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Abstract

Many applications require approximate values of path integrals. A typical approach
is to approximate the path integral by a high dimensional integral and apply a Monte
Carlo (randomized) algorithm. However, Monte Carlo algorithm requires roughly =2
integrand evaluations to provide an e-approximation. Moreover, the error bound of ¢
is guaranteed only in a stochastic sense.

Do we really need to use randomized algorithms for path integrals? Perhaps, we
can find a deterministic algorithm that is more effective even in the worst case setting.
To answer this question, we study the worst case complexity of path integration, which,
roughly speaking, is defined as the minimal number of the integrand evaluations needed
to compute an approximation with error at most €. We consider path integration with
respect to a Gaussian measure, and for various classes of integrands.

Tractability of path integration means that the complexity depends polynomially on
1/e. We show that for the class of  times Frechet differentiable integrands, tractability
of path integration holds iff the covariance operator of the Gaussian measure has finite
rank. Hence, if the Gaussian measure is supported on an infinite dimensional space
then path integration is intractable. In this case, there exists no effective deterministic
algorithm, and the use of randomized algorithms is justified. In fact, for this class of
integrands, the classical Monte Carlo algorithm is (almost) optimal and the complexity
in the randomized setting is proportional to ¢72.

On the other hand, for a particular class of entire integrands, the worst case com-
plexity of path integration is at most of order ¢ with p depending on the Gaussian
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measure. Hence, path integration is now tractable. Furthermore, for any Gaussian
measure, the exponent p is less than or equal to 2. For the Wiener measure, p = 2/3.
For this class, we provide effective deterministic algorithms which solve the path inte-
gration problem with (worst case) cost that is usually much less than the (randomized)
cost of the classical Monte Carlo algorithm.

I. Introduction

Approximate computation of integrals is undoubtedly one of the most important problems
of computational mathematics. In many cases, integrals involve functions of finitely many
variables d. Not surprisingly, the univariate case d = 1 is best understood and has a rich
and well-developed theory. Elements of the classical theory of univariate integration can
be found in almost all numerical analysis textbooks. The study of the complexity of con-
tinuous problems has started from the pioneering work of Sard and Nikolskij on univariate
integration, see [1, 2].

The multivariate case, with d finite and greater than one, is much harder and is a subject
of very active research. For large d, a typical approach is to use Monte Carlo (randomized)
algorithms. However, for some classes of integrands, deterministic algorithms can be also
very effective. An example is provided by integrands with bounded mixed derivatives, for
which algorithms based on low discrepancy points can be used. The state of the art can
be found in [3]. Complexity of multivariate integration in various settings is also an active
research area. An account of recent progress can be found in [4, 5, 6, 7, 8, 9, 10, 11].

In this paper we consider the case d = +o00. That is, we deal with integrals of functions
of infinitely many variables. This is usually called the path integration problem. The name is
derived from the most typical case, in which we integrate over continuous functions (paths)
with respect to the Wiener measure, see [12]. Sometimes, instead of path integration, the
name functional integration is used, see [13, 14]. The latter stresses that we integrate over a
class of functions.

One may suspect that the path integration problem is merely of theoretical interest.
However, the opposite is true. Path integrals occur in many applied fields, including quantum
physics and chemistry, differential equations, and financial mathematics, as well as average
case complexity. Here are a few examples. In the forties, R. P. Feynman introduced path
integration in quantum physics, see [12]. The work of Feynman initiated a very fruitful
stream of research in quantum physics and chemistry which continues to be active, see e.g..
[13, 15, 16, 17, 18, 19, 20, 21, 22, 23]. A rigorous mathematical foundation for Feynman
path integration can be found in [24]. In the fifties, M. Kac observed that the approach



of Feynman can be used for the solution of parabolic differential equations, and established
what today is called the Feynman-Kac formula, see [25]. In fact, solutions of many differential
and operator equations can be expressed as path integrals, see [14]. Also many problems in
financial mathematics are expressed as generalized Feynman-Kac formulas, and hence their
solution may be reduced to computing path integrals, see [26, 27, 28]. Finally, in average case
complexity, we need to estimate the average error of an algorithm; this error is, once more,
given as a path integral. A more complete list of applications is given in the introduction of
[14].

A typical approach to computing path integrals is to switch to a multivariate integral
and apply a Monte Carlo (randomized) algorithm. That is, the infinite dimensional integral
is approximated by a d dimensional integral, where d may be large (or even huge). Then
the classical Monte Carlo algorithm can be used since its speed of convergence, although not
great, does not depend on d. This approach usually requires on the order of e7% integrand
evaluations to obtain the expected error at most ¢, see Section 2 for more details.

Due to this relatively high cost of Monte Carlo and only stochastic error assurance, one
would like to know weather there is an effective deterministic algorithm which approximates
path integrals with a small (deterministic) error. Obviously, the existence of such a deter-
ministic algorithm depends on the probability measure g occurring in the path integral as
well as on the class F' of integrands. Hence, for a given measure g and a given class F,
we wish to find the worst case complezity of path integration. Roughly speaking, the worst
case complexity is proportional to the minimal number of integrand evaluations needed to
compute an approximation with worst case error at most ¢.

We are mainly interested in how the complexity depends on e. If the complexity is of
order £ with p < 2 then we beat the bound 72 of the classical Monte Carlo algorithm. For
p = 2, the bounds are of the same order. However, even for p > 2, we may prefer to use a
deterministic algorithm since its error is guaranteed to be at most ¢, whereas for the classical
Monte Carlo algorithm we only know that its expected error is at most ¢. Moreover, with
deterministic algorithms, we do not have to cope with the problem of generating random
numbers or functions.

This discussion motivates the concept of tractability of path integration. Namely, we
say that the path integration problem is tractable it the worst case complexity depends
polynomially on 1/¢. In other settings such as the randomized or average case settings,
tractability of path integration is obvious in classes for which the L5 norms of integrands
are uniformly bounded. However, for problems that are not path integration, the study of
tractability in other settings is an interesting subject, see [29, 30].

Tractability of path integration depends on the probability measure p and the class F' of
integrands. We now comment on the assumptions regarding p and F'.



We begin with the measure . In most applications of path integration, the classical
Wiener measure (Brownian motion) is used. The Wiener measure is an example of a Gaussian
measure which is appropriate for many applications. Its role can be hardly overestimated.
It would be tempting to study path integration only for the Wiener measure. However, we
prefer to be more general and to study path integration for arbitrary Gaussian measures,
and to illustrate the results for the Wiener measure as a primary example. In this way
we will better understand the influence of the Gaussian measure on the complexity of path
integration. Of course, it would also be interesting to study path integration for a non-
Gaussian measure, although no such application is known to us.

We now turn to the class F' of integrands. Here, the situation is far more complex since
there is no class of integrands which plays a dominant role corresponding to the Wiener
measure. Even for the multivariate case, there is no class which is singled out. On contrary,
many different classes seem to be relevant and their choice depends on the particular appli-
cation. Usually these classes are characterized by some global smoothness properties of the
integrands.

For path integration, we follow the multivariate approach and we analyze classes defined
by global smoothness. First we consider the class of integrands that are r times continuously
Frechet differentiable. We prove that in this case, tractability of path integration holds iff
the covariance operator of the Gaussian measure has finite rank. Hence, the problem of path
integration is intractable if the Gaussian measure is supported on an infinite dimensional
space. Then it is reasonable to switch to the randomized setting. It turns out that the
classical Monte Carlo algorithm is (almost) optimal and the complexity in the randomized
setting is proportional to 72

Next we analyze a specific class of entire functions. For this class, the path integration
problem is tractable, and the worst case complexity is of order ¢7” with p depending, in
particular, on the Gaussian measure used. For the Wiener measure, we have p = 2/3, which
means that we need substantially fewer integrand evaluations than for the classical Monte
Carlo algorithm even though we guarantee that the worst case error is at most €. We stress,
however, that to get this result we assume that integrands are entire functions and that we
can use derivatives as permissible information. It is well known that the classical Monte
Carlo algorithm requires no smoothness of the integrands; it is enough to assume that they
are square integrable.

The classes of integrands studied in this paper are characterized by global smoothness
properties. In a forthcoming paper, see [31], we consider a different class of integrands. This
class is related to the Feynman-Kac formula. More precisely, this is the class of potential
and initial conditions functions which define the heat equation. Although these functions do
not need to be very smooth, we prove tractability of path integration, and in many cases,
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the worst case complexity is substantially smaller than 72

II. Formulation of the problem

In this section we formulate the path integration problem and explain a typical computational
approach to approximating path integrals. We also define the worst case complexity and
tractability of path integration.

Let X be a separable Banach space. The norm in X is denoted by || - ||x. An example
of X is provided by the space X = C([0,1]) of continuous scalar functions defined on [0, 1]
with the sup norm, ||z||x = sup,¢p 7 |z(t)]-

We assume that X is equipped with a zero mean Gaussian measure p, see, e.g., [32]. An
example of y is provided by the Wiener measure g = w for which X = C([0,1]) and

/0[071]:1;(t1):1;(t2)w(d:1;) = min{ty, 5 }.

It is known that X can be embedded in the Hilbert space Ly([0,1]). It is an obvious
corollary of the Banach (sometimes called the Banach-Mazur or Banach-Alaoglu) theorem
which states that X is isometrically isomorphic to a subspace of C([0,1]) which, in turn,
can be treated as a subspace of Ly(]0,1]). This means that there exists a one-to-one linear
continuous mapping Im : X — Ly([0, 1]). We denote the inner product of Ly([0,1]) by (-, ).
Then the measure v = pIm™" is also a zero mean Gaussian measure on Ly([0,1]). Let
C, : L2([0,1]) — L2(]0,1]) be the covariance operator of v. The operator C, is self adjoint,
nonnegative definite and has finite trace. That is, there exists an orthonormal system {;}.

of Ly([0,1]), (ni,m;) = 6, for which

Comi = Xniyy, M > Ay > >0 and Z)\i<—|—oo. (1)

=1

Observe that if all A; = 0 then the path integration problem becomes trivial. Indeed, u is
then an atomic measure at zero and S(f) = f(0). This, of course, can be solved exactly by
using one function value. To omit this trivial case, we assume that at least one eigenvalue
1s positive,

A > 0.

Without loss of generality, we may assume that n; € Im(X). Indeed, the measure v
is concentrated on Im(X), v(Im(X)) = 1, and n, € Im(X), where the closure of Im(X)
is taken in the norm of Ly([0,1]). Hence, we can approximate n; with an arbitrarily small
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error by elements of Im(X). To avoid this cumbersome approximation of n;, we assume, for
simplicity, that n; belong to Im(X).
For the Wiener measure p = w, we have

. 2t —1 4
Im(z) = «, n, = \/5811&( 5 71':1;), A = m

Let F be a class of (Borel) measurable real functions defined on X. An example of such
F' studied in this paper is the class /' = F” of r times Frechet differentiable functions for
which |[fO| = sup,ex [|[fP(z)|| < 1fori =0,1,...,r. Here, f(z) is an i-linear form
from X7 to IR, and its norm is defined as || f)(2)|| = SUP|10, | <1 |fO(2)ayxy - - 4.

The path integration problem is defined as approximating integrals of f from F'. That is,
we want to approximate the expectation of f with respect to the Gaussian measure g,

SU) = [ J@)atda), Ve 2)

Since X is usually infinite dimensional, the integrand f in (2) depends on infinitely many
variables. That is why the path integration problem can be viewed as an integration of
functions of infinitely many variables.

We now illustrate the path integrals problem for finite and infinite dimensional spaces X.
Assume first that X = IR? for some finite d, and let y be the standard Gaussian measure
with A; as the eigenvalues of its covariance operator. Then (2) becomes

1 1 5 5 -
S(f) - (27_‘_)51/2 m /IRd f(tlvt% cee 7td) exp (_tl/(Q)‘l) - td/(Q)‘d)) dt,
where t = [t1,1,...,14] € IR%
Hence, for finite dimensional spaces X, the path integration problem reduces to finite
dimensional integration with respect to a Gaussian measure.
Assume now that X is of infinite dimension. We now show how S(f) can be approximated

by finite dimensional integrals. Let = Im™'(Imx). Note that Im™" is well defined on the
set Im(X) which is of a full v-measure. Hence, Im™'(Im ) is defined almost everywhere. By
changing variables y = Im(x) we may rewrite (2) as

SUY = [, o] (07 @) vl

The elements y from Ly([0,1]) can be approximated by



Then the integral S(f) is approximated by S;(fs), where f; : IR? — IR is defined by
fat) = f (Im_1 (tim + tama + -+ + tdnd)),

for £ = [ty ta,... 14 € IR% and

1
(27)

Observe that Sy is a finite dimensional integral, as for the case of a finite dimensional space
X. However, unlike the latter case, the eigenvalues A; tend to zero, and \; < a/i with
a=3y7:2, )\ < 4oo. Hence, there is a decreasing dependence on the successive variables ¢;
in (3).

For a function f that satisfies the Banach-Lebesgue theorem, (it is enough to assume
that f is continuous and |f(Im™"(Pyy))| < g(Im~'(y)), ¥V d, for some function g for which
S(g) is finite), we have

Sa(fa) = 72 )\1)\21‘ = /IRd fa(t) exp (—tf/(Q)\l) — = t?l/(Q)\d)) dt.  (3)

S(F) = lim Sa(fa).

This suggests that to approximate S(f) it is enough to choose a sufficiently large d and
approximate a finite dimensional integral Sy(f;). The choice of d depends on the smoothness
of the elements of F'. For example, assume that ' = FLip is the class of Lipschitz functions,

Frup = {f: X = R,: [f(21) — f(22)] < K|[Im(z1) — Im(22)|1,(0,17), V21,22 € X},

for some positive constant K. Then for f € Fi;, we have

o 1/2 - 1/2
S(f) = Sulfa)l < K ( froomy 2 <y,m>2v<dy>) = K (z AZ») .
2 =d+1 i=d+1

Hence, to guarantee that the error |[S(f) — Sqa(fa)| < e, Vf € FLip, it is enough to define d
as the smallest integer for which

ST\ < /K2
i=d+1

For \; = O(:%) with k > 1, we get

d=0 ((K/e)z/(k_l)) as ¢ — 0F.
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For the Wiener measure we have & = 2 and

-2
d = % (g‘) (1 + o(1) ase— 0.

Hence, for infinite dimensional spaces X, we can approximate path integration by d
dimensional integrals with respect to a Gaussian measure, where d = d(¢) goes to infinity
as the error tolerance ¢ goes to zero. How fast d(¢) goes to infinity depends on the decay of
the eigenvalues of \;.

In either case of X, we see that path integrals may be approximated by d dimensional in-
tegrals, where d is typically (very) large. For f € Ly(X, ut), the high dimensional integration
is usually done by the classical Monte Carlo algorithm applied to the function fj,

Sa(fa) ~ MC,(fa;0) = %ifd(uz'),

where @ = [uy,ug,...,u,] € IR"® and u; are independent random points of IR? which are
distributed according to the Gaussian measure of zero mean and variances Ay, Ao, ..., Ay, It
is well known that

E(Sa(fa) = MCu(fu 7)) = - (/LQ([OJ]) h*(Pyy) v(dy) — (/L2([o,1])h(de)V(dy)) ) :

n

where & = folm™ and E stands for the expectation with respect to the random selection
of the points u;.
Note that

E(S(f) = MCa(fu; )" = |S(f) = Salf)* + E(Salfa) = MC(fiz @)’

and

S P ) = [ (BP) = By + b)Y o)

< 9 h —h(P 2u(dy) + 2 B2 (y) v(dy).
< L2([0,1])( (y) — h(Pay))” v(dy) o) (y) v(dy)

Obviously, [1, 0.1 R*(y) v(dy) = [x f*(x) u(dz). Hence, for the class F1,, of Lipschitz func-

tions we have

E(S(f) = MCy(fayii))* < K* (1+2n7") fj A+ %/sz(x)ﬂ(dx).

i=d+1



To guarantee that the randomized error of the classical Monte Carlo algorithm is at most
e, we choose n of order ¢ 72 and d such that Y72, A; is of order (¢/K)?. For \; = ©(:™"), the
cost of the classical Monte Carlo algorithm with randomized error at most ¢ is proportional
to the cost of computing e=2 values of functions of d = O((K/£)?/*=1) variables.

The goal of this paper is to investigate whether path integration can be solved by deter-
ministic algorithms in the worst case setting. More precisely, we are interested in the worst
case complexity comp(e, F') of path integration. This is defined as the minimal cost among
all deterministic algorithms which compute an approximation whose error is at most ¢ for
all f € F. In what follows, we assume that the cost of one integrand evaluation is ¢, and the
cost of one arithmetic operation or comparison of real numbers is unity. Of course, ¢ > 1,
and in many cases ¢ is much larger than unity. The precise definition of comp(e, F') can be
found, e.g., in [8]. Here we only mention that in our case comp(e, F') can be (roughly) defined
as the minimal number of integrand evaluations needed to compute an approximation whose
error is at most ¢ for all f € F.

It is usually difficult to find comp(e, F'). That is why we settle for some characteristics of
comp(e, F'). We say that the path integration problem is tractable in the worst case setting
iff there exist two nonnegative numbers K and p such that

comp(e, F') < Kce™?, Vee (0,1). (4)

The smallest (or rather infimum of) p for which (4) holds is called the exponent of the path
integration problem,

e—0t

p(F) = inf {p : limsup ef comp(e, F') < —|—OO}.

II1. Finite regularity

In this section we study tractability of path integration for the class F' = F” of r times
continuously Frechet differentiable functions where r is a nonnegative integer,

rr :{f:X—>IR : ) is continuous and Hf(k)(:zj)H <1,VeelX k= 0,1,...,r}.

As we shall see, tractability of path integration depends on the eigenvalues A; of the corre-
lation operator €, in (1).

Theorem 1 (i) If r = 0 or all the eigenvalues \; are positive, i.e., \; > 0, V¢ > 1, then
the path integration problem is intractable.



(i1) If r > 1 and only k eigenvalues X; are positive, i.e., A, > 0 and A\gyq = 0, then the
path integration problem is tractable with exponent k/r, i.e.,

comp(e, F') = © (ce_k/T) .

The assumption that all eigenvalues A; are positive is natural since, otherwise, the measure
i is concentrated on a finite dimensional subspace of X which contradicts the essence of the
path integration problem. Hence, Theorem 1 provides a negative result about tractability
of path integration. It indicates that the class " of finite smoothness is too large to permit
tractability of path integration in the worst case setting. To get tractability in the worst case
setting, we need to shrink the class F". This can be done in different ways. One of them is
to consider a class of entire functions, i.e., functions with infinite smoothness r = +o0, and
this is the subject of Section 4. Another one will be reported in a forthcoming paper [31].

For completeness, we also consider the case where only & eigenvalues are positive. Then,
as we shall see, the path integration problem becomes a k dimensional weighted integration
problem and is tractable with exponent k/r. Note, however, that if & is large relative to r
then the exponent is large.

Remark 1 Intractability of path integration in the worst case setting can be broken by
switching to the randomized setting. Indeed, for the class F", the Monte Carlo algorithm
applied to Sy(fs), as discussed in Introduction, yields an approximation whose expected
error is at most ¢ and cost equals (¢ + 1) ™2 The Monte Carlo algorithm is almost optimal.
Indeed, it can be proven that the complexity of the path integration problem for the class
F7 in the randomized setting is

comp™ (e, F") = O(ce™?), Vr >0,

assuming that the eigenvalues A; of (1) do not go to zero too fast, i.e., A\; = Q(: %) for some
k> 1.

Without any assumption on the eigenvalues \;, one can prove that the complexity
comp*® (g, F'") goes to infinity faster than s=2%° for any positive ¢.

For the definition of the randomized setting see, e.g., [8]. The proof of the lower bound
on the complexity uses results of [33] and [4] for the finite dimensional case, and the proof
of Theorem 1.

Proof of Theorem 1: We first prove (i). Suppose on the contrary that we have tractability,
le.,

comp(e, F") < Kee™™ (5)
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for some nonnegative K and p.

For r = 0let d = 1, and for r > 1 let d be an integer such that d > rp. For
D =[0,1]¢ define the class C™¥(D) of functions g : IR* — IR which are r times continuously
differentiable, whose support is contained in the set D, and for which ||¢®)(£)]| < 1 for all
{ eRYand i = 0,1,... ,r. Here, the norm ||g)(#)|| is defined as in Section 2 with the

2-norm of 7, i.e., ||t]|? = Z] 1

For g € C"(D), Ry = [(y,m),(y,m2) .-, (y,na)] for y € Ly([0,1]), and P = RolIm:
X — IR? define
flz) =g(Px), VaxelX.

It is easy to check that
FO(@)xyzy -2 = g9 (Pa) (Pay)T(Pay)T - (Pe)T, Yay,ag,...2; € X.
This yields
[FO@) @y -] < [Pas |- [Pl < Tmag)]|--- [Im(z)| < B fla]lx - [l x
where 3 = ||Im||. Hence
If () < 57, YeeX, Vi<

This means that 37" f belongs to F. Since 5; € Im(X), we have P(X) = IR? and it is easy
to check that

S() = [ 9(0) puld) di. (6)

—

where the weight p,; is given by

>N 1 2 2 2
) = G o (M) — 120 - —/2A).
Observe that py 1s well defined since the A; are positive for 1 < < d. Indeed, if r = 0 then
d=1and Ay > 0, and if r > 1 then all eigenvalues A; are positive.

The essence of (6) is that the (¢/8")-complexity of path integration cannot be smaller

than the e-complexity of d dimensional weighted integration in the class C™¥(D). Since (5)
holds, this implies that the latter complexity is also O(ce7?). We now show that this is not
true.

Let m, = m,(C"%(D)) denote the minimal error of algorithms using n function values
for the weighted integration problem (6) in the class C™4(D). It is known, see e.g., [8] p. 58,
that

—

m, = inf sup /D (f) pd(f) dt.

1,82, tn€D  yeond(D), g(£7)=0

11



Clearly, the above supremum will not increase if we additionally constrain ¢ by adding ¢ > 0.
There exists a positive number a = a(d, \;) such that ps(f) > a >0, ¥ € [0,1]%. Hence

m, > o __inf sup /g(f)df
11,02, tn€D gECTvd(D),gZO,g(t_;)ZO D

The right-hand side is known to be ©(n~"/?), see [4], Hence, m,, = Q(n="/%).
It r = 0, then m,, is bounded uniformly from below in n by a positive number. This means
that for small e, the complexity is infinite, and we have intractability of path integration.
It » > 1, then to guarantee m,, < ¢ we have to take n = Q(e_d/T). This also means
that the complexity is Q(ce™%"). Since d/r > p this is a contradiction, which completes
the proof of (i).

We now prove (ii). We will be using the notation and results from the proof of part (i).
Since we have only k positive eigenvalues,

—

S(9) = [ o) o).

where

g(T) = F(Im™ (gt + -+ L))

As in the proof of (i), we conclude that there exists a positive number v = (k) such that
v g € C™F(IRF).

From (i) we also conclude that
comp(e, F") = Q(ce™™m).

Thus, we need a matching upper bound. First we change variables u; = #;/v/)\; to get
SU) = [, bl@) (@) da.

where (1) = g(\/)\_lul,...,\/)\_kuk) and

wi(i@) = 2x) 7 exp (<[ )7/2), a@lP = Y ul.

There exists a positive number M = M(k,r, {\;}) depending on k, r, and the eigenvalues,
such that M~ h € C™*(IRF).
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Note that our problem can be expressed as

S = [ b@)yed)ydi + Y ) h(it)wy(ii) did. (7)
|| <2 = Y2l et
Without loss of generality assume that n is a power of two. We will approximate the
successive terms in (7), ¢ = 0,1,...,—1 + log, n, using n/2°*! points. We choose these
points ¢; ; to minimize the error of approximating the function A in the Ls-sense over the
domain

D; = {i'e B*: ||i]| < 2%},

Let m;(D;) denote the error of such an approximation when j function values are used. It
is easy to check that '
m;(D;) = O (20T (D)), Vi.

Here and below the factors in the O notation may depend on k and r. It is known, see e.g..
[4], that
m;(Do) = (7).

There is a linear algorithm, A;(h) = Z?fll h(t:])hf] for some functions A} ;, whose error

is m;j(Dy). We approximate the ith term of (7) by
/Di\Di_1 Ai(h) (T ) wy () d, where D_; = 0.

Clearly, its error is bounded by

Ih = Ai(h)| LoDy

Wk || Ly (DADi_1)-

Observe that '
lwkllzoani_y = O (GXP(—QZZ_I)) :

Hence, the total error ¢, of this approximation is bounded by

—14log, n

o o(mmwo) bOY el man (D) + [ exp(—r\ﬁr\2/2>dﬁ).
=1 ujlzn

Since the last term is O(exp(—n)) we finally have

—1+logy n ' '
€n = O n—T/k 1+ Z exp(_222—1)22(r+k/2+7«/k) ‘
=1
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Since the series 3252, exp(—2% 1) 2/0+6/247/%) i5 convergent, we conclude that e, = O(n~"/*).
Setting n = O(¢7*/") and keeping in mind that our algorithm is linear (so that its cost is

proportional to ¢ n) we conclude that the complexity is bounded by O(ce*/). This completes
the proof of (ii). O

IV. Entire F

In this section, we demonstrate tractability of path integration for a certain class F' of entire
functions defined on an infinite dimensional space X. We do this assuming additionally that
we can compute the derivatives of integrands at zero.

First, we need to analyze the case of entire functions defined on the finite dimensional
space IR?, and then we extend the analysis to the space X. In what follows, the spaces of
entire functions will depend on a sequence of positive numbers 3; such that

mkax)\kﬂk <1 and m];axﬂk < 0. (8)

Without loss of generality, we assume that

A B > Ak1 Bras VE.

Since A\ are summable, so are Ay and, in particular, they converge to zero. As we
shall see, the complexity of the problem depends on how fast they decay. More precisely, it
depends on the sum-exponent pyg of the sequence { A, }x defined as follows:

s = inf {p S (W) < oo}. ()

k=1

Of course, we always have p s < 1.

0.1 Finite dimensional case

In this subsection we consider d dimensional integration for a class of entire functions defined
on IR

Let ]Nfll_ denote the set of multi-indices i = [21, 72, ...,24] with nonnegative integers .
By |;| we mean Y.;_, i5. Consider the Hilbert space Hy of entire functions f : IRY — IR
with the inner product

<f7.g>Hd = Z

d . 3 9
feNd [Ty 2! 8y

@ (0) ¢ . v
Oz -+ Oz

14



Define the function
d

Ra(x,t) = exp (Z xktkﬂk) , oz, e R%

k=1
Note that

R, 1)

d . .
— 1k QUK
=0 H tk k>
k=1

and therefore L
R, = X 700 TL % = F0).

. 1!
TeNd k=1 "k

Note that the last series is absolutely convergent since it is bounded by

- 1/2 N 1/2
(#) ()2 00 42U Qg d
( )3 “0)) ( O I ) = 1/l exp (2 tzmm) |

d 1A% i1

This verifies that Hy is a space of entire functions and that R, is its reproducing kernel.
(Basic information on reproducing kernel Hilbert spaces can be found, e.g., in [34].) Let F}

be the unit ball of H,,
Fy =A{feHta: |[flln, <1}

As in the previous section, let S; be the following linear functional from H; to IR:

Salf) = m [ exp (—];tz/(%k)) F(t) dt.

We approximate Sy by algorithms that use f(z)(()) as information about f. For a given finite
subset M C IN%, we compute F#9(0) for i € M and define the algorithm
dNE (2 — 1)

Aan(f) = 3 F2900) ]

10
PORS ! Sae) 1o

We prove that A, is optimal in the class of algorithms that use information f(zi)(()) for
¢ € M. Here, optimality is understood in the sense of minimizing the worst case error. The

worst case error of the algorithm ¢(f) = ¢(f(2?)(0) 1€ M) in the unit ball Fy of Hy is
defined as

e(¢) = sup [Sa(f) — ¢(f)].

feky
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Theorem 2 The algorithm Agp is optimal and we have

() = 30 T Q20— D2 (11)

2¢Mk 1 2%)
For any a € (0,2),
d
(Agu) < Cug Fh IT(3,)= (12)
¢ k=1
with
d oo\ —1/2
Coo =TT (1= (B>~
k=1

Proof: Take an arbitrary algorithm ¢ that uses information f(zi)(()) for i € M. Due to
Smolyak’s theorem, see e.g., [8] p. 76, we know that the worst case error is minimized by a
linear algorithm. Therefore we may assume that ¢ is linear, ¢(f) = >z ), a;f(zg)(()) for some
weights az. Observe that for a; = a7 with a3 = Hizl )\Zk(Zik — DI/ (2i)! we have ¢ = Ay pr.

Since Hy is a reproducing kernel Hilbert space and both S; and ¢ are continuous linear
functionals, the worst case error of ¢ is equal to the average case error of ¢ for a certain space
and a certain measure, see e.g., [8] p.304 and [35]. More precisely, there exists a separable
Banach space By of functions defined on IR? such that H, is a dense subset of By. The
space By is equipped with a zero mean Gaussian measure vy whose covariance function is
the reproducing kernel Ry,

Rae,t) = [ f@)f(t) valdf).

Bg
Then
(0) = [ 1Suf) = o(DI valdy).
d
Since for every x = [z1,...,z4] € IR? and every f € Hy,
- d :plk
= > OO I,
1eIN¢ i Tk
we have '
A (24 — DI
f 22
ze%\T:d kl_Il (2%)’
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It is easy to check that

i

- . d '
[ 100 1) vadr) = BS0.0) = 525 TLintBe,
d k=1
where é;~ is the Kronecker delta. From this, we conclude that

e(¢) = > (ar— a3 TI2in)3g" + Y11 (Akﬁk)z““((g(ii)fi — 1))

TeM k=1 TeM k=1

Hence, the worst case error is minimized iff a; = ali. That is, ¢ = A4 ar and the error of Ay
is given by (11).
We now estimate e*( A4 ) as follows

d d i (2— :
. Ak Br)E 2720 ((24), — 1)1)?
e*(Agm) < (rpax H()\kﬂk)w) > II (i) ((' = DY) .
EM =y feNd k=1 (20x)!
We now compute the last sum. Note that it has the same form as (11) for M = () and
A = )\i_a/Q, By = ﬂ;_aﬂ. This corresponds to the square of the error of the zero algorithm
for approximating

S’d(f) = e‘ZZ:Ni/(?Xk) f(t)dt

—
[T, /272, /R 7
where the functions f are now from a reproducing kernel Hilbert space with kernel ];’d(:zj, ) =
exp (Zizl xktkﬁk) That is, denoting this sum by v, we have
v o= [ 1S Patdr)

B exp (— i :1;%/(2%)) exp (_ Dy ti/(ﬁk)) ~
/]Rd /IRd

= — Ry(x,t)dt dx.
Hi:l \/27T)\k Hi:l \/27T)\k

It is easy to verify that the right-hand side equals [T{_,(1 — (AxB8)?~®)~"/2. This completes
the proof. a

We now choose a subset M such that the error of the algorithm Ay s is at most . For
o & (0,2 — p/\g), let

My (2) = {Ze INY : JTOwB)™ > (52/051,&)1/“}. (13)

k=1
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Note that the sequence {Cy,}q is increasing and

o0

: o\ L2
C, = dle Cao = H (1 — (M)’ ) (14)
&0 k=1
exists. It is finite since @ < 2 — pyg implies that 377, (A Bx) 3™ < +o00. Denote
Adﬂ(a’f) = Aded,a(E)' (15)

The next theorem presents the error and cost bounds of the algorithm Ay, (e).

Theorem 3 For every d, ¢ > 0, and o € (0,2 — prg), the algorithm Ag.(¢) has error at
most €, and its cost is at most (¢ 4+ 2)ngo(c). Here, nqq(e) is the cardinality of the set
My . (e) and denotes how many derivative evaluations of [ are used, and

naa(e) < Ko=m2eolle (16)
where
- InC,/&?
K, = 1—(NG)) ™ su g2(2-a)/a (2 + —a) < 4o0.
2:1_[1( (X)) se(ol,)1) alnl/(Ap1)

Proof: The bound ¢ on the error of the algorithm follows directly from (12) of Theorem 2.
We now prove the bound on ng,(¢). Note that o < 2 — pys implies that K, is finite. Let

p=2(2-a)la.
For d =1, we have

nio(e) < 14 [(InCo/e)/(alnl/(Mp))] < Kiae™,

InC,/&? )
Ky, = sup 24+ —F"FT—].
b se(ol,)l) ( alnl/(Afp)

where

Hence (16) holds for d = 1 since Ky, < K,.
By induction, suppose that ng_1,(¢) < Kq_1,,7?. Then

nge(e) <> Nac1a (5/()\dﬂd)m/2) < Kjq,e" Z()\dﬂd)mp/z = Kjoe™?,

18



where

o = K1 0 = 16 [0 - 08
=1
< Ko [T =)™ = K.
=1

This proves (16). The algorithm A4 as is linear and its weights az can be precomputed. Hence,
its cost is equal to ng,(¢) derivative evaluations, ng,(¢) multiplications, and ng.() — 1
additions. Hence, it is bounded by (¢ 4 2) ng (), as claimed. This completes the proof. O

Theorem 3 presents an upper bound on the worst case complexity of multivariate inte-
gration Sy in the unit ball F;. Namely

comp(e) < (e +2) K, 7",
where p* = 2(2 — «)/a. Since « can be arbitrarily close to o = 2 — pyz, we may have

pr o~ 72}%5 .
2—pag
Since pyg < 1, the exponent p* of the multivariate problem Sy is always bounded by two.
Hence, it is no larger than the exponent of 1/e in the cost function of the classical Monte
Carlo method. It can be even smaller than 2. For instance, for A\yf8r = O(k™") with r > 1,
we have

2
¥~ . 17
b= (17)
Observe that A\yf, = O(k™") holds for 8, ~ 1 and for the (r — 2)-fold Wiener measure .

For the classical Wiener measure y, we have r = 2 and p* ~ 2/3.

0.2 Infinite dimensional case

We now consider the infinite dimensional case, d = +o00. To that end, let INS® denote the set
of infinite multi-indices 7 = [41, 7, ...] with nonnegative integers i for which |7 | = Y52, 75 is
finite. This means that any i€ INZ has almost all coefficients equal zero.

We define the Hilbert space H,, of entire functions as a limiting case of spaces H;. That
is, H., is a space of entire functions f : X — IR with inner product

), = (/O Tz (tm™ma)*) (9©(0) T2, (Im™"e))

Y
TENg [TiZy il B

Y
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where, as before, ;. are the eigenelements of the covariance operator C,.
This is a reproducing kernel Hilbert space whose reproducing kernel is

o0

Roo(x,t) = exp (Z (Im(), nk) (Im(), nk) ﬂk) , x,t € X.

k=1

Consider the class F' as the unit ball of H.,, i.e.,

F={feH: |flu. <1}.

This class is a limiting case of the unit balls F; in the spaces Hy, and all the results from
the previous section apply. More precisely, for a given finite subset M of INZ, let

Aty = 3 (#900) Tlotm ey} 1 =12 (13)
For o € (0,2 — pys) and
1:[ (1 — (M) a) 1/2,
see (14), let

We have the following theorem.

Theorem 4 (i) The algorithm Ayp is optimal in the class of algorithms that use the same
information, and its worst case error is given by

Ay =y [ DR

ZEINOO\Mk 1 2Z )

(ii) For every e and o € (0,2 — pyg), the algorithm Ay, o) has error al most ¢, and ils cost
is bounded by
(c+2) K, e72(=a)e

(ii1) The path integration problem is tractable and its exponent p(F') is bounded by

2p/\ﬁ

) < .
pF) < 2 —pag
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For \;3; = © («7") with some r > 1, we have

2p/\g _ 2
2 — Pxg 2r —1

p(F) =
if the information is restricted to function and derivative values at zero.

Proof: The proof of (i) and (ii) follows from the results of the previous section. Indeed,
given d and f € F, let

Fa) = F(Im™ (g 4 +taga)) . with ¥ = [t 1) € R

Then f17(0) = fID(0)(Im™"y) ... (Im™"a)’, and || fall i, < ||f|lr.. Hence, fy belongs
to the unit ball of the space Hj.

For a given M, let dpy = max{k : iy # 0 for some : € M}. Then, for every f € F, we
have

Am(f) = Aam(fa), Vd > dy.

Since S(f) = limg—co Sa(fa), the first part of Theorem 4 follows from Theorem 2.

Let nq(¢) be the cardinality of the set M, (). Since ngo(g) < nay1.4(¢) for every d, and
Ngo(€) = na(e) for d > day, (<), the second part follows from Theorem 3.

We now prove (iii). Obviously, it is enough to show that 2/(2r — 1) is a lower bound on
p(F') in the class of information restricted to function and derivative values at zero. Consider
arbitrary information consisting of n function and derivative values at 0. This corresponds
to a subset M of INY having cardinality n. The minimal worst case error is given by e?(Ays),
where the algorithm Ay is given by (18). We have

S H (Aefr)* Q(jj)k ZH (AkfBr) k(g(il)]?_l)”)'

ZEIN’OOk 1 ZEMk 1

Observe that the first sum is greater than 14332, (Ar5k)?/2. Since the second sum has only

n elements, we have
1 o0
H(An) = 5 D (b)? = ®( (2= 1))-

2 k=n

To guarantee that the error is at most ¢ we have to take n = Q (5_2/(2“1)) . This completes
the proof of Theorem 4. a
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