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1 Introduction

In this note we consider the approximation of integrals over the d-dimensional unit cube,

]f:/ f(xl,...,xd)dxl...dxd:/ fla)dz, (1.1)

[0,1)¢ [0,1)¢
under the assumption f € E, 4, where, for arbitrary o > 1, E, 4 is the set of complex-valued
functions in L;([0, 1]¢), whose Fourier coefficients satisfy
Fol s —
= gy
Here h = (hq, ha, ..., hg) with integers h; and
Fihy= [ fw)e e,
[0,1)¢

h-a =YY" hjz;, and h; = max (1, ).
Note that a function f belonging to F, 4 necessarily has a continuous 1-periodic extension,
since the Fourier series for f € F, 4 is absolutely convergent:

S F(R) T < S (R hg) T < o0
herd herd

Our aim is to show that in the worst-case setting the integration problem is intractable:
that is, to achieve a given error ¢, ¢ < 1, for all f € F, 4, the amount of information required
is exponential in d. More precisely, we prove that the minimal error of any quadrature rule
that uses N < 2¢ points is one. The bound on N is sharp, since the error of a quadrature
rule that uses N = 2? may be arbitrarily small for large a.

The space F, 4 is a standard setting for the particular class of quadrature formulas known
as lattice rules (for a survey see [4]). The implications of the intractability result for lattice
methods are considered briefly in Section 3.

2 The intractability result

A quadrature rule approximating (1.1) is a linear functional of the form

N
Qf = Q(dv vavt)f = ijf(t])v
7=1
where the ‘weights’ w := (w1, ...,wy) and ‘points’ t := (11,...,ty) satisfy

w; € C, t; € [0,1)% for j=1,...,N.

Without loss of generality we can assume that #4,... ¢y are distinct points. The worst-case
error for the quadrature rule @) = Q(d, N,w,t) for the class F, 4 is

Pa(Q):Pa(vavwvt) ‘= sup {|Qf_]f|:f€Ea7d}'
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Since we are interested in a lower bound for P,(Q)), we define
e(a,d,N) :=inf {P.(d,N,w,t):w e tec(0,1)HN1.

It is an elementary fact that

e(a,d, N) <1, (2.1)

since by taking wy =wy; = ... = wy = 0 we obtain

~

Fold, N,0,) = sup {|[f]: f € Eaa} =sup {[f(0)| : f € Eaa} = 1.

The following theorem, which is our main result, states in effect that if N < 2¢ then, in the
worst-case setting and for the class F, 4, the error is as bad as it can be, and the quadrature
rule () = 0 is a best possible rule.

Theorem 1 If N < 2% then
e(a, N, d) = 1.

Proof.

Let N < 2¢ and suppose that points t = (¢,...,tyx) and weights w = (w1,...,wy) are
given. The theorem is proved by constructing a function ¢ € £, 4, depending on ¢ and w,
such that /g = 1 and Q¢ = 0. From this it will follow that P,(Q) > |Qg — I¢| = |Ig| = 1.
Since this holds for any choice of points ¢ and weights w, it follows that e(a, N,d) > 1, which
together with (2.1) proves e(a, N,d) = 1.

To accomplish the construction, let By := {0,1}%, and define g to be a trigonometric
polynomial of the form
g(2) = () 3 ane?e, 22)
h€Bgy

where {a, € C: h € By} is a non-trivial solution of the linear system

Y ape*™h =0, j=1,...,N, (2.3)
hEBd

and 6 is a trigonometric polynomial which is yet to be specified. A crucial point in the
proof is that, because the homogeneous linear system (2.3) has 2¢ unknowns but fewer than
2% equations, a non-trivial solution of (2.3) certainly exists. Let h* € B, be such that
lan| < laps| for b € By. We scale our non-trivial solution of (2.3) so that

lap| <1 for he By and ap = 1.

It follows from (2.2) and (2.3) that

g(t;) =0(t;) Z aye2 it = 0, j=1,...,N,
heBy

from which it is clear that Q(d, N,w,t)g = 0. Now we choose

0(1,) . e—27rih*~x7



so that

o) = 3 apetrii (24)
hEBd

Clearly
Ig=g(0)=ap = 1.

On the other hand ¢ given by (2.4) is a trigonometric polynomial of degree < 1 in each
component of x, since for h, h* € By we have

hj—h;=0,1or —1forj=1,...,d

This implies

(hy — B5) (ha — B3) -+ (ha — h) = 1 for h, h* € By.

It therefore follows, since |a,| < 1, that ¢ € E, 4, and so the theorem is proved. a

Remark 1

Theorem 1 remains valid if we permit more general quadrature rules. Namely, for fixed
points ¢; we may approximate the integral I f by ¢ (f(t1),..., f(f.)), where ¢ is an arbitrary
nonlinear mapping, ¢ : R" — R. Since the class F, 4 is convex and symmetric (i.e., f € F, 4
implies that — f € F, 4) we may apply Smolyak’s theorem, see e.g., [6] p. 76. This theorem
states that the mapping ¢ which minimizes the worst-case error is linear. For linear ¢ we
have just proven that the error is at least one.

We may also permit adaptive choice of points ¢;. That is, assuming that the points
t1,...,t;—1 are already chosen and the function values f(t1),..., f(¢;-1) are already com-
puted, the next point ¢; may depend arbitrarily on f(¢1),..., f(t;—1). By Bakhvalov’s theo-
rem, see e.g., [6], p. 59, the worst-case error of arbitrary quadrature rule that uses adaptive
points ¢; cannot be smaller than the minimal worst-case error of linear quadrature rules that
use nonadaptive (fixed) points. Again the latter error is at least one. Hence, Theorem 1 also
holds for adaptive choice of points ;.

3 Lattice rule results

Our purpose in this section is merely to mention some known lattice rule results that cast
on interesting light on the result in Theorem 1. In particular, we will see that the condition
N < 24 in the theorem cannot be improved, and indeed that the behaviour of e(a, N, d)
changes dramatically when N reaches 2.

A lattice rule is an equal-weight rule of the form

Qf = A1),
where
{t1,...,in} = LN[0,1)4,

and L is an ‘integration lattice’; that is to say, L is a geometrical lattice containing Z¢ as a
subset, where a geometrical lattice is a discrete subset of R? that is closed under addition



and subtraction. It is known [5] that if ) is a lattice rule that corresponds to an integration
lattice L then

Qf—If= Y f(h) for [€ B,

neLl,
R0
where L't is the ‘reciprocal lattice’ of L,
Lt :={her*:z-hez, Veec L} Cz"

It follows in turn that

Pa(Q) = sup {|Qf_ ]f| : f € Ea,d} = Z W (31)

h#0

One of the simplest of all lattice rules is the n-point product-rectangle rule

For this rule we can easily compute P,(R,), by using the fact that the corresponding in-
tegration lattice is L = (n~'z)?, from which it follows that Lt = (nZ)?% Specifically, from
(3.1) we find

gmmzﬂ(zj%%—1:@+¥%g-ﬁ, (3.2)

J=1 \h;EnL
where ((x) is the Riemann zeta function,

o0

C(x)=>_417" for a>1
=1

In particular, on setting n = 2 we find
Pu(Ra) = (1+ Cla)/227 1) — 1. (33)

In the product-rectangle rule with n = 2 we have N = 2%, thus this example only just misses
being covered by Theorem 1. On the other hand, we note from (3.3) that

P,(R;) — 0 as o — o0,
from which it follows that
e(a,2,d) — 0 as o — co.
And since e(a, N, d) is clearly non-increasing in N, it follows in turn that
e(a, N,d) — 0 as o — oo forall N >2% (3.4)
The last result stands in striking contrast to the result from the theorem that

efa, N;d)=1 Ya>1 if N<2%
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This result (3.4) shows that the condition N < 2¢ in the theorem cannot be weakened, at
least for large values of a.

The product-rectangle rule is not usually thought of as an interesting lattice rule, because
lattice rules are traditionally designed to have good asymptotic convergence properties as
N — oo (for fixed d.) By this test the n-point product-rectangle rule performs poorly,
since (3.2) gives the inferior result

P,(R,) = O0(n™) = O(N~%/%).

Much greater interest attaches usually to the ‘method of good lattice points’; a class of lattice
rules of the form

o= (i) 39

where z € Z%is a well chosen integer vector, with no nontrivial factor in common with N,
and {z} for x € B¢ means that each component of z is to be replaced by its fractional part
in [0,1).

The classical theorems of the method of good lattice points (see, for example, [3] or [4])
assert the existence of z = z(N) such that

(log N)Pled)

PAQ(2)) £ elad) B

for some positive functions ¢ and 3. Usually, 3(a,d) is of order d. This result indicates on
impressive rate of convergence for large N, but asymptotic bounds of this kind either do
not give explicit values of ¢(a,d), or do not provide useful bounds for smaller values of V.
Among the known explicit bounds, the authors of [2] assert that for prime values of N up
to approximately 10¢ the bound in the following theorem is as good as any known bound:

Theorem 2 For N prime there exists a lattice rule Q(z) of the form (3.5) such that

(14 2¢(a))? N (1 21— Nl—a)g(a))d L

Fo(Q(2)) < (3.6)

N N N -1

An analogous result for composite N is given in [1].
For N = 2% it can easily be seen that the right-hand side of (3.6) is bounded below by
(0.5 + C(oz))d — 1 whenever
2 > 2((a) + 1. (3.7)

Since ((a) > 1+ 1/(a — 1), it is easy to check that

gff? < % + ((a).

I+

Thus, except possibly for the small values of o and d that violate (3.7), the known theoretical
result for the method of good lattice points is in fact worse than the result (3.3) for the
humble 2¢-point product-rectangle rule. For still smaller values of N it can be seen that the
right-hand side of (3.6) always exceeds 1, so there is no violation of Theorem 1.
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