
Service Learning in Internet Telephony
Xiaotao Wu

Department of Computer Science
Columbia University

New York, New York 10027
Email: xiaotaow@cs.columbia.edu

Henning Schulzrinne
Department of Computer Science

Columbia University
New York, New York 10027
Email: hgs@cs.columbia.edu

Abstract— Internet telephony can introduce many novel com-
munication services, however, novelty puts learning burden on
users. It will be a great help to users if their desired services can
be created automatically. We developed an intelligent communi-
cation service creation environment which can handle automatic
service creation by learning from users’ daily communication be-
haviors. The service creation environment models communication
services as decision trees and uses the Incremental Tree Induction
(ITI) algorithm for decision tree learning. We use Language for
End System Services (LESS) scripts to represent learned results
and implemented a simulation environment to verify the learning
algorithm. We also noticed that when users get their desired
services, they may not be aware of unexpected behaviors that
the serivces could introduce, for example, mistakenly rejecting
expected calls. In this paper, we also did a comprehensive analysis
on communication service fail-safe handling and propose several
approaches to create fail-safe services.

I. INTRODUCTION

One of the key advantages of Internet telephony is its
ability of providing many innovative communication services,
however, novelty is a barrier to entry. Many users may not
be aware of what services are available and not know how
to customize or create their own services. It will be a great
help to users if there is a service creation environment that
can automatically generate their desired services by learning
from their daily communication behaviors. For example, if a
user always reject calls from a telemarketing company, the
service creation environment can infer that any calls from
that company’s domain should get rejected automatically. The
service creation environment can then generate a service script
to represent the auto-rejection, upload the service script to
the user’s communication user agent to prevent phone spams
from the telemarketing company. We consider the learning
process for automatic service creation is applicable in Internet
telephony systems because of the following reasons.

In Internet telephony, call signaling messages usually con-
tain much richer information than those in PSTN networks. For
example, in a SIP [8] call, an INVITE message can contain the
display name, SIP address, organization, preferred language,
photo, and vCard information of the caller, and can contain
the priority, and subject information of the call. The caller and
the callee can know each other’s presence status [9], activities
[10], and location [5] information by supporting the SIP event
notification architecture [7] in their SIP user agents. These
information allows people to make sensible call decisions
which are usually impossible in PSTN networks. Thus, in
Internet telephony, call information and call decisions have

a causal relationship. The causal relationship makes service
learning valid. In addition, in Internet telephony systems, end
systems usually have CPU and memory so they can easily
collect users’ communication behaviors for learning and use
the learned results to provide communication services. The
extended abilities of Internet telephony end systems make
service learning practical and useful.

We need to handle four tasks for service learning: represent-
ing communication behaviors, finding a learning algorithm,
representing the learned results, and handling service fail-safe.
How to represent users’ communication behaviors determines
how easy the learning process can be. We choose to use
decision trees to represent communication behaviors and detail
the rational of the choice in Section II. Section III gives the cri-
teria on how to choose a decision tree learning algorithm and
introduces the Incremental Tree Induction (ITI) algorithm we
use for service learning. Because the simplicity, safety, and the
tree-like structure of the Language for End System Services
(LESS) [15], we decide to use LESS scripts to describe learned
results. Section IV shows how to convert a decision tree to
a LESS script. In most cases, communication services bring
great conveniences to users. However, sometimes they may
cause unwanted behaviors and users may not be aware of. For
example, a user can use a service script to block all calls from
domain ads.com to prevent phone spams. If later on, one of
the user’s friends works in ads.com, the user might forget
that he has a service blocking calls from ads.com and will
never get calls from her friend. A call from the user’s friend is
an exception to the user’s existing service and auto-rejecting
the call is a misaction to handle the exception. In Section V, we
give a comprehensive analysis of potential service exceptions
and propose several approaches to create fail-safe services.

Section VI describes how we integrate the service learning
functions in our SIP user agent, SIPC [14]. Section VII
concludes the paper and discusses our future work.

II. REPRESENTING USERS’ COMMUNICATION BEHAVIORS

There are many ways to represent users’ communication
behaviors, such as finite state machines, Use Case Maps
[1], rule sets, decision trees, and Bayesian networks [3]. We
consider binary decision trees are the most suitable way for
the service learning.

We can clearly identify learning targets in a binary decision
tree because the structure of a binary decision tree is simple.
As shown in Figure 1, the learning process is to find all the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

non-leaf tree nodes that can best partition users’ behavior data.
It is hard to identify learning targets in a finite state machine or
a Use Case Map because the structure of a finite state machine
or a Use Case Map is too dynamic to learn.

incoming

< urgent
priority

reject location
= conf

domain
= ads.com accept

caller
= Bob

accept reject

Y

Y

Y

Y

N

N

N

Y

Fig. 1. Representing communication behaviors as decision trees

A binary decision tree is not Turing-complete so it cannot
represent all possible communication behaviors. However, the
goal of service learning is not to find all possible user desired
services, instead, it only focuses on commonly used services
to keep the learning process simple and efficient. Learning
on complicated services is error prone and usually brings
confusions to users.

Using rule sets to represent communication behaviors is
another viable way. Since rule sets can usually be converted to
decision trees, and decision trees are more efficient for service
execution, we consider using decision trees is a better choice.

We also considered using Bayesian networks [3] to represent
communication behaviors for learning. We found that Bayesian
networks are not appropriate for service learning because when
making a communication decision, different factors may not
be independent to each other. For example, domain-based
call rejection is not independent to caller-based call rejection.
We cannot build a Bayesian network with co-related decision
factors [3].

The training set for learning can come from several re-
sources. Call logs can show the name, and the SIP URI
of calling parties, and the calling time, the priority and the
subject of calls. Event logs and calendars can provide calling
parties’ presence status, activities, and location information.
Address books or LDAP servers can contain the affiliation of
the calling parties. To enable communication service learning,
a user agent must collect all related data and generate a training
set. We detail how SIPC [14] handles training data collection
in Section VI.

III. DECISION TREE LEARNING

There are many existing decision tree learning algorithms
[6], [12]. To choose an appropriate algorithm for our com-
munication decision tree learning, we defined several require-
ments for the algorithm.

The decision tree should be learned incrementally. Collect-
ing human communication behavior samples is an accumulat-
ing process. After a period of time, some new samples get
collected, some new rules may get generated, and some old
rules may get broken. Building decision trees in an incremental
way reflect the dynamic changes of people’s communication
behaviors.

There should be an appropriate tree quality measurement
mechanism [13] in the learning algorithm. As shown in
Figure 2, two trees generate the same decisions on calls. Both
trees have the same height. The left tree has fewer leaves and
fewer nodes, but the right tree has a shorter path for most
of the training samples (30 matches for rejecting calls from
Bob with priority lower than urgent). In terms of simplicity,
the left tree is better. In terms of efficiency, the right tree is
better. Because the service learning is to help users to create
and understand communication services, a simpler decision
tree is more preferable. For example, in Figure 2, left tree is
the desired result.

caller
= Alice

< urgent
priority

caller
= Alice

caller
= Bob

accept
(7)

caller
= Bob

< urgent
priority

< urgent
priorityreject

(10)

reject
(30)

reject
(30)

accept
(3)

reject
(10)

accept
(4)

Y

Y Y

Y

Y

N

N

NNN

N

Y

Fig. 2. Two decision trees with different tree node order

An important component of decision tree induction is to
avoid overfitting the training data. Many random factors may
affect communication behaviors. There should be an effective
pruning method to filter decision errors (noise). In addition,
because people’s communication behaviors can change dy-
namically, with additional learning samples, pruned branches
may get reactivated as valid communication services. Thus, the
learning algorithm should also be able to save and reactivate
pruned branches.

A. Incremental Tree Induction (ITI) algorithm

Based on the above requirements, we chose to use the
Incremental Tree Induction (ITI) [12] as our service learning
algorithm. ITI can map an existing tree and a new training
example to a new tree based on several tree transformation
mechanisms. This makes the average incremental cost of
updating a tree being much lower than the average cost of
building new decision trees from scratch each time.

ITI uses an algorithm called direct metric tree induction
to map an existing tree to another based on the tree quality

measurement. The algorithm introduces four tree quality mea-
surement matrices, namely expected number of tests, minimum
description length, expected classication cost, and expected
misclassication cost [12]. We choose to use the expected
number of tests matrix for our service learning process because
that reflects the simpleness of a decision tree.

ITI also introduces a pruning technique named virtual
pruning. The pruning technique uses one bit on a decision
node to mark whether a decision branch should be pruned
or not. It will not delete pruned branches. When presenting
learned results to users, we can hide pruned branches based
on the marks to avoid the overfitting problem, but when new
learning samples are added in, ITI will use the unpruned
tree to perform learning so the pruned branches can still get
reactivated and generate useful services.

B. Accuracy of ITI algorithm

There are two ways to measure the accuracy of ITI algo-
rithm for communication service learning: one is to perform
real world usage testing and the other is to do simulation.

For real world usage testing, we need to collect real com-
munication behavior data from users, perform service learning
and generate services based on the data, send the services back
to the users, gather feedback from the users, and evaluate
the feedback. The testing requires a large deployment of
VoIP systems with people using the VoIP systems for their
daily communications. Currently, people are making efforts
to deploy VoIP systems, such as SIP.edu [11] initiatives in
Internet2 community and many companies have deployed VoIP
solutions in their intranet, however, most of the deployment
are still in their testing stage, not as primary communication
means for people’s daily usage. The real world usage testing
is in our future work plan when our local VoIP deployment is
available.

Because the real world VoIP deployment is not sufficient
for performing accuracy measurement of the ITI algorithm,
we have built a simulation environment to generate random
simulated calls. In the default simulation setup, we use Poisson
distribution to set call arriving time, uniform distribution
multiplied by weights to set call priority and choose caller:
98% of the calls are in normal priority, 0.9% urgent calls, 0.1%
emergency calls, and 1% non-urgent calls; 30% of the calls are
from user1, 10% each from user2, user3, and user4,
the rest from all the other users. The simulation environment
also simulates people’s daily life, such as time for meal and
sleep, and can load calendars in iCal [2] format for meeting
and appointment information.

To measure the accuracy of the learning algorithm, we
randomly created several expected services and apply the ser-
vices to the generated calls to simulate call handling process.
For example, if we have an expected service "reject all
calls from sip:bob@examples.com", when we ap-
ply the service to the generated calls, all calls from
sip:bob@examples.com get rejected. The other calls will
be handled based on the simulation setup. With the default
setup, if a call arrives when the simulated user is sleeping,

50% of the calls will not get answered; when the user is in
meal, 20% of the calls will not get answered; if the user is in
an appointment, 40% of the calls get rejected; in normal cases,
85% of the calls get accepted. The default setup will introduce
reasonable noise for service learning. Once the simulation
completes, we will get simulated communication behavior data
saved in C4.5 [6] format. We can then use ITI algorithm
to learn from the behavior data. The pruned trees generated
by ITI algorithm should match the expected services. We
tested 40 expected services, each applied to 300 simulated
calls. The tests show that 80% of the learning results exactly
match their expected services, 10% of the learning results
represent the expected services in different ways, and 10%
of the learning results do not match the expected services.
The mismatch comes from the randomness of the simulation
data. For example, if an expected service is "accept all
emergency calls", but there are not emergency calls in
the 300 simulated calls since only 0.1% of calls are emergent,
the learning algorithm cannot infer the expected service. Based
on the simulation, we consider ITI algorithm fits our need.

C. Performance of ITI algorithm

Figure 3 and Figure 4 show the performance of ITI al-
gorithm based on 700 simulated calls, running on an IBM
ThinkPad laptop with Linux operating system, a 1GHZ Intel
Pentium III Mobile CPU, and 256MB memory. The expected
services in the testing make call decisions based on the priority
of calls, caller’s addresses, and callee’s ongoing activities when
receiving calls.

 0

 0.5

 1

 1.5

 2

 2.5

 100 200 300 400 500 600 700

T
r
a
i
n
i
n
g

t
i
m
e

(
s
e
c
)

Number of samples

Non-incremental training
Incremental training (20 samples)

Fig. 3. Training time for fast training and incremental training

Figure 3 shows that the training time for non-incremental
training increases quadraticly as more training samples are
added in, while the training time for incremental training is
a constant if only training on the new added samples. For 20
new added samples, the training time for incremental training
is about 0.12 seconds, which is quick enough to provide
automatic service creation to users.

Figure 4 shows that for incremental training, the training
time is independent of the number of internal nodes in the
expected services. This is because ITI algorithm uses the
virtual pruning technique to handle overfitting problem so
it always constructs complete decision trees. The number of

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
r
a
i
n
i
n
g

t
i
m
e

(
s
e
c
)

Number of internal tree nodes

Incremental training with 250 samples
Incremental training with 20 samples

Fig. 4. Training time for trees with different number of internal nodes

nodes in a pruned tree will not affect the training time of
building a complete decision tree.

IV. USING LESS SCRIPTS TO REPRESENT LEARNED

RESULTS

Since the Language for End System Services (LESS) [15]
has a tree-like structure, it is straightforward to convert learned
results to LESS scripts. The non-leaf tree nodes can be
converted to LESS switches, the leaf nodes can be converted
to LESS actions, and the root nodes can be converted to
triggers. For example, we can convert the decision tree in
Figure 1 to the LESS script below:

<less><incoming>
<priority-switch><priority less="urgent">
<address-switch field="origin"
subfield="host">
<address subdomain-of="ads.com"><reject/>
</address>
<otherwise>
<location-switch type="civil">
<location LOC="confroom">
<address-switch field="origin"
subfield="display">
<address is="Bob"><accept/></address>
<otherwise><reject/></otherwise>

</address-switch>
</location>

</location-switch>
</otherwise>
</address-switch>

</priority>
<otherwise><accept/></otherwise>
</priority-switch>

</incoming></less>

The generated LESS scripts can be loaded into a user agent’s
service engine to automate call processing.

V. CREATING FAIL-SAFE COMMUNICATION SERVICES

Once a user gets her desired services, the user may not be
aware of the side-effect of the services. The service creation
environment should alert the user about possible unexpected
behaviors that the services may introduce and provide ap-
proaches to make the services fail-safe.

As we discussed in Section I, a communication service may
have exceptions. For example, a user has a service blocking

all calls after 11:00PM, if later on she expects an important
call at 11:30PM, an exception to the service happens and the
communication service will perform a misaction and cause
unexpected results, in this example, the user will miss the
important call. To help users better handle service exceptions,
we first analyze what may cause service exceptions, we then
propose several approaches to make communication services
fail-safe.

A. Service exceptions

Telecommunication on one hand enables people to interact
with each other, on the other hand, it reveals people’s private
information, distracts people’s attention, costs people money,
and may require people to change their environment, such
as turning off a stereo, for better communication quality. We
consider establishing connections, protecting private informa-
tion, preventing people from disturbance, saving money, and
keeping a comfortable environment are all required aspects
for telecommunication. However, when we use communication
services to automate call processing, actions in communication
services usually favor some aspects of communication but
break the others. For example, auto-accepting a call makes it
easy to establish connections between users, but will reveal
the callee’s private information and cost the callee money
without the callee’s awareness. On the contrary, auto-rejecting
a call can protect private information, save money, and prevent
disturbance, but may lose important calls. A service exception
happens when an action in the service breaks the aspects that
a user wants to protect. Table I shows the required aspects of
communication and the actions that may break them.

Communication aspects Actions may break the aspects
establishing rejecting or redirecting calls,
call connections accepting calls on a wrong proxied branch
protecting auto-accepting calls
private information
preventing people alerting, auto-accepting calls
from being disturbed
saving money auto-accepting calls,

redirecting or transferring calls to
a device with higher charge rate

keeping a comfortable auto-controlling networked
environment appliances

TABLE I

COMMUNICATION ASPECTS AND ACTIONS THAT MAY BREAK THEM

Several kinds of automated actions may cause users to lose
connections. Automatically rejecting a call will terminate a
connection request. Automatically redirecting a call or accept-
ing a call on a wrong proxied branch may break the connection
to user desired devices.

Communications can reveal calling parties’ private informa-
tion. When automatically accepting a call, audio and video
streams will be sent to the remote party without users’
awareness and reveal the information the users want to keep.

People sometimes will need to focus their attention on a
specific task and do not like to be disturbed. For example, in

a meeting, ringing a phone will disturb not only the owner
of the phone but also other people in the meeting. When
driving, auto-accepting a video call may distract the driver’s
attention away from the road and may cause danger. Different
media types and different communication means have different
disturbing characteristics, as discussed in Section V-B and
Section V-C.

Different devices may have different call charges for com-
munications. Auto-redirecting or auto-transferring a call may
cost calling parties more money than expected. For example, to
support session mobility, a service may automatically transfer
an ongoing session from a fixed-line phone to a mobile phone
and that may involve call charge changing.

Environment status can affect communication quality. For
example, a dark environment will make video conferencing
unpractical, a noisy environment will make audio conferenc-
ing non-preferred. Some services may automatically adjust
environment, e.g., performing networked appliance control,
to improve communication quality. However, changes to an
environment may also affect the other people in the same
environment and cause unwanted results.

Table I shows the actions that may cause service exceptions.
To handle service exceptions, we need to further analyze
disturbing characteristics and media availability of different
communication means.

B. Disturbing characteristics of different communication
means

Table II shows the disturbing characteristics for commonly
used communication means, namely multimedia call, instant
messaging, voicemail, and email, with different alerting style.
The multimedia call with playing ring tone for alerting are the
most disturbing way for communication. Usually, it requires
the called party to pickup the call in less than one minute,
otherwise, the called party will lose the call. The ring tone not
only disturbs the called party but also the others in the same
environment. The disturbance analysis can help us to create
fail-safe communication services for disturbance prevention.

Action Disturbed entities Expected response time
Call/ringing Callee and others seconds - minutes

Immediate attention otherwise lose the call
Call/vibrating Callee seconds - minutes

Immediate attention otherwise lose the call
Instant messaging Callee minutes - hours

Immediate attention but delay is ok
Voicemail/Email Callee minutes - days
with indication Immediate attention but delay is ok
Voicemail/Email Callee hours - days
without indication No immediate attention

TABLE II

COMMUNICATION ACTIONS AND THEIR DISTURBING CHARACTERISTICS

C. Media availability analysis of multimedia communications

Table III shows the factors that affect users’ media availabil-
ities. If a user’s sense organ is occupied or if the environment is

not appropriate, some media communication should be consid-
ered unavailable. For example, when driving, hands and eyes
are occupied, video, text, and whiteboard communications are
not preferred; in a noisy environment, audio communications
are not preferred. The analysis can help to improve some
services by switching media types based on users’ activity
and environment status.

Media Sense Organ Preferred Environment
audio ears, mouth hearing in quiet environment
video eyes watching background not too bright

sending in bright environment
text hands, eyes writing party at a stable place,

watching background not too bright
whiteboard hands, eyes drawing party at a stable place,

watching background not too bright

TABLE III

ORGANS AND PREFERRED ENVIRONMENT FOR MULTIMEDIA

COMMUNICATIONS

D. Making communication services fail-safe

Based on the above analysis, we propose several solutions
to make communication services fail-safe. The design rule of
the solutions is to ensure that either the consequences of a
misaction is trivial, or users can get alerted of misactions and
the correction is viable. Because the most important task of
telecommunication is to establish connections between users,
our solutions are mainly focus on how to prevent people from
losing connections. We will also consider how to protect the
other aspects of communications, such as protecting people’s
private information.

1) Lowering disturbing level instead of rejecting: Some
services help people to prevent disturbance by automatically
rejecting incoming calls. This kind of services is very useful
when users are in a meeting or sleeping. However, the services
may also reject important calls. To save calls but still prevent
people from being disturbed, instead of rejecting calls, users
can choose to lower the disturbing level of incoming calls
based on Table II, for example, in an unimportant meeting,
change the alerting style from ringing to vibrating; in an
important conference, forward the call to a voicemail and
provide voicemail indication. If the user is doing a presentation
in a conference and does not want to be disturbed in any way,
he can forward the call to voicemail without providing any
indication.

2) Changing media types instead of rejecting: Some ser-
vices automatically reject calls when the user is unavailable
or communication environment is not suitable. However, if
we carefully distinguish partially available status and fully un-
available status, we will find communications are still possible
in partially available status, but using different media types.
As we discussed in Section V-C, different media types require
different sense organs and have different environment require-
ments. For example, when driving, for a video conferencing
call request, instead of rejecting it, the driver’s communication

services can automatically setup the connection as an audio
only call. For an incoming audio call, when the called party
on another audio call, his services can ask the caller to use
instant messaging.

3) Transferring the disturbance instead of rejecting: Some-
times, disturbance can be transferred, for example, a boss can
transfer calls to his secretary when he is in a meeting. The
transfer ensures that calls get handled and the boss’ attention
still get protected.

4) Making a backup: When rejecting a call, it’s better to
make the called party be aware of the rejection, for example,
by sending an email, or asking the caller to leave a voicemail.
This allows the called party to correct unexpected rejections
later on.

5) Setting appropriate initial media transmission status:
As discussed in Section V-A, auto-accepting calls can provide
convenience for establishing connections but will reveal users’
private information. To protect users’ private information,
when automatically accepting incoming calls, it is safer to
set the media transmission status as ”receive only”.

VI. IMPLEMENTATIONS

We have implemented a SIP user agent called SIPC [14].
SIPC has a built-in LESS engine that can execute LESS scripts
and provide communication services. SIPC has integrated mul-
timedia communication, SIP event notification, instant mes-
saging, email, and web browsing into one application. It also
supports networked appliance control, real-time multimedia
streaming, networked resource discovery, third-party call con-
trol, Internet TV, location sensing, emergency call handling,
and conference floor control. For SIP event notification, SIPC

can retrieve remote parties’ presence status [9], rich presence
information (such as activities, privacy status, place types,
and idle status) [10], location [5] information, and media
availabilities [4]. SIPC also has a built-in address book. With
all these functions, SIPC can collect a lot of information of
calling party’s status and has a rich set of actions for call
handling. SIPC records all the call related information and
user performed actions in a file in C4.5 [6] format, the same
format as what we used in our learning algorithm testing
simulation environment. Once the number of new call records
reaches a threshold, e.g., 20 new call records, SIPC will use
the integrated ITI algorithm to perform service learning. The
learned result will be saved in two files, one is a LESS script
that representing the pruned tree, the other is a binary file that
representing the whole tree with virtual pruning marks. SIPC

will then load the LESS script in its LESS engine to provide
communication services. We are still working on building a
user friendly interface to help users to handle communication
service fail-safe.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a model for communication service
learning. Because usually end users are not trained for commu-
nication service creation, they may not know how to customize
or create their own services. Service learning can help them

by generating communication services automatically based on
their communication behaviors. We noticed that communica-
tion services may perform unexpected actions and proposed
several solutions to make communication services fail-safe.
Because people are still rarely using VoIP systems for their
daily communications, we cannot perform real world testing
for the ITI learning algorithm, but we had done accuracy
and performance measurements for the ITI algorithm in our
simulation environment and proved that it fits our service
learning model. When we have a local deployed VoIP system
and used by the people in our department, we will do a
real world usage testing and to improve our service creation
environment based on the real world feedback. We will also
extend our current implementation to support more decision
variables, such as rich presence information [10], and location
information, for service learning.

REFERENCES

[1] Daniel Amyot. Use case maps as a feature description notation. In
FIREwork Feature Constructs Workshop, May 2000.

[2] F. Dawson and D. Stenerson. Internet calendaring and scheduling core
object specification (icalendar). RFC 2445, Internet Engineering Task
Force, November 1998.

[3] Finn V Jensen. Bayesian networks and decision graphs. In Bayesian
networks and decision graphs. Springer, 2001.

[4] M. Lonnfors and K. Kiss. User agent capability presence status
extension. Internet Draft draft-ietf-simple-prescaps-ext-00, Internet En-
gineering Task Force, February 2004. Work in progress.

[5] J. Peterson. A presence-based GEOPRIV location object format.
Internet Draft draft-ietf-geopriv-pidf-lo-01, Internet Engineering Task
Force, February 2004. Work in progress.

[6] J. R. Quinlan. C4.5: Programs for machine learning. Morgan Kaufman,
1993.

[7] A. B. Roach. Session initiation protocol (sip)-specific event notification.
RFC 3265, Internet Engineering Task Force, June 2002.

[8] J. Rosenberg, Henning Schulzrinne, G. Camarillo, A. R. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP: session
initiation protocol. RFC 3261, Internet Engineering Task Force, June
2002.

[9] Jonathan Rosenberg. A presence event package for the session initiation
protocol (SIP). Internet draft, Internet Engineering Task Force, January
2003. Work in progress.

[10] Henning Schulzrinne. RPID – rich presence information data format.
Internet Draft draft-ietf-simple-rpid-01, Internet Engineering Task Force,
February 2004. Work in progress.

[11] SIP.edu. Sip.edu cookbook. http://web.mit.edu/sip/sip.edu/.
[12] Paul E. Utgoff, Neil C. Berkman, and Jeffery A. Clouse. Decision

tree induction based on efficient tree restructuring. Machine Learning,
29(1):5–44, 1997.

[13] S. M. Weiss and C.A. Kulikoswski. Computer Systems that Learn:
Classification and Prediction Methods from Statistics, Neural Nets,
Machine Learning, and Expert Systems. Morgan Kaufman, 1991.

[14] Xiaotao Wu. Columbia university SIP user agent (sipc).
http://www.cs.columbia.edu/IRT/sipc.

[15] Xiaotao Wu and Henning Schulzrinne. Programmable end system ser-
vices using SIP. In Conference Record of the International Conference
on Communications (ICC), May 2003.

