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Abstract
Rapid improvements in network bandwidth, cost, and ubiq-

uity combined with the security hazards and high total cost of
ownership of personal computers have created a growing mar-
ket for thin-client computing. We introduce THINC, a remote
display system architecture for high-performance thin-client
computing in both LAN and WAN environments. THINC
transparently maps high-level application display calls to a
few simple low-level commands which can be implemented
easily and efficiently. THINC introduces a number of novel
latency-sensitive optimization techniques, including offscreen
drawing awareness, command buffering and scheduling, non-
blocking display operation, native video support, and server-
side screen scaling. We have implemented THINC in an
XFree86/Linux environment and compared its performance
with other popular approaches, including Citrix MetaFrame,
Microsoft Terminal Services, SunRay, VNC, and X. Our ex-
perimental results on web and video applications demonstrate
that THINC can be as much as five times faster than traditional
thin-client systems in high latency network environments and
is capable of playing full-screen video at full frame rate.

1 Introduction

In the last two decades, the centralized computing model of
mainframe computing has shifted toward the more distributed
model of desktop computing. But as these personal desk-
top computers become prevalent in today’s large corporate
and government organizations, the total cost of owning and
maintaining them has become unmanageable. This problem
is exacerbated by the growing use of mobile laptop computers
and handheld devices to store and process information, which
poses additional administration and security issues. These
mobile devices often contain sensitive data that must be care-
fully secured, yet the devices themselves must travel in in-
secure environments where they can be easily damaged, lost,
or stolen. This management and security problem is particu-
larly important for the medical community, given the increas-
ing use of computing in medicine, the urgent need to com-
ply with HIPAA regulations[18], and the huge privacy con-

sequences for compromised patient data. As a result of the
rising management complexity and security hazards inherent
in the current computing model, there is a growing movement
to leverage continued improvements in network bandwidth,
cost, and ubiquity to return to a more centralized, secure, and
easier-to-manage computing strategy. Thin-client computing
is an embodiment of that movement.

A thin-client computing system consists of a server and a
client that communicate over a network using a remote dis-
play protocol. The protocol allows graphical displays to be
virtualized and served across a network to a client device,
while application logic is executed on the server. Using the
remote display protocol, the client transmits user input to the
server, and the server returns screen updates of the user inter-
face of the applications to the client. Since data and applica-
tions are accessed from a single remote location, several sig-
nificant advantages over desktop computing are achieved. The
client is essentially a stateless appliance that does not need
to be backed up or restored, requires almost no maintenance
or upgrades, and does not store any sensitive data that can
be lost or stolen. Server resources can be physically secured
in protected data centers and centrally administered, with all
the attendant benefits of easier maintenance and cheaper up-
grades. Moreover, computing resources can be shared across
many users, resulting in more effective utilization of comput-
ing hardware.

Given these enormous potential advantages, it is not sur-
prising that the market for thin-client systems is expected to
grow substantially over the next five years [27, 29]. How-
ever, thin-clients face a number of technical challenges before
achieving mass acceptance. The most salient of these is the
need to provide a high fidelity visual and interactive experi-
ence for end users across the vast spectrum of graphical and
multimedia applications commonly found on the computing
desktop. While previous thin-client approaches have focused
on supporting office productivity tools in LAN environments
and reducing data transfer for low bandwidth links such as
ISDN and modem lines, they do not effectively support more
display-intensive applications such as multimedia video, and
they are not designed to operate effectively in higher latency
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WAN environments.

In this context, we introduce THINC (THin-client Inter-
Net Computing), a remote display architecture for thin-client
computing that can provide high fidelity display and inter-
active performance in both LAN and WAN environments.
THINC provides a virtual display driver that takes drawing
commands, packetizes them, and sends them over the network
to a client device to display. In doing so, THINC leverages the
video display driver interface to work seamlessly with exist-
ing unmodified applications, window systems, and operating
systems.

With THINC, higher-level graphics calls used by applica-
tions are transparently mapped to a small set of low-level com-
mands that form the basis for the THINC remote display pro-
tocol. Application-level display commands are handled by
novel semantic-preserving transformation optimizations, in-
cluding offscreen drawing awareness and native video sup-
port. THINC’s low-level commands mirror the video display
driver interface and are easy to implement and accelerate us-
ing widely-available commodity video hardware on clients.

THINC also incorporates several latency-sensitive display
mechanisms which give high performance even in high la-
tency WAN environments. These include local cursor drawing
support based on commodity video hardware, a push display
update model that minimizes synchronization costs between
client and server, shortest-job-first display command schedul-
ing to improve response time for interactive applications, and
a non-blocking drawing pipeline that integrates well with and
maximizes the performance of today’s single-threaded win-
dow servers. THINC also provides server-side screen scaling,
which minimizes display bandwidth and processing require-
ments for small display handheld devices.

We have implemented THINC as a virtual display driver
in the XFree86 window system and measured its performance
on real applications. We have compared our THINC prototype
system against several popular thin-client systems, including
Citrix MetaFrame, Microsoft Terminal Services, SunRay, X,
and VNC. Our experimental results on web and multimedia
applications in various network environments demonstrate the
importance of not just the choice of display commands used,
but also how the mapping of application-level drawing com-
mands to protocol primitives can affect performance. In this
regard, THINC’s approach allows it to achieve overall supe-
rior performance both in terms of application performance and
network bandwidth usage. Most notably, it is capable of dis-
playing full-screen video at full frame rate with modest re-
source requirements.

This paper presents the design and implementation of
THINC. Section 2 presents the overall THINC system ar-
chitecture. Section 3 presents THINC’s mechanisms to im-
prove system interactivity, while Section 4 describes THINC’s
screen scaling support for heterogeneous display devices. The
implementation of THINC as a virtual display driver in the
XFree86 window system is discussed in Section 5. Section 6
presents experimental results measuring THINC performance

Command Description
RAW Display raw pixel data at a given location
COPY Copy frame buffer area to specified coor-

dinates
SFILL Fill an area with a given pixel color value
PFILL Tile a pixmap rectangle in a region
BITMAP Fill a region using a bitmap image

Table 1: THINC Protocol Display Commands

and comparing it against other popular commercial thin-client
systems on a variety of web and multimedia application work-
loads. Section 7 discusses related work. Finally, we present
some concluding remarks.

2 THINC Architecture

The THINC architecture is based on a thin-client model in
which all persistent state is maintained by the server. Dis-
play updates are sent to the client only when the display con-
tent changes. These updates are stored as soft state in a local
framebuffer at the client, which is used for screen refreshes
and can be overwritten at any time.

2.1 THINC Protocol Commands

Within this basic architecture, one important design consider-
ation is the choice of commands used to encode display in-
formation for transmission from the server to the client. The
choices range from encoding high-level graphics calls to send-
ing raw pixel data.

Higher-level display encodings such as those used at the
application level allow the server to simply forward com-
mands to the client. However, this forces a maintenance issue
since the client must keep its own set of libraries for decoding
application-level commands, thus requiring software updates
for both the client and the server. Also, while high-level dis-
play encodings are thought to be more bandwidth efficient,
previous studies show that this is often not the case in practice
[23, 42]. Furthermore, they may be more platform-dependent
and can result in additional synchronization overhead between
client and server, substantially degrading display performance
in WAN environments.

On the other hand, raw pixel encodings are very portable
and easy to implement. Servers must do the full translation
from application display commands to actual pixel data, but
clients can be very simple and stateless. However, display
commands consisting of raw pixels alone are typically too
bandwidth-intensive. For example, using raw pixels to encode
display updates for a video player displaying at 30 frames per
second (fps) full-screen video clip on a typical 1024x768 24-
bit resolution screen would require over 0.5 Gbps of network
bandwidth.
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The design of THINC is based on the idea that a small set
of low-level display encoding commands provides a simple
yet powerful low-latency mechanism that translates to supe-
rior remote display performance. THINC uses a set of com-
mands that mimic operations commonly found in client dis-
play hardware. The five display commands used in THINC’s
display protocol are listed in Table 1.

These commands were selected because they are ubiqui-
tously supported, simple to implement, and easily portable
to a range of environments. They also represent a subset of
operations accelerated by most graphics subsystems. Graph-
ics acceleration interfaces such as the XFree86 XAA architec-
ture [41] and Microsoft Windows’ GDI Video Driver interface
[28] use a set of operations which can be synthesized using
THINC’s commands. In this manner, clients need to do little
more than translate protocol commands into hardware calls,
and servers avoid the need to do full translation to actual pixel
data, reducing the latency of display processing. Furthermore,
THINC commands can capture important semantic informa-
tion regarding the content of display updates so that they can
be encoded in a bandwidth-efficient manner. The THINC pro-
tocol display commands allow clients to be simple and state-
less and operate in a wide-range of network environments.

The five core THINC display commands are as follows.
RAW is used to present unencoded pixel data to be displayed
verbatim on a region of the screen. This command is invoked
as a last resort if the server is unable to employ any other
command. RAW commands are the only commands that are
compressed to mitigate their impact on the network. COPY
instructs the client to copy a region of the screen from its lo-
cal framebuffer to another location. This command improves
the user experience by accelerating scrolling and opaque win-
dow movement without having to resend screen data from the
server. SFILL, PFILL, and BITMAP are commands that paint
a fixed-size region on the screen. They are useful for acceler-
ating the display of solid window backgrounds, desktop pat-
terns, backgrounds of web pages, text drawing, and certain
operations in graphics manipulation programs. SFILL fills a
sizable region on the screen with a single color. PFILL repli-
cates a tile over a screen region. BITMAP performs a fill using
a bitmap as a stipple to apply a foreground and background
color.

To provide higher fidelity display, all THINC commands
are designed to support full 24-bit color as well as an al-
pha channel. The alpha channel enables THINC to use alpha
blending to work with more advanced window system fea-
tures that incorporate transparency, such as Mac OS X. How-
ever, most current window systems such as XFree86 do not
yet provide support for advanced transparency features. Due
to space constraints, and since we use the XFree86 window
system for the THINC prototype implementation and experi-
mental results, we skip the details of transparency support for
this paper.

2.2 Application Command Interception

Another important design issue is the method for obtaining
display information from application display commands so
that they can be translated into THINC protocol commands.
To be a viable replacement for the traditional desktop com-
puting model, THINC needs to be able to obtain display up-
dates from application display commands without modifying
existing applications. Also, since good performance even in
WAN environments is essential, THINC must intercept dis-
play commands at an appropriate abstraction layer to provide
sufficient information to optimize the processing of display
commands in a latency-sensitive manner.

Given that traditional display systems are structured in mul-
tiple abstraction layers, there are a number of ways in which
THINC can interact with existing display systems. One ap-
proach is to intercept commands at the application layer using
functions provided by a display library. Intercepting at this
layer provides a high-level view of the overall characteristics
of the display system including the operation and manage-
ment of windows, input mechanisms, and display capabilities
of the system. Though it gives the ability to fully optimize
the encoding of display updates to the client, the translation
of application layer requests down to THINC display com-
mands entails a significant amount of application logic, soft-
ware complexity, and computational power on the client.

Another possibility is to intercept commands at the mid-
dleware layer, a hardware-independent abstraction of the dis-
play hardware created to meet the requirements of the display
system and its applications. To maintain consistency across
hardware with differing capabilities, this layer is provisioned
with fallback mechanisms and software routines that can im-
plement missing hardware features. However, the complex-
ity of the middleware layer can make implementating display
command interception difficult. Moreover, non-standard mid-
dleware implementations quickly become outdated and need
constant revision to keep up with advances in commodity mid-
dleware systems.

Another approach is to operate at the lowest level possi-
ble by simply reading the actual pixel data in the framebuffer,
implicitly intercepting commands after they have been pro-
cessed completely. In this manner, it is possible to develop
a very portable system since raw pixels are ubiquitously sup-
ported. Nonetheless, this approach is unsatisfactory because
semantic information that may have been associated with
application display commands is no longer available. This
makes it computationally expensive to translate pixel data into
bandwidth-efficient display protocol commands, despite ad-
vances in compression algorithms developed for this purpose
[9, 8].

THINC takes an approach based on the video device ab-
straction layer which sits below the middleware layer and
above the framebuffer. This layer is a well-defined, low-level,
device-dependent layer that exposes the video hardware to the
display system. Instead of relying on a real hardware-specific
driver, THINC is designed as a virtual video device driver that
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can intercept graphics commands at the device layer, encode
them as THINC protocol commands, and send the commands
over the network to the client. The virtual video device ap-
proach enables THINC to maximize the use of available client
resources without requiring a significant amount of applica-
tion logic and computational power. The advantage to this ap-
proach is that it works with existing unmodified middleware
layer implementations, thus allowing THINC to leverage con-
tinuing advances in existing window systems and avoid re-
implementing substantial functionality available in those sys-
tems. THINC can also support new video hardware features
with at most the same amount of development work required
for supporting them in traditional desktop display drivers.

THINC can utilize this semantic information at the video
device driver layer to translate application commands and
transmit them from the server to the client in a way that is
computationally and bandwidth efficient. Still, this seman-
tic information is not guaranteed to be maintained through-
out the translation process. Consider the case where display
commands are intercepted and fully rendered into actual pixel
data. At this point, no semantic information for the inter-
cepted display command is available, and THINC is left to
analyze only pixel data to determine the best commands with
which to encode. While the choice of abstraction layer for
intercepting display commands and the underlying protocol
commands are important in thin-client design, the mechanism
used for translating from one to another is also critical for per-
formance.

2.3 THINC Translation Architecture

Having described the basic THINC protocol and the mecha-
nism used to transparently intercept application drawing re-
quests, we discuss how THINC translates application com-
mands to THINC commands. As we will show, this transla-
tion architecture is a key component of several THINC opti-
mizations.

THINC introduces an abstraction layer that allows it to per-
form the translation from application draw requests to proto-
col commands, and to efficiently manage protocol commands
as they traverse the system, The abstraction layer builds upon
two basic objects: theprotocol command object, and thecom-
mand queue object.

Protocol command objects, or justcommand objects, are
implemented in an object-oriented fashion. All command ob-
jects are based on a generic interface that allows the THINC
server to operate on all of the THINC commands in the sys-
tem. Objects specific to each protocol command are concrete
implementations of this generic interface. Several attributes
and methods are shared by all command objects, though par-
ticular objects implement their own set of attributes and meth-
ods specific to the command they represent. Attributes can
indicate specific characteristics of a command such as its
scheduling priority or whether the command is opaque or
transparent.

The generic command interface consists of the following
methods:

• Createa new instance of a command object.
• Destroyan object instance.
• Copyan instance of an object. Commands are free to im-

plement copying efficiently, for example by using copy-
on-write mechanisms to share private data across object
instances.

• Modify the characteristics of an object instance. Current
supported modifications are clipping and translation of
the draw region of the object, and merging of two objects
into one.

• Queryinformation about an object instance, for example,
the region where it draws, or its size.

• Flushan object instance by creating the appropriate pro-
tocol representation of the command encapsulated by the
object, and passing it to the network layer for delivery to
the client.

Functions within the application interception layer pass ap-
propriate information to the translation layer to create a par-
ticular type of object as an opaque handle. This handle is
passed to theCreatemethod which returns a generic object
instance that the translation layer can manipulate. However,
as discussed later, translated commands are not instantly dis-
patched to the client. Instead, depending on where drawing
occurs and current conditions in the system, commands nor-
mally need to be stored and groups of commands may need to
be manipulated as a single entity.

To facilitate this process, THINC introduces the notion of
a command queue. A command queue is a typical queue
structure where commands are ordered according to their ar-
rival time. However, the queue also has a single invariant:
no overlap exists among opaque commands inside the queue.
To guarantee correct drawing, the queue distinguishes be-
tween self-contained opaque commands and commands with
transparent regions that depend on commands previously ex-
ecuted. The former are allowed to overwrite previous com-
mands whereas the latter cannot. The invariant is maintained
by modifying queue insertion. When newer commands are
added to the queue, existing commands are automatically
modified to maintain no overlap. If a command in the queue is
partially overwritten by the new object, the intersection of its
draw region and the region of the new object is modified. For
example, if a RAW command is partially overwritten by a new
FILL object, the queue will clip and discard the RAW pixel
data associated with the overwritten region. Furthermore, if
the new command completely overwrites a queued object, the
queued object is purged from the queue.

Command queues provide a powerful mechanism for
THINC to manage groups of commands. For example, queues
can be merged and the resulting queue will maintain the in-
variant automatically. Command queues also play a key role
in THINC’s non-blocking operation. In the following sec-
tion, we discuss an important translation optimization based
on command objects and queues.
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2.4 Offscreen Drawing

Over the past few years, there has been a trend in graphic
applications to move towards a drawing model where the user
interface is prepared using offscreen video memory; that is,
the interface is computed offscreen and copied onscreen only
when it is ready to present to the user. This idea is similar
to the double- and triple-buffering methods used in video and
3D-intensive applications.

Though this practice provides the user with a more pleas-
ant experience on a regular local desktop client, it can pose
a serious performance problem for thin-client systems. Thin-
client systems typically ignore all offscreen commands since
they do not directly result in any visible change to the frame-
buffer. Only when offscreen data are copied onscreen does
the thin-client server send a corresponding display update to
the client. However, at this point, all semantic information re-
garding the offscreen data has been lost and the server must
resort to using raw pixel drawing commands for the onscreen
display update. This can be very bandwidth-intensive if there
are many offscreen operations that result in large onscreen up-
dates. Even if the updates can be successfully compressed us-
ing image compression algorithms, these algorithms can be
computationally expensive and would impose additional load
on the server.

To deliver effective performance for applications that use
offscreen drawing operations, THINC provides a translation
optimization that tracks drawing commands as they occur in
offscreen memory. The server then sends only those com-
mands that affect the display when offscreen data are copied
onscreen. THINC implements this by keeping a command
queue for each offscreen region where drawing occurs. When
a draw command is received by THINC with an offscreen
destination, the appropriate THINC protocol command ob-
ject is generated and added to the command queue associ-
ated with the destination offscreen region. Since the command
queue guarantees that no overlap exists among commands in
the queue, only relevant commands are stored for each off-
screen region. In addition, transparent manipulation of off-
screen commands is made possible by the generic command
object interface. The command queue also allows new com-
mands to be merged with existing commands of the same kind
that draw next to each other.

THINC’s offscreen awareness mechanism also accounts for
applications that create a hierarchy of offscreen regions to
help them manage the drawing of their graphical interfaces.
Smaller offscreen regions are used to draw simple elements,
which are then combined with larger offscreen regions to form
more complex elements. This is accomplished by copying the
contents of one offscreen region to another. To preserve dis-
play content semantics across these copy operations, THINC
mimics the process by copying the group of commands that
draw on the area being copied in the source offscreen region
to the destination region’s queue. Note that the commands
cannot simply be moved from one queue to the other since
an offscreen region may be used multiple times as source for

Command Description
INIT Initializes a video stream
END Tears down a video stream
NEXT Display the next video frame
MOVE Change the location of the video display
SRCSIZE Change the source size of the video

stream
DSTSIZE Change the destination size of the video

stream

Table 2: THINC Video Commands

a copy. When the commands are copied, they are clipped so
that they do not draw outside of the source area. In addition,
they are translated to the proper position in the destination off-
screen region. Finally, the destination command queue guar-
antees that commands are properly modified so that no over-
laps exist with the newly-added commands.

When offscreen data are copied onscreen, THINC executes
the queue of display commands associated with the respec-
tive offscreen region. Because the display primitives in the
queue are already encoded as THINC commands, THINC’s
execution stage normally entails little more than extracting the
relevant data from the command’s structure and passing it to
the functions in charge of formatting and outputting THINC
protocol commands to be sent to the client. This process is
encapsulated by the command’sFlushmethod. The simplic-
ity of this stage is crucial to the performance of the offscreen
mechanism since it should behave equivalently to a local desk-
top client that transfers pixel data from offscreen to onscreen
memory.

In monitoring offscreen operations, THINC incurs some
tracking and translation overhead compared to systems that
completely ignore offscreen operations. However, the domi-
nant cost of offscreen operations is the actual drawing that oc-
curs, which is the same regardless of whether the operations
are tracked or ignored. As a result, THINC’s offscreen aware-
ness imposes negligible overhead and yields substantial im-
provements in overall system performance, as demonstrated
in Section 6.

2.5 Video Support

From video conferencing and presentations to movie and mu-
sic entertainment, multimedia applications play an everyday
role in desktop computing. However, existing thin-client plat-
forms have little or no support for multimedia applications,
and in particular for video delivery to the client. Video de-
livery imposes rather high requirements on the underlying
remote display architecture. If the video is completely de-
coded by applications on the server, there is little the thin-
client server can do to provide a scalable solution. Real-time
re-encoding of the video data is computationally expensive,
even with today’s high end server CPUs. At the same time,
delivering 24fps of rawRGBdata can rapidly overwhelm the
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capacity of a typical network. Further hampering the abil-
ity of thin-client systems to support video playback are the
lack of well-defined application interfaces for video display.
Most video players use ad-hoc, unique methods and architec-
tures for video decoding and playback, and providing support
in this environment would require prohibitive per-application
modifications. This section describes THINC’s video sup-
port. We first present THINC’s generic video architecture,
designed to provide scalable remote video delivery. Then we
describe how THINC’s video architecture transparently sup-
ports today’s multimedia applications.

Video support in THINC is implemented as a separate set of
protocol commands. We decided against reusing or extending
the basic display update protocol commands since they could
not cleanly provide the appropriate framework that video de-
livery requires. While typical display updates are stateless
and self-contained, video display updates are deeply intercon-
nected and require considerable amounts of state. The video
architecture is built around the notion of video stream objects.
Each stream object represents a video being displayed. Avail-
able formats for a session are negotiated at client connection
time to allow the system to adapt to varying client capabilities.
All streams share a common set of characteristics that allow
THINC to manipulate them such as their format, position on
the screen, and the geometry of the video. In addition, each
stream encapsulates information and state for its respective
format.

The commands used to manipulate video streams are de-
scribed in Table 2. When an application attempts to display
a video, the THINC server sends anINIT message to the
client that sets up the video stream. Playback does not start
until the client acknowledges successful stream initialization.
This synchronization step is needed because the client will
normally need to make use of hardware resources that may
not always be available. (However, after a video stream is ini-
tialized, no additional synchronization is needed.) TheINIT
message also assigns a unique ID to the stream. Any other
video command will use this ID to identify the stream that
is being modified. Video playback is accomplished using the
NEXTcommand.NEXTencapsulates the data needed to dis-
play the next frame in the video stream, and is sent in re-
sponse to requests from the application. Because applications
have complete control over video playback, THINC does not
need to implement playback control commands, for example
to pause, rewind or fast forward.

TheMOVE, SRCSIZE, andDSTSIZE commands are used
to change the characteristics of the stream after playback has
started.MOVEchanges the location on the screen where the
video is displayed, typically in response to movement of the
video player’s window.DSTSIZE changes the display geom-
etry of the stream which is useful for displaying videos at res-
olutions different from the actual encoded stream.SRCSIZE
informs the client that the dimensions of the encoded stream
have changed. The command may not be supported with all
video formats. For example, to change the geometry of an

MPEG stream, the server would have to re-encode the stream
on the fly.

To provide transparent video playback functionality,
THINC supports alternative YUV pixel formats commonly
used in applications that manipulate video content. A wide
range of YUV pixel formats exist that provide efficient encod-
ing of video content. For example, the preferred pixel format
in the MPEG decoding process is YV12, which allows normal
true color pixels to be represented with only 12 bits. YUV for-
mats are able to efficiently compress RGB data without loss of
quality by taking advantage of the human eye’s ability to bet-
ter distinguish differences in brightness than in color. In ad-
dition to the obvious compression gains, the use of YUV data
has the benefit of being natively supported by virtually every
off-the-shelf video card available today. This allows THINC
to take full advantage of the capabilities of client video hard-
ware while incurring minimal overhead for video processing.
The video data need only be transferred to the client video
hardware, which automatically and efficiently performs the
required colorspace conversion and scaling to the stream’s
destination size. Moreover, in the absence of suitable video
hardware, the colorspace conversion can be optimized using
high-speed operations such as Intel’s MMX or PowerPC’s Al-
tivec extensions, both of which are found in almost all CPUs
in common use today. Widely used application interfaces al-
ready exist today to allow video players to transfer YUV data
directly to the video card. THINC is able to leverage these in-
terfaces to provide its support for YUV pixel formats without
requiring any modifications to existing applications.

Application interfaces that support the YUV pixel model
enable applications to initially query the video device to find
out what pixel formats are supported. From the list of formats,
the application chooses one to use and then forwards subse-
quent images in this format to the video device. THINC’s
virtual video device operates in the same manner, such that
at the query stage, THINC can steer an application towards a
particular pixel format optimal for its environment. The rela-
tive simplicity of the YUV formats allows the THINC server
to do on-the-fly resampling to support video playback in small
screen devices. As demonstrated by our performance results,
the resampling operation incurs very low overhead while pro-
ducing excellent gains in resource constrained environments.

3 Improving Interactivity

Thin clients must provide a high-quality interactive experi-
ence in order to become a viable replacement to traditional
desktop computers. The interactive performance of a thin-
client system is directly dependent on its response time and,
more importantly, on its ability to effectively support network
latency variations. Unfortunately, today’s thin-client systems
are either optimized for LAN or low bandwidth environments
and, consequently, use continuous synchronization or have
client-driven display update mechanisms which can only give
subpar interactive performance. Furthermore, they may be-
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come completely unusable as network latency increases.
We have designed THINC with responsiveness and latency

tolerance as a top priority. Previous sections have described
THINC’s low overhead architecture. We now describe the
mechanisms built on top of this architecture, employed by
THINC to maximize the interactive feel of the system and
adapt to variable network latency. As we demonstrate with
our results, these mechanisms allow THINC to provide an
interactive experience superior to any other existing system,
particularly in high-latency network environments.

3.1 Server-Push Model

At the heart of THINC’s interactive architecture lies its design
around aserver-pusharchitecture, where display updates are
pushedto the client as soon as they are generated. In contrast
to theclient-pullmodel used by popular systems such as VNC
[3] and GoToMyPC [17], server-push maximizes display re-
sponse time by obviating the need for a round trip delay on ev-
ery update. This is particularly important for display-intensive
applications such as video playback since updates are gener-
ated faster than the rate at which the client can send update
requests back to the server. Furthermore, a server-push model
minimizes the impact of network latency on the responsive-
ness of the system because it requires no client-server syn-
chronization, whereas a client-driven system has an update
delay of at least half the round-trip time in the network.

3.2 Non-Blocking Operation

Although a push mechanism can outperform client-pull sys-
tems, a server that blindly pushes data to clients can quickly
overwhelm slow or congested networks and slowly respond-
ing clients. In this situation, the server may have to block or
buffer updates. If updates are not buffered carefully and the
state of the display continues to change, outdated content is
sent to the client before relevant updates can be delivered.

Blocking can have potentially worse effects. Display sys-
tems are commonly built around a monolithic core server
which manages display and input events, and where display
drivers are integrated. If the video device driver blocks, the
core display server also blocks. As a result, the system be-
comes unresponsive since neither application requests nor
user input events can be serviced. In display systems where
applications send requests to the window system using IPC
mechanisms, blocking may eventually cause applications to
also block after the IPC buffers are filled.

The THINC server guarantees correct buffering and low
overhead display update management by keeping a per-client
command buffer based on the command queue structure de-
scribed in Section 2.3. The command queue within the buffer
ensures no command overlap, thus any outdated commands
in the buffer are automatically evicted. Periodically, THINC
attempts to flush the buffer in a two stage process. First, each
command in the buffer’s queue is committed to the network
layer by using the command’s flush handler. If the server

Command Description
CHANGE Changes the shape of the cursor, de-

scribed as two bitmaps: source and mask
SHOWHIDE Show or hide the cursor
MOVE Move the cursor (only in response to ap-

plication request)
COLOR Change the color of the cursor

Table 3: THINC Cursor Commands

detects that committing a command may cause it block, the
operation is postponed until the next flush period. Second,
to protect the server from blocking on large updates, a com-
mand’s flush handler is required to guarantee non-blocking
operation during the commit by breaking large commands into
smaller updates. When the handler detects that it cannot con-
tinue without blocking, it reformats the command to reflect
the portion that was committed and informs the server to stop
flushing the bluffer. Commands are not broken up in advance
to guarantee minimum overhead and allow the system to adapt
to changing conditions.

3.3 Scheduling Updates

Alongside the client buffer is a multi-queueShortest-
Remaining-Size-First (SRSF)preemptive scheduler, analo-
gous to Shortest-Remaining-Processing-Time (SRPT). SRPT
is known to be optimal for minimizing mean response time
[5], a primary goal in improving the interactivity of a sys-
tem. THINC uses remaining size instead of the update’s orig-
inal size to shorten the delay between delivery of segments of
an update, and minimize artifacts due to partially sent com-
mands. Commands are sorted in multiple queues in increas-
ing order with respect to the amount of data needed to de-
liver them to the client. Each queue represents a size range
and commands within the queue are ordered by arrival time.
When a command is added to the client’s command buffer,
the scheduler chooses the appropriate queue to store it. The
commands are then flushed in increasing queue order.

In addition to the queues for normal commands, the sched-
uler has areal-timequeue for commands with high interac-
tivity needs. Commands in the real-time queue take priority
and preempt commands in the normal queues. Real-time com-
mands are small to medium-sized and are issued in direct re-
sponse to user interaction with the applications. For example,
when the user clicks on a button, she expects immediate feed-
back from the system in the form of a pressed button image.
By marking this update as real-time and delivering it sooner
as opposed to later, THINC improves the perceived respon-
siveness of the system.

3.4 Managing the Cursor

Guaranteeing quick cursor response has a direct effect on
the perceived feel of the system. Owing to the fact that to-
day’s commodity video hardware has the ability to manage

7



a hardware cursor, THINC optimizes cursor management by
transferring the responsibility of drawing the cursor to the
client. Since hardware support exists for cursor drawing, a
local client cursor does not impose additional overhead on the
client. In contrast, approaches where the cursor is drawn on
the server and delivered as normal display update cannot guar-
antee the response time required by cursor movement. This is
particularly true in high latency WAN environments where the
cursor updates have a continuous lag of at least the round-trip
time. In THINC, the server continues to maintain cursor state
and transmits changes to the client using the commands shown
in Table 3. Each command modifies a component of the cursor
state while the client is responsible for using this state to con-
tinuously draw the cursor in response to local mouse move-
ments. Cursor commands are treated as high priority com-
mands by THINC’s scheduler, thus minimizing the perceived
user delay between local cursor activity and any correspond-
ing display changes.

4 Supporting Heterogeneous Displays

The promise of ubiquitous computing access has been a ma-
jor driving force in the growing popularity of thin-client sys-
tems. To deliver on this promise, THINC enables access from
a variety of devices by supporting variable display sizes and
dynamic resizing. For instance, to view a desktop session
through a small-screen mobile device such as a PDA, THINC
initially presents a zoomed-out version of the user’s desktop,
from where the user can zoom in on particular sections of the
display. In sharp contrast to similar client-only approaches
in existing thin-client systems, THINC’s small screen clients
are fully supported by the server. After a client reports its
screen size to the server, subsequent updates are automatically
resized by the server to fit in the client’s smaller viewport.
When the user zooms in on the desktop, the client presents
a temporary magnified view of the desktop while it requests
updated content from the server. The server updates are nec-
essary when the display size increases, because the client has
only a small-size version of the display, with not enough con-
tent to provide an accurate view of the desktop.

Server resize support is designed to minimize processing
and network overhead while maintaining display quality. For
this reason, resizing is supported differently for each proto-
col command. RAWupdates can be easily resized because
they consist of pure pixel data which can be reliably resam-
pled, and more importantly, the bandwidth savings are sig-
nificant. Similarly forPFILL updates the tile image is re-
sized to save client computation, since the region to be filled
can be large. On the other hand,BITMAP updates cannot be
resized without incurring significant loss of display informa-
tion and generating display artifacts. Traditionally, antialias-
ing techniques are used to minimize the loss of information
from the downsize operation. However, antialiasing requires
the use of intermediate pixel values which bitmap data cannot
represent. In this case,BITMAP updates are sent unmodi-

fied to the client, which takes care of resizing and merging
them into the display. Also, resizingSFILL updates repre-
sents no savings with respect to bandwidth or computation,
and therefore they are sent unmodified. As we show in our re-
sults, our approach provides substantial performance benefits
by taking advantage of server resources and reducing band-
width consumption, vastly outperforming the client-only sup-
port present in other thin-client systems. Furthermore, since
THINC leverages the powerful server CPU to do most of the
resize work, it can use high quality resampling algorithms to
provide superior display content to the user.

As a final note, we wish to draw attention to the interest-
ing differences in providing this kind of support in thin-client
systems versus the prevalent local computer model. In par-
ticular, the topic of web page display in small screen devices
has received lots of attention over the last couple of years.
Mechanisms like WAP, specialized web browsers, and even
different website versions tailored to different screen sizes,
have all attempted to provide desktop-like web experience in
mobile devices with varying degrees of success. On the other
hand, we have shown that THINC easily provides this kind of
support without requiring any changes to existing protocols,
infrastructure, or applications.

5 THINC Implementation

We have implemented a prototype THINC server as a video
device driver for XFree86 4.3.0 in Linux, and a prototype
THINC client as a simple X application. We also have a Java
client implementation, both as a standalone application and
a web browser applet, demonstrating THINC’s client porta-
bility and simplicity. XFree86 4.0 introduced a modular de-
vice driver infrastructure that allows THINC to be confined
to a single, dynamically loadable module. The module en-
capsulates all the THINC server functionality, along with
simple, network-aware, cursor, mouse, and keyboard drivers.
THINC’s module seamlessly hooks into XFree86’s existing
driver infrastructure to capture display commands and trans-
late them to THINC protocol commands. Since THINC uses
well-defined and standard interfaces, no changes are required
to applications or the window system. XFree86 is designed
around a single-user workstation model where a server has
exclusive access to the computer’s display hardware, and mul-
tiple server instances are not allowed to be active simultane-
ously. Because the THINC server does not access local hard-
ware, THINC modifies XFree86’s behavior from within the
video driver interface and without any changes to XFree86,
thus allowing for multiple THINC servers to be active at the
same time. To implement THINC’s drawing infrastructure,
we have made use of XFree86’sDrawablesto track and record
all display operations in the system. In particular for offscreen
updates, THINC attaches to allPixmapobjects a command
queue where all draw operations on the Pixmap are recorded.

As previously discussed, the RAW command is the only
command where we apply additional compression to miti-
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gate its impact on the network. The current prototype uses
zlib’s implementation ofdeflate[13] for this purpose. We
have experimented with other compression algorithms and
have found zlib’s implementation to have the best size/speed
ratio. To support resizing, we use a simplified version of
Fant’s resampling algorithm [15], which produces high qual-
ity, antialiased results with very low overhead. To pro-
vide video support, THINC implements XFree86’s standard
XVideo driver interface. THINC primarily exports the YV12
format to applications, which we chose not only for its intrin-
sic compression characteristics, but more importantly, for the
wide range of applications supporting it, and its use as one of
the preferred formats in MPEG codecs.

Even though the thin-client model presents a leap forward
in overall computer security, its reliance on insecure networks
makes it vulnerable to sniff attacks that can potentially com-
promise sensitive data such as passwords typed on the client’s
keyboard. To further improve the thin-client security model,
THINC encrypts all traffic using RC4, a streaming cipher par-
ticularly suited for the kind of traffic prevalent in thin-client
environments. Although block ciphers can have a significant
effect in the performance of the system, we have found the
cost of RC4 to be rather minimal, and the benefits far out-
weigh any minor overhead in overall system performance.
Our prototype also implements standard UNIX authentication
through the use of PAM (Pluggable Authentication Modules).
Our authentication model requires the user to have a valid ac-
count on the server system and to be the owner of the session
she is connecting to. To support multiple users collaborating
in a screen-sharing session, the authentication model is ex-
tended to allow host users to specify a session password, that
is then used by peers connecting to the shared session.

6 Experimental Results

We measured the performance of THINC on common web
and multimedia applications in a range of different network
environments and compared our unoptimized THINC proto-
type with a number of state-of-the-art popular thin-client plat-
forms in use today, including Citrix MetaFrame, Microsoft
Terminal Services, SunRay, X, and VNC. Citrix MetaFrame
and Terminal Services are often referred to by their respective
remote display protocols, ICA (Independent Computing Ar-
chitecture) and RDP (Remote Desktop Protocol), which we
also do here. We also used a local PC as a baseline rep-
resenting today’s prevalent desktop computer model. Sec-
tion 6.1 describes our experimental testbed. Section 6.2 de-
scribes the application benchmarks used for our studies. Sec-
tion 6.3 presents our measurement results.

6.1 Experimental Testbed

We used an isolated network testbed to measure the perfor-
mance of THINC and other thin-client systems under differ-
ent network conditions. As shown in Figure 1, our experi-

Figure 1: Experimental Testbed

Role Hardware Software

Thin-Client Server
Packet Monitor
Network Simulator
Web Server

IBM Netfinity
4500R 2x933MHz
PIII, 512MB RAM

Debian Linux
Unstable (2.4.20
kernel), Windows
2000/2003 Server

Thin-Client client 450MHz PII,
128MB RAM,
nVidia Riva TNT

Debian Linux
Unstable (2.4.20
kernel), Windows
XP Pro

SunRay server SunFire V210
2x1GHz
UltraSPARC IIIi,
2GB RAM

Solaris 9 4/03,
OpenWindows
6.6.1

SunRay client SunRay I Terminal,
100MHz uSPARC
IIep, 8MB RAM

SunRay OS

Table 4: Testbed Machine Configurations

mental testbed consisted of seven computers connected on a
switched FastEthernet network: two thin-client client/server
pairs, a network emulator machine, a packet monitor, and
a web server used for testing web applications. Only one
client/server pair was active at a time. Table 4 summarizes
the characteristics of the machines. The Web Server used was
Apache 1.3.27, the network simulator was NISTNet 2.0.12,
and the packet monitor was Ethereal 0.9.13.

All of the thin-client systems except SunRay used the Pen-
tium II PC as the client, and a Netfinity server as the thin-
client server. We used a SunRay I hardware thin client with
a Solaris 9 SunFire v210 server for SunRay measurements,
since it does not run with the common hardware/software con-
figuration used by the other systems. To minimize application
environment differences, we used common thin-client con-
figuration options and common applications across all plat-
forms whenever possible. All of the tests were done with the
client display set to 24-bit color and, if supported by the sys-
tem, 128-bit encryption enabled. Any remaining thin-client
configuration settings were set to their defaults. Some thin-
client systems used a persistent disk cache in addition to a
per-session cache. To minimize variability, we left the per-
sistent cache turned on but cleared it before every test was
run. Finally, because VNC’s adaptive compression mech-
anisms compromise display quality by using variable color
depths, we disabled this mechanism and set VNC to use the
best compression algorithm available for 24-bit color to guar-
antee a fair comparison with the other systems.
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For each thin-client system we used the server operat-
ing system which delivered the best performance for the
given system. Terminal Services only runs on Windows,
MetaFrame ran best on Windows, THINC, VNC, and X ran
best on UNIX/Linux, and SunRay only runs on Solaris. We
used the most recent system versions available on each plat-
form at the time of our experiments, namely Citrix MetaFrame
XPe, Microsoft Terminal Services built into Windows XP and
Windows 2003, VNC 3.3.7, XFree86 4.3.0, and SunRay 2.0.

We considered two different display resolutions for our ex-
periments, one with the client display set to 1024x768 for a
desktop-like viewing experience, and the other with the client
display set to 320x240 for a PDA-like viewing experience. We
used the network emulator to adjust the network characteris-
tics to match those of various LAN and WAN network condi-
tions. For desktop screen resolution, we measured the perfor-
mance on a 100 Mbps LAN network, and on a 100 Mbps In-
ternet2 WAN network, where the round-trip network latency
was set to 66 ms to represent US cross-country network la-
tency [23]. These environments are identified asLAN Desk-
top andWAN Desktop, respectively. For PDA screen resolu-
tion, we measured the performance on an idealized 802.11g
network by limiting bandwidth to 24 Mbps [2]. We chose
802.11g over 802.11b to reflect 802.11g’s emergence as the
next standard for wireless networks. In addition, the added
bandwidth capacity guarantees a more legitimate comparison
for bandwidth intensive applications, such as video playback.
Since the purpose of the test was to measure performance on
small-screen displays, we did not add the latency and packet
loss characteristics typical of wireless networks. This envi-
ronment is identified as802.11g PDA, and results are only re-
ported for those architectures with support for small screens,
as we discuss later on.

We conducted our WAN experiments using the kind of
high-bandwidth network environment that are becoming in-
creasingly available in public settings [1]. For example, South
Korea is building a nationwide Internet access infrastructure
to make speeds up to 100 Mbps available to the home by 2010
[26]. Because most of the thin-client systems tested used TCP
as the underlying transport protocol, we were careful to con-
sider the impact of TCP window sizing on performance in
WAN environments. Since TCP windows should be adjusted
to at least the bandwidth delay product size to maximize band-
width utilization, on the WAN environment we used a 1 MB
TCP window size to take full advantage of the 100 Mbps Inter-
net2 network bandwidth capacity available. Network packet
loss was set to zero for our experiments.

6.2 Application Benchmarks

We evaluated display performance using three popular desk-
top application scenarios, web browsing, video playback and
interactive graphics editing. Web browsing performance was
measured using the Mozilla 1.6 browser to run a benchmark
based on the Web Text Page Load test from the Ziff-Davis
i-Bench benchmark suite [43]. The benchmark consists of a

sequence of 54 web pages containing a mix of text and graph-
ics. The browser window was set to full-screen resolution
for all platforms measured. Video playback performance was
measured using a video player to play a 34.75 s video clip
of original size 352x240 pixels displayed at full-screen reso-
lution. The video player used was MPlayer 1.0pre3 for the
Unix-based platforms, and Windows Media Player 9 for the
Windows-based platforms. PC performance was measured by
running the web browser and video player on the thin-client
client computer. Graphics editing performance was measured
by recording a one minute long graphics editing session, and
then replaying the session on each of the systems. Record-
ing was done using Xnee and the graphics editor used was
The Gimp 1.2. Because Xnee is only available for X/Unix-
based platforms, the Windows-based systems were not mea-
sured with this benchmark.

We used the packet monitor in our testbed to measure per-
formance on the thin-client systems using slow-motion bench-
marking [31, 24]. This allowed us to quantify system perfor-
mance in a non-invasive manner by capturing network traf-
fic. The primary measure of web browsing performance was
the average page download latency. The primary measure of
video playback performance was video quality [31], which
accounts for both playback delays and frame drops that de-
grade playback quality. For example, 100 percent video qual-
ity means that all video frames were displayed at real-time
speed. On the other hand, 50 percent video quality could
mean that half the video frames were dropped when displayed
at real-time speed or that the clip took twice as long to play
even though all of the video frames were displayed. The pri-
mary measure of interactive graphics editing performance was
completion time.

6.3 Measurements

We compared THINC to other popular thin-client platforms
by measuring performance in three representative applica-
tion scenarios, web browsing, video playback, and interac-
tive graphics editing, and three network/display environments.
Figures 2 and 3 show web browsing performance results in
terms of the perceived latency and average per page data trans-
fer, respectively. Figures 4 and 5 show the video playback
performance results in terms of video quality and total data
transferred, respectively. Due to space constraints, figures are
not shown for the interactive graphics editing performance but
are discussed below.

For LAN and WAN environments, Figure 2 shows that the
local PC is the most bandwidth efficient platform for web
browsing. However, Figure 3 shows that THINC is 2.5 times
faster than the local PC, and provides the best web page down-
load latencies across all thin-client systems. THINC is 1.25 to
1.6 times faster in the LAN environment, with a more marked
difference in the WAN environment, where THINC is 1.8 to 5
times faster than all measured systems. THINC outperforms
the PC because it leverages the faster server machine to pro-
cess web pages more quickly than the web browser running
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Figure 2: Web Benchmark: Average Page Data Transfer
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Figure 3: Web Benchmark: Average Page Latency

on the slower client PC. It is worth mentioning that X and
VNC are the only platforms with no encryption support. We
have measured the latency penalty of tunneling X and VNC
over ssh - the preferred method to secure these platforms - to
be approximately 10%and 40%, respectively.

The results show that due to its latency-sensitive design,
THINC is the only system that does not suffer any perfor-
mance penalties in the WAN environment. Platforms employ-
ing a high-level display approach such as X, ICA, and RDP,
have the worst WAN performance - up to five times slower
than THINC in ICA’s case - because of the tight coupling
required between the application running on the server and
the viewer running on the client. VNC’s WAN performance
degradation is partially due to its reliance on a client pull dis-
play update model. THINC’s server push model avoids round
trip latencies for each update and provides a better interactive
response time.

The results also demonstrate the drawbacks of VNC’s sin-
gle compression strategy for all types of display data. Al-
though many graphics compression algorithms exist, none of
them can effectively and efficiently compress every type of
graphics data - a fact best illustrated by VNC’s subpar per-
formance. In contrast, THINC’s multiple command approach
results in much better bandwidth utilization and higher per-
formance. Since most of the compression work is done by the

command separation and translation layer, very few of the el-
ements in the web pages actually need to be sent usingRAW
and thus need compression using a generic algorithm.

Finally, the importance of offscreen drawing awareness is
illustrated by the large difference between THINC and Sun-
Ray’s bandwidth usage in both LAN and WAN, where Sun-
Ray transfers 15 times more data per page than THINC. While
SunRay and THINC use a similar multi-command protocol,
SunRay is unable to leverage its own protocol due to Mozilla’s
heavy use of offscreen drawing. As previously discussed, by
the time Mozilla finally renders the web page onscreen, Sun-
Ray has lost all semantic information and must resort to its
equivalentRAWcommand to draw updates. We have mea-
sured the impact of disabling offscreen awareness in THINC
to cause a 70%slowdown in latency. The slowdown is caused
by having to fallback toRAW’s expensive deflate compression
for all data transferred. We note that this demonstrates both
the importance of THINC’s offscreen drawing awareness, and
the drawbacks of relying on a single encoding mechanism for
all display data.

Small screen results are also shown in Figures 2 and 3. We
only report results for VNC, RDP and ICA since only these
architectures have support for a client display geometry dif-
ferent than the server’s. The results show that THINC has the
best performance overall, particularly with respect to band-
width usage where THINC transfers between 2 to 5 times less
data than the other systems.

Support for small screen devices can be divided in two
models: systems which clip the client’s display and systems
which actually resize the contents of the display. RDP and
VNC fall within the first category, which requires users to
scroll around the display to see the full screen and offers a
more cumbersome usage model. Citrix and THINC fall within
the second category though THINC differs from ICA in that
the THINC server does most of the resizing work. As shown
by our results, this approach achieves the best performance
across all the architectures. Since most of the display up-
dates are resized before being sent on the network, THINC’s
bandwidth utilization is reduced by more than a factor of two
while only marginally affecting the latency of the system. In
contrast, ICA’s client-only resize approach increases latency
to more than twice its LAN latency, with no improvement in
bandwidth consumption. In the CPU- and bandwidth-limited
environment of mobile devices this approach adversely af-
fects the overall user experience. As a final note, we also
conducted tests on different PDA devices using the respective
PDA specific clients for each platform, where available. All
the systems behaved the same except RDP’s client. Specif-
ically, RDP’s desktop client delivers all display updates, but
RDP’s PDA client only sends those display updates that draw
within the client’s viewport. As such, the results reported here
do not show the effects of RDP’s clipping support on perfor-
mance.

It is also worth mentioning the large difference in quality
of THINC’s resized display compared with ICA’s. THINC’s
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Figure 4: Video Benchmark: Total Data Transferred

resize algorithm appropriately interpolates pixel data and uses
antialiasing to provide high quality results such that the web
page is still readable even when displaying the 320x240 client
window on a computer with a resolution of 1280x1024. On
the other hand, ICA’s resized display version is barely read-
able and appears to be useful only for locating portions of the
screen to zoom in to. Clearly, ICA’s choice of resizing algo-
rithm is restricted by the client’s computational power, while
THINC can take advantage of the server’s powerful CPU and
make use of better algorithms that produce higher quality re-
sults.

Video playback performance results are shown in Figures
4 and 5. Figure 4 shows that the local PC is also the most
bandwidth efficient platform for video playback, using about
1.2Mbps of bandwidth. However, Figure 5 shows that THINC
provides perfect video quality in the same manner as the lo-
cal PC and X. Figure 5 also shows that all of the other plat-
forms deliver very poor video quality, specifically 46%, 23%
and 4% for ICA, RDP, and VNC, respectively. They suffer
from their inability to distinguish video data from normal dis-
play updates and apply ineffective and expensive compression
algorithms on the video data. These algorithms are unable to
keep up with the stream of updates being generated, result-
ing in dropped frames or extremely long playback times. In
contrast, THINC’s ability to leverage client hardware to de-
liver video provides substantial performance benefits over the
other systems. VNC has the worst overall performance pri-
marily because of its use of a client pull model. In order to
display each video frame, the VNC client needs to send an up-
date request to the server. Clearly, video frames are generated
faster than the rate at which the client can send requests to the
server. Figure 4 also shows that THINC’s 100%video qual-
ity does not translate into high resource utilization. The total
data transferred corresponds to bandwidth usage of roughly
24Mbps. While VNC, RDP and ICA consume less bandwidth
- 13, 11 and 19Mbps respectively - their video quality is too
low to provide useful video delivery. X and THINC have the
same video quality and bandwidth consumption as both are
using a similar mechanism to provide remote video display.
However, X is not able to provide the scaling benefits shown
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Figure 5: Video Benchmark: Video Quality

by THINC for small screen devices, as discussed next.
The small display results again demonstrate the benefits of

THINC’s server resize mechanism. THINC still performs at
100%video quality, demonstrating the minimum overhead in-
curred on the server by resampling the video data while signif-
icantly reducing bandwidth consumption to 2.5Mbps, well be-
low any of the other systems. In fact, we have conducted tests
that demonstrate that THINC’s resized bandwidth require-
ments are more than enough to provide perfect video play-
back over an 802.11b wireless network, which cannot be done
by any of the other thin-client systems, including X. ICA’s
client-side resize mechanism aggravates its low video quality,
reducing it to less than 1%while consuming the same amount
of bandwidth. RDP and VNC’s clipping mechanisms are not
particularly useful for video playback since the user only sees
the section of the video that intersects with the client’s view-
port. The user could potentially watch the video at a smaller
size and make the video window fit within the client’s display.
However, we believe that adding such awkward constraints to
the user interface is detrimental to the overall usability of the
system.

Finally, we measured graphics editing performance as a
benchmark of a highly interactive application with reason-
able bandwidth demands. Although the application runs on
X/Unix-based systems, neither VNC nor SunRay were able
to run the benchmark. VNC lacks support for the appropiate
X mechanisms needed to record the session, demonstrating
the drawbacks of implementing alternative middleware sys-
tems. VNC is implemented as a variation of an old version of
XFree86, and has grown outdated and lacking support for oth-
erwise ubiquituous features. SunRay could not run the bench-
mark because of incompatibilities between its X server and
Xnee’s implementation. The only systems that ran the bench-
mark were X and THINC.

THINC and X both completed the benchmark in one minute
in the LAN environment, but THINC vastly outperformed X
in terms of the amount of data transferred, sending about 5
times less data than X during the benchmark. Furthermore,
only THINC completed the benchmark successfully in the
WAN environment. Xnee’s replay operation relies heavily on
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timing and synchronization information between mouse and
keyboard events, and the graphic responses to those events. If
timing at replay time is not equivalent to the recorded infor-
mation, Xnee will be unable to know if responses were missed
and it should continue, or if responses have yet to arrive and
it should keep waiting. Although Xnee has considerable re-
silience to timing differences, if synchronization is lost for an
extended period of time it will give up on the replay opera-
tion. X’s large synchronization overhead made it significantly
slower, causing Xnee to lose synchronization and give up after
only 20 seconds.

7 Related Work

A number of remote display systems have been developed,
and previous studies have compared many of them and identi-
fied those with superior performance [23, 31]. We used those
systems as a basis for comparison with THINC. These sys-
tems can be loosely classified by their choice of protocol prim-
itives. X [36], Citrix Metaframe [10], and Microsoft Termi-
nal Services [12] use high-level commands which are widely
thought to allow for more efficient encodings. However, this
approach suffers from substantial performance degradation in
high-latency WAN environments. VNC [33] takes a low-level
approach and uses a single encoding mechanism providing a
simple and portable solution. Though a number of encoding
algorithms have been developed for thin-client systems, such
as VNC’s ZRLE, FABD [16], PWC [4], and TCC [9, 8], none
of them can effectively and efficiently compress all types of
display data, resulting in subpar performance as illustrated by
VNC’s results. SunRay [37] is designed around a set of sim-
ple commands similar to those used in THINC. However, its
inability to recognize new application display approaches ad-
versely affects its overall performance. Furthermore, it lacks
many of THINC’s other design features, including screen
scaling for heterogeneous display devices, transparent video
support, and latency-sensitive optimizations.

Many other systems for remote display exist including
Tarantella [35], Laplink [25] and PC Anywhere [38], along
with extensions to other systems such as Kaplinsk’s VNC
tight encoding[21], low-bandwidth X (LBX)[6], and more re-
cently, NoMachine’s NX system[32]. Previous studies have
shown the limitations in several of them [19, 22, 30] and
demonstrated that they perform worse than the thin-client sys-
tems we compared against THINC. In particular, these sys-
tems have primarily been designed for LAN or low-bandwidth
networks, without regard for latency and responsiveness. Still,
a growing number of ASPs such as services from FutureLink
[7], Runaware [34], and Expertcity [14] are employing thin-
client technology to host desktop computing sessions over
WAN environments.

Specialized architectures that provide remote access to spe-
cific applications have also been proposed over the years. The
topic of remote access to multimedia content has been exten-
sively explored, and in particular the Infopad project [39] cre-

ated a terminal device optimized for wireless access to mul-
timedia content. Many commercial systems provide remote
access to 3D content, for example SGI’s VizServer [40]. Sim-
ilarly, WireGL and Chromium [20] enable cluster rendering
systems that distribute the load of processing 3D content, but
require high bandwidth environments to operate efficiently.

While technology has changed, the vision of customers
renting their computing services from a public computer util-
ity harkens back to the days of Multics [11]. Unlike Mul-
tics, ASPs are faced with supporting not just simple text pro-
grams but also graphics and multimedia-oriented applications.
THINC provides a key componet to support these kinds of
applications, thereby modernizing the vision (and reality) of
utility computing.

8 Conclusions

We introduced THINC, a remote display architecture for
high-performance thin-client computing for LAN and WAN
environments. THINC uses a simple, low-level protocol
that mimics operations commonly found in commodity dis-
play hardware, and introduces a low overhead, semantic-
preserving translation architecture to convert high-level appli-
cation drawing calls to THINC protocol commands. On top
of this architecture, THINC implements a number of latency-
sensitive optimizations to provide a high fidelity visual and
interactive experience. These include client-side cursor man-
agement, a server-push update model, shortest-job-first com-
mand scheduling, and a non-blocking drawing pipeline. Fur-
thermore, THINC provides native support for video display
by leveraging client display hardware, and is amenable to use
in small screen devices with server-side scaling of display up-
dates.

We implemented a THINC prototype system as a vir-
tual display driver for XFree86 4.3.0 and an Xlib client ap-
plication. Our implementation illustrates the simplicity of
THINC’s protocol and the effectiveness of its translation ar-
chitecture. We measured THINC’s performance in web and
video applications in a number of network environments and
compared it to other thin-client systems. Our experimental
results in web applications have shown that THINC deliv-
ers superior performance and is as much as five times faster
than traditional systems in high latency environments. Our
results also demonstrate the effectiveness of THINC’s server-
side scaling mechanism, reducing THINC’s bandwidth con-
sumption by more than a factor of two. Finally, THINC’s
video support outperforms other existing systems with rea-
sonable network usage, and coupled with server-side video
scaling, THINC is the only system capable of delivering full-
screen video on 802.11b wireless networks.
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