
WebPod: Persistent Web Browsing Sessions with Pocketable Storage Devices

Shaya Potter Jason Nieh
Computer Science Department

Columbia University, New York, NY USA
{spotter, nieh }@cs.columbia.edu

Columbia University Technical Report CUCS-047-04, November 2004

Abstract

We present WebPod, a portable device for managing web
browsing sessions. WebPod leverages capacity improve-
ments in portable solid state memory devices to provide a
consistent environment to access the web. WebPod pro-
vides a thin virtualization layer that decouples a user’s web
session from any particular end-user device, allowing users
freedom to move their work environments around. We have
implemented a prototype in Linux that works with existing
unmodified applications and operating system kernels. Our
experimental results demonstrate that WebPod has very low
virtualization overhead and can provide a full featured web
browsing experience, including support for all helper appli-
cations and plug-ins one expects. WebPod is able to effi-
ciently migrate a user’s web session. This enables improved
user mobility while maintaining a consistent work environ-
ment.

1 Introduction

In today’s world of commodity computers and broadband,
computer users are more mobile than ever. Users make use
of computers at home, school and work. Computers are so
much a part of daily life that many pervasive devices, such
as cell phones, are assimilating usage patterns, such as web
browsing, e-mail and instant messaging, that were once lim-
ited to regular full scale computers.

The main problem that mobile users encounter is that they
lack a common environment as they move around. The com-
puter at the office is configured differently than the computer
at home, which is different than the computer at the library.
These locations can have different sets of software installed,
which can make it difficult for a user to complete a task as
the necessary software might not be available. Similarly,
mobile users want consistent access to their files, which is
difficult to guarantee as they moves around.

Since the web browser is ubiquitous across all modern
computers, it’s been proposed to make the web browser the
focal point of one’s computer usage. Many traditional ap-
plications, such as e-mail [4, 5] and instant messaging [2],

have been ported to a web services environment that is us-
able from within a simple web browser environment. The
advantage this provides is that by using these web services,
one is able to store their data on centrally managed servers
and get access to the data where ever they go.

Even with keeping a common environment by using a
web browser, one is still limited because a web browser con-
tains lots of data, such as bookmarks and cookies and even
browser history, that enable it to function in a more useful
manner. The problem that occurs when one moves between
computers, this data which is specific to a web browser in-
stallation can not move with the user.

From a security point of view, this state also provides a
large trail of bread crumbs that a malicious user can try to
make use of after a user has finished using a machine. From
cookies, to page view history and the web browser’s web
page cache, a record of a user’s usage can be recorded by
a web browser not under one’s control. Users who have
reason to want to protect their privacy, would be wary to use
applications, such as web browsers, that record state and are
not under their control.

Mobile users also suffer while using web browsers due to
their mobile nature. For instance, mobile users are known
to pick up and move on short notice. While many web
based applications one might use, such as instant messag-
ing, are stateless, others, such as e-mail, contain state, such
as messages one is in the process of composing. While many
e-mail applications support the ability to save draft e-mail
messages, this doesn’t occur automatically. Similarly, while
a user can attempt to bookmark all the pages he is looking
at, he can’t restart his state as it was when he resumes it on
a new computer.

Users also depend on an assorted set of applications to be
available on the computers they are using, such as Adobe
Acrobat Reader for viewing PDF files. If the application
is already installed on the host, the web browser can make
use of it, otherwise the user is mostly out of luck. While
one can try and create web based applications that fill the
needs of these common applications, such as an application
that converts PDF files to simple image files viewable from
a web browser, this is largely a kludge. For instance, this

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


solution would cut out features, such as the ability to search
the PDF, that are available in the native application.

Finally, even if one could solve these issues, for instance
by allowing a user to install software on the computers they
are using, one would still be running foreign applications on
every machine he goes to. This severely limits the amount
of machines one can move the between, as most system ad-
ministrators would consider it to be a security hole to let reg-
ular users install untrusted applications onto their systems.
This effectively limits a user to moving between machines
already under his control, thereby negating the majority of
the need to carry around a personal web browser.

Today’s computer environment is also seeing the rise
of commodity storage devices that can be stowed in one’s
pocket, yet can also store large amounts of Data. Whether it
be an Apple iPod which can hold anywhere from 20-60GB
or a flash memory stick that can hold up to 1GB, these de-
vices are becoming prevalent. We leverage these advances
to solve the problems presented by introducing the WebPod,
a migrating virtual machine for the mobile web user. Web-
Pod decouples a user’s computing session from the under-
lying computer hardware by running the processes within a
specialized virtual machine. This virtual machine environ-
ment, enabled by the underlying host, allows users to run
untrusted applications within the virtualized environment
without the ability to harm any other application running
on the same host. This virtual machine environment is com-
bined with a checkpoint/restart mechanism that enables one
to checkpoint the entire virtual machine in under a second
to stable storage, such as a USB drive, and migrate it be-
tween physical computers by simply moving the USB drive
to a new computer and restarting it there, even if it’s running
a different kernel. WebPod provides these benefits without
modifying, recompiling or relinking any applications or the
operating system kernel, and with only a negligible perfor-
mance impact.

WebPod enables users to maintain a common web brows-
ing environment, no matter what computer they are running.
By storing their entire environment within a checkpointable
and restartable virtual machine, they can easily carry their
web browser session with them, without the bulk necessi-
tated by a laptop. Similarly, since they don’t have to rely on
any of the resources of the underlying host machine, they
are ensured that the web browser helper applications and
plug-ins they expect to be available will always be avail-
able. Also, by using the web browser stored within the Web-
Pod virtual machine, they don’t have to worry about leaving
state on the host that a malicious user could retrieve. Sim-
ilarly, the user’s cookies and bookmarks will always travel
with the user as they are also stored within the web brows-
ing session. Finally, since WebPod is fully integrated with
a checkpoint/restart system, user’s can simply use the sub-
second checkpoint facility to save their entire web browsing
environment when they have to move to their USB device,
without the need to manually attempt to save all the individ-
ual elements of their state. Users can then simply remove

the device from the computer, move onto a new computer
and restart their session from the device to pick up where
they left off.

This paper presents the design and implementation of
WebPod. Section2 presents the overall WebPod architec-
ture and usage model. Section3 describes the WebPod op-
erating system virtualization and checkpoint/restart mecha-
nisms. Section4 presents experimental results measuring
the performance of the WebPod system. Section5 discusses
related work. Finally we present some concluding remarks.

2 WebPod Architecture

WebPod is architected as a simple end user device that users
can carry in their pocket. This device contains a check-
pointable virtual machine that a client PC’s can host, allow-
ing users to maintain a single web browsing session as they
move between computers. The session contains a virtual
private environment that can be populated with the com-
plete set of applications that are made use of in their nor-
mal web browsing environment. To the user, the session
appears no different than a private computer, even though
the user’s web browser session coexists with the host com-
puter. When the user wants to leave the computer, the user
simply closes the WebPod pod viewer. This causes the Web-
Pod session to be quickly checkpointed to the USB device
and can be kept in the users pocket. When the user reaches
another computer, he simply plug in the USB device, when
the computer retrieves the insertion information it automat-
ically restarts the WebPod session in the same state it was
when the user checkpointed it.

To provide a private and mobile environment for the Web-
Pod sessions, WebPod virtualizes two key resources: under-
lying devices and the operating system. WebPod virtualiza-
tion is designed to work with existing unmodified applica-
tions, operating system kernels, and network infrastructure
and protocols. The two components work in concert to cre-
ate a completely virtualized environment for web browsing
sessions.

WebPod virtualizes devices by providing a set of virtual
device drivers. Explicitly, WebPod provides the session’s
display by providing a virtual display driver. The display
driver intercepts drawing commands from user’s applica-
tions, and translates the commands into a display protocol
between the host and the WebPod session.

WebPod operating system virtualization provides a vir-
tual private namespace for the WebPod session. For exam-
ple, the WebPod session contains its own host independent
view of OS resources, such as PID/GID, IPC, memory, file
system, and devices. WebPod virtualization operates at a
finer granularity than virtual machine approaches such as
VMware [30] by virtualizing individual computing sessions
instead of complete operating system environments. As a
result, WebPod sessions can be decoupled from the underly-
ing operating system and migrated to other computers. This
enables improved user mobility in a chaotic world.

2



3 WebPod Virtualization

WebPod encapsulates web browsing sessions within a host
independent, virtualized view of the operating system. Un-
like traditional operating systems, the WebPod session is a
self contained unit that can be isolated from the host system,
checkpointed to its USB device, moved to another machine,
and transparently restarted. This is made possible because
each WebPod session has its own virtual private namespace,
which provides the only means for processes to access the
underlying operating system. Similarly, it only has access to
the underlying physical devices of the host through virtual
device drivers. To guarantee correct operation of unmod-
ified applications, WebPod session virtualization is com-
pletely transparent. This is accomplished by providing a tra-
ditional environment with unchanged application interfaces
and access to operating system services and resources.

The namespace is private in that only processes within
the session can see the namespace, and the namespace in
turn masks out resources that are not contained in the ses-
sion. Processes inside the session appear to one another as
normal processes, and they are able to communicate using
traditional IPC mechanisms. On the other hand, no IPC in-
teraction is possible across the session’s boundary, because
outside processes on the WebPod host are not part of the pri-
vate namespace. Processes inside a session and those out-
side of it are only able to communicate over RPC mecha-
nisms, traditionally used to communicate across computers.

The namespace is virtual in that all operating system re-
sources, including processes, user information, files, and de-
vices, are accessed through virtual identifiers. These vir-
tual identifiers are distinct from the host-dependent, physi-
cal resource identifiers used by the operating system. The
session’s namespace uses the virtual identifiers to provide a
host-independent view of the system, which remains consis-
tent throughout a process’s and session’s lifetime. Since the
session’s namespace is separate from the underlying names-
pace, it can preserve naming consistency for its processes,
even if the physical namespace changes, as may be the case
when sessions are migrated across computers.

Operating system resource identifiers, such as process
IDs (PIDs), must remain constant throughout the life of a
process to ensure its correct operation. However, when a
process is moved from one operating system instance to an-
other, there is no guarantee that the destination system will
provide the same identifiers to the migrated process; those
identifiers may in fact be in use by other processes in the
system. The session’s namespace addresses these issues
by providing consistent, virtual resource names. Names
within a session are trivially assigned in a unique manner
in the same way that traditional operating systems assign
names, but such names are localized to the session. Since
the namespace is virtual, there is no need for it to change
when the session is migrated, ensuring that identifiers re-
main constant throughout the life of the process, as required
by applications that use such identifiers. Since the names-

pace is private to the WebPod session, processes within the
session can be migrated as a group, while avoiding resource
naming conflicts among other processes running on the host.
Finally, the private virtual namespace enables the WebPod
session to be securely isolated from the host by providing
complete mediation to all operating system resources. Since
the only resources within the WebPod session are the ones
that are accessible to the owner of the session, a compro-
mised session would be unable to harm any other user’s ses-
sion.

WebPod sessions need to make use of devices located on
the host, such as the physical display. However, this can
break the WebPod isolation from the host, if one would al-
low a WebPod process to use a physical device directly. On
the other hand, even if one was willing to allow the isolation
to be broken and allow use of the physical device, migrat-
ing a physical host device is difficult as they contain a lot
of state, much of which is tied closely with the physical de-
vice, such as the specific video card. WebPod solves these
problems by virtualizing devices, and therefore provides a
virtual display driver. The display driver intercepts drawing
commands from user’s applications, and translates the com-
mands into a display protocol between the WebPod host and
the WebPod session. This abstracts away the specific imple-
mentation of video card features into a high level view that
is applicable to all video cards. Consequently, since the de-
vice state is not in the physical device, but in the virtualized
WebPod session, it simplified migration.

3.1 Session Virtualization

WebPod virtualizes sessions by using mechanisms that
translate between the session’s virtual resource identifiers
and the operating system resource identifiers. For every re-
source accessed by a process in a session, the virtualization
layer associates avirtual nameto an appropriate operating
systemphysical name. When an operating system resource
is created for a process in a session, the physical name re-
turned by the system is caught, and a corresponding private
virtual name created and returned to the process. Similarly,
any time a process passes a virtual name to the operating
system, the virtualization layer catches and replaces it with
the corresponding physical name. The key virtualization
mechanisms used are a system call interposition mechanism
and thechroot utility with file system stacking for file
system resources.

Session virtualization uses system call interposition to
virtualize operating system resources, including process
identifiers, keys and identifiers for IPC mechanisms such
as semaphores, shared memory, and message queues, and
network addresses. System call interposition wraps exist-
ing system calls to check and replace arguments that take
virtual names with the corresponding physical names, be-
fore calling the original system call. Similarly, wrappers are
used to capture physical name identifiers that the original
system calls return, and return corresponding virtual names

3



to the calling process running inside the session. Session
virtual names are maintained consistently as a session mi-
grates from one machine to another and are remapped ap-
propriately to underlying physical names that may change
as a result of migration. Session system call interposition
also masks out processes inside of a session from processes
outside of the session to prevent any interprocess host de-
pendencies across the session boundary.

Session virtualization employs thechroot utility and
file systems stacking to provide each session with its own
file system namespace. The WebPod session’s file system
is totally contained within the USB storage device, which
guarantees that the same files can be made consistently
available as the session is migrated from one computer to
another. More specifically, when a WebPod session is cre-
ated or restarted on a host, a private directory is created in
the host. This directory serves as a staging area for the ses-
sion’s virtual file system. Within the directory, the session’s
file system will be mounted from the device. Thechroot
system call is then used to set the staging area as the root di-
rectory for the session, thereby achieving file system virtual-
ization with negligible performance overhead. This method
of file system virtualization provides an easy way to restrict
access to files and devices from within a session. This can
be done by simply not including file hierarchies and devices
within the session’s file system namespace. If files and de-
vices are not mounted within the session’s virtual file sys-
tem, they are not accessible to the session’s processes.

Commodity operating systems are not built to support
multiple namespaces securely. Therefore, session virtual-
ization must address the fact that there are multiples ways
to break out of a chrooted environment, especially when the
chroot system call is allowed to be used in a session. The
primary way WebPod provides security is by disallowing the
privileged root user from being used within the session. The
WebPod session’s file system virtualization also enforces
the chrooted environment and ensures that the session’s file
system are the only files accessible to processes within ses-
sion, by using a simple form of file system stacking to im-
plement a barrier. This barrier directory prevents processes
within the session from traversing it. Since the processes
are not allowed to traverse the directory, they are unable to
access files outside of the session’s file system namespace.
Therefore, by combining the inability for WebPod processes
to access any files outside of the USB device’s file system,
as well as the inability for the processes to run with privi-
lege, the processes are confined to the WebPod session and
can’t affect change on the WebPod host.

WebPod display virtualization is designed as a virtual
video device driver that intercepts display commands at the
video hardware layer, by providing a separate virtual video
device for the WebPod session. Rather than sending display
commands to local display hardware, the virtual video driver
packages up display commands associated with a user’s
computing session and sends them to a display viewer on
the WebPod host. For this purpose, WebPod implements a

simple, low-level, minimum-overhead protocol. The proto-
col mimics the operations most commonly found in display
hardware, allowing the host to do little more than forward
protocol commands to their local video hardware, thus re-
ducing the latency of display processing. In order to support
host devices that can support varying resolutions, this proto-
col allows the viewer to be resolution independent and scale
the display appropriately.

WebPod’s video hardware layer approach allows it to take
full advantage of existing infrastructure and hardware inter-
faces, while maximizing host resources and requiring min-
imal computation on the host. Furthermore, new video
hardware features can be supported with at most the same
amount of work necessary for supporting them in traditional
desktop display drivers. While there is some loss of seman-
tic display information at the low-level video device driver
interface, our experiments with desktop applications such as
web browsers, indicate that the vast majority of application
display commands issued can be mapped directly to stan-
dard video hardware primitives. In addition, WebPod pro-
vides direct video support by leveraging alternative YUV
video formats natively supported by almost all off-the-shelf
video cards available today. Video data can simply be trans-
ferred from the WebPod’s virtual display driver to the host’s
video hardware, which automatically does inexpensive, high
speed, color space conversion and scaling.

3.2 Session Migration

WebPod allows one to continue using a single WebPod ses-
sion across many disparate computers that are individually
managed. This is accomplished through a checkpoint-restart
mechanism that allows the WebPod device to be check-
pointed, transported and restarted between computers with
different hardware and operating system kernels. WebPod
is limited to migrating between machines with a common
CPU architecture, and where kernel differences are limited
to maintenance and security patches. These patches often
correspond to changes in minor version numbers of the ker-
nel. In particular, the Linux 2.4 kernel has more than 25
minor versions. Migration is limited to these instances be-
cause major version changes are allowed to break applica-
tion compatibility, which may cause running processes to
break. However, even with minor versions changes, there
can be significant changes in kernel code. For example, dur-
ing the Linux 2.4 series of kernels, the entire VM subsystem
was extensively modified to change the page replacement
mechanism. Similarly, migration is limited to scenarios
where the application’s execution semantics, such as how
threads are implemented or dynamic linking is performed,
stay constant. On the Linux kernel, this is not an issue as
these semantics are enforced by user-space libraries. Since
the session’s user-space libraries migrate with it, the seman-
tics stay constant.

To support migration across different kernels, WebPod’s
checkpoint-restart mechanism employs an intermediate for-

4



mat to represent the state that needs to be saved. Although
the internal state that the kernel maintains on behalf of pro-
cesses can be different across kernels, the high-level proper-
ties of the process are much less likely to change. WebPod
captures the state of a process in terms of this higher-level
semantic information rather than the kernel specific data.
For example, part of the state associated with a Unix socket
connection consists of the directory entry of the socket, its
superblock information, and a hash key. It may be possi-
ble to save all of this state in this form and successfully re-
store on a different machine running the same kernel. But
this representation is of limited portability across different
kernels. On the other hand, a high-level representation con-
sisting of a four tuple:{virtual source pid, source fd, virtual
destination pid, destination fd}, is highly portable. This is
because the semantics of a process identifier and a file de-
scriptor are standard across different kernels.

WebPod’s intermediate representation format is chosen
such that it offers the degree of portability needed for mi-
grating between different kernel minor versions. If the rep-
resentation of state is too high-level, the checkpoint-restart
mechanism could become complicated and impose addi-
tional overhead. For example, the WebPod system saves the
address space of a process in terms of discrete memory re-
gions called VM areas. As an alternative, it may be possible
to save the contents of a process’s address space and denote
the characteristics of various portions of it in more abstract
terms. However, this would call for an unnecessarily com-
plicated interpretation scheme and make the implementation
inefficient. The VM area abstraction is standard even across
major Linux kernel revisions. WebPod views the VM area
abstraction as offering sufficient portability in part because
the organization of a process’s address space in this man-
ner has been standard across all Linux kernels and has never
changed since its inception.

WebPod leverages high-level native kernel services in
order to transform the intermediate representation of the
checkpointed image into the complete internal state required
by the target kernel. Continuing with the previous exam-
ple, WebPod restores a Unix socket connection using high-
level kernel functions as follows. First, two new processes
are created with virtual PIDs as specified in the four tuple.
Then, each one creates a Unix socket with the specified file
descriptor and one socket is made to connect to the other.
This procedure effectively recreates the original Unix socket
connection without depending on many internal kernel de-
tails.

This use of high-level functions helps with general porta-
bility when using WebPod for migration. Security patches
and minor version kernel revisions commonly involve modi-
fying the internal details of the kernel while high-level prim-
itives remain unchanged. As such high-level functions are
usually made available to kernel modules through exported
kernel symbol interface, the WebPod system is able to per-
form cross-kernel migration without requiring modifications
to the kernel.

To eliminate possible dependencies on low-level kernel
details, WebPod’s checkpoint-restart mechanism requires
processes to be suspended prior to being checkpointed. Sus-
pending processes creates a quiescent state necessary to
guarantee the correctness of the checkpointed image, and
it also minimizes the amount of information that needs to
be saved. As a representative example, consider the case of
semaphore wait queues. Although semaphore values can be
easily obtained and restored through well known interfaces,
saving and restoring the state of the wait queue involves the
manipulation of kernel internals. However, by taking ad-
vantage of existing semantics which direct the kernel to re-
lease a process from a wait queue upon receipt of a signal,
WebPod is able to empty the wait queues by suspending all
processes, and therefore avoid having to save the state of the
queue.

Finally, we must ensure that any changes in the system
call interfaces are properly accounted for. As WebPod has
a virtualization layer that uses system call interposition to
maintain namespace consistency, a change in the semantics
for any system call intercepted could be an issue in mi-
grating across different kernel versions. But such changes
usually do not occur, as it would require system libraries
to be rewritten. In other words, WebPod virtualization is
protected from such changes in the same way legacy appli-
cations are protected. However, new system calls could be
added from time to time. Such system calls could have im-
plications to the encapsulation mechanism. For instance,
across all Linux 2.4 kernels, there were two new system
calls that used identifiers that needed to be intercepted and
virtualized,gettid andtkill .

Since processes within a WebPod session only have ac-
cess to devices through the virtual device drivers provided
by the WebPod, it makes it simple to checkpoint the device
specific data associated with the processes. For instance,
since XFree86 and the WebPod virtual display driver run
within userspace without any device dependencies, they can
be checkpointed and restarted like any other program. Be-
cause their context is totally stored with regular memory,
it’s a simple matter of saving that state on checkpoint and
restoring it on restart. When the WebPod viewer on the host
reconnects to the virtual display driver, it is able to display
the complete display.

4 Experimental Results

We implemented WebPod as two components, a simple
viewer application for accessing a WebPod browsing ses-
sion, and a loadable kernel module in Linux that requires
no changes to the Linux kernel. We present some exper-
imental results using our Linux prototype to quantify the
overhead of using the WebPod environment on various ap-
plications. Experiments were conducted on three IBM PC
machines, each with a 933Mhz Intel Pentium-III CPU and
512MB RAM. The machines each had a 100 Mbps NIC and
were connected to one another via 100 Mbps Ethernet and

5



Name Description Linux

getpid averagegetpid runtime 350 ns
ioctl average runtime for the FIONREAD

ioctl
427 ns

semget-
semctl

IPC Semaphore variable is created and
removed

1370 ns

fork-
exit

process forks and waits for child which
calls exit immediately

44.7 us

fork-sh process forks and waits for child to run
/bin/sh to run a program that prints
“hello world” then exits

3.89 ms

IBench Measures the average time it takes to
load a set of web pages

1142 ms

Table 1: Benchmark Description

 0

 0.5

 1

 1.5

 2

IBenchforkshforkexitsemaphoreioctlgetpid

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Plain Linux

 0

 0.5

 1

 1.5

 2

IBenchforkshforkexitsemaphoreioctlgetpid

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

WebPod

Figure 1: WebPod Virtualization Overhead

a 3Com Superstack II 3900 switch. Two machines were
used as hosts for running WebPod and the other was used
as a web server for measuring web benchmark performance.
To demonstrate the ability of WebPod to operate across dif-
ferent operating system distributions and kernels, each ma-
chine was configured with a different Linux distribution and
Linux kernel version. One machine ran Debian Stable with
a Linux 2.4.5 kernel and the other running Debian Unstable
with a Linux 2.4.18 kernel.

We used a 40GB Apple IPod as the WebPod portable stor-
age device. Each PC machine provided a FireWire connec-
tion which could be used to connect to the IPod. We built
an unoptimized WebPod file system by bootstrapping a De-
bian GNU/Linux installation onto the IPod and installing the
approriate web browser package while removing the extra
packages needed to boot a full Linux system as WebPod is
just a lightweight web browsing environment, not a full op-
erating system. This resulted in a 113MB file system image.
This easily fits in the IPod with plenty of storage capacity to
spare, and also easily fits in common USB memory drives
that can store 256MB, 512MB and even 1GB. Our unopti-
mized WebPod file system could be even smaller if the file
system was built from scratch instead by just installing the
exact programs and libraries that are needed.

 0.01

 0.1

 1

 10

 100

10 Browser
Windows

5 Browser
Windows

1 Browser
Window

T
im

e 
(s

)

 

Checkpoint

 0.01

 0.1

 1

 10

 100

10 Browser
Windows

5 Browser
Windows

1 Browser
Window

T
im

e 
(s

)

 

Restart

 0.01

 0.1

 1

 10

 100

10 Browser
Windows

5 Browser
Windows

1 Browser
Window

T
im

e 
(s

)

 

Blank

 0.01

 0.1

 1

 10

 100

10 Browser
Windows

5 Browser
Windows

1 Browser
Window

T
im

e 
(s

)

 

Scripted

Figure 2: Checkpoint/Restart vs. Scripted Startup

1 Browser 5 Browsers 10 Browsers
12MB 18MB 26MB

Table 2: Checkpoint Size

To measure the cost of WebPod virtualization, we used a
range of benchmarks that represent various operations that
occur in a web browsing environment and measured their
performance on both our Linux WebPod prototype and a
vanilla Linux system. We used a set of microbenchmarks
that represent operations executed by web browsers as well
as a real web browsing application benchmark. Table1
shows the six benchmarks wed used along with their per-
formance on a vanilla Linux system in which all bench-
marks were run from a local disk. These benchmarks were
then run for comparison purposes in the WebPod portable
storage environment. To obtain accurate, repeatable results,
we rebooted the system between measurements. Addition-
ally, the system call micro-benchmarks directly used the
TSC register available on Pentium CPUs to record times-
tamps at the significant measurement events. Each times-
tamp’s average cost was 58 ns. The files for the benchmarks
were stored on the WebPod’s IPod based file system. All
of these benchmarks were performed in a WebPod environ-
ment running on the PC machine running Debian Unstable
with a Linux 2.4.18 kernel. Figure1 shows the results of
running our benchmarks under both configurations, with the
vanilla Linux configuration normalized to one, time to run
the benchmark, a small number is better for all benchmarks
results.

Figure 1 shows that WebPod virtualization overhead is
small. WebPod incur less than 10% overhead for most of
the micro-benchmarks and less than 4% overhead for the
IBench application workload. The overhead for the sim-
ple system callgetpid benchmark is only 7% compared
to vanilla Linux, reflecting the fact that WebPod virtualiza-
tion for these kinds of system calls only requires an extra
procedure call and a hash table lookup. The most expen-
sive benchmarks for WebPod issemget+semctl which

6



took 51% longer than vanilla Linux. The cost reflects the
fact that our untuned WebPod prototype needs to allocate
memory and do a number of namespace translations. Ker-
nel semaphores are widely used by web browsers such as
Mozilla and konqueror to perform synchronization. The
ioctl benchmark also has high overhead, because of the
12 separate assignments it does to protect the call against
malicious processes. This is large compared to the simple
FIONREAD ioctl that just performs a simple derefer-
ence. However, since theioctl is simple, we see that it
only adds 200 ns of overhead over anyioctl . As can be
seen, there’s minimal overhead for functions such asfork
and thefork /exec combination. This is indicative of
what happens when the web browser loads a plugin, such
as Adobe Acrobat, where the web browser runs the acrobat
process in the background.

Figure1 shows that WebPod has low virtualization over-
head for real applications as well as micro-benchmarks.
This is illustrated by the performance on the IBench bench-
mark, which is a modified version of the Web Text Page
Load test from the Ziff-Davis i-Bench 1.5 benchmark suite.
It consists of a JavaScript controlled load of a set of web
pages from the web benchmark server. IBench also uses the
JavaScript to measure how long it takes to download and
process each web page, then determine the average down-
load time per page. The pages contain both text and bitmap
graphics, with pages varying in the proportions of text and
graphics. The graphics are embedded images in GIF and
JPEG formats. Our results show that running the IBench
benchmark in the WebPod environment vs running in vanilla
Linux from local SCSI storage incurs a small performance
overhead of under four percent.

To measure the cost of checkpointing and restarting Web-
Pod sessions as well as demonstrating WebPod’s ability to
improve the way a user works with a web browser, we mi-
grated multiple WebPod sessions containing different num-
bers of open browser windows between the two separate ma-
chines described above. Figure2 shows how long it takes
to checkpoint and restart WebPod sessions containing vary-
ing numbers of open browser windows. We compare this
against how long it would take to automatically open the
same browsers windows via a shell script. We compared the
performance when each browser window was opened with
a blank page, then compared the performance when each
browser window was opened was the last visited page for
the given window.

Figure2 shows that it is significantly faster to checkpoint
and restart a WebPod web browsing session than it is to
have to start the same kind of web browsing session from
scratch. Checkpointing and restarting a WebPod even with
ten browser windows opened each take well under half a
second. This enables a WebPod user to very quickly dis-
connect from a machine after a web browsing session has
been completed and plug-in to another machine and imme-
diately start web browsing again. Some usability studies
have shown that web pages should take less than one sec-

ond to download for the user to experience an uninterrupted
browsing process [20]. These results show that WebPod per-
formance is fast enough that the latencies incurred in discon-
necting and plugging-in are even less than the one second
threshold for users to experience an uninterrupted browsing
process. Furthermore, the fact that these experiments were
run across two different machines with two different operat-
ing system environments and kernels demonstates the ability
of WebPod to work across different software environments.

In contrast, Figure2 shows that starting a web browsing
session the traditional way of starting the web browser ap-
plication and opening a number of windows is much slower
than the one second threshold for an uninterrupted web
browsing process. Starting up a browsing session takes
seven seconds when opening ten browser windows each
with a blank page and takes twelve seconds when opening
the same set of browser windows with actual web content.
Even starting a web browsing session by opening a single
browser window takes more than a second for both cases.
Note that these experiments provide a conservative compar-
ison as they were conducted with a local web server con-
nected via a 100 Mbps LAN connection. In the more com-
mon case when the web server is located further away from
the host over a WAN connection, the latency for starting a
web browsing session without WebPod will be even worse.

Figure2 shows that checkpointing and restarting a Web-
Pod browsing session with web browser windows opened
with actual web content is faster than just opening the same
set of browser windows with blank pages without WebPod.
The performance difference is even greater when compar-
ing against the case without WebPod when actual web con-
tent is downloaded into each browser window. This is not
an apples to apples comparison, as the script loads the lat-
est version of the page from the web server. This pro-
vides a different restart model from WebPod, which restarts
the web browser windows with the web content that was
saved when the WebPod session was checkpointed. The
WebPod approach allows one to easily access the web data
that was available when the checkpoint occurred, preserv-
ing information that may no longer be available using a nor-
mal startup without WebPod, which only provides access to
what is currently available from the respective web server.

Table2 shows the amount of storage needed to store the
checkpointed web browsing sessions using WebPod for each
of three browsing sessions with different numbers of web
browser windows opened. The results reported show check-
pointed image sizes without applying any compression tech-
niques to reduce the image size. These results show that
the checkpointed state that needs to be saved is very modest
and easy to store on any portable storage device. Given the
modest size of the checkpointed images, there is no need for
any additional compression which would reduce the mini-
mal storage demands but add additional latency due to the
need to compress and decompress the checkpointed images.

7



5 Related Work

The work that is closet to WebPod are USB drives that con-
tain a web browser, such as Stealth Surfer [9] and Portable
Firefox [8]. However, these only solve the privacy issue of
using a web browser not under your control. The various
programs and plug-ins that a user depends to make there
web experience more comfortable, do not work within this
environment. Similarly, many users resort to carrying a lap-
top to provide the common environment they depend on.
However, laptops are bulky and are not necessarily easy to
carry where ever one goes, and hence one has to worry that
it will be stolen if left alone for even a short period of time.

Thin clients provide some of the benefits of WebPod, such
that one can have a common environment where ever they
are. However, most thin client environments suffer from
low bandwidth or high latency when tried to use within the
chaotic Internet environment.

There are many web applications that are designed to be
used from a web browser. Many popular genres include
shopping [1, 3] and e-mail [4, 5]. Others include collabora-
tive environments, such as instant messaging [2] and work-
group software [7].

A number of other approaches have explored the idea of
virtualizing the operating system environment to provide ap-
plication isolation. FreeBSD’s Jail mode [17] provides a
chroot like environment that processes can not break out of.
However, since Jail is limited in what it can do, such as the
fact it doesn’t allow IPC within a jail[16] many real world
application will not work. More recently, Linux Vserver [6]
and Solaris Zones [29] offer a similar virtual machine ab-
straction to the WebPod session, but require substantial in-
kernel modifications to support the abstraction. However,
while all these allow one to run applications in an environ-
ment that prevents them from damaging the host, they don’t
allow one to move them between machines.

Virtual machine monitors (VMMs) have been used to pro-
vide secure isolation [30, 31, 12], and have also been used
to to migrate an entire operating system environment [26].
Unlike WebPod, VMMs decouple processes from the un-
derlying machine hardware, but tie them to an instance of an
operating system. Therefore when one wants to migrate, one
has to ensure that the virtual machine monitor environment
is available everywhere. For instance, while Xen supports
migrating it’s virtual machines, since Xen becomes the op-
erating system of the host machine, one needs Xen deployed
on all the machines one wants to run on. On the other hand,
the WebPod prototype can run on machines using unmodi-
fied Linux kernels

Many systems have been proposed to support process mi-
gration [24, 19, 27, 10, 25, 15, 11, 14, 18, 23, 22, 13], but
not in the context of supporting migration across indepen-
dent machines running different operating system versions.
TUI [28] provides support for process migration across ma-
chines running different operating systems and hardware ar-
chitectures. Unlike WebPod, TUI has to compile applica-

tions on each platform using a special compiler and does not
work with unmodified legacy applications. WebPod builds
on a pod abstraction introduced in Zap [21] to support trans-
parent migration across systems running the same kernel
version.

6 Conclusions

We have introduced WebPod, a device for mobile web
browsing sessions. WebPod allows an entire web session
to be stored a small solid state memory device by virtual-
izing the operating system. Operating system virtualization
allows WebPod to migrate web browser sessions between
differently configured and administrated computers provid-
ing improved end user mobility.

We have implemented and evaluated the performance of
a WebPod prototype in Linux. Our implementation demon-
strates that WebPod can support unmodified applications
without any changes to the operating systems kernels. Our
experimental results with real applications shows that Web-
Pod has low virtualization overhead, can migrate web ses-
sions with sub-second checkpoint/restart times and there-
fore provides superior mobility and usability compared to
other solutions. WebPod is unique in it’s ability to provide
a complete and consistent web browser environment that is
not limited to a single machine.

References

[1] Amazon.com.http://www.amazon.com .

[2] AOL Instant Messenger - AIM Express.http://
www.aim.com/get_aim/express/ .

[3] eBay.http://www.ebay.com .

[4] GMail. https://gmail.google.com/ .

[5] Hotmail. http://www.hotmail.com .

[6] Linux VServer Project. http://www.
linux-vserver.org/ .

[7] Outlook Web Access for Exchange Server 2003.
http://www.microsoft.com/exchange/
owa/ .

[8] Portable Firefox. http://johnhaller.com/
jh/mozilla/portable_firefox/ .

[9] Stealth Surfer. http://www.stealthsurfer.
biz/ .

[10] Y. Artsy, Y. Chang, and R. Finkel. Interprocess com-
munication in charlotte.IEEE Software, pages 22–28,
Jan 1987.

8

http://www.amazon.com
http://www.aim.com/get_aim/express/
http://www.aim.com/get_aim/express/
http://www.ebay.com
https://gmail.google.com/
http://www.hotmail.com
http://www.linux-vserver.org/
http://www.linux-vserver.org/
http://www.microsoft.com/exchange/owa/
http://www.microsoft.com/exchange/owa/
http://johnhaller.com/jh/mozilla/portable_firefox/
http://johnhaller.com/jh/mozilla/portable_firefox/
http://www.stealthsurfer.biz/
http://www.stealthsurfer.biz/


[11] A. Barak and R. Wheeler. MOSIX: An Integrated Mul-
tiprocessor UNIX. InProceedings of the USENIX Win-
ter 1989 Technical Conference, pages 101–112, San
Diego, CA, Feb. 1989.

[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauery, I. Pratt, and A. Warfield.
Xen and the Art of Virtualization. InProceedings of
the 19th ACM Symposium on Operating Systems Prin-
ciples, Bolton Landing, NY, Oct. 2003.

[13] J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and
J. Walpole. MPVM: A migration transparent version
of PVM. Computing Systems, 8(2):171–216, 1995.

[14] D. Cheriton. The V distributed system.Communica-
tions of the ACM, 31(3):314–333, Mar 1988.

[15] F. Douglis and J. Ousterhout. Transparent process mi-
gration: Design alternatives and the sprite implemen-
tatio. Software - Practice and Experience, 21(8):757–
785, Aug. 1991.

[16] FreeBSD Project. Developer’s handbook.http://
www.freebsd.org/doc/en_US.ISO8859-1/
books/developers-handbook/
secure-chroot.html .

[17] P.-H. Kamp and R. N. M. Watson. Jails: Confining the
omnipotent root. In2nd International SANE Confer-
ence, MECC, Maastricht, The Netherlands, May 2000.

[18] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.
Checkpoint and migration of unix processes in the
condor distributed processing system. Technical Re-
port 1346, University of Wisconsin Madison Com-
puter Sciences, Apr. 1997.

[19] S. J. Mullender, G. v. Rossum, A. S. Tanenbaum,
R. v. Renesse, and H. v. Staveren. Amoeba a dis-
tributed operating system for the 1990s.IEEE Com-
puter, 23(5):44–53, May 1990.

[20] J. Nielsen.Designing Web Usability: The Practice of
Simplicity. New Riders Publishing, Indianapolis, Indi-
ana, 2000.

[21] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
Design and Implementation of Zap: A System for
Migrating Computing Environments. InProceedings
of the Fifth Symposium on Operating Systems Design
and Implementation (OSDI 2002), Boston, MA, Dec.
2002.

[22] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent checkpointing under unix. InProceedings
of Usenix Winter 1995 Technical Conference, pages
213–223, New Orleans, LA, Jan 1995.

[23] J. Pruyne and M. Livny. Managing checkpoints for
parallel programs. In2nd Workshop on Job Scheduling
Strategies for Parallel Processing (In Conjunction with
IPPS ’96), Honolulu, Hawaii, Apr. 1996.

[24] R. Rashid and G. Robertson. Accent: A communica-
tion oriented network operating system kernel. InPro-
ceedings of the 8th Symposium on Operating System
Principles, pages 64–75, Dec 1984.

[25] M. Rozier, V. Abrossimov, F. Armand, I. Boule,
M. Gien, M. Guillemont, F. Herrman, C. Kaiser,
S. Langlois, P. Ĺeonard, and W. Neuhauser. Overview
of the Chorus distributed operating system. InWork-
shop on Micro-Kernels and Other Kernel Architec-
tures, pages 39–70, Seattle WA (USA), 1992.

[26] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum. Optimizing the migration of
virtual computers. InProceedings of the 5th Sympo-
sium on Operating Systems Design and Implementa-
tion, December 2002.

[27] B. K. Schmidt.Supporting Ubiquitous Computing iht
Statelss Consoles and Computation Caches. PhD the-
sis, Computer Science Department, Stanford Univer-
sity, 2000.

[28] P. Smith and N. C. Hutchinson. Heterogeneous process
migration: The Tui system.Software – Practice and
Experience, 28(6):611–639, 1998.

[29] A. Tucker and D. Comay. Solaris zones: Operating
system support for server consolidaiton, May 2004.

[30] VMware, Inc.http://www.vmware.com .

[31] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
Performance in the Denali Isolation Kernel. InPro-
ceedings of the Fifth Symposium on Operating Systems
Design and Implementation (OSDI 2002), Boston,
MA, Dec. 2002.

9

http://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/secure-chroot.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/secure-chroot.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/secure-chroot.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/secure-chroot.html
http://www.vmware.com

	Introduction
	WebPod Architecture
	WebPod Virtualization
	Session Virtualization
	Session Migration

	Experimental Results
	Related Work
	Conclusions

