain the context of the presentation dialogue, the system also needs
to determine what other objects must be included besides the focus object. For example, in
the network management domain, while a link is the center of focus, so are two nodes that
are directly connected to the link. In other words, if the system decides to enlarge the link, so
must it also enlarge the two end nodes proportionally. We will see an example of this situa-
tion in Section 4.3.

In IMPROVISE, deciding what objects to include is based on the object-relationships. A
more sophisticated object relationship modeling hierarchy can be found in [Feiner, 1985].
As a visual presentation always consists of an array of visual objects, the content of each
visual object is decided based on information characteristics and related visual object con-
tents. Therefore, the visual content planner by itself cannot make decisions about the visual
object content. It needs to communicate with the visual designer and gradually refine its
decision based on the information provided by the designer. The interleaving of the visual
content planner and the visual designer reveals the nature of the hierarchical planner: the
visual content planner sketches the high-level organization of the presentation, and the
visual designer uses such information as a start to plan the presentation. Unless more design
details become available, the visual content planner cannot continue to make decisions.
After the content planner refines its decision about the content, it passes the information
back to the designer so it can refine its own plans. Thus, planning is a constructive process in
which a sketch is incrementally refined, and arbitrary decisions are seldom made due to
insufficient information.

Visual Designer
The visual designer is the component that actually deals with the visual design subject: it

determines how to employ visual techniques and how to coordinate various visual compo-
nents together into a coherent whole. The designing task is decomposed into two subtasks:
visual styling and visual coordinating, carried out by the stylist and the coordinator, respec-
tively.

Visual Stylist
The visual stylist deals with visual design issues, ranging from deciding high-level

visual presentation schemes (e.g., a table chart or a bar graph) to low-level symbol encoding
(e.g., using red to represent critical information). As illustrated in Chapter 3, visual objects
are represented as objects at different levels of abstraction in a hierarchy. Deciding what
visual components are at one level becomes the problem of refining the visual object at the
level above. For example, deciding to design a 2D bar graph as a visual structure is actually
a process of using a 2D bar graph to refine a particular component of a certain visual frame.
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This object refinement process becomes the focus of the visual styling process in which
abstract visual object descriptions are refined using more concrete visual specifications.

In the case of designing new presentation by transforming existing visual objects, visual
styling becomes the process that searches for primitive visual actions to fulfill the specified
visual goals. In either way, a top-down hierarchical planner suits such a process well and it
provides all desired information as the planning ends (e.g., the sequence of visual actions to
transform the current presentation into a new one).

Evidently, an effective visual presentation rarely communicates various information by
just using a single presentation scheme (e.g., a table chart). Moreover, by carefully examin-
ing the structure of various visual presentations [Tufte, 1983; Tufte, 1990], we discover
high-level presentation schemes are exploited as a schematic way of organizing information
visually. Each high-level visual scheme is recursively defined and various visual objects are
incorporated as its structural components. For example, an organization chart could contain
icons or photos as its components to represent personnel in the chart, or it can use a graph
plotting each person’s achievements with his/her picture. As one single type of visual object
cannot make a comprehensive visual communication, an effective visual presentation always
integrates various visual objects (e.g., the table chart organization of multiple bar graphs).
Hence, we can recursively apply a limited number of basic visual objects to compose com-
plex visual presentations.

As described in Chapter 3, using a hierarchical planning approach enables the visual
stylist to focus on selecting the visual techniques for the current tasks at a high level rather
than wondering about the details of the visual techniques. Decisions about the low level
details of each visual technique gradually appear on the agenda as the design process
progresses. Eventually, all details of the visual techniques are finalized as the planning pro-
cess moves toward completion.

So far we have defined three types of high-level visual objects: table chart, structure dia-
gram, and cartogram. Although we have studied and defined the syntactic features of these
visual representations extensively, their semantic and pragmatic features are somehow
weakly defined. While we are developing a formal specification scheme to describe the
semantic and pragmatic features of various visual objects, we are also extending the cata-
logue of high-level visual representation; at least, including the time chart representation.

Visual Coordinator
The visual coordinator coordinates various visual components or visual actions. Coordi-

nating visual components involves laying out the components effectively. In the case of
underconstrained visual parameters, the coordinator is also responsible for instantiating the
unconstrained values while taking into account the characteristics of the whole presentation.
For example, a patient’s name could be represented as the title of a presentation in a text
string, but the text font size may not be strictly specified except for a readability constraint.
By considering the style of the overall presentation, the coordinator might decide to use one
font size instead of another. To automatically layout the components or supply numerical
values to parameters, IMPROVISE needs design knowledge and a numerical constraint
solver. We have decided to use STM (Snap-Together Mathematics) [Gleicher, 1994] to help
layout the components and enforce certain numerical constraints. However, we do not yet
have the communication interface that connects the STM and our visual coordinator. As part
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of our plan, we will define an interface so that constraints specified in the visual coordinator
can be solved by STM.

As the output of a partial-order planner, underconstrained visual actions may not be fully
specified or completely ordered. Thus, the visual coordinator is responsible for instantiating
parameters of visual actions or imposing certain temporal orders among them before their
execution. The order of the visual actions can be determined based on cinematic theory to
bring out the maximum effect of an animated presentations. For example, some actions
might be performed together to enforce certain effect, while others are not. Some parame-
ters, such as how long an action should last, also need to be decided before the action can be
executed. All this decision making process requires extensive amount of knowledge from
human graphic designers or film makers, we will continue to consult with our experts and
enrich our visual design knowledge.

Like the visual content planner, the visual stylist and the visual coordinator subcompo-
nents are also interleaved in the design process, although the visual coordinator usually
starts at the later planning stage since it plans the low-level details of a presentation.

Once the design phase is done, the design is passed to the visual realizer to be trans-
formed into visual displays on the screen.

 4.2.3 Visual Realizer

The converter performs a two-phase translation: the design is first written out in interme-
diate language, then the specification in intermediate language is translated to the descrip-
tions in the target graphics language. At this point, the design is passed to the renderer to be
rendered.

Rendering a design includes two parts: displaying a new visual design and dynamically
animating the visual actions. Currently, IMPROVISE’s renderer is implemented using Open
Inventor, an object-oriented 3D interactive graphics toolkit [Wernecke, 1994]. We encode all

Figure 4-3 Automated generated presentation of a patient information for a nurse

Demographics
Information
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primitive visual representations and visual actions as Inventor nodes by deriving them from
the existing Inventor primitives. In particular, visual representations are derived from Inven-
tor’s shape node, and visual action nodes are derived from the topmost Inventor node hierar-
chy, augmented with temporal constraints. To execute the visual actions in sequence, a plan
agent checks the temporal constraints for each action node, and forms an action queue to
execute the action in the specified order. For static displays, temporal constraints are also
used to regulate how long a scenario would remain on the screen.

Currently, the converter is only partially implemented, the intermediate language needs
to be refined and the translation processes needs to be completed.

4.3 Examples

In this section, we will see three examples, one from our network management domain,
two from the medical domain. The first two examples emphasize how IMPROVISE designs
a desired visual presentation, while the third example illustrates what current IMPROVISE
can not design, but should be able to accomplish it when it is complete. All examples are
used for illustrative purpose and have been greatly simplified.

 4.3.1 Medical Domain Example

Our first example comes from the medical application domain. The task is to present a
patient’s information to a nurse. As the ultimate presentation contains coordinated speech,
text, and graphics, here we focus on the process during which IMPROVISE behaves as a
graphics generator in a collaborative multimedia system [Dalal et al., 1996b]. Within a com-
plete presentation, a large amount of information needs to be conveyed to a nurse (Figure 4-
3). In our example, we focus on how the system plans to present the patient’s demographics
information (as indicated in Figure 4-3) to the nurse. As we mentioned earlier, IMPROVISE
cannot automatically compute the spatial layout for this example due to the missing inter-
face between STM and IMPROVISE.

A patient’s demographics information is a composite data object, including data items
such as name, age, and operation. In IMPROVISE, we represent the demographics informa-
tion and some of its components (e.g., mrn and age) as follows:

In this case, IMPROVISE plans a design based in part on information characteristics. It
first determines that a table chart could be used to fulfill the goal of conveying the demo-

(patient-4455667-demographics
(is-a CONCEPT)
(type composite)
(components patient-4455667-name

patient-4455667-mrn
patient-4455667-age
patient-4455667-gender . . . )

(sense LIST)
(role IDENTIFYING)
. . .

)

(patient-4455667-mrn
(is-a ATTRIBUTE)
(type atomic)
(value 4455667) . . . )

(patient-4455667-age
(is-a ATTRIBUTE)
(type ATOMIC)
(value

(patient-4455667-age-value
(is-a MEASUREMENT)
(unit “years”)
(value 80))) . . . )
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graphics information. A table chart is chosen over other types of visual representation
scheme because demographics information is a composite object and needs to be repre-
sented in LIST sense, in which all its components should be listed as textual entries. More-
over, IMPROVISE also decides to use the patient’s name as the title of the table chart so that
the name can serve as the identification of the patient information.

Once IMPROVISE decides to use a TABLE-CHART, it constructs an abstract table chart, in
which each table cell is undefined. Based on the syntactic constraints of TABLE-CHART, the sys-
tem further refines the design of the abstract table chart by designing its table cells. First,
IMPROVISE needs to decide what information should be grouped together to fit into one
cell. The grouping information may also be provided by a high-level general content planner
[Dalal et al., 1996b]. In our case, based on the domain knowledge, three groups will be
formed: age, gender, and mrn in one group as general identification information, medical
history by itself in one, and surgeon and operation in the third group to describe the opera-
tion. In other words, the abstract table chart is refined as having three cells, each of which
conveys part of the demographics information.

As each group is still a composite data object (e.g., group1 has three data items), its rep-
resentation has not yet been determined. Based on the reason similar to why a table chart is
selected to represent demographics information, table charts again are used to represent each

# Visual lexicon entry for ATTRIBUTE sense1
. . .
(concept-pattern (?x (type ATTRIBUTE)))
(senses

(sense1
(syntax (category VISUAL-STRUCTURE)

(subcategory TABLE-CHART)
(media GRAPHICS-MODEL))

(semantics (role IDENTIFY)
(scope SMALL-ATTRIBUTE-VALUE)
(sense LIST))

(lexeme (TABLE-CHART
(cells (VISUAL-UNITY (geometry

(TEXT
(string (get-attrName ?x)))))
(VISUAL-UNITY (geometry

(TEXT
(string (get-attrVal ?x)))))

) . . . )

# Visual lexicon entry for ATTRIBUTE sense2
. . .
(concept-pattern (?x (type ATTRIBUTE))
(senses (sense1 . . . )

(sense2
(syntax (category VISUAL-STRUCUTRE)

(subcategory TABLE-CHART)
(media GRAPHICS-MODEL))

(semantics (role IDENTIFY)
(scope LARGE-ATTRIBUTE-VALUE)
(sense LIST))

(lexeme (TABLE-CHART
(cells (VISUAL-UNITY (geometry

(TEXT
(string (get-attrName ?x)))))

(VISUAL-UNITY (geometry
(OPTION-BUTTON

(string (get-attrVal ?x)))))))
))

Figure 4-4 Two senses for ATTRIBUTE object and their visual representations

Figure 4-5 Visual representations for ATTRIBUTE object

MedHistory: Diabetes
Hypertension

DiabetesMedHistory:

DiabetesMedHistory:

Hypertension

TIA

Angina

Smoking

. . .Press the button
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of the three groups. In other words, each table cell itself in the abstract table chart will be
represented as a table chart. Continuing with the same top-down refinement, each constitu-
ent is eventually refined to the point where IMPROVISE needs to determine the representa-
tion of each individual item (e.g., age) in the chart.

At this point, IMPROVISE will search through the visual lexicon to find possible repre-
sentations for each individual item as each data item is already an atomic data object. To
avoid constructing every visual presentation from scratch, visual lexicon prestores the possi-
ble visual representations for various atomic objects. Instantiations of the visual lexeme
could be directly used as building blocks in a design. For example, the visual lexicon entry
for an atomic ATTRIBUTE object such as age is shown in Figure 4-4.

As specified in Figure 4-4, an ATTRIBUTE object can be represented in one of two forms
shown in Figure 4-5. In sense1 the object is simply represented in an attribute-value pair for-
mat, with both attribute name and value represented as simple text strings. However, in
sense2, the attribute values are represented as entries in an option button, which indicates
that the current attribute has a large number of values (e.g., more than 3 values). The first
attribute value (e.g., diabetes) is displayed as the button label and is always visible, while the
rest are hidden and arranged as entries in a pull-down menu. That may be brought up by
pressing the button (Figure 4-5). In our case, IMPROVISE chooses the first sense since the
ATTRIBUTE objects involved are either single valued (e.g., age and gender) or double valued
(e.g., medical history).

In summary, a tree-like structure diagram in Figure 4-6 can be used to illustrate the top-
down hierarchical planning process conducted by IMPROVISE so far: at a high level,
IMPROVISE refines the abstract table to a three-cell table. Each table cell in turn is a table
chart itself. Moreover, each sub-table is made up of the visual representations of individual
data items in that group. In this example, each individual item happens to be represented by
a simple table chart again. The recursive relationships among various levels of table chart
representations can be indicated by annotating the automatically generated display as shown
in Figure 4-7.

Notice that nothing has been said about the layout of the table charts, nor the spacing
among the table chart cells. The determination of this type of parameter is carried out based
on various syntactic, semantic and pragmatic constraints. For example, one constraint might
state that the spacing between the cells in a table chart should be larger than the same direc-
tional spacing between the sub-table cells (e.g., spacing x should shorter than spacing y in

Figure 4-6 Planning levels for displaying demographics information

DesignTableChart (chart01, demographics)

DesignTableChart DesignTableChart DesignTableChart
(chart02, group1(age, gender, mrn)) (chart03, group2(medicalHistory)) (chart04, group3(surgeon, operation))
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DesignVisRep(chart07, mrn)

DesignVisRep(chart08, medicalHistory)

DesignVisRep(chart09, surgeon)

DesignVisRep(chart10, operation)
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Figure 4-8). Although this constraint appears to be one of the syntactic constraints used in
table chart construction, it is not hard to justify the semantic rationale behind this constraint:
domain objects having closer relationships should be placed closer to each other to justify
gestalt grouping theory. In our example, the object age is represented by its attribute name
Age and its value 80. The relationship between the attribute name and its own value is con-
sidered an intra-relationship within a concept, and it is certainly closer than any inter-rela-
tionship existing outside of the concept (e.g., between concept age and medical history).

Eventually all parameters such as font size, font color are determined, and a complete
design for conveying a patient’s demographics information is rendered as part of the com-
plete presentation as shown in Figure 4-3.

 4.3.2 Network Domain Example

Having just demonstrated how IMPROVISE composes a visual presentation from
scratch, here we show how IMPROVISE designs new visual presentations by transforming
an existing presentation. This example comes from one of the tasks in the computer network
management application. A network link contains a set of virtual path segments. Each seg-
ment has attributes such as capacity and utilization. To reveal the internals of a link is to dis-
play all virtual path segments inside the link. In addition, those segments are distinguished
by their capacities. Here, we describe how a visual discourse is planned to fulfill the task of
revealing the internals of a selected link.

Figure 4-7 Automated generated display annotated by its structural representation
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chart01 table title
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Figure 4-8 Spacing between different table charts
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Suppose that a computer network is displayed on the screen as shown in Figure 4-9. The
user has selected link23, the link between Austin(node1), and Tucson (node5). The system
formulates the communicative task as: (Task (ShowInternal link23)).

The planner seeks visual actions or high-level visual tasks that have an effect that
matches the task description. In this case, the planner selects the composite action RevealIn-

ternal. Next, RevealInternal is decomposed using one of its decomposition schemata shown in
Figure A-9. In our example, the selected link’s bounding box is too big to satisfy the prefer-
ence condition for DecompositionSchema2. Therefore, the default decomposition schema is
used. Thus, RevealInternal is decomposed into three subactions: Focus (focus on link23),
DesignVisObject (design visual representation for internal objects of link23), and Open (open
link23).

Among the three subactions, only action Open is a primitive action; the other two are
composite actions and need to be further decomposed. Focus is decomposed into Extract

(extract link23 from the rest of the network). This decision is made based on the fact that a
link is likely to intersect with other objects and Extract separates intersected objects or pre-
vents the potential intersections while achieving focusing. Focusing by Enlarge increases the
intersection possibility, and focusing by Highlight does not fix or prevent any intersection.

DesignVisObject is refined into two actions. The first is concerned with designing the
visual representations of the internal objects, while the second takes care of building visual
displays for representing the attributive relationships between the internal objects and their
capacities. The process of building the visual displays for the internal objects and their
capacities is similar to the process described in the previous example. Actions of designing
visual presentations for composite objects (e.g., a set of virtual path segments) are decom-
posed to subactions that determine the visual presentations for their components (e.g., indi-
vidual virtual path segments). At the lowest level, the process uses the visual lexicon to
decide the visual representations for atomic objects. In our network domain, one visual word
specifies the shape (cylinder) for CONNECTION objects. In this example, the system knows that
the internal objects within a link are one type of CONNECTION. Thus, the shape for the internal
objects does not need to be designed from scratch.

At this point in planning, let us assume all preconditions but one are satisfied and no

Figure 4-9 Visual representation of a computer network
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Figure 4-10 Series frames for the network domain example

(a) Action Align

(b) Action Move + Enlarge + . . .

(c) Action Open
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conflicts need to be resolved. The only precondition that is not true at this stage comes from
the action Open. One precondition for Open requires that the object be large enough so that
the opening effect is recognizable. Scale is selected to establish the causal link for this pre-
condition of Open.

At this stage, Extract is the only non-primitive action. It is then replaced by Align and
Move. Align rotates the whole network so it is laid down (Figure 4-10a), while Move moves
the link and its two end nodes away from the rest of the network (Figure 4-10b).

Figure 4-11 shows all planning levels. Each level is a complete plan, and is a refined ver-
sion of the level above it. At each level, each action precedes the action to its right (e.g.,
Focus precedes DesignVisObject), while all actions in the same column are not ordered (e.g.,
Move, and Scale at the last level). In the final plan, a complete sequence of actions is not nec-
essarily a linear sequence. For example, actions Move and Scale are executed simultaneously
(Figure 4-10b) in this example. The screen shots for several keyframes resulted in the design
can be seen in Figure 4-10(a)-(c).

 4.3.3 A Hypothetical Example

In this section, we demonstrate what IMPROVISE can not design at current stage, but it
would be able to accomplish in the future. Through an example, we illustrate the current
missing parts of IMPROVISE, and indicate the related future research tasks yet to be carried
out.

We hypothesize an example in the medical domain to inform the nurse about a patient’s
information. However, this example significantly differs from the previous patient example
in terms of its complexity of the required visual design. As shown in Figure 4-12, we need to
show the physical body of patient Baker and his medical information arranged around the
body. In this case, IMPROVISE needs to show both front and back view of the body.
IMPROVISE currently can manage to reveal various aspects of the body sequentially by
employing transformation actions such as Rotate. However, this is not the case. In this exam-

Figure 4-11 Planning levels for the network domain example
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Align(network) Move(link23, node1, node5)
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Scale(link23, node1, node5)
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causal link
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ple, IMPROVISE needs to show both views of the body simutaneously since nurses prefer to
see all the information layed out at once. This poses a problem in the current planning para-
digm since IMPROVISE only knows one patient Baker and one physical body of his. To gen-
erate multiple presentations for one object, IMPROVISE needs to know that the visual
representation of the patient can be cloned with different foci of interest. The special actions,
such as Clone, need to be developed to handle these complicated situations. Not only should
IMPROVISE be able to clone the visual representation of an object, but also need to merge
an object’s various visual presentations into one. In our example, at certain point (Figure 4-
13a) IMPROVISE might need to combine the two views together to produce one coherent
presentation. Obviously, a complete version of IMPROVISE should also automatically
determine the spatial layout of the picture using STM, while current IMPROVISE cannot.

As shown in Figure 4-13(b), IMPROVISE chooses to use a TIME-CHART to convey the drug
usage. It indicates the time and type of the drug being administered. Currently, IMPROVISE
has no knowledge about how to design a TIME-CHART. We need include TIME-CHART definition in
our visual object catalogue.

Ideally, IMPROVISE should allow the user to interrupt the ongoing presentation at any-
time; for example, the user might stop the presentation and press the drip button to obtain
more information. However, this requires research in the area of reactive planning and adds
another future research topic on our to-do list.

Based on the framework, we have described IMPROVISE, a prototype system that can
automatically generate coherent visual discourse in two application domains. We have dis-
cussed the basic functionality and the missing parts of IMPROVISE in detail. From the sys-
tem architecture, it is easy to discover how the four core components illustrated in the

Figure 4-12 A hypothetical example in medical domain
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general framework are coordinated to work together and provide the backbone of this sys-
tem. We also presented two very different examples to demonstrate the flexibility and exten-
sibility of IMPROVISE. Although the core components of IMPROVISE have been built, a
complete working system requires further work in a few areas (e.g., handle user request dur-
ing the presentation) as indicated by the last example. This leads us to the next chapter
where we will summarize these future tasks and the approximate time frame, during which
the desired features would be completed.

(a) Combining various representations (b) Using a time chart to describe drugs

Figure 4-13 IMPROVISE should create various representations
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CHAPTER 5 Proposed Plan

If we knew what we were doing and what we are going to do it wouldn’t be
research. — Unknown

While major components of IMPROVISE are in place, there are several areas
that still need to be developed or improved.

5.1 Task Characterization

A formal and comprehensive task characterization scheme should include
both presentation task (i.e., communicative goals) and visual task characteriza-
tion. While we have established a taxonomy for classifying and studying various
visual tasks, we still need to refine further on characterizing presentation tasks and
their relations to visual tasks. As the analysis of communicative tasks largely
depends on the application domain, we will put our main focus on refining the
current visual task hierarchy and studying the relationships between visual tasks
and low-level visual techniques.

 5.1.1 Visual Task Characterization

Although we have established a visual task taxonomy, some of the classifica-
tions need to be further refined. The relationships between these tasks and the
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low-level visual techniques need to be carefully analyzed and summarized. Out of the fifteen
types of visual tasks, we will concentrate on a subset of them including Associate, Empha-
size, Reveal, and Encode since these visual tasks are used most often in visual presentations.

 5.1.2 Representative Presentation Task Study

Researchers from different areas (e.g., [McKeown, 1985; Mann and Thompson, 1988])
have proposed various characterization taxonomies to categorize presentation tasks (com-
municative tasks). However, since much of this research has focused on speech acts instead
of visual acts, the proposed taxonomy needs to be analyzed and relationships between the
general-purpose communicative tasks and visual tasks need to be established in visual com-
munication environments. In addition, we could also enrich these presentation tasks by
employing the task-related knowledge structures introduced in [Johnson et al., 1988]. For
the purpose of our application domains, we will only concentrate on the presentation task
Inform and analyze its decompositions and its visual interpretations using corresponding
visual tasks.

5.2 Visual Language Formal Specification

Various visual objects (e.g., visual structure and visual frame) have been defined and
used in IMPROVISE’s design process. However, some of the design rules have not been
defined as rigorously as they could be. To take advantage of the existing formal specification
methods, various visual object specifications, in particular their semantics and pragmatics
will be modified and described using a formal specification [Rich and Knight, 1991; Russell
and Norvig, 1995]. We believe that a formal specification could aid IMRPOVISE in plan-
ning a design more systematically and in justifying its decisions.

This work will be based on the current visual object specification. The resulting formal
specification is a refined version of the current one and will be written out in a formal speci-
fication language.

To refine the current specification and establish a more precise evaluation of current
design principles, we need to conduct further research in integrating professional visual
design and film-making theory into our system. As an addition to our current visual object
catalogue, we would also like to implement a time-chart like visual structure to demonstrate
how to integrate new visual knowledge into the current system.

5.3 Constraint Specification

To automatically layout graphic elements, IMPROVISE needs to specify various numer-
ical constraints at different levels of abstraction, and have them solved by a constraint solver.
We have integrated STM (Snap-Together Mathematics) [Gleicher, 1994] into IMPROVISE
as our numerical constraint solver. However, we need to determine how much preprocessing
is necessary to provide a good starting point for STM.
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5.4 Visual Action Hierarchy Extension

Within one visual presentation, it is common that different aspects of the same object are
required to be conveyed. Suppose we need to describe two features of a car: the trunk and
the interior. This would not be a problem if we could display the features of the car sequen-
tially. We can show the interior of the car first, then smoothly change the camera view of the
car and turn it to the car’s trunk. However, this will pose a problem in a planning process if
the two features needs to be displayed simultaneously since the system only knows one car,
which usually has one visual appearance at one time. In this particular problem, the system
needs to know that the visual representation of an object can be cloned with different foci of
interest. The special actions, such as Clone, will be used to handle complicated situations.
These actions are to be defined and implemented. In particular, three extremely useful
actions are:

Clone. Make copies of a visual object, but all copies have the same identity. This type of
action is suitable to show various aspects of the same object.

Separate. Make copies of a visual object, but each individual copy has its own identity. This
type of action is used to describe different objects that have certain common aspects. The
main purpose of this action is to separate individuals from a generic representation. For
example, if we use a human model to represent a generic concept of patient, then multiple
copies of the model could be used or transformed to represent individual patient as the gen-
eral patient model is separated into different patient models.

Merge. Merge is the opposite of Separate. Various visual objects with certain common
attributes could be collapsed together to represent the abstraction of such a group.

5.5 Reactive Planning

As we mentioned in Chapter 3 and 4, user interaction should be allowed during the pre-
sentation to enhance the controllability of the presentation style. To respond to user events
during the presentation and modify the current presentation accordingly is the area of
research known as reactive planning [Wilkins et al., 1994]. As reactive planning is an open
problem itself, we will determine an appropriate reactive planning strategy to use and incor-
porate it into the current planning algorithm so that limited user interactions could be han-
dled properly: allowing user to stop the ongoing presentation and resume the presentation
where it is left off.

5.6 Time Table

Figure 5-1 is the proposed timeline for the future tasks. As most of the tasks are indepen-
dent of each other, we choose to start some of the simpler tasks (e.g., task characterization,
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and constraint specification) first so that IMPROVISE is capable of performing basic
graphic design (e.g., layout graphic elements). Those tasks (e.g., action expansion, and reac-
tive planning) that require a considerable amount of research and will enhance IMPRO-
VISE’s design capabilities substantially are scheduled after IMPROVISE’s basic functions
are achieved. The following time table records the estimated time frame for each of the tasks
mentioned above.

Task Estimated Time

Task Characterization 1/2 month

Visual Language Formal Specification 1 months

Constraint Specification 1/2 months

Extend Visual Action Hierarchy 1-2 months

Reactive Planning 2 months

Writing 6 months

Table 5-1 Estimated Time Table

Figure 5-1 Proposed schedule

Time

Task Characterization

Constraint Spec.

Action Expansion

Reactive Planning

Writing

Now End of Spring

Visual Language Specification
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APPENDIX A Knowledge Base

Here, we describe the detail content of various knowledge sources and how
they are represented in the knowledge base.

A.1 Knowledge Sources

As mentioned in Chapter 3, there are at least four types of knowledge that are
needed to construct automated graphics generation systems. They are: domain
knowledge, visual design knowledge, situation knowledge, and meta knowledge.

 A.1.1 Domain Knowledge

Domain knowledge refers to information that needs to be presented visually.
Such information could vary a great deal (e.g., quantitative vs. qualitative, or
static vs. dynamic). Nevertheless, there are certain presentation-related properties
that are common to all domain information. Rather than enumerate the individual
properties (e.g., a person’s age) associated with a specific piece of information
(e.g., a person), we concentrate on the presentation-related properties that are
common to all information. The task of understanding which information proper-
ties are related to presentation design and how they are related is called data char-
acterization [Roth and Mattis, 1990]. We have defined a systematic and
comprehensive data characterization method in which a data-analysis taxonomy is
developed to characterize heterogeneous information [Zhou and Feiner, 1996].
Based on this taxonomy, we discuss how domain information is organized and
represented to reflect the presentation-related properties and facilitate the design
process.
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Although many researchers (e.g., [Roth and Hefley, 1993]) have realized that data char-
acterization is an important part of automated graphics design, other work on data character-
ization either focuses on a particular type of information (e.g., quantitative data
characterization in [Mackinlay, 1986; Roth and Mattis, 1990]) or simply establishes a con-
ceptual taxonomy (e.g., [Wehrend and Lewis, 1990; Arens et al., 1993]). In contrast, our
data characterization taxonomy not only comprehensively captures properties of heteroge-
neous information, but has also been used in a practical system to demonstrate its usability
and coverage (see Chapter 4).

As general human knowledge is quite complex in structure and abundant in quantity, we
could not possibly develop a hierarchy to exhaust every type of information or every prop-
erty of information. Instead, we have developed a taxonomy that is flexible enough to easily
accommodate new types of the information, or new properties of information. Our taxon-
omy describes data characteristics along six dimensions: data type, data domain, data
attributes, data relations, data role, and data sense. Data type distinguishes a piece of infor-
mation by whether or not it is divisible into smaller pieces. Data domain categorizes infor-
mation in a semantic taxonomy; for example, whether or not it is a physical entity. Data
attributes differentiate data based on properties such as an object’s shape, and data relations
specify connections among data. The last two dimensions characterize data pragmatically
based on user information-seeking goals (data role) and user visual-interpretation prefer-
ences (data sense). Based on this taxonomy, we describe what is stored in every piece of
domain information along with their unique domain-specific properties.

Next, we describe each dimension in detail.

Data Types
There are two basic data types: atomic and composite.

Atomic. An atomic object is the most basic, indivisible data unit.

Composite. A composite object is a combination of atomic or composite objects. Composite
objects can be further classified as sets and structures, based on the structural relations
among their parts. A set is a composite object in which each component is considered inde-
pendent of each other. In contrast, in a structure, components are related to each other.

To store the type information helps to control the design process since the object type
usually signifies whether a particular design is done (see more in chapter 4). For example,
atomic objects usually appear at the leaves of the design tree and signals that the design pro-
cess should stop. Moreover, knowledge of the different characteristics of composite objects
can facilitate the construction of displays to represent them. Usually, the preferred visual
representation for the structural relations among objects has structural properties based on
those of the data. For example, a set might be presented using a table, but typically not a
flow chart. In contrast, a structure might be presented by a network diagram.

Data Domain
To construct an effective visual presentation, it is often important to take into account the

data’s domain, or the general ontology, which usually is used to categorize a broad range of
objects and relations [KRSL, 1993; Russell and Norvig, 1995]. Roth and Mattis [Roth and
Mattis, 1990] characterize data with regard to quantitative domains such as time, space, tem-
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perature, and mass; for example, to allow temperature to be preferentially displayed along a
vertical axis. We generalize this classification to accommodate a broader range of informa-
tion. Each object belongs to one of the following top-level domains, which can themselves
be further subdivided: entity, concept, measurement and event.

Entity. An entity is an object that exists independently and has a unique identity. An entity
may correspond to a physical object in the real world (e.g., a car) or may be depicted as a
physical object (e.g., a dragon).

Concept. A concept is an abstract idea that either exists independently by itself or must be
attached to other objects. Unlike entities, concepts are not physical objects. For example, the
abstract notion of “age” is independent of any object, while a particular person’s “age” is a
concept that is attached to that person to specify how old the person is. The quantitative
domains identified by Roth and Mattis would be among the subclasses of concept.

Measurement. A measurement is a numeric or non-numeric value with or without its unit of
measure. A measurement cannot exist by itself, but must be related to a concept, such as
weight. For example, we can use “120 lbs.” to specify a person’s weight quantitatively, or
“good” to specify a car’s performance qualitatively.

Event. Event is a composite object that describes something happened at given location or
time. Event could be further distinguished by the cause of the event: natural event and activ-
ity. Natural event is driven by the natural law and without human as its direct participant, for
example, a raining event. In contrast, activity usually refers to human actions—or event con-
ducted by human beings, for example, a surgical operation.

Data Attributes
Although, at first glance, information and its visual representations may appear to differ

greatly from one application domain to another, there are basic connections between the
nature of the information (its attributes) and the presentation style. Therefore, presentation-
related properties can be abstracted for all types of information. Some properties are shared
by different types of data, while others are unique to a particular data type. First, we describe
the data attributes that are common to all data types: form, material, location, transience,
and importance.

Form. Form is related to shape and may be one of: shaped, shapeless, or none. A shaped
form refers to a category of objects that have solid, physical shapes in the real world, such as
a person or a car. A shapeless object might have a shape under certain circumstances, but its
shape changes so often or is so abstract that it is hard to depict the object’s precise shape. An
example of a shapeless object is water. All conceptual objects use none as their form value.

Material. Material refers to the possibly complex set of appearance variables that determine
how an object interacts with light. Material models can range from simple RGB color
through sophisticated physical illumination models. Material can often be used effectively to
encode other nonvisual attributes of the data.

Location. While the form and material attributes determine the possible visual appearance
for the data object, location affects the graphic design decision as to where and when to dis-
play the object. There are two types of locations: spatial and temporal. Spatial location is
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either represented by absolute or relative quantitative coordinates (e.g., numeric 2D or 3D
coordinates) or by absolute or relative qualitative location (e.g., “in front of” or “near”).
Similarly, temporal location can be represented by absolute or relative, quantitative or quali-
tative, values.

Transience and importance are used to describe the intrinsic properties of the informa-
tion mentioned in [Arens et al., 1993]. These are especially useful for grouping or partition-
ing information when a large amount of information is to be conveyed.

Transience. Objects can be either dynamic or static. Dynamic information varies over time,
while static information remains constant. This expresses the same notion as live or dead
[Arens et al., 1993].

Importance. The fact that some information is more important than others allows us to
select different graphical techniques to visually group or partition information. Importance
can be characterized using several distinctions (e.g., urgency vs. routine [Arens et al., 1993],
abnormality vs. normality).

Other attributes are tied directly to composite objects only: ordering, scalability, and
continuity. We adopt the attribute categorizations discussed in [Roth and Mattis, 1990] and
[Arens et al., 1993], and extend them to address a wider range of information.

Ordering. There are two possible orderings among components of a composite object:
quantitative and qualitative. Quantitative ordering includes both numeric ordering and non-
numeric ordering, which correspond to the quantitative and ordinal notions mentioned in
[Mackinlay, 1986]. In our characterization, numeric ordering can be further distinguished as
quantitative individual or quantitative range. For example, the dosages for a set of drugs
form a quantitative individual set; in contrast, the price ranges for a set of drugs form a quan-
titative range set. Non-numeric ordering for orderable qualitative values is called ordinal
(e.g., a range from “poor” to “excellent”). In contrast, qualitative ordering is not an inherent
ordering. Instead, it refers to a logical ordering that is imposed on the objects by the domain
application. To avoid introducing new terminology to distinguish qualitative orderings, we
overload the terms used in identifying quantitative ordering. We call qualitative sets nominal
if they are non-ordered (e.g., a list of names) and ordinal if they have a logical ordering
among their components.

How quantitative ordering can automatically determine graphic design decisions has
been carefully examined in both [Mackinlay, 1986] and [Roth and Mattis, 1990]. Qualitative
ordering can also influence the spatial and temporal order of an information presentation
[Zhou and Feiner, 1996].

Scalability. Roth and Mattis [Roth and Mattis, 1990] point out an important distinction
between quantitative data sets. They went beyond the ordering attribute and use coordinates
and amounts to differentiate two types of data: coordinates specify points in some domain
(e.g., a start date for a project), while amounts signify the quantitative measurement used to
describe a particular attribute of an object (e.g., the price in dollars of a car). See [Roth and
Mattis, 1990] for the usefulness of this distinction.

Continuity. As proposed by Arens, Hovy, and Vossers [Arens et al., 1993], a quantitative
data set can be further distinguished by discreteness vs. continuity. For example, a set of
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coordinates can be either continuous (e.g., the set of longitude-latitude pairs on a map), or
discrete (e.g., the set of dates in a year). On the other hand, a set of amounts can also be con-
tinuous or discrete. For example, the number of days in the months of the year is a discrete
set of amounts, while the temperature in degrees over the course of a day is a set of continu-
ous amounts.

Data Relations
Characterization along the dimension of data relations captures various types of relation-

ships among objects. We extend the scope of the data relations (e.g., functional dependency)
mentioned in [Roth and Mattis, 1990] by including semantic relations among data, including
constituent, attributive, and enumerative relationships.

Functional Dependency. Functional dependency was first used by Mackinlay
[Mackinlay, 1986] to capture the one-to-one mapping relationship from one domain set to
another. For example, every day has an average temperature. This type of relation is required
by certain graphical techniques (e.g., a line graph) but not by others (e.g., a network dia-
gram) [Mackinlay, 1986, Roth and Mattis, 1990].

Constituency. Constituency corresponds to the has-part relation and can be further parti-
tioned into physical constituency and conceptual constituency. Physical constituency either
indicates the physical components of a physical object (e.g., a network node has several
ports among its physical constituents) or refers to conceptual components that can be treated
like physical ones (e.g., virtual links). Conceptual constituency, on the other hand, implies
that a concept is conveyed by a set of sub-concepts (e.g., patient demographics is conveyed
by age, gender, and other sub-concepts). This distinction plays an important role in the pro-
cess of generating a comprehensive visual display for the information [Zhou and
Feiner, 1996].

Attribute. In an attributive relation, some objects describe certain aspects (attributes) of
other objects. Furthermore, these relations can be effectively encoded by the corresponding
image’s visual attributes, such as its shape, size, or color.

Enumeration. Enumeration includes both isa and instance relations [Rich and
Knight, 1991]. Thus, an enumerative relation shows class inclusion (e.g., pitbull isa dog) or
class membership (e.g., Spot is an instance of dog).

All the relations discussed above usually do not exist independently from each other.
More often, one or more types of relations coexist in one piece of information. On the other
hand, when the request is to display several relations together, it is necessary to take into
account the interconnections between those relations in order to integrate all related infor-
mation in one presentation (see more in chapter 4).

Attributes of Data Relations
We use a straightforward combination of dimensionality [Arens et al., 1993], along with

coverage, cardinality, and uniqueness [Roth and Mattis, 1990], to describe the attributes of a
relation. In a dynamic application domain, such as network management, the properties of
data relations can change over time. For example, normally there are three types of traffic in
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a particular kind of network link (its cardinality value is fixed-multivalued); however, at
some times there might be only one or two types of traffic in certain of these links. Such
observations lead to more design requirements: either we must be able to predict future
changes in advance to make the design generic enough to cope with different expected situa-
tions, or we need to redesign the visual presentation on-the-fly when the current one no
longer effectively conveys the new information.

Although data role and data sense can be considered as part of situation information,
they are also directly tied to a specific domain object so we address them with the domain
information.

Data Role
To generate effective presentations, not only do we need to know the data’s intrinsic

properties (e.g., data type or data attributes), but we also need to identify the information-
presentation tasks. Casner [Casner, 1991] discusses how user tasks can affect the presenta-
tion design, while Roth and Mattis [Roth and Mattis, 1990] also analyze data properties
based on the user’s or application’s information-seeking goals. We use the data role dimen-
sion to characterize the functional role each piece of information plays in a visual presenta-
tion context. In other words, data role specifies particular information-seeking tasks. It could
be given by a user during interaction, or could be expressed by domain experts during
knowledge acquisition.

We adopt the taxonomy of visualization goals proposed by Wehrend and Lewis
[Wehrend and Lewis, 1990], which is a superset of the display functions listed in [Roth and
Mattis, 1990]. These visual tasks include: categorization (categorizing information), cluster-
ing (grouping information), identification (revealing information identity), distinguishing
(displaying the difference among information), comparison (comparing one type of infor-
mation to another), association (associating one type of information with another), ranking
(comparing all information in a particular order), correlation (correlating one type of infor-
mation to another), and distribution (partitioning information).

Data Sense
To construct an effective visual presentation, the user or application domain visual pref-

erence should also be taken into account. For example, one way to distinguish the elements
of a small set of objects is to use a different color for each. However, such a presentation
would not be effective for a color-blind user. Presentation preferences might also be a func-
tion of a specific application domain, perhaps because users in that domain have been
trained to use a particular presentation style (e.g., table chart vs. bar graph).

This notion of visual preference leads to our last characterization dimension, data sense.
The word “sense” can be used to refer to one of a set of meanings for a word or phrase, as in
a dictionary. For example, the word “person” can mean a “human being” in one sense, and a
“human body” in another. We have adopted this meaning of “sense” to coin the term “data
sense,” which signifies a preferred way to present the data visually.

Like data role, data sense can be specified by an end user to indicate her individual pref-
erence, or captured in the process of knowledge acquisition. Alternatively, data sense might
also be inferred, based on other data characteristics. Data sense could be extended to include
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a wide variety of low-level visual preferences (e.g., color or shape). Thus far, however, we
have limited data sense only to the set of five high-level presentation style preferences
described below: label, list, plot, symbol, and portrait.

Label. One way to display information is through a textual label (e.g., a network node may
be represented by the generic string “node” or the specific string corresponding to the node’s
name). A label can be enriched by adding graphics, such as underscoring or a button shape,
to convey additional information.

List. In contrast to the label sense, the list sense states that a composite object should be dis-
played in a tabular form in which all its components are listed textually as table entries. As
in the label sense, both physical and conceptual objects can be represented in the list sense.
Furthermore, in the list sense, all components of a composite object are either listed as an
attribute-value pair or as a textual string (e.g., an entry in an indentation chart).

Plot. Both plot sense and list sense indicate that there is a composite object and that all its
components need to be represented. Generally, visual displays in plot sense are schematic
depictions, which refer to the typical genres of conventional diagrams or graphs. Quantita-
tive information can usually be effectively expressed in plot sense. The research of
[Mackinlay, 1986] and [Roth and Mattis, 1990] is mostly concerned with how to generate
appropriate visual presentations automatically in plot sense.

Symbol. Representing a piece of information in symbol sense involves the use of a concrete
shape object to symbolize the information. For example, a thermometer icon with its scale
can be used to symbolize the temperature concept. Both physical and conceptual objects can
be represented in symbol sense. We may use a much simplified (abstracted) version of a real

Figure A-1 Data characterization taxonomy
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image to symbolize a physical object (e.g., a network node may be symbolized as a sphere)
or to represent a concept by implying the special connection between the real object and the
concept (e.g., the thermometer and the temperature).

Portrait. Compared to symbol sense, visual representations require much more detail and
precision when the information needs to be displayed as a realistic portrait. Such precise
and detailed visual representation is necessary for people to carry out certain tasks, such as
the design of a product’s physical appearance.

We have presented the complete presentation-related data taxonomy in detail. Needless
to say, to provide comprehensive information about the domain, some domain-specific data
properties are also needed. For example, a person might have a physical attribute “age”,
while a car perhaps is described through its attributes “price” or “performance”. How all the
information is collapsed together and efficiently represented in the knowledge base is further
discussed in the following section.

 A.1.2 Visual Design Knowledge

To design various visual presentations for a wide variety of information, the system must
be equipped with certain knowledge about the graphic design itself, as well as the character-
istics of available visual forms. We refer to this type of knowledge as visual design informa-
tion. In particular, there are two types of visual design information based on the roles they
play during the design process (Figure A-2): visual objects and visual techniques. Visual
objects are syntactic, semantic and pragmatic descriptions of various visualization forms,
ranging from the most basic visual variables [Bertin, 1983] to complex visual representa-
tions such as animated sequences of 3D pictures [Lohse et al., 1994]. The design process
can be viewed as a production process in which either visual objects are assembled from
scratch or existing visual objects are modified and transformed to form new visual objects.
While we consider visual objects as the products of this production process, visual tech-
niques, on the other hand, are the tools used to assemble or shape these products. Visual
techniques are also known as visual actions which serve as problem-solving operators in our
visual design domain.

Visual Objects
Although numerous visual forms have been carefully analyzed or studied by various

Figure A-2 Visual design information
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researchers (e.g., [Winn and Holliday, 1982; Tufte, 1983; Kosslyn, 1989; Tufte, 1990; Keller
and Keller, 1993]) in different contexts, most studies are limited to qualitative analysis of
various visual forms based on their communicative capabilities. Apparently, to automate the
graphics generation process, such qualitative, functional analysis of various visual forms
becomes inadequate. As visual communication takes place at three levels
[Goldsmith, 1984], visual object synthesis also involves three levels: syntax, semantics and
pragmatics. In other words, we not only need to understand functional characteristics
(semantics) of visual objects, we also need to learn their structural features (syntax), as well
as their communicative capabilities in fulfilling a particular perceptual task for a particular
user or application (pragmatics). Based on their syntactic, semantic and pragmatic charac-
teristics, visual objects can be divided into five types: visual primitives, visual unities, visual
structures, visual frames, and visual discourse. As the upper level visual objects are recur-
sively constructed using the objects below them, they form a visual hierarchy as shown in
Figure A-3.

Visual Primitives. At the bottom of the hierarchy are visual primitives, which are individual
visual variables: shape, material, texture, size, position, and orientation [Bertin, 1983].
Visual primitives are the most basic building blocks that participate in visual object synthe-
sis. By themselves, individual visual primitives can hardly communicate any information or
be used to fulfill a particular information-seeking goal. In other words, visual primitives
have no fixed meaning apart from a visual context.

Visual Unities. Next come visual unities, which are constructed from visual primitives and
other visual unities. For example, a red plastic cube is a visual unity that is formed by two

Figure A-3 Visual hierarchy
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visual variables (cuboid shape and red plastic material). According to the syntactic defini-
tion, a visual unity must have a shape, including both geometric shape or text. In other
words, a visual unity is recognizable as an object representation (e.g., a red cube). Thus,
visual unities could be used to convey certain information even though the conveyed infor-
mation might be ambiguous or incomplete.

Nonetheless, the major purpose of a visual unity is to be embedded into other types of
visual objects (e.g., a rectangle incorporated as a bar in a bar graph, as described below). For
the sake of simplicity and feasibility, we do not always construct complex visual unities
from scratch. Instead, we prestore many visual unities in the knowledge base, and use them
as building blocks for composing more complex visual displays. A collection of such pre-
stored visual unities is called a visual lexicon (we will further discuss the representation of
the visual lexicon in the section on knowledge representation).

Visual unities are not just limited to graphical objects, they also include static images
and video clips. Both images and video clips are regarded as prestored visual unities and can
also participate in higher level visual object synthesis.

Visual Structures. Above the visual unities are visual structures. Visual structures spatially
organize various visual unities and other visual structures in a specific way to convey
abstract concepts or explain how processes work [Winn, 1987]. For example, a 2D line
graph that plots height against age is composed of line segments and two orthogonal axes
with textual labels. This plot indicates how height changes with the age. Conventional visual
structural classification used in cognitive psychology [Winn and Holliday, 1982] identifies
three basic structures that fall between text and realistic images: charts, graphs, and dia-
grams. Based on the visual representation classification proposed by Lohse [Lohse
et al., 1994], we have extended our visual structure classification. For example, graphs are
further partitioned into scatter plots, bar graphs, etc. A visual structure could also be a carto-
gram (i.e., a spatial map overlaid with visual objects, such as dot maps that use symbols to
show the location of individual objects), which does not quite fit into any of the three basic
categories. The common visual structures that we have studied extensively are shown in
Figure A-4.

Visual Frames. Visual frames contain single or multiple visual structures. For example, a
visual frame representing a computer network’s topological structure and its traffic statistics
over a time interval could include a cartogram (network nodes and links overlaid on a geo-
graphical map) and a textual table chart. The cartogram represents the topological structure,
and the table chart conveys the traffic information.

Similar to textual document composition, if a visual structure is equivalent to a sentence,
then a visual frame is the visual counterpart of a textual paragraph. In addition to orchestrat-
ing various visual structures in a single display window, visual frames also concerns
arrangements of multiple viewports or windows on one screen.

However, unlike a textual paragraph, a visual frame can be either static or dynamic.
Static visual frames refers to a screenful display that does not change progressively, dynamic
frames, on the other hand, indicate certain movements along the time line. In essence, static
frames are just collections of static visual objects, and dynamic frames are animated key
frames, which is specified through a visual action (see below) and a set of visual objects that
the action acts upon.
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Visual Discourse. Visual discourse is the ultimate visual form out of our automated graph-
ics generation process. It is a cohesive formation of a series of visual frames. Visual dis-
course organizes visual frames along the time line: it specifies how long a frame should last
and what the transitions should be between the frames.

Visual Actions
As mentioned earlier, to synthesize visual objects, we need a set of tools to either assem-

ble the objects from scratch or transform the existing objects into new ones. This set of tools
is known as a set of encoded visual techniques or visual actions.

Visual actions are categorized based on their functional roles in visual object synthesis.
There are three types of visual actions: formational actions, transformational actions, and
camera actions. Although they are expressed in different terms, our categories more or less
correspond to those developed by others (e.g., [Friedell, 1983]).

Formational Actions. Formational actions design visual objects from scratch by mapping
the properties of information to the visual attributes of selected visual objects. There are
three types of mapping actions: geometry mapping actions, property mapping actions and
structural mapping functions. Geometry mapping actions determine the location, size and
the orientation of a visual object, while property mapping actions take care of the other
visual properties such as color, and shape. As both geometry mapping and property mapping
actions are specified at multiple levels of abstraction (i.e., different visual objects have dif-
ferent mapping functions), structural mapping actions specifies abstract structural ingredi-
ents of a particular visual objects (e.g., MakeTableChart). Speaking of abstractness, it means
that structural mapping actions only indicate that certain types of visual objects can partici-
pate in the construction, but does not specify the details of the expected visual ingredients.

Transformational Actions. Unlike formational actions which assemble visual objects from
scratch, transformational actions modify the existing visual objects so that they can be used
in the new visual presentations. Transformational actions modify visual objects in two ways:
appearance transformations (e.g., Transfigure changes an object’s material) and geometry
transformations (e.g., Scale modifies an object’s size).

Note that such transformational actions are also specified at multiple levels of abstrac-
tion, both the actual execution and the effect of the action differs as the visual objects varies.
For example, changing the appearance of a table chart could be quite different from modify-
ing the visual appearance of a bar graph.

Camera Actions. While the first two types of actions act upon the domain and visual
objects, camera actions involve viewing specification (e.g., Set camera position or orienta-
tion) and viewing modification (e.g., camera Zoom).

Animated Actions
As mentioned earlier, visual actions are also used as connectors between visual frames

to achieve continuity. In a visual discourse, maintaining continuity is interpreted as provid-
ing smooth transitions between individual displays.

Smooth transitions are achieved by animated visual actions. Animated visual actions are
actions with temporal constraints. A temporal constraint is represented as a time interval that
is specified by its start and stop times.

A geometric transition is a smooth transformation from one geometric configuration to
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another. It is achieved by animated geometric transformational actions (e.g., Move or Align).
These actions interpolate between the old and new geometric values (e.g., position) over
time to achieve a smooth transition. A visual appearance transition, on the other hand, is a
smooth transformation from one appearance to another (e.g., gradually making an object
transparent). It is worth pointing out that the interpolation usually is not linear. We use con-
ventional animation techniques such as slow-in, and slow-out to achieve appealing anima-
tion effects [Chang and Unger, 1993].

In a visual discourse, the current display might be replaced by a completely different dis-
play. To maintain aesthetic continuity [Zettl, 1990], we use a set of special actions that are
adopted from conventional film transition techniques such as dissolve, fade in, and fade out
(as used in [Karp and Feiner, 1993]) to achieve smooth transitions between displays.

Composite Actions
A visual action is either primitive or composite. Primitive visual actions, such as Enlarge,

can be executed by the rendering component directly. In contrast, composite actions are rep-
resented by a set of partial plans, which will eventually be decomposed into primitive
actions. Each partial plan is represented using a decomposition schema [Young et al., 1994].
Hence, each composite action is associated with a set of decomposition schemata. A decom-
position schema specifies subactions that are used to accomplish the composite action, and
partial orders and causal relations among the subactions. Table A-1 and Table A-2 shows the
sets of primitive and composite visual actions we have implemented in IMPROVISE.

There are two distinct advantages to having both primitive and composite actions. First,
composite actions can be used at a high level to sketch an abstract design without worrying
about computationally overwhelming details [Zhou and Feiner, 1997b]. Second, only a
small set of primitive actions need to be implemented in the rendering component. Primitive

Formation Action
Transformation

Action
Camera Action

MapProperty Align Dolly

MapGeometry CutAway Pan

MakeVisualUnity FishEyeView Rotate

ShowInset Highlight Seek

ShowMultiView Move Set

Open Zoom

Scale

Transfigure

Table A-1 Primitive visual actions

Formation Action
Transformation

Action
Camera Action

DesignVisObject Emphasize

MakeTableChart Focus

MakeStructDiag RevealInternal

Show

Table A-2 Composite visual actions
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actions can be reused in a wide range of combinations to specify different composite actions.
For example, Enlarge is used as one of the subactions for the composite action Focus to
achieve the focusing effect by enlarging the object. The same action is also used in the com-
posite action Distinguish to distinguish an object by increasing its size.

 A.1.3 Situation Knowledge

To be able to tailor visual presentations to specific audience or particular situations, the
system also needs to be equipped with certain knowledge about the audience (e.g., audience
identity or task), the occasion (e.g., the general purpose of the presentation or the time con-
straint), and the system environment (e.g., the available device such as the display media). A
collection of the information that concerns the user, the occasion and the environment is
referred as situation information. In other words, the effectiveness of visual presentations is
also a function of situation information. The more comprehensive the situation information
is modeled, the better the visual presentations will be for the modeled user or situation.
Other researchers have modeled and utilized certain situation information (e.g., Friedell’s
situation space [Friedell, 1983] and Mackinlay’s display categories [Mackinlay, 1986]) to
index the knowledge base and facilitate the selection of synthesis operations. However, the
modeled situation information usually is very limited. As modeling the user or the environ-
ment is a sizeable task itself, we select to analyze and model several types of key informa-
tion. A collection of such information not only directly affects the presentation design, but it
also models the presentation situation more systematically and comprehensively than any
other situation model does.

Although situation information comes from a wide variety of sources, we partition them
into three categories: audience, occasion, and environment. These roughly correspond to the
information categories that a speaker is expected to know before s/he gives a verbal presen-
tation [Speaking].To make an effective presentation, whether is verbal or visual, the situa-
tion information plays an important role in design, as well as delivery.

Audience. The audience is the ultimate judge who will justify how effective a presentation
is. Knowing the audience better helps customize the presentation to serve the audience’s
interest. Currently, we focus on two types of audience information: audience identity (e.g., a
nurse or a physician in a medical domain) and audience preference. Audience preference is
further characterized by analyzing audience knowledge (e.g., audience presumed knowledge
and audience beliefs), audience information seeking goals (e.g., [Roth and Mattis, 1990;
Wehrend and Lewis, 1990; Casner, 1991]), and audience visual preference (e.g., [Zhou and
Feiner, 1996]).

Occasion. Occasion information specifies the particular circumstances under which the pre-
sentation is being given. It includes presentation type, mood, location, criticality, and timing.

Presentation type indicates the main purpose of using a visual presentation. Much
research has been conducted in the area of cognitive psychology to characterize various pic-
ture functions (e.g., [Levin et al., 1987]) or classify the rhetorical structures of images (e.g.,
[Sutcliffe and Darzentas, 1994]). Combining classification taxonomies, we have adopted the
four top-level visual presentation types: decoration, illustration, augmentation, and commu-
nication.
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•Decorative presentations appear to be purely created for aesthetic illustration. Such
presentations hardly convey any information within the visual displays.

•Illustrative presentations is also known as interpretive or transformational presenta-
tions. These presentations take advantage of human’s highly developed visual percep-
tibility to clarify difficult or abstract concepts through visual organization.

•As certain information is better or easier conveyed by visual media, augmentative pre-
sentations are meant to complement other media to provide more information to the
audience. As the purpose of visual presentations is to supplement other medium pre-
sentations (e.g., text or speech), augmentative visual displays always play a supporting
role in multimedia presentations.

•Communicative presentations directly deliver the information to the user through their
visual displays. Without accompanying or being accompanied by any other type of
media, the sole purpose of communicative presentations is to communicate the infor-
mation to the audience.

Most our research focuses on automatically generating visual presentations that either
augment other media to comprehensively convey information or communicate information
directly to the user through effective visual displays.

Mood describes the nature of the presentation or the atmosphere of the visual presenta-
tion (e.g., formal vs. informal). Mood information could help the system to choose an appro-
priate style of illustration. For example, a presentation set for a formal mood may have a
different set of requirements (e.g., using the times font vs. a cartoon font) than it does in an
informal mode. As most of our presentations are generated for formal occasions, we do not
go very far to model mood information. Nonetheless, we have provided an avenue along
which other researchers could go further to extend the situation information model.

Location information indicates where the visual presentation takes place. Like mood
information, this type of information also affects the design in many ways since different
location might put different requirements on the presentation. For example, in a healthcare
application domain, a presentation made for doctors at their offices might differ greatly from
those made for them in the operating room.

Criticality and timing information are another two factors that can significantly influ-
ence the content and the delivering style of the final visual presentation. Criticality indicates
whether presenting certain information is critical for the intended audience, while timing
information stresses that either the presentation should be ready within a certain time frame
or should last for a certain time period.

Environment. Since the visual presentations always need to be designed on certain comput-
ers or to be presented on certain displays, there is another type of information that specifies
the existing physical system environment under which the presentation is being planned and
realized. This type of information is referred as environmental information. Currently, we
have considered two types of environmental information: one is the platform on which the
whole system runs, the other is the display on which the visual presentation appears.

Platform information is tightly coupled with the efficiency of the system. The more pow-
erful the platform is, the more efficiently the system can plan and realize the visual presenta-
tion. Platform information also further constrains the visual and interactive capabilities of
the system. A platform’s efficiency determines the rendering quality and the interactive
capability of the system. For example, a SGI Onyx system with a fast graphics card capable
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of hardware texture mapping enables the user to interact with high quality presentation eas-
ily, and it also leaves an option for the system to use texture as a visual cue without sacrific-
ing much interactivity. Platform information naturally could be characterized through its
main features: cpu, graphics board, and accessories (e.g., texture mapping board).

While platform information affects the efficiency of a generation system, display infor-
mation determines whether the on-screen visual displays are suitable for a particular view-
ing medium. For example, visual highlighting achieved by placing a red text on a yellow
background might be fine for a color display, but it may appear so faint on a black-and-white
monitor that the effect of highlighting basically diminishes. Evidently, we could use t fea-
tures such as color, resolution, and size to characterize a type of display.

All three types of knowledge discussed above are equally important. A lack of any type
of knowledge could result in ineffective visual designs that cannot meet the needs of a spe-
cific audience or comply with a particular situation. Since knowledge acquisition could be
expanded as a whole research topic in knowledge engineering, we emphasize identifying
information that is directly tied to our goal. Nevertheless, our characterization and classifica-
tion of various information leaves an avenue for further research.

 A.1.4 Meta Knowledge

Meta information, also known as strategic information, helps the sytem explicitly reason
about the control of an inferring process or provide sophisticated explanation facility
[Reichgelt, 1991]. As this is a very much open research area, we simplify the meta informa-
tion modeling involved in automated graphics generation systems. The main purpose of
introducing meta information is to explicitly control the design process and make the design
process more efficient. There are three types of meta information explicitly represented:
information extent, information origin, and information reliability.

Information extent describes the scope of the other three types of knowledge. For exam-
ple, the system could know that its visual presentations can only represent certain type of
information (e.g., quantitative) based on the information extent about the visual design
knowledge.

Information origin helps to partition the knowledge base by indicating the origin of the
knowledge. This partition aids the system to efficiently extract or reason about the informa-
tion it needs. For example, we can distinguish the knowledge that is acquired from domain
experts from that is derived from the current knowledge base. Assume that we have acquired
the “raw” design knowledge from graphic design experts. In the meantime, task-oriented
design patterns generated by the system are also stored in the knowledge base. Suppose that
the system needs to design a visual presentation for another task. Instead of designing the
new visual presentation from scratch by completely relying on raw graphic primitives (e.g.,
uninstantiated chart specifications), the system might consult the stored task-oriented design
patterns first to see whether a minor modification could be used to accomplish the new task.
As we can see, information origin helps to index knowledge types and partition the knowl-
edge (e.g., raw knowledge vs. completed design) so the system can employ the knowledge it
needs.

Information reliability indicates how reliable a piece of information is. For example, if
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the knowledge base contains information such as “table charts could be used to represent
quantitative information”, then this information could be tagged with a reliability factor, 0.7.
This means that the statement given above is correct 70% of the time. Information reliability
is used to guide the system to make highly reliable decisions. Moreover, the system could
use this information to explain why such a decision is made and how reliable the decision is.

A.2 Knowledge Representation

As described in Chapter 3, three knowledge representation paradigms have been used to store
various knowledge in automated graphics generation systems. Next, we follow these three representa-
tion paradigms to examine how a specific piece of knowledge is stored.

 A.2.1 Object-oriented Knowledge Representation

Domain Information Representation
Each piece of domain information is considered as a domain object. Domain objects are

partitioned based on their domain types. As described earlier, there are four top-level
domain types: entity, concept, measurement, and event, which become the top-level object
classes. The data dimensions (e.g., type and attributes) we used earlier to characterize
domain data become slots in a class. The slot components is used to record all subobjects that
are constituents of a composite object, while the slot visual-rep is used to record the con-
structed visual representation of the object (Figure A-5a).

To facilitate manipulating different types of attributes or relations, we consider each type
of attribute or relation as an object class itself [KRSL, 1993]. Thus, we organize different
types of attributes and relations (e.g., visual attributes vs. domain-specific attributes) into
different PROPERTY or RELATION classes. For example, the general, presentation-related
attributes (e.g., form, material, and location) of the domain objects described earlier are rep-
resented as VISUAL-PROPERTY class (Figure A-5b).

A specific domain object therefore is an instance (i.e., member) of one of the classes, for
example, Smith is represented as an instance of class PERSON, which in turn is a subclass of
ENTITY. In this example (Figure A-5c), instance Smith inherits slot values from both ENTITY

(e.g., slot form) and PERSON (e.g., slot material). .

(defclass ENTITY
(is-a DOMAIN-OBJECT)
(slot type)
(slot visual-attributes)
(slot domain-attributes)
(slot relations)
(slot components)
(slot visual-rep))

(a)

(defclass VISUAL-PROPERTY
(is-a PROPERTY)

(slot form)
(slot material)
(slot location)
. . .
(slot role)
(slot senses))

(b)

(definstance Smith of PERSON
(type ATOMIC)
(visual-attributes

(form SHAPED)
(material SKIN-COLOR) . . .)

(domain-attributes
(age 80)
(gender MALE) . . .) . . . )

(c)

Figure A-5 Domain object classes and instance
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Visual Design Information
Similar to domain objects, both visual objects and visual actions discussed earlier are

also represented using object-oriented formalism.

Visual Objects
Naturally, various visual objects (e.g., visual frames or visual structures) are represented

as classes based on their definitions. The more general the definition is, the higher the visual
object is placed in the hierarchy (e.g., Figure A-6(a)-(b)). Their syntactic components
become the slots in their class descriptions (Figure A-6(b)).

Even though the frame-like representation of a visual object appears like a template def-
inition, there are substantial differences between them. A template is a completely specified
parametrized description, of which all parameters are fully constrained in terms of their val-
ues. Moreover, the semantics of internal relationships among various parameters usually are
not explicitly specified or made known to the user. And the usage of a template is quite
straightforward: instantiating a template by supplying all the parameter values as specified.
Suppose that we have a bar graph template, in which parameters such as the location of the
bar (x), and the height of the bar (y) are specified in terms of their value types and ranges.
Using a template is like making a function call to retrieve the result by supplying the values
of each parameter.

In contrast, a visual object specification is more like a partial plan, whose parameters
and the parameter relationships are only partially specified. And such a definition is fully
recursive. Because of its partiality and recursiveness, the process of using an visual object is
a planning process rather than that of making a function call. Moreover, to determine
unspecified relationships and attributes of the visual object, the semantics of its parameters
and their relationships must be explicitly specified. For example, each bar in a bar graph
could itself be a visual structure such as a stacked bar graph. To design a complex bar graph
like this, we need to specify relationships between its bars, and the relationships inside each
bar. As another example, Figure A-6(c) describes a table chart instance Table1, which is
recursively defined in terms of other table chart instances in its cells slot. A visual object is
built up by recursively refining the descriptions of its structural components [Zhou and
Feiner, 1997a]. In other words, a completed visual object has specific values for all its slots,
while an unfinished object has at least one slot value that is vague or unspecified.

(defclass VISUAL-STRUCTURE
(is-a VISUAL-OBJECT)
(slot placeHolder)
(slot holderPlacement)
. . . )

(defclass TABLE-CHART
(is-a VISUAL-STRUCTURE)
(slot alignment)
(slot spacing)
(slot heading)
. . .
(slot cells)
)

(definstance Table1
of TABLE-CHART)

(placeHolder INSET_WINDOW)
(holderPlacement (0, 0))
. . .
(alignment ROW)
(cells

(Table11
(alignment COLUMN)
(celss Table111 . . . ))

. . . ))

(a) (b) (c)

Figure A-6 Visual object classes and instance
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Visual Actions
From an object-oriented point of view, visual actions are special objects that can change

the state of other objects. A general visual action is defined in the format shown in Figure A-
7a), while a specific type of visual actions is represented as a subclass of ACTION (Figure A-
7b). In this case, ANIMATED-ACTION is a type of actions with temporal constraints. A temporal
constraint is represented as a time interval that is specified by its start and stop times. This
type of action is usually used to achieve smooth transitions between individual displays.

As show in Figure A-7, each action has a set of operands that it acts upon. All precondi-

tions must be true before an action can be executed and all postconditions become true after
the action is executed. Each action is also associated with a set of parameters. As shown in
Figure A-7(c), MOVE has the parameter source and destination. Preference indicates how prefer-
able the action is in the current design context.

As mentioned earlier, a visual action is either primitive or composite. A composite action
is represented by a set of partial plans, which will eventually be decomposed into primitive
actions. Each partial plan is represented using a decomposition schema [Young et al., 1994].
Hence, each composite action is associated with a set of decomposition schemata. A decom-
position schema specifies subactions that are used to accomplish the composite action, and
partial orders and causal relations among the subactions. A composite action is represented
as Figure A-8(a), while a decomposition schema is defined in Figure A-8(b).

In addition to the slots specified in a primitive action, a composite action has three extra
slots: decompositionSchemata, decompositionPreferences (discussed later), and currentDecompo-

sition. For example, the composite operator RevealInternal has two decomposition schemata as
shown in Figure A-9. Action RevealInternal is used to reveal the internal structure of an
object (e.g., reveal a car’s internal structure to show its engine condition).

In DecompositionSchema1, RevealInternal could be decomposed into three subactions:
Focus on ?objX, DesignVisObject (see next section), and Open ?objX (to expose its internal
structures). Moreover, the partialOrders limit the order of the three actions to be applied: both
Focus and DesignVisObject must precede Open. Similarly, DecompositionSchema2 states that
the action RevealInternal can also be achieved by another combination of three actions. In this
decomposition, ShowInset replaces Open to display ?objX and its internals in an inset window.

(defclass ACTION (is-a Operator)
(slot operands)
(slot preconditions)
(slot postconditions)
(slot parameters)
(slot preference))

(defclass ANIMATED-ACTION
(is-a ACTION)
(slot startTime)
(slot stopTime))

(defclass MOVE
(is-a ANIMATED-ACTION)
(slot source)
(slot destination))

(a) (b) (c)

Figure A-7 Visual action classes

(defclass COMPOSITE-ACTION
(is-a ACTION)
(slot decompositionSchemata)
(slot decompositionPreferences)
(slot currentDecomposition))

(defclass DECOMPOSITION-SCHEMA
(is-a OBJECT)
(slot subactions)
(slot partialOrders)
(slot causalLinks))

(a) (b)

Figure A-8 Composite visual action and its decomposition
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Visual Lexicon
As briefly described earlier, the visual lexicon is a collection of primitive visual objects.

Each visual lexical item is also known as a visual word. Unlike other types of visual objects,
visual words are completely specified and are used as building blocks to form other visual
objects. In this sense, the representation of a visual word is much like a template.

A visual word is always associated with a single domain object. However, each domain
object can be represented by one or more visual words. In a visual lexicon, we say that a
domain object has multiple senses. We use an object-pattern that describes a set of domain
objects which share the same domain type (e.g., PATIENT) or certain attributes (e.g., their age

greater than 20) to index the visual lexical entry. Thus, each object-pattern is associated with
one or more sense, and each sense (visual word) has explicit syntax, semantics and pragmatics

in the context of graphic design. In addition, a graphical expression, called a lexeme, is also
stored. In the following sections, we describe each type of the information stored in a visual
lexicon entry.

(RevealInternal (is-a ACTION)
(operand ?objX)
(decompositionSchemata

DecompositionSchema1
DecompositionSchema2)

(. . .))

(DecompositionSchema1
(subactions

(Subaction1 (Focus ?objX))
(Subaction2 (DesignVisObject (internal ?objX)))
(Subaction3 (Open ?objX)))

(partialOrders
(< Subaction1 Subaction3)
(< Subaction2 Subaction3)))

  (DecompositionSchema2
(subactions

(Subaction1 (Focus ?objX))
(Subaction2 (DesignVisObject (internal ?objX)))
(Subaction3 (ShowInset (internal ?objX) ?objX)))

(partialOrders
(< Subaction1 Subaction3)
(< Subaction2 Subaction3)))

Figure A-9 Action RevealInternal and its decomposition

Figure A-10 Multiple senses for patient entry

Sense1 Sense2 Sense3 Sense4

Mr. van Gogh

(PATIENT-ENTRY
(object-pattern (?patient  (type PATIENT)))
(senses (sense1 (syntax)

(semantics)
(pragmatics)
(lexeme))

. . .
(sense4 . . .)))
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Object Pattern. To map an object onto a visual word, first we need to know the object pat-
tern including the type, attributes, and other object characteristics [Zhou and Feiner, 1996].
As shown in Figure A-10, variable ?patient stands for an instance of PATIENT. More complex
patterns can also be represented through the pattern description keywords. Currently, we
have implemented two keywords: type and attribute. Type specifies the object domain, while
attribute restricts the objects to a subset that satisfies the specified attributive constraints. For
example, to represent any PATIENT whose age must be greater than 20, we use:

(object-pattern (?patient (type PATIENT) (attribute (> :age 20))))

Note that the name of each attribute (e.g., age) is preceded by a “:”.

Syntax. Syntax describes the structure or pattern of a visual word. In particular, category,
subcategory, and media together specify the syntactic features under slot syntax (Figure A-11
and Figure A-12).

Category provides the type of a visual word based on the visual hierarchy described in
[Zhou and Feiner, 1996], while subcategory further classifies the type information. For exam-
ple, a visual word is an instance of a VISUAL-STRUCTURE. More specifically, it is in the TABLE-

CHART subcategory. Although we could go even deeper to further distinguish the visual word
types, we have found the two-level hierarchy to be adequate thus far.

IMPROVISE is designed to deal with a wide variety of visual presentation forms (i.e.,
visual media formats). We allow four media format: graphical model, graphical file, image,
and movie.

A graphical model describes a visual object in a particular graphics language. In graphi-
cal model mode, all graphical expressions are explicitly written out as a lexeme. However, in
graphical file mode the lexeme refers to the name of a file that contains all the graphical
expressions. For example, a human model might be expressed in Inventor [Wernecke, 1994]
file format as:

 Human{
Head { . . .}
Body {

Chest { . . .}
Waist { . . . } . . . }

#Text
(sense1

(syntax
(category VISUAL-UNITY)
(subcategory TEXT)
(media Graphical-Model)))

(semantics
(role Identification)
(scope Naming)
(sense LABEL)))

(pragmatics
(domainInfo . . .)
(hardware

(platform SGI | PC)
(cpu R4400 | Pentium))

(display Color | GrayScale)
(performance FAST)) . . .)

# Simple body model
(sense2

(syntax
(category VISUAL-UNITY)
(subcategory S-SHAPE)
(media Graphical-File)))

(semantics
(role Locate)
(scope BodyPosition)
(sense SYMBOL)))

(pragmatics
(domainInfo . . .)
(hardware

(platform SGI | PC)
(cpu SGI 4400 | PPro))

(display Color | GrayScale)
(performance FAST)) . . .)

Figure A-11 Visual word representations for patient

Mr. van Gogh
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}

Alternatively, this description can be kept in a file named “human.iv” in graphical file
mode. Image mode signifies that the current visual object is an image file. Optionally, it can
be followed by an argument to indicate the image format as shown in sense4 of Figure A-12.
The last media category, movie, indicates the current visual object is a video clip. Similar to
image, it can also be further qualified by appending a type argument (e.g., MPEG1).

The advantage of providing media information is to simplify the process of handling
multiple media formats and to make the system more general and extensible. Usually, we
specify a set of abstract visual operations (e.g., Scale and Move) at a high level without wor-
rying about the implementation details for different media. At a lower level, based on the
provided media information, the abstract operations are realized by media-specific proce-
dures. Hiding the details of abstract visual operations makes it easier to extend the system.
Consider the abstract visual operation Scale. Scale transforms the modeling matrix for a
graphical model, which can change the dimensions of an image. To support a new media for-
mat, we only need to write a set of procedures to perform the Scale operation specifically for
the new medium without affecting the rest of the knowledge base.

Semantics. While syntax focuses on describing the structure or pattern of a visual word,
semantics abstracts the meaning of the syntactic features, summarizes the thematic roles of a
visual word, and identifies the scope of its role. Figure A-11 and Figure A-12 also summa-
rize the semantic features for the PATIENT-ENTRY under slot semantics.

Semantic sense specifies the abstraction of syntactic features of a visual word, while
semantic role indicates what a visual word is capable of when it participates in a visual pre-
sentation. Moreover, semantic scope elaborates how well a visual word can perform in the
specified role. In Figure A-11, sense1 is a label that can only identify the patient by naming,
but sense4 in Figure A-12 is a portrait that can identify the physical appearance of the patient.

Pragmatics. In language or image understanding, pragmatic features ususa;;y refer to the
roles or influences that the language or image possesses to help the use understand distin-
guishing features and appropriate contexts [Goldsmith, 1984]. To facilitate visual design, we
have extended the connotation of the pragmatic features of a visual word. Pragmatics not
only includes information that is directly related to the characteristics of the user or context,

# Complex body model
(sense3

(syntax
(category VISUAL-UNITY)
(subcategory C-SHAPE)
(media Graphical-File)))

(semantics
(role Locate)
(scope BodyPosition)
(sense SYMBOL)))

(pragmatics
(domainInfo . . .)
(hardware

(platform SGI) . . .)
(display Color | GrayScale)
(performance MEDIUM))
. . . )

# Image
(sense4

(syntax
(category VISUAL-UNITY)
(media Image TIFF)))

(semantics
(role Identification)
(scope Appearance)
(sense PORTRAIT)))

(pragmatics
(domainInfo . . .)
(hardware

(platform SGI | PC) . . . )
(display Color | GrayScale)
(performance MEDIUM)) . .
.. . . )

Figure A-12 Visual word representations for patient
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such as the user’s identity, expectations, and application type, but also take into account fac-
tors that describe the relationships between the word and the physical design and execution
environments, such as the heardware requirements (e.g., display type). They are domain
information, hardware requirements, and performance estimation. Figure A-11 and
Figure A-12 list the pragmatics of each word in PATIENT-ENTRY, with domain information omit-
ted since they all share the same one:

(domainInfo
(appType MEDICAL)
(audienceType NURSE | DOCTOR))

Specifically, the pragmatics features of sense1 in Figure A-11 can be read as: the text
representation of a patient’s name is suitable for both nurses or doctors in a medical applica-
tion. Moreover, such a text can be rendered on a SGI or PC with color or gray-scale display.
The rendering speed of such a text string is fast (e.g., under a milliseconds).

Although the pragmatic features involve domain-specific information, we can consoli-
date all the domain-specific information by expressing them in a disjunctive form. For exam-
ple, if we want to use the PATIENT-ENTRY for both medical and military logistics applications,
we have this:

(domainInfo
(info1 (appType MEDICAL)

(audienceType NURSE | DOCTOR))
(info2 (appType LOGISTICS)

 (audienceType MEDIC | DOCTOR)))

Lexeme. In a visual lexicon, each lexeme is a graphical representation of a visual word.
Each type of representation (graphical model, graphical file, image, and movie) is actually a
parametrized template. For example, the lexeme of sense1 in PATIENT-ENTRY is:

(lexeme (VISUAL-UNITY (geometry
(Text2 (string (get-name ?patient))))))

This says that the visual word is an instance of VISUAL-UNITY with a geometry of 2D text,
which in turn requires that the string be the name of a patient. Embedding procedures in the
representation can be very useful. It eases information encoding by abstracting the common

Figure A-13

Syntactic Descriptions

Slots Value Description
Category VISUAL-STRUCTURE VISUAL-UNITY

Subcate-
gory

TABLE-CHART

TIME-CHART

BAR-GRAPH

LINE-GRAPH

PIE-GRAPH

. . .

IMAGE

VIDEO

TEXT

2D-SHAPE

3D-SHAPE

. . .

Medium

GRAPHICS-MODEL

GRAPHICS-FILE

GRAPHICS-MODEL

GRAPHICS-FILE

IMAGE

[TIFF | RGB | GIF | PICT]
VIDEO

[MPEG1 | SGI | QTIME]

Semantic Descriptions

Slots Value Description

Sense

LABEL

LIST

PLOT

SYMBOL

PORTRAIT

Role

CLUSTER

IDENTIFY

LOCATE

DISTINGUISH

. . .

Scope
PROPOSITION

SPATIAL-RELATION

CONCEPT-FUNCTION

. . .
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features of a visual word and expressing them in a procedural format. Assume that every
patient’s picture is stored as an image in the knowledge base, and is named by the patient’s
ID with a suffix “.tif”. Instead of explicitly listing all the patients and the file names of their
pictures in the visual lexicon, we can have a single expression:

    (lexeme (Image (fileName (string-cat (get-id ?patient) “.tif”))))

This states that the file name can be constructed by concatenating the patient’s ID and
the suffix “.tif”.

To be consistent with the overall constructive planning approach, the visual lexicon
stores only visual words that represent atomic objects. Visual representations for composite
objects are built from scratch by piecing together their component presentations. Figure
summarizes all possible values that can be used to describe the syntax and semantics of a
visual word. However it is worth noting that some of the values are correlated; for example,
if syntactic category takes visual-unity, then its subcategory can never be a table-chart. The-
oretically, we could encode complex visual representations such as time-chart in a visual
word. To retain the flexibility and extensibility of constructive graphics synthesis, we usually
construct complex visual presentations from scratch while keeping already-made simple
visual representations in the visual lexicon.

 A.2.2 Production Rule Representation

The purpose of utilizing various visual design principles (rules) is to assure an expressive
and effective design (e.g., [Mackinlay, 1986; Senay and Ignatius, 1994]). To maintain the
expressiveness and effectiveness criteria therefore becomes the principles of visual design,
and such principles can be further partitioned into different categories, each of which is spe-
cifically used to ensure a particular design criterion. Here, we list the general format of the
rules under each category. In a real system, these abstract rules should be refined using the
available information (e.g., domain information) and formulated based on the general format
introduced here.

Expressiveness Rules
Expressiveness rules are concerned with the ability to express the desired information

comprehensively, distinctively, generally, and specifically. In regard to the comprehensive-
ness and distinctiveness of visual presentations, we refer to the ability to present all related
information, as well as to emphasize the specific attributes of the information. While gener-
ality regards the ability to describe high-level groupings or abstractions [Mullet and
Sano, 1995], discreteness describes the ability to present certain information or certain
information characteristics. Generality and discreteness together ensure the information to
be expressed in a way, which allows the user to selectively attend to certain piece of infor-
mation, as well as perceive all the information as a coherent whole.

Integrity Rules
To express desired information, visual presentations must possess an integrity that

reflects the true meaning of the information. Therefore, this type of rules stresses that:
IF certain information characteristics presents, and

there is a visual object can represent this characteristics
THEN only this visual object can be used to express the desired information integrally.

The mapping between the information characteristics and the visual object types are in part
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based on the pragmatic information of visual objects [Goldsmith, 1984] and the visual vari-
able classification described by Bertin [Bertin, 1983]. For example, quantitative information
can not be expressed using shape variable, nor the orientation.

Comprehensiveness Rules
Comprehensiveness refers to the expressive ability that all related information or infor-

mation characteristics can be communicated to the user. In other words, this type of rules
states that:

IF certain information needs to be communicated to the user,
THEN all its related information should be presented to the user as well.

For example, in a medical domain, presenting drug usage of a particular patient perhaps
requires displaying all names of the drugs, along with their dosage and the time when the
drugs were applied. Moreover, the resulted display is capable of conveying all the desired
information cohesively.

Distinctiveness Rules
One of the desired features of visual presentations is to present information distinctively

enough so that the information can be readily identifiable. Distinctiveness asserts that:
IF a specific piece of information could be used to identify the information and

a component of a visual object can be used to make the information identifiable
THEN use the component to encode the specific information.

This type of rules delivers the ability to describe specific attributes of the information to
maintain its visual and conceptual identity. Let’s use the drug displaying example described
above again. Not only can we display the time when each drug is applied, but we also can
group the drugs and identify them by their types or effects. For example, the first group of
drugs could be antibiotics, while second group of drugs might be the drugs to maintain the
patient’s blood pressure. Such specific features that make a group of drugs identifiable
should be expressed in the presentation as well. In our example, if a table is used to describe
a group of drugs, the headings of the table chart could fulfill such a role by indicating the
type of drugs.

Generality Rules
In many cases, the generated visual displays represents a whole category of information

instead of individual instance of that category. Generality describes the ability to express
higher-level groupings or abstractions. The rules ensure design generality therefore stress
that:

IF a class of information needs to be presented, and
a particular visual object is a better abstraction of the class than others,

THEN use this visual object.
For example, a sphere could be used as an abstract representation for various types of com-
puter network nodes, while a detailed description of a computer might not be as well recog-
nized as a network node by different audience, even though each computer network node is
actually a computer or functioning through a computer.

Discreteness Rules
As an automated graphics generation system is capable of presenting a class of informa-

tion abstractly, it should also be able to “break” the information into parts so that the user
can access the information selectively. Discreteness rules are made to take care of this type
of business:
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IF the visual object can represent a piece of composite information,
THEN the components of visual object represent the components of the information.

This type of rules ensures that individual component of the information to be presented is
accessible through the components of the visual objects. Assuming that a bar chart is used to
represent a set of data, while each piece of the data can accessed through the bars in the bar
chart.

Effectiveness Rules
While expressiveness criteria ensures that the desired information is correctly presented,

effectiveness criteria determines whether the visual displays accurately and clearly convey
the information as intended. Not only do effective visual presentations convey information
accurately and clearly, but they also should be appropriate for the task, and the targeted user.
Moreover, effective visual displays must possess a perceptual immediacy that allows the
information to be perceived effortlessly. As our goal is to generate coherent visual discourse,
to remain coherent, the visual presentations must ensure visual consistency within or across
displays, maintain visual continuity between displays, and achieve maximum unification
among different visual components within display.

Accuracy Rules
Accuracy rules concern about whether the desired information could be accurately com-

municated to the user using the specific type of visual objects. This criterion is especially
important when the desired information is quantitative. Through their experiments, Cleve-
land and McGill have discussed the accuracy ranks of various visual cues regarding to quan-
titative perceptual tasks [Cleveland and McGill, 1984; Cleveland and McGill, 1985]. For
example, using position to encode quantitative information would be more accurate than
using length. Thus, a general rule in this category will be:

IF a visual object can convey the information more accurately than others,
THEN use this visual object.

Clarity Rules
While many measurements can be taken to judge whether a visual presentation clearly

communicates the information to the user as intended, here we focus on the rules that are
applied to enforce a visual display to clearly reflect the perceptual structure of the informa-
tion. As pointed out by a number of researchers (e.g., [Pomerantz, 1981]; [Treisman, 1982])
people intend to group or relate information together based on their characteristics while
they process or interpret the information. Based on gestalt theory, information can be visu-
ally organized in certain ways (e.g., by proximity or similarity) to reflect the perceptual
structure of the information. One type of rules considers how to utilize various types of
visual cues to visually group information together. These rules are primarily based on gestalt
effects:

Grouping by proximity
IF object A is more related to object B than any other object is,
THEN visualObject V1 representing A should be placed visually closer to visualObject V2 repre-

senting B than any other visual object is.

Grouping by similarity
IF object A is similar to object B,
THEN visualObject V1 representing A should be similar to visualObject V2 representing B.

Grouping by continuity
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IF object A is an continuition of object B,
THEN visualObject V1 representing A should be displayed as an continuation to visualObject V2

representing B.

Not only should visual presentations exhibit necessary information grouping, but they
also need to establish a hierarchy of importance for information groups [Mullet and
Sano, 1995]. And such a hierarchy can be used to structure the visual elements to reflect
their relationships. For example, a hierarchical menu will reflect the parent-child relation-
ship between the menu items and their submenus. Rules in this category concern how to use
scale, contrast and proportion to order the groups of information into a hierarchy that corre-
sponds to the intended reading sequence. For example, the user should be able to distinguish
urgent information from routine information through their visual appearances so that they
can selectively attend to the most important information first. Therefore, these rules stress:

IF information group A should be distinguished from information group B, and
different values of visual variable V can be used to fulfill the task,

THEN show group A and group B in different V values.

Appropriateness Rules
Successful visual presentations are required to be appropriate for the specific task or the

targeted user to meet their inherent needs [Goldsmith, 1984; Mullet and Sano, 1995]. For
example, it is inappropriate to present all textual information in English to a user who does
not even know English language. This type of rules asserts that certain visual cues should be
used to convey certain information based on the application or the user needs:

IF the user/application needs information to be presented in certain ways, and
particular visual cues can represent the information in the way they want,

THEN use these visual cues.

Immediacy Rules
One way of judging the efficiency of a visual display is to evaluate whether a visual dis-

play can be perceived by the user effortlessly and involuntarily [Mullet95]. Perceptual imme-
diacy is used to measure such visual effectiveness. As many visual properties may contribute
to the quality of perceptual immediacy, here we focus on the immediacy caused by simplic-
ity, directness, and sharpness:

Simplicity
IF both visual object A and B can be used to encode information I, and

visual object A is simpler than B,
THEN object A should be used.

By all means, relative simplicity of different visual objects can be measured by the complex-
ity of their visual structure (e.g., a 2D bar chart is simpler than a 3D bar chart), or by the
number of their components (e.g., color a map using four colors is simpler than using five
colors, assuming the color is only used to distinguish one region from another).

Directness
IF both visual object A and B can be used to encode information I, and

visual object A is more direct than B,
THEN object A should be used.

As we aim to communicate the information efficiently to the user, the more explicitly the
visual displays convey the information, the easier the user could perceive the information as
intended. Directness is measured by how a particular visual objects can be used to convey
the desired information in a straightforward or explicit manner. For example, if the goal is to
compare the sales performance for a car dealer for two particular months, a line graph with
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explicitly marked net gain or lose is much more direct than a bar chart that just plots the
sales separately for these two months.

Sharpness
IF both visual object A and B can be used to encode information I, and

visual object A can represent information sharper than B,
THEN object A should be used.

The sharpness could be measured by judging whether the desired information can be easily
recognized from its background or separated from the information surrounding it. For exam-
ple, a red object on a red background appears less sharper than a red object on a white back-
ground.

Consistency Rules
Effective visual presentations require the consistent design within or among displays

[Marks, 1991a; Neal and Shapiro, 1991]. Consistency rules ensure that the same information
or the same user tasks should be handled consistently. For example, encoding a computer
network node using a red sphere in one frame, and then depicting the same node using a red
square in another frame would be considered an inconsistent design. Similarly, if the system
decides to use a visual technique or a combination of techniques to solve a visual task,
unless there is a good reason to do so, otherwise such decision should be maintained and
applied to accomplish the same task. As a consequence, consistent rules maintain design
consistency at different levels:

Symbol encoding level
IF a piece of information was previously visually encoded using visual symbol S,
THEN the same piece of information should be encoded in S too.

Task solving level
IF a task T was previously solved in a way described by W,
THEN the same task T should be solved in W too.

Continuity Rules
As visual momentum [Woods, 1984] could prevent the user from getting lost in an infor-

mation network, effective visual presentations must maintain continuity between different
displays to gain visual momentum. In the context of visual discourse, continuity means pro-
viding smooth transitions between different visual frames. To complement the animated
visual actions, film-making techniques (e.g., dissolve, fade in, and fade out) are also used to
provide different types of transition. We have adopted these film-making rules directly from
[Karp and Feiner, 1993].

Unity Rules
It is common that a visual representation needs to encode a significant amount of infor-

mation at one time, let alone new information might need to be incrementally integrated into
existing presentation. To avoid information overload or confusion, unity rules are designed
to address how to efficiently combine all types of information into an integrated whole, or
how to efficiently integrate new information in the existing displays.

Efficiently harness every visual component
IF more than one visual tasks needs to be accomplished, and

visual object A could satisfy more visual tasks than the others could,
THEN use A.

Suppose that we need to show both the structure and the temperature distribution of the air-
plane. The same airplane body could be used to show the structure and serve as a base for
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displaying temperature distribution information. In other words, an effective visual presenta-
tion is also versatile.

Efficiently integrate new information into existing displays
IF visual object A can be better integrated with current display than the others can
THEN use A.

The easiness of the integration is determined by the nature of the current visual objects. It
can be measured by the amount of space the visual object acclaims, or by the amount of the
interference introduced by the new visual object (e.g., how much current visual display
needs to be amended to suit the new visual object).

So far we have listed substantial number of visual design principles involved in automat-
ically generating expressive and effective visual presentations. Although we have attempted
to establish a comprehensive categorization of various design rules in an orthogonal manner,
understanding human perceptual capabilities is not a trivial task. Therefore, the categories
introduced here do not necessarily cover an exhaustive set of rules, nor are they perfectly
orthogonal to each other. For example, both clarity and immediacy might both refer to a
same rule that using good contrast to clearly express information grouping and reinforce a
perceptual immediacy. Nevertheless, this does not appear to be a problem. Intuitively, it is
common that one design rule might be able to achieve more than one expressiveness or
effectiveness criterion as one visual expression could be used for a number of different tasks.

Intuitively, when various rules are applied at the same time, conflict design decisions
may arise. In case of conflicts, we need to order various rules based on the specific situations
(e.g., the application type, or the communicative goals). For example, if the overall goal is to
view the trend of a car dealer’s sales performance over time, the rules emphasizing compre-
hensiveness might be favored over those focusing on distinctiveness in case these two types
of rules result in a conflict design.
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APPENDIX B  Planning Stages

We have briefly described how to employ a hierarchical planning approach
and its main features (top-down decomposition, partial-order) to automatically
generate visual presentations. Now, we look more closely at the main planning
stages that involve in constructing an effective visual presentation. More concrete
and complete examples will be given in the next chapter to illustrate how this
approach actually works.

The input to our system is a design task. The hierarchical planner starts to plan
based on the given input. A planning cycle oscillates among four steps: selecting
an action to accomplish a task, decomposing a composite action, resolving con-
flicts, and checking whether the planning process is finished. Here we focus on
two key steps: action selection and action decomposition. These two steps
together determine how a design is constructed and how the search space is
pruned.

B.1 Action Selection

One of the major steps in planning is to find an action that can accomplish the
current task. The planner compares the design task with the postconditions of
visual actions. If one of an action’s postconditions matches the task, then the
action becomes a candidate to accomplish the current task. A candidate action
could be either a brand new action that has never been instantiated before, or a
used action that was instantiated earlier for accomplishing another task. Usually,
there is more than one candidate action. Nondeterministically choosing one of
them might result in later planning failure. Therefore, several heuristic preference
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constraints are employed to rank the candidate actions. The higher the action is ranked, the
more preferable it is.

Currently five types of preference constraints are used in our system: achievability, con-
sistency, unity, sharing, and availability. These preference constraints not only can be used
to guide the action selection, but also can be employed in other decision making process, for
example, visual word selection or action decomposition.

Achievability
Achievability ranks the actions based on the fact that some actions will lead to a more

effective design than others for a particular task. For example, DesignLineGraph is ranked
higher than DesignBarGraph if the task is to compare different sets of numerical data empha-
sizing a trend over time [Goldsmith, 1984]. Achievability is specified in the action’s post-
conditions. The following representation shows that the DesignLineGraph has higher rank
than the DesignBarGraph when the postcondition is ShowTrend:

(DesignLineGraph (is-a CompositeAction)
(. . .)
(postconditions (postcondition1 (ShowTrend (rank 10)))) )

(DesignBarGraph (is-a CompositeAction)
(. . .)
(postconditions (postcondition1 (ShowTrend (rank 5)))) )

Consistency
Consistency asserts that if an action was used before to accomplish a similar task in a

similar situation, then it is preferable. The consistency preference not only applies to the
action selection process, but also affects action instantiation. For example, assume that the
current user dialogue is shown in Figure B-1, which uses colors to encode different types of
network traffic in a link. Suppose the user wants to examine the traffic in a different link.
Unless there is a good reason to do otherwise, not only should the color encoding action be
used, but the action should also be instantiated to use the same color code. To accomplish
this, we use a history list to record the dialogue’s tasks and solutions.

Unity
Unity states that if an action leads to a design that can be better integrated with the exist-

ing design than other actions, then this action is preferable. Figure B-1 shows a network with
traffic load information in a link. The stacked bars inside the link represent the traffic load. A
regular bar graph can also be used to display the traffic information. However, in this exam-
ple, the design task is to show the link’s traffic status without comparing different links.
Therefore, the oriented stacked bar graph conveys the needed information and can be better
integrated with the selected link than a bar graph. Thus, DesignStackBar is preferred over
DesignBarGraph.

Sharing
Within the same planning process and concerned with the same object(s), sharing states
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that if one of several competing actions is used and others are not, then the used action is
more preferable since it can be shared by the previous and current task [Russell and
Norvig, 1995]. For example, if the current subtask is Distinguish objectX, both Enlarge objectX

and Highlight objectX are among the choices. But suppose Enlarge objectX is instantiated earlier
in the same planning process to accomplish another subtask Identify objectX. In that case,
Enlarge is a better candidate than the unused action Highlight since it can be shared by both
subtasks Distinguish objectX and Identify objectX.

Availability
Availability specifies that an action is more preferable if it has more satisfied precondi-

tions than another action. For example, Enlarge and Highlight could be both used to distin-
guish an object. If two of the preconditions of Enlarge are already satisfied, and none of the
preconditions in Highlight has been satisfied yet, then Enlarge is preferred to Highlight. At one
extreme, under an availability preference, actions without any preconditions are always pref-
erable to actions that require preconditions.

Preference constraints not only improve performance by avoiding backtracking, but they
also ensure the satisfaction of certain effectiveness criteria (e.g., consistency, unity). More-
over, preferences themselves can be ranked based on their importance when multiple prefer-
ences can be applied at the same time. The current ranking in a descending order is:
achievability, consistency, unity, sharing and availability. Our ranking is based on the fact
that ensuring the selection of an effective design (achievability) is most important. Next
come consistency and unity criteria to support overall cohesiveness. Finally, sharing and
availability preference complement the design process as performance tuning factors (e.g.,
availability will favor actions with fewer unsatisfied preconditions). The preference slot will

Figure B-1 Traffic status in the selected link
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hold the computed ranking based on preference constraints.

Once an action is selected, it will be processed. If it is a composite action, it will be
decomposed using one of its decomposition schemata. If it is a primitive action, all its pre-
conditions are checked to see whether they are satisfied. Next, we focus on action decompo-
sition.

B.2 Action Decomposition

A composite action must be decomposed into subactions before a complete plan can be
constructed. Just as arbitrarily choosing an action might result in later plan failure, randomly
selecting a decomposition schema in action decomposition could also cause plan failure.
Hence, we attach a set of decomposition preference constraints to a composite action to
guide the decomposition. We use two types of preference constraints: achievability and con-
sistency. Similar to the achievability preference in action selection, achievability states that
under conditionX, a decomposition schema is preferred since it leads to a more effective
design. Consistency preference aims to maintain design consistency by favoring a decompo-
sition schema that was used in previous dialogues.

The two types of preferences themselves can also be ordered. Our system gives priority
to the achievability preference. Recall that RevealInternal has two decomposition schemata
(Figure A-9). Its decomposition preferences are specified in Figure B-2.

Preference1 asserts that if the operand ?objX is likely to intersect with other objects and it
has a small 2D bounding box (the size of the inset window created by ShowInset is propor-
tional to the bounding box), then DecompositionSchema2 should be used. Here, “small” is
interpreted to mean that either dimension of the bounding box does not span more than 1/3
of the full display window. In a network application, some nodes are very likely to intersect
with other nodes nearby especially when they get enlarged. In this case, the second decom-
position schema should be selected.

In our top-down approach, an abstract design is sketched at a high level using composite
visual actions. Thus, action decomposition can also be considered as design refinement.
Through action decomposition, a rough design is refined. Moreover, design consistency is

(RevealInternal (is-a Action)
(operand ?objX)
(. . .)
(decompositionSchemata

DecompositionSchema1
DecompositionSchema2)

(decompositionPreferences
(preference1

(condition
(and (HighIntersection ?objX)

(SmallBoundingBoxSize ?objX))
(preferred DecompositionSchema2))

(default
(preferred DecompositionSchema1))))

Figure B-2 Decomposition preference for composite action RevealInternal
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ensured through the refinement. Suppose we want to design a network diagram to represent
a computer network. At a high level, action DesignNetworkDiagram is selected. The class of
DesignNetworkDiagram and one of its instances are represented as:

At this stage, the representations for nodes and links are still empty. Later, DesignNetworkDia-

gram is decomposed into a set of DesignVisObject actions for nodes and links:

Both DesignVisObject actions design visual representations for each node and link. Suppose
one material should be consistently applied to all nodes. Then each node will have a similar
representation:

At this point, DiagramX is refined accordingly:

Here, the variable ?node_material serves as a global variable in the network diagram
design. If ?node_material in one of the node is instantiated later to some actual material value,
then all nodes will have the same material through the variable binding. The ability to use
variables is an important feature in a planner [Wilkins, 1988]. Using variables in abstract
visual presentations ensures consistent design within a display, and also defers some
detailed decisions at the high level to avoid costly redesigns. In this example, deciding
which color to use is really not important at this level—the link representation has not been
designed yet and the system knows nothing about the background color either. An arbitrary
early decision will likely lead to a failure. For example, if the system arbitrarily assigns the
color white for the nodes, it might realize later that white is inappropriate due to a white
background.

B.3 Conflict Resolution

Before a plan can be further refined, all conflicts at this level must be resolved. Conflict
resolution involves detecting potential conflicts (e.g., one action’s postcondition might deny
another action’s precondition), formulating new constraints to avoid potential conflicts, and
ensuring that the constraints are likely to be satisfiable. Currently, we use a straightforward

(DesignNetworkDiagram (is-a CompositeAction)
(operand DiagramX)
(. . .))

(DiagramX (is-a NetworkDiagram)
(nodes)
(links)
(. . .))

(DesignVisObject (is-a CompositeAction)
(operands nodeX)
(. . .))

(DesignVisObject (is-a CompositeAction)
(operands linkX)
(. . .))

(NodeX (is-a Node)
(id)
(. . .)
(representation NodeRep))

(NodeRep
(is-a VisualObject)
(material ?node_material)

(. . .))

(DiagramX (is-a NetworkDiagram)
(nodes Node1Rep Node2Rep . . .)
(links)
(. . .)
(variable-list (?node_material (binding NONE)))
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approach to solve simple constraints: we exhaustively check each constraint in the constraint
network. A more sophisticated constraint solver could be used to replace the current one in
the future.

B.4 Completion Checking

This step checks if a plan is finished. A plan is finished if and only if:
1. All preconditions for every action are satisfied,
2. there is no composite action in the plan, and
3. there is no conflict in the plan.
Any precondition that has not yet been satisfied becomes a subtask that needs to be

achieved before a complete plan can be formed.

To model the inference engine, we have described a top-down hierarchical planning
approach as the problem-solving approach for automated graphics generation systems. The
major advantage of this approach is its computational efficiency. Compared to a search-
based or non-hierarchical planning approach [Yang and Tenenberg, 1990], it achieves effi-
ciency by reducing the search space and deferring decisions to avoid unnecessary backtrack-
ing. In addition, it also eases knowledge-encoding through reuse of primitive actions. More
importantly, its top-down design assures global coherence, and facilitates interleaving of
planning and execution [Wilkins, 1988].

We believe that planning approach is an efficient way to model the inference engine for a
general purpose graphics generation system unless there is a better problem-solving
approach available. Nevertheless, the inference engine could be instantiated in any way that
best suits the practical needs of the developers or applications. We are not trying to develop
an all-purpose super-efficient planner, instead we emphasize the needs (e.g., global coher-
ence and computational efficiency) of the inference engine and developing the guidelines
(e.g., top-down strategy) on how to meet these needs.
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