
On Tractability of Path Integration

Columbia University Computer Science Department Report CUCS�������

Grzegorz W� Wasilkowski and Henryk Wo�zniakowski �

September ����

Abstract

Many applications require approximate values of path integrals� A typical approach
is to approximate the path integral by a high dimensional integral and apply a Monte
Carlo �randomized� algorithm� However� Monte Carlo algorithm requires roughly ���

integrand evaluations to provide an ��approximation� Moreover� the error bound of �
is guaranteed only in a stochastic sense�

Do we really need to use randomized algorithms for path integrals� Perhaps� we
can �nd a deterministic algorithm that is more e	ective even in the worst case setting�
To answer this question� we study the worst case complexity of path integration� which�
roughly speaking� is de�ned as the minimal number of the integrand evaluations needed
to compute an approximation with error at most �� We consider path integration with
respect to a Gaussian measure� and for various classes of integrands�

Tractability of path integration means that the complexity depends polynomially on

��� We show that for the class of r times Frechet di	erentiable integrands� tractability
of path integration holds i	 the covariance operator of the Gaussian measure has �nite
rank� Hence� if the Gaussian measure is supported on an in�nite dimensional space
then path integration is intractable� In this case� there exists no e	ective deterministic
algorithm� and the use of randomized algorithms is justi�ed� In fact� for this class of
integrands� the classical Monte Carlo algorithm is �almost� optimal and the complexity
in the randomized setting is proportional to ����

On the other hand� for a particular class of entire integrands� the worst case com�
plexity of path integration is at most of order ��p with p depending on the Gaussian
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measure� Hence� path integration is now tractable� Furthermore� for any Gaussian
measure� the exponent p is less than or equal to �� For the Wiener measure� p � ���
For this class� we provide e	ective deterministic algorithms which solve the path inte�
gration problem with �worst case� cost that is usually much less than the �randomized�
cost of the classical Monte Carlo algorithm�

I� Introduction

Approximate computation of integrals is undoubtedly one of the most important problems
of computational mathematics� In many cases	 integrals involve functions of 
nitely many
variables d� Not surprisingly	 the univariate case d � � is best understood and has a rich
and well�developed theory� Elements of the classical theory of univariate integration can
be found in almost all numerical analysis textbooks� The study of the complexity of con�
tinuous problems has started from the pioneering work of Sard and Nikolskij on univariate
integration	 see ��	 ��

The multivariate case	 with d 
nite and greater than one	 is much harder and is a subject
of very active research� For large d	 a typical approach is to use Monte Carlo �randomized�
algorithms� However	 for some classes of integrands	 deterministic algorithms can be also
very e�ective� An example is provided by integrands with bounded mixed derivatives	 for
which algorithms based on low discrepancy points can be used� The state of the art can
be found in ��� Complexity of multivariate integration in various settings is also an active
research area� An account of recent progress can be found in ��	 �	 �	 �	 �	 �	 ��	 ���

In this paper we consider the case d � ��� That is	 we deal with integrals of functions
of in
nitely many variables� This is usually called the path integration problem� The name is
derived from the most typical case	 in which we integrate over continuous functions �paths�
with respect to the Wiener measure	 see ���� Sometimes	 instead of path integration	 the
name functional integration is used	 see ���	 ��� The latter stresses that we integrate over a
class of functions�

One may suspect that the path integration problem is merely of theoretical interest�
However	 the opposite is true� Path integrals occur in many applied 
elds	 including quantum
physics and chemistry	 di�erential equations	 and 
nancial mathematics	 as well as average
case complexity� Here are a few examples� In the forties	 R� P� Feynman introduced path
integration in quantum physics	 see ���� The work of Feynman initiated a very fruitful
stream of research in quantum physics and chemistry which continues to be active	 see e�g�	
���	 ��	 ��	 ��	 ��	 ��	 ��	 ��	 ��	 ��� A rigorous mathematical foundation for Feynman
path integration can be found in ���� In the 
fties	 M� Kac observed that the approach
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of Feynman can be used for the solution of parabolic di�erential equations	 and established
what today is called the Feynman�Kac formula	 see ���� In fact	 solutions of many di�erential
and operator equations can be expressed as path integrals	 see ���� Also many problems in

nancial mathematics are expressed as generalized Feynman�Kac formulas	 and hence their
solution may be reduced to computing path integrals	 see ���	 ��	 ��� Finally	 in average case
complexity	 we need to estimate the average error of an algorithm� this error is	 once more	
given as a path integral� A more complete list of applications is given in the introduction of
����

A typical approach to computing path integrals is to switch to a multivariate integral
and apply a Monte Carlo �randomized� algorithm� That is	 the in
nite dimensional integral
is approximated by a d dimensional integral	 where d may be large �or even huge�� Then
the classical Monte Carlo algorithm can be used since its speed of convergence	 although not
great	 does not depend on d� This approach usually requires on the order of ��� integrand
evaluations to obtain the expected error at most �	 see Section � for more details�

Due to this relatively high cost of Monte Carlo and only stochastic error assurance	 one
would like to know weather there is an e�ective deterministic algorithm which approximates
path integrals with a small �deterministic� error� Obviously	 the existence of such a deter�
ministic algorithm depends on the probability measure � occurring in the path integral as
well as on the class F of integrands� Hence	 for a given measure � and a given class F 	
we wish to 
nd the worst case complexity of path integration� Roughly speaking	 the worst
case complexity is proportional to the minimal number of integrand evaluations needed to
compute an approximation with worst case error at most ��

We are mainly interested in how the complexity depends on �� If the complexity is of
order ��p with p � � then we beat the bound ��� of the classical Monte Carlo algorithm� For
p � �	 the bounds are of the same order� However	 even for p � �	 we may prefer to use a
deterministic algorithm since its error is guaranteed to be at most �	 whereas for the classical
Monte Carlo algorithm we only know that its expected error is at most �� Moreover	 with
deterministic algorithms	 we do not have to cope with the problem of generating random
numbers or functions�

This discussion motivates the concept of tractability of path integration� Namely	 we
say that the path integration problem is tractable if the worst case complexity depends
polynomially on ���� In other settings such as the randomized or average case settings	
tractability of path integration is obvious in classes for which the L� norms of integrands
are uniformly bounded� However	 for problems that are not path integration	 the study of
tractability in other settings is an interesting subject	 see ���	 ���

Tractability of path integration depends on the probability measure � and the class F of
integrands� We now comment on the assumptions regarding � and F �
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We begin with the measure �� In most applications of path integration	 the classical
Wiener measure �Brownian motion� is used� TheWiener measure is an example of a Gaussian
measure which is appropriate for many applications� Its role can be hardly overestimated�
It would be tempting to study path integration only for the Wiener measure� However	 we
prefer to be more general and to study path integration for arbitrary Gaussian measures	
and to illustrate the results for the Wiener measure as a primary example� In this way
we will better understand the in�uence of the Gaussian measure on the complexity of path
integration� Of course	 it would also be interesting to study path integration for a non�
Gaussian measure	 although no such application is known to us�

We now turn to the class F of integrands� Here	 the situation is far more complex since
there is no class of integrands which plays a dominant role corresponding to the Wiener
measure� Even for the multivariate case	 there is no class which is singled out� On contrary	
many di�erent classes seem to be relevant and their choice depends on the particular appli�
cation� Usually these classes are characterized by some global smoothness properties of the
integrands�

For path integration	 we follow the multivariate approach and we analyze classes de
ned
by global smoothness� First we consider the class of integrands that are r times continuously
Frechet di�erentiable� We prove that in this case	 tractability of path integration holds i�
the covariance operator of the Gaussian measure has 
nite rank� Hence	 the problem of path
integration is intractable if the Gaussian measure is supported on an in
nite dimensional
space� Then it is reasonable to switch to the randomized setting� It turns out that the
classical Monte Carlo algorithm is �almost� optimal and the complexity in the randomized
setting is proportional to ����

Next we analyze a speci
c class of entire functions� For this class	 the path integration
problem is tractable	 and the worst case complexity is of order ��p with p depending	 in
particular	 on the Gaussian measure used� For the Wiener measure	 we have p � ���	 which
means that we need substantially fewer integrand evaluations than for the classical Monte
Carlo algorithm even though we guarantee that the worst case error is at most �� We stress	
however	 that to get this result we assume that integrands are entire functions and that we
can use derivatives as permissible information� It is well known that the classical Monte
Carlo algorithm requires no smoothness of the integrands� it is enough to assume that they
are square integrable�

The classes of integrands studied in this paper are characterized by global smoothness
properties� In a forthcoming paper	 see ���	 we consider a di�erent class of integrands� This
class is related to the Feynman�Kac formula� More precisely	 this is the class of potential
and initial conditions functions which de
ne the heat equation� Although these functions do
not need to be very smooth	 we prove tractability of path integration	 and in many cases	
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the worst case complexity is substantially smaller than ����

II� Formulation of the problem

In this section we formulate the path integration problem and explain a typical computational
approach to approximating path integrals� We also de
ne the worst case complexity and
tractability of path integration�

Let X be a separable Banach space� The norm in X is denoted by k � kX � An example
of X is provided by the space X � C���� �� of continuous scalar functions de
ned on ��� �
with the sup norm	 kxkX � supt������ jx�t�j�

We assume that X is equipped with a zero mean Gaussian measure �	 see	 e�g�	 ���� An
example of � is provided by the Wiener measure � � w for which X � C���� �� andZ

C�����
x�t��x�t��w�dx� � minft�� t�g�

It is known that X can be embedded in the Hilbert space L����� ��� It is an obvious
corollary of the Banach �sometimes called the Banach�Mazur or Banach�Alaoglu� theorem
which states that X is isometrically isomorphic to a subspace of C���� �� which	 in turn	
can be treated as a subspace of L����� ��� This means that there exists a one�to�one linear
continuous mapping Im � X � L����� ��� We denote the inner product of L����� �� by h�� �i�
Then the measure 	 � � Im�� is also a zero mean Gaussian measure on L����� ��� Let
C� � L����� �� � L����� �� be the covariance operator of 	� The operator C� is self adjoint	
nonnegative de
nite and has 
nite trace� That is	 there exists an orthonormal system f
igi
of L����� ��	 h
i� 
ji � �i�j	 for which

C� 
i � �i 
i� �� � �� � � � � � � and
�X
i��

�i � ��� ���

Observe that if all �i � � then the path integration problem becomes trivial� Indeed	 � is
then an atomic measure at zero and S�f� � f���� This	 of course	 can be solved exactly by
using one function value� To omit this trivial case	 we assume that at least one eigenvalue
is positive	

�� � ��

Without loss of generality	 we may assume that 
i � Im�X�� Indeed	 the measure 	
is concentrated on Im�X�	 	�Im�X�� � �	 and 
i � Im�X�	 where the closure of Im�X�
is taken in the norm of L����� ��� Hence	 we can approximate 
i with an arbitrarily small
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error by elements of Im�X�� To avoid this cumbersome approximation of 
i	 we assume	 for
simplicity	 that 
i belong to Im�X��

For the Wiener measure � � w	 we have

Im�x� � x� 
i �
p
� sin

�
�i � �

�
x
�
� �i �

�

���i� ���
�

Let F be a class of �Borel� measurable real functions de
ned on X� An example of such
F studied in this paper is the class F � F r of r times Frechet di�erentiable functions for
which kf �i�k � supx�X kf �i��x�k � � for i � �� �� � � � � r� Here	 f �i��x� is an i�linear form
from X i to IR	 and its norm is de
ned as kf �i��x�k � supkxjkX�� jf �i��x�x�x� � � � xij�

The path integration problem is de
ned as approximating integrals of f from F � That is	
we want to approximate the expectation of f with respect to the Gaussian measure �	

S�f� �
Z
X
f�x���dx�� � f � F� ���

Since X is usually in
nite dimensional	 the integrand f in ��� depends on in
nitely many
variables� That is why the path integration problem can be viewed as an integration of
functions of in
nitely many variables�

We now illustrate the path integrals problem for 
nite and in
nite dimensional spaces X�
Assume 
rst that X � IRd for some 
nite d	 and let � be the standard Gaussian measure
with �i as the eigenvalues of its covariance operator� Then ��� becomes

S�f� �
�

���d��
�p

���� � � ��d
Z
IRd

f�t�� t�� � � � � td� exp
�
�t��������� � � � � t�d����d�

�
d�t�

where �t � �t�� t�� � � � � td � IRd�
Hence	 for 
nite dimensional spaces X	 the path integration problem reduces to 
nite

dimensional integration with respect to a Gaussian measure�
Assume now thatX is of in
nite dimension� We now show how S�f� can be approximated

by 
nite dimensional integrals� Let x � Im���Imx�� Note that Im�� is well de
ned on the
set Im�X� which is of a full 	�measure� Hence	 Im���Imx� is de
ned almost everywhere� By
changing variables y � Im�x� we may rewrite ��� as

S�f� �
Z
L��������

f
�
Im�� �y�

�
	�dy��

The elements y from L����� �� can be approximated by

Pdy �
dX
i��

hy� 
ii 
i�
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Then the integral S�f� is approximated by Sd�fd�	 where fd � IRd � IR is de
ned by

fd��t � � f
�
Im�� �t�
� � t�
� � � � � � td
d�

�
�

for �t � �t�� t�� � � � � td � IRd	 and

Sd�fd� �
�

���d��
�p

���� � � � �d
Z
IRd

fd��t � exp
�
�t��������� � � � � t�d����d�

�
d�t� ���

Observe that Sd is a 
nite dimensional integral	 as for the case of a 
nite dimensional space
X� However	 unlike the latter case	 the eigenvalues �i tend to zero	 and �i � a�i with
a �

P�
i�� �i � ��� Hence	 there is a decreasing dependence on the successive variables ti

in ����
For a function f that satis
es the Banach�Lebesgue theorem	 �it is enough to assume

that f is continuous and jf�Im���Pdy��j � g�Im���y��	 � d	 for some function g for which
S�g� is 
nite�	 we have

S�f� � lim
d��

Sd�fd��

This suggests that to approximate S�f� it is enough to choose a su�ciently large d and
approximate a 
nite dimensional integral Sd�fd�� The choice of d depends on the smoothness
of the elements of F � For example	 assume that F � FLip is the class of Lipschitz functions	

FLip � ff � X � IR� � jf�x��� f�x��j � KkIm�x��� Im�x��kL��������� �x�� x� � Xg�

for some positive constant K� Then for f � FLip we have

jS�f� � Sd�fd�j � K

��Z
L��������

�X
i�d	�

hy� 
ii� 	�dy�
�A���

� K

�� �X
i�d	�

�i

�A���

�

Hence	 to guarantee that the error jS�f� � Sd�fd�j � �� �f � FLip	 it is enough to de
ne d
as the smallest integer for which

�X
i�d	�

�i � ���K��

For �i � ��i�k� with k � �	 we get

d � �
�
�K������k���

�
as �� �	�
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For the Wiener measure we have k � � and

d �
�

�

�
K

�

��

�� � o���� as �� �	�

Hence	 for in
nite dimensional spaces X	 we can approximate path integration by d
dimensional integrals with respect to a Gaussian measure	 where d � d��� goes to in
nity
as the error tolerance � goes to zero� How fast d��� goes to in
nity depends on the decay of
the eigenvalues of �i�

In either case of X	 we see that path integrals may be approximated by d dimensional in�
tegrals	 where d is typically �very� large� For f � L��X���	 the high dimensional integration
is usually done by the classical Monte Carlo algorithm applied to the function fd	

Sd�fd� 	 MCn�fd� �u � �
�

n

nX
i��

fd�ui��

where �u � �u�� u�� � � � � un � IRn d and ui are independent random points of IRd which are
distributed according to the Gaussian measure of zero mean and variances ��� ��� � � � � �d� It
is well known that

E �Sd�fd��MCn�fd� �u ��
� �

�

n

��Z
L��������

h��Pdy� 	�dy� �
	Z

L��������
h�Pdy� 	�dy�


�
�A �

where h � f 
 Im�� and E stands for the expectation with respect to the random selection
of the points ui�

Note that

E �S�f��MCn�fd� �u ��
� � jS�f�� Sd�fd�j� � E�Sd�fd��MCn�fd� �u ��

�

and Z
L��������

h��Pdy� 	�dy� �
Z
L��������

�h�Pdy�� h�y� � h�y��� 	�dy�

� �
Z
L��������

�h�y�� h�Pdy��
� 	�dy� � �

Z
L��������

h��y� 	�dy��

Obviously	
R
L��������

h��y� 	�dy� �
R
X f��x���dx�� Hence	 for the class FLip of Lipschitz func�

tions we have

E �S�f��MCn�fd� �u ��
� � K�

�
� � �n��

� �X
i�d	�

�i �
�

n

Z
X
f��x���dx��

�



To guarantee that the randomized error of the classical Monte Carlo algorithm is at most
�	 we choose n of order ��� and d such that

P�
i�d	� �i is of order ���K��� For �i � ��i�k�	 the

cost of the classical Monte Carlo algorithm with randomized error at most � is proportional
to the cost of computing ��� values of functions of d � ���K������k���� variables�

The goal of this paper is to investigate whether path integration can be solved by deter�
ministic algorithms in the worst case setting� More precisely	 we are interested in the worst
case complexity comp��� F � of path integration� This is de
ned as the minimal cost among
all deterministic algorithms which compute an approximation whose error is at most � for
all f � F � In what follows	 we assume that the cost of one integrand evaluation is c	 and the
cost of one arithmetic operation or comparison of real numbers is unity� Of course	 c � �	
and in many cases c is much larger than unity� The precise de
nition of comp��� F � can be
found	 e�g�	 in ��� Here we only mention that in our case comp��� F � can be �roughly� de
ned
as the minimal number of integrand evaluations needed to compute an approximation whose
error is at most � for all f � F �

It is usually di�cult to 
nd comp��� F �� That is why we settle for some characteristics of
comp��� F �� We say that the path integration problem is tractable in the worst case setting
i� there exist two nonnegative numbers K and p such that

comp��� F � � K c ��p� � � � ��� ��� ���

The smallest �or rather in
mum of� p for which ��� holds is called the exponent of the path
integration problem	

p�F � � inf

�
p � lim sup

����
�p comp��� F � � ��

�
�

III� Finite regularity

In this section we study tractability of path integration for the class F � F r of r times
continuously Frechet di�erentiable functions where r is a nonnegative integer	

F r �
n
f � X � IR � f �r� is continuous and kf �k��x�k � � � �x � X� k � �� �� � � � � r

o
�

As we shall see	 tractability of path integration depends on the eigenvalues �i of the corre�
lation operator C� in ����

Theorem � �i� If r � � or all the eigenvalues �i are positive� i�e�� �i � �� � i � �� then
the path integration problem is intractable�
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�ii� If r � � and only k eigenvalues �i are positive� i�e�� �k � � and �k	� � �� then the
path integration problem is tractable with exponent k�r� i�e��

comp��� F r� � �
�
c ��k�r

�
�

The assumption that all eigenvalues �i are positive is natural since	 otherwise	 the measure
� is concentrated on a 
nite dimensional subspace of X which contradicts the essence of the
path integration problem� Hence	 Theorem � provides a negative result about tractability
of path integration� It indicates that the class F r of 
nite smoothness is too large to permit
tractability of path integration in the worst case setting� To get tractability in the worst case
setting	 we need to shrink the class F r� This can be done in di�erent ways� One of them is
to consider a class of entire functions	 i�e�	 functions with in
nite smoothness r � ��	 and
this is the subject of Section �� Another one will be reported in a forthcoming paper ����

For completeness	 we also consider the case where only k eigenvalues are positive� Then	
as we shall see	 the path integration problem becomes a k dimensional weighted integration
problem and is tractable with exponent k�r� Note	 however	 that if k is large relative to r
then the exponent is large�

Remark � Intractability of path integration in the worst case setting can be broken by
switching to the randomized setting� Indeed	 for the class F r	 the Monte Carlo algorithm
applied to Sd�fd�	 as discussed in Introduction	 yields an approximation whose expected
error is at most � and cost equals �c � �� ���� The Monte Carlo algorithm is almost optimal�
Indeed	 it can be proven that the complexity of the path integration problem for the class
F r in the randomized setting is

compran��� F r� � ��c ����� � r � ��

assuming that the eigenvalues �i of ��� do not go to zero too fast	 i�e�	 �i � ��i�k� for some
k � ��

Without any assumption on the eigenvalues �i	 one can prove that the complexity
compran��� F r� goes to in
nity faster than ���	� for any positive ��

For the de
nition of the randomized setting see	 e�g�	 ��� The proof of the lower bound
on the complexity uses results of ��� and �� for the 
nite dimensional case	 and the proof
of Theorem ��

Proof of Theorem �� We 
rst prove �i�� Suppose on the contrary that we have tractability	
i�e�	

comp��� F r� � K c ��p ���

��



for some nonnegative K and p�
For r � � let d � �	 and for r � � let d be an integer such that d � r p� For

D � ��� �d de
ne the class Cr�d�D� of functions g � IRd � IR which are r times continuously
di�erentiable	 whose support is contained in the set D	 and for which kg�i���t �k � � for all
�t � IRd and i � �� �� � � � � r� Here	 the norm kg�i���t �k is de
ned as in Section � with the
��norm of �t	 i�e�	 k�t k� �

Pd
j�� t

�
j �

For g � Cr�d�D�	 Ry � �hy� 
�i � hy� 
�i � � � � � hy� 
di for y � L����� ��	 and P � R 
 Im �
X � IRd de
ne

f�x� � g �P x� � �x � X�

It is easy to check that

f �i��x�x�x� � � �xi � g�i��Px� �Px��
T �Px��

T � � � �Pxi�T � �x�� x�� � � � xi � X�

This yields

jf �i��x�x� � � �xij � kPx�k � � � kPxik � kIm�x��k � � � kIm�xi�k � �i kx�kX � � � kxikX �
where � � kImk� Hence

kf �i��x�k � �r� �x � X� � i � r�

This means that ��r f belongs to F r� Since 
i � Im�X�	 we have P �X� � IRd and it is easy
to check that

S�f� �
Z
D
g��t � �d��t � d�t� ���

where the weight �d is given by

�d��t � �
�

���d��
p
���� � � ��d

exp
�
�t��������� t��������� � � � � t�d����d�

�
�

Observe that �d is well de
ned since the �i are positive for � � i � d� Indeed	 if r � � then
d � � and �� � �	 and if r � � then all eigenvalues �i are positive�

The essence of ��� is that the ����r��complexity of path integration cannot be smaller
than the ��complexity of d dimensional weighted integration in the class Cr�d�D�� Since ���
holds	 this implies that the latter complexity is also O�c ��p�� We now show that this is not
true�

Let mn � mn�Cr�d�D�� denote the minimal error of algorithms using n function values
for the weighted integration problem ��� in the class Cr�d�D�� It is known	 see e�g�	 �� p� ��	
that

mn � inf
�t���t������ �tn�D

sup
g�Cr�d�D�� g��ti���

Z
D
g��t � �d��t � d�t�

��



Clearly	 the above supremumwill not increase if we additionally constrain g by adding g � ��
There exists a positive number � � ��d� �i� such that �d��t � � � � �� ��t � ��� �d� Hence

mn � � inf
�t���t������ �tn�D

sup
g�Cr�d�D�� g� �� g��ti���

Z
D
g��t � d�t�

The right�hand side is known to be ��n�r�d�	 see ��	 Hence	 mn � ��n�r�d��
If r � �	 thenmn is bounded uniformly from below in n by a positive number� This means

that for small �	 the complexity is in
nite	 and we have intractability of path integration�
If r � �	 then to guarantee mn � � we have to take n � ����d�r�� This also means

that the complexity is ��c ��d�r�� Since d�r � p this is a contradiction	 which completes
the proof of �i��

We now prove �ii�� We will be using the notation and results from the proof of part �i��
Since we have only k positive eigenvalues	

S�f� �
Z
IRk

g��t � �k��t � d�t�

where
g��t � � f

�
Im�� �t�
� � t�
� � � � � � tk
k�

�
�

As in the proof of �i�	 we conclude that there exists a positive number � � ��k� such that
� g � Cr�k�IRk��

From �i� we also conclude that

comp��� F r� � ��c ��k�r��

Thus	 we need a matching upper bound� First we change variables ui � ti�
p
�i to get

S�f� �
Z
IRk

h��u �wk��u � d�u�

where h��u � � g
�p

�� u�� � � � �
p
�k uk

�
and

wk��u � � ����k�� exp
�
�k�u k���

�
� k�u k� �

kX
i��

u�i �

There exists a positive number M � M�k� r� f�ig� depending on k	 r	 and the eigenvalues	
such that M�� h � Cr�k�IRk��

��



Note that our problem can be expressed as

S�f� �
Z
k�u k� �

h��u �wk��u � d �u �
�X
i��

Z
�i�k�u k� �i��

h��u �wk��u � d �u� ���

Without loss of generality assume that n is a power of two� We will approximate the
successive terms in ���	 i � �� �� � � � ��� � log� n	 using n��i	� points� We choose these
points �ti�j to minimize the error of approximating the function h in the L��sense over the
domain

Di �
n
�t � IRk � k�t k � �i	�

o
�

Let mj�Di� denote the error of such an approximation when j function values are used� It
is easy to check that

mj�Di� � O
�
�i�r	k���mj�D��

�
� � i�

Here and below the factors in the O notation may depend on k and r� It is known	 see e�g�	
��	 that

mj�D�� � ��j�r�k��

There is a linear algorithm	 Ai�h� �
Pn��i

j�� h� �ti�j�h
�
i�j for some functions h�i�j	 whose error

is mj�D��� We approximate the ith term of ��� byZ
DinDi��

Ai�h���u �wk��u � d �u� where D�� � ��

Clearly	 its error is bounded by

kh � Ai�h�kL��Di� kwkkL��DinDi����

Observe that
kwkkL��DinDi��� � O

�
exp����i���

�
�

Hence	 the total error en of this approximation is bounded by

en � O

��mn���D�� �
��	log� nX

i��

exp����i���mn��i���Di� �
Z
k�u k�n

exp��k�u k���� d �u
�A �

Since the last term is O�exp��n�� we 
nally have

en � O

�� n�r�k

��� �
��	log� nX

i��

exp����i��� �i�r	k��	r�k�

�A�A �

��



Since the series
P�

i�� exp����i��� �i�r	k��	r�k� is convergent	 we conclude that en � O�n�r�k��
Setting n � O���k�r� and keeping in mind that our algorithm is linear �so that its cost is
proportional to cn� we conclude that the complexity is bounded byO�c �k�r�� This completes
the proof of �ii�� �

IV� Entire F

In this section	 we demonstrate tractability of path integration for a certain class F of entire
functions de
ned on an in
nite dimensional space X� We do this assuming additionally that
we can compute the derivatives of integrands at zero�

First	 we need to analyze the case of entire functions de
ned on the 
nite dimensional
space IRd	 and then we extend the analysis to the space X� In what follows	 the spaces of
entire functions will depend on a sequence of positive numbers �k such that

max
k

�k�k � � and max
k

�k � �� ���

Without loss of generality	 we assume that

�k�k � �k	��k	�� � k�
Since �k are summable	 so are �k�k and	 in particular	 they converge to zero� As we

shall see	 the complexity of the problem depends on how fast they decay� More precisely	 it
depends on the sum�exponent p	
 of the sequence f�k�kgk de
ned as follows�

p	
 � inf

�
p �

�X
k��

��k�k�
p ��

�
� ���

Of course	 we always have p	
 � ��

��� Finite dimensional case

In this subsection we consider d dimensional integration for a class of entire functions de
ned
on IRd�

Let INd
	 denote the set of multi�indices �i � �i�� i�� � � � � id with nonnegative integers ik�

By j�i j we mean
Pd

k�� ik� Consider the Hilbert space Hd of entire functions f � IRd � IR
with the inner product

hf� giHd
�

X
�i�INd

�

f ��i ���� g�
�i ����Qd

k�� ik��
ik
k

� where f ��i ���� �
�j
�i jf���

�xi�� � � � �xidd
�

��



De
ne the function

Rd�x� t� � exp

	
dX

k��

xktk�k



� x� t � IRd�

Note that

R
��i �
d ��� t�


x��

�
dY

k��

tikk �
ik
k �

and therefore

hf�Rd��� t�iHd
�

X
�i�INd

�

f ��i ����
dY

k��

tikk
ik�

� f�t��

Note that the last series is absolutely convergent since it is bounded by�B� X
�i�INd

�

f ��i �����Qd
k�� ik��

ik
k

�CA
��� �B� X

�i�INd
�

�Y
k��

t�ikk �ikk
ik�

�CA
���

� kfkHd
exp

	
dX

k��

t�k�k��



�

This veri
es that Hd is a space of entire functions and that Rd is its reproducing kernel�
�Basic information on reproducing kernel Hilbert spaces can be found	 e�g�	 in ����� Let Fd

be the unit ball of Hd	
Fd � ff � Hd � kfkHd

� � g �
As in the previous section	 let Sd be the following linear functional from Hd to IR�

Sd�f� �
�Qd

k��

p
��k

Z
IRd

exp

	
�

dX
k��

t�k����k�



f�t� dt�

We approximate Sd by algorithms that use f ��j ���� as information about f � For a given 
nite

subset M � INd
		 we compute f ���i ���� for �i �M and de
ne the algorithm

Ad�M�f� �
X
�i�M

f ���i ����
dY

k��

�ikk ��ik � ����

��ik��
� ����

We prove that Ad�M is optimal in the class of algorithms that use information f ���i ���� for
�i �M � Here	 optimality is understood in the sense of minimizing the worst case error� The
worst case error of the algorithm ��f� � ��f ���i ���� � �i � M� in the unit ball Fd of Hd is
de
ned as

e��� � sup
f�Fd

jSd�f� � ��f�j�

��



Theorem � The algorithm Ad�M is optimal and we have

e��Ad�M� �
X
�i��M

dY
k��

��k�k��ik���ik � ������

��ik��
� ����

For any � � ��� ���

e��Ad�M� � Cd�� max
�i��M

dY
k��

��k�k�
ik� ����

with

Cd�� �
dY

k��

�
�� ��k�k�

���
�����

�

Proof� Take an arbitrary algorithm � that uses information f ���i ���� for �i � M � Due to
Smolyak�s theorem	 see e�g�	 �� p� ��	 we know that the worst case error is minimized by a

linear algorithm� Therefore we may assume that � is linear	 ��f� �
P
�i�M a�if

���i ���� for some

weights a�i� Observe that for a�i � a��i with a��i �
Qd
k�� �

ik
k ��ik � �������ik�� we have � � Ad�M �

Since Hd is a reproducing kernel Hilbert space and both Sd and � are continuous linear
functionals	 the worst case error of � is equal to the average case error of � for a certain space
and a certain measure	 see e�g�	 �� p� ��� and ���� More precisely	 there exists a separable
Banach space Bd of functions de
ned on IRd such that Hd is a dense subset of Bd� The
space Bd is equipped with a zero mean Gaussian measure 	d whose covariance function is
the reproducing kernel Rd	

Rd�x� t� �
Z
Bd

f�x�f�t� 	d�df��

Then
e���� �

Z
Bd

jSd�f� � ��f�j� 	d�df��

Since for every x � �x�� � � � � xd � IRd and every f � Hd	

f�x� �
X

�i�INd
�

f ��i ����
dY

k��

xikk
ik�

�

we have

Sd�f� �
X

�i�INd
�

f ���i ����
dY

k��

�ikk ��ik � ����

��ik��
�

��



It is easy to check thatZ
Bd

f ��i ���� f ��j ���� 	d�df� � R
��i ��j �
d ��� �� � ��i��j

dY
k��

ik��
ik
k �

where ��i��j is the Kronecker delta� From this	 we conclude that

e���� �
X
�i�M

�a�i � a��i �
�

dY
k��

��ik���
�ik
k �

X
�i��M

dY
k��

��k�k��ik���ik � ������

��ik��
�

Hence	 the worst case error is minimized i� a�i � a��i � That is	 � � Ad�M and the error of Ad�M

is given by �����
We now estimate e��Ad�M� as follows

e��Ad�M� �
	
max
�i��M

dY
k��

��k�k�
ik�


�B� X
�i�INd

�

dY
k��

��k�k�ik��������ik � ������

��ik��

�CA �
We now compute the last sum� Note that it has the same form as ���� for M � � ande�k � �

�����
k � e�k � �

�����
k � This corresponds to the square of the error of the zero algorithm

for approximating

eSd�f� �
�Qd

k��

q
�e�k

Z
IRd

e�
Pd

k��
t�
k
���e	k� f�t� dt�

where the functions f are now from a reproducing kernel Hilbert space with kernel eRd�x� t� �

exp
�Pd

k�� xktk
e�k�� That is	 denoting this sum by �	 we have

� �
Z
fBd

j eSd�f�j� e	d�df�
�

Z
IRd

exp
�
�Pd

k�� x
�
k���

e�k��Qd
k��

q
�e�k

Z
IRd

exp
�
�Pd

k�� t
�
k���

e�k��Qd
k��

q
�e�k

eRd�x� t� dt dx�

It is easy to verify that the right�hand side equals
Qd
k����� ��k�k���������� This completes

the proof� �

We now choose a subset M such that the error of the algorithm Ad�M is at most �� For
� � ��� � � p	
�	 let

Md����� �

�
�i � INd

	 �
dY

k��

��k�k�
ik � ����Cd���

���

�
� ����

��



Note that the sequence fCd��gd is increasing and

C� � lim
d��

Cd�� �
�Y
k��

�
�� ��k�k�

���
�����

����

exists� It is 
nite since � � �� p	
 implies that
P�

k����k�k�
����� � ��� Denote

Ad����� � Ad�Md������ ����

The next theorem presents the error and cost bounds of the algorithm Ad������

Theorem � For every d� � � �� and � � ��� � � p	
�� the algorithm Ad����� has error at
most �� and its cost is at most �c � ��nd������ Here� nd����� is the cardinality of the set
Md����� and denotes how many derivative evaluations of f are used� and

nd����� � K� �
���������� ����

where

K� �
�Y
i��

��� ��i�i�
������ sup

�������
���������

	
� �

lnC���
�

� ln ��������



� ���

Proof� The bound � on the error of the algorithm follows directly from ���� of Theorem ��
We now prove the bound on nd������ Note that � � �� p	
 implies that K� is 
nite� Let

p � ��� � �����
For d � �	 we have

n������ � � � d�lnC���
����� ln ���������e � K��� �

�p�

where

K��� � sup
�������

�p
	
� �

lnC���
�

� ln ��������



�

Hence ���� holds for d � � since K��� � K��
By induction	 suppose that nd������� � Kd�����

�p� Then

nd����� �
�X
i��

nd����

�
����d�d�

�i��
�
� Kd���� �

�p
�X
i��

��d�d�
�ip�� � Kd�� �

�p�

��



where

Kd�� � Kd���� ��� ��d�d�
������ � K���

dY
i��

��� ��i�i�
������

� K���

�Y
i��

�� � ��i�i�
������ � K��

This proves ����� The algorithmAd�M is linear and its weights a��i can be precomputed� Hence	
its cost is equal to nd����� derivative evaluations	 nd����� multiplications	 and nd����� � �
additions� Hence	 it is bounded by �c� ��nd�����	 as claimed� This completes the proof� �

Theorem � presents an upper bound on the worst case complexity of multivariate inte�
gration Sd in the unit ball Fd� Namely

comp��� � �c� ��K� �
�p��

where p� � ��� � ����� Since � can be arbitrarily close to �� � �� p	
	 we may have

p�  �p	

�� p	


�

Since p	
 � �	 the exponent p� of the multivariate problem Sd is always bounded by two�
Hence	 it is no larger than the exponent of ��� in the cost function of the classical Monte
Carlo method� It can be even smaller than �� For instance	 for �k�k � ��k�r� with r � �	
we have

p�  �

�r � �
� ����

Observe that �k�k � ��k�r� holds for �k  � and for the �r � ���fold Wiener measure ��
For the classical Wiener measure �	 we have r � � and p�  ����

��� In�nite dimensional case

We now consider the in
nite dimensional case	 d � ��� To that end	 let IN�
	 denote the set

of in
nite multi�indices�i � �i�� i�� � � � with nonnegative integers ik for which j�i j � P�
k�� ik is


nite� This means that any �i � IN�
	 has almost all coe�cients equal zero�

We de
ne the Hilbert space H� of entire functions as a limiting case of spaces Hd� That
is	 H� is a space of entire functions f � X � IR with inner product

hf� giH� �
X

�i�IN�
�

�
f ��i ����

Q�
k���Im

��
k�ik
� �

g�
�i ����

Q�
k���Im

��
k�ik
�

Q�
k�� ik��

ik
k

�

��



where	 as before	 
k are the eigenelements of the covariance operator C��
This is a reproducing kernel Hilbert space whose reproducing kernel is

R��x� t� � exp

	
�X
k��

hIm�x�� 
ki hIm�t�� 
ki �k


� x� t � X�

Consider the class F as the unit ball of H�	 i�e�	

F � ff � H� � kfkH� � � g �
This class is a limiting case of the unit balls Fd in the spaces Hd	 and all the results from
the previous section apply� More precisely	 for a given 
nite subset M of IN�

	 	 let

AM�f� �
X
�i�M

	
f ���i����

�Y
k��

�Im��
k�
�ik



�Y
k��

�ikk ��ik � ����

��ik��
� ����

For � � ��� �� p	
� and

C� �
�Y
k��

�
� � ��k�k�

���
�����

�

see ����	 let

M���� �

�
�i � IN�

	 �
�Y
k��

��k�k�
ik �

�
���C�

�����
� ����

We have the following theorem�

Theorem � �i� The algorithm AM is optimal in the class of algorithms that use the same
information� and its worst case error is given by

e��AM� �
X

�i�IN�
�
nM

�Y
k��

��k�k��ik���ik � ������

��ik��
�

�ii� For every � and � � ��� �� p	
�� the algorithm AM���� has error at most �� and its cost
is bounded by

�c� ��K� �
����������

�iii� The path integration problem is tractable and its exponent p�F � is bounded by

p�F � � �p	

� � p	


�

��



For �i�i � ��i�r� with some r � �� we have

p�F � �
�p	


�� p	

�

�

�r � �

if the information is restricted to function and derivative values at zero�

Proof� The proof of �i� and �ii� follows from the results of the previous section� Indeed	
given d and f � F 	 let

fd��t � � f
�
Im���t�
� � � � �� td
d�

�
� with �t � �t�� � � � � td � IRd�

Then f
��i �
d ��� � f �j�i j�����Im��
��i� � � � �Im

��
d�id 	 and kfdkHd
� kfkH� � Hence	 fd belongs

to the unit ball of the space Hd�
For a given M 	 let dM � maxfk � ik �� � for some �i � Mg� Then	 for every f � F 	 we

have
AM�f� � Ad�M�fd�� � d � dM �

Since S�f� � limd�� Sd�fd�	 the 
rst part of Theorem � follows from Theorem ��
Let n���� be the cardinality of the set M����� Since nd����� � nd	������ for every d	 and

nd����� � n���� for d � dM����	 the second part follows from Theorem ��
We now prove �iii�� Obviously	 it is enough to show that ����r � �� is a lower bound on

p�F � in the class of information restricted to function and derivative values at zero� Consider
arbitrary information consisting of n function and derivative values at �� This corresponds
to a subsetM of IN�

	 having cardinality n� The minimal worst case error is given by e��AM�	
where the algorithm AM is given by ����� We have

e��AM� �
X

�i�IN�
�

�Y
k��

��k�k��ik���ik � ������

��ik��
� X

�i�M

�Y
k��

��k�k��ik���ik � ������

��ik��
�

Observe that the 
rst sum is greater than ��
P�

k����k�k�
���� Since the second sum has only

n elements	 we have

e��AM� � �

�

�X
k�n

��k�k�
� � �

�
n���r���

�
�

To guarantee that the error is at most � we have to take n � �
�
������r���

�
� This completes

the proof of Theorem �� �

��
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