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Abstract. Software that covertly monitors user actions, also known as spyware,
has become a first-level security threat due to its ubiquity and the difficulty of
detecting and removing it. Such software may be inadvertently installed by a user
that is casually browsing the web, or may be purposely installed by an attacker
or even the owner of a system. This is particularly problematic in the case of
utility computing, early manifestations of which are Internet cafes and thin-client
computing. Traditional trusted computing approaches offer a partial solution to
this by significantly increasing the size of the trusted computing base (TCB) to
include the operating system and other software.

We examine the problem of protecting a user accessing specific services in such
an environment. We focus on secure video broadcasts and remote desktop access
when using any convenient, and often untrusted, terminal as two example appli-
cations. We posit that, at least for such applications, the TCB can be confined to
a suitably modified graphics processing unit (GPU). Specifically, to prevent spy-
ware on untrusted clients from accessing the user’s data, we restrict the boundary
of trust to the client’s GPU by moving image decryption into GPUs. We use the
GPU in order to leverage existing capabilities as opposed to designing a new
component from scratch. We discuss the applicability of GPU-based decryption
in these two sample scenarios and identify the limitations of the current genera-
tion of GPUs. We propose straightforward modifications to future GPUs that will
allow the realization of the full approach.

1 Introduction

Spyware has been recognized as a major threat to user privacy [9, 47]. Especially when
combined with a large-scale distribution mechanism (such as a popular web site or
application, or a computer worm), the potential for large-scale security violations is
considerable. Organizations increasingly spy on their employees’ computer activities
using the same technology, and public computers on Internet cafes are so riddled with
such malware that only the most foolhardy of souls would use them for any sensitive
application.

Work on addressing this problem has focused either on detection of spyware ac-
tivity on a system [11, 12, 36] or building a trusted system from the bottom-up, using
a combination of hardware support [5, 6, 8,13, 21, 25, 34, 35, 39, 41, 46, 50], operating
system extensions [10] and application-specific logic [49]. While promising, these ap-
proaches offer only limited security against an adversary that legitimately controls the
spyware-infected system, or against spyware that does not exhibit real-time activity
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(e.g., consider a program that simply takes snapshots of the system’s screen as the un-
suspecting user is accessing some sensitive information). While images, like any data,
can be sent encrypted over networks using existing protocols such as TLS and IPsec,
decryption is performed by the operating system, creating the potential for the data to
be copied by an untrusted client.

Wk propose to use the system’s Graphics Processing Unit (GPU) asthe only trusted
component in our spyware-safe system for displays. By using GPUs, we leverage exist-
ing capabilities within a system as opposed to designing and adding a new component
to protect information sent to remote displays. Specifically, sensitive content is directly
passed to the GPU in encrypted form. The GPU decrypts and displays such content
without ever storing the plaintext in the system’s main memory or exposing it to the op-
erating system, the CPU, or any other peripherals. We use a remote-keying protocol to
securely convey the decryption key(s) to the GPU, without exposing them to the under-
lying system. With this mechanism as our basic block, we can implement applications
such as secure video broadcasts or remote desktop display access without trusting the
rest of the system. Furthermore, our design allows a user to securely enter a password or
PIN to a remote system without revealing it to any spyware and without requiring addi-
tional hardware. Finally we describe how, by using a suitably modified USB keyboard,
it is possible to completely protect the user’s communications with a remote server.

Our work is an initial step of which the main purpose is to propose the concept
and determine the feasibility of GPU-based decryption. We determine that, with careful
design, current GPUs allow for in-GPU image decryption at rates sufficient to support
the example applications. We also identify several obstacles to fully implementing our
scheme on current GPUs, mostly due to the limitations of current GPU APIs, such as
OpenGL. The most difficult aspect of moving decryption into a GPU is the API and the
types of operations supported within the GPU. While it is possible to implement some
symmetric key ciphers such as AES [3] in OpenGL, the performance is poor due to the
number and types of operations required, as was demonstrated in [14]. Other ciphers
cannot be implemented to run entirely within GPUs using current APIs. As a result, we
do not focus on forcing an existing symmetric key cipher to fit within a GPU in order to
decrypt the data, but rather implement as many operations as possible within the GPU
and confine the remaining ones to a C program in order to illustrate the concept. We
currently use RC4 [38] for display encryption. In the future, either a cipher suited for
GPUs and/or an improved API for GPUs is required. We have begun work on a stream
cipher designed for GPUs and include an estimate of the performance. We identify
straightforward additions to future GPU designs that will allow for the realization of
our scheme, as well as possible integration of our scheme with the Trusted Computing
Group’s proposed architecture.

The remainder of the paper is organized as follows. We give an overview of OpenGL
in Section 2. We describe our motivation in Section 3 and our prototype in Section 4.
We discuss the limitations of GPU APIs and how these impacts our ability to remotely
key and implement decryption in the GPU in Section 5. In Section 6 we present a
preliminary performance analysis of our prototype. We discuss additional items to be
considered in Section 7 and our conclusions in Section 8.



2 OpenGL and GPU Background

We provide a brief overview of aspects of OpenGL and GPUs relevant to our experi-
ments. A basic knowledge of the capabilities and limitations of GPUs is necessary to
understand our proposed architecture and prototype. The two most common APIs for
GPUs are OpenGL and Direct3D (part of the Microsoft DirectX API). We use OpenGL
in order to provide platform independence (in contrast to Microsoft’s Direct3D). See
[27,48] for a complete description of OpenGL. As we explain later, operations which
can be performed in the GPU are limited by the API. For the operations required of
our prototype, the same limitations exist in both Direct3D and OpenGL. We choose
to avoid higher level languages built on top of these APIs in order to ensure that spe-
cific OpenGL commands are being used. Examples of such languages include Cg [17]
(HLSL in DirectX) and, from more recent research, Brook (the BrookGPU[4] compiler
uses Cg in addition to OpenGL and Direct3D). Higher level languages do not allow
the developer to specify which OpenGL commands are utilized when there are multiple
ways of implementing a function via OpenGL commands and do not even guarantee
the operations will be transformed into OpenGL commands but instead may transform
it into C' code. For example, code in a higher level language that XORs two bytes will
likely be transformed into code executed in the operating system rather than converted
into OpenGL commands that converts the bytes to pixels and XORs pixels.

Our prototype requires the display be set to 32-bit pixels®. A data format indicating
such items as number of bits per pixel and the ordering of color components specifies
how the GPU interprets and packs/unpacks the bits when reading data to and from sys-
tem memory. The data format may indicate that the pixels are to be treated as floating
point numbers, color indices, or stencil indices. When using the floating point represen-
tation and reading data from system memory, the data is unpacked and converted into
floating point values in the range [0, 1]. Luminance, scaling and bias (all of which we
do not use in the prototype) are applied per color component. The next step is to apply
the color map, which we describe later in more detail. The values of the color compo-
nents are then clamped to be within the range [0, 1]. Figure 6 in Appendix A shows the
components of the OpenGL pipeline that are relevant to pixel processing when pixels
are treated as floating point values.

The OpenGL commands in our implementations consist of writing bytes from the
system memory to the GPU as pixels with either a color map or the logical operation
of XOR turned on. The logical operation of XOR produces a bitwise-XOR between the
pixel being read in and the pixel currently in the destination, with the result being writ-
ten to the destination. This is used to apply a keystream to the image. When decrypting
an image, it is necessary to disable dithering to prevent pixels from being averaged with
their neighbors when the image is read into the GPU. Color mapping is one of the slow-
est operations to perform [48]; however, we use it only for the decryption function of
the asymmetric cipher used to send a secret key to the GPU. A color map is applied to a
particular component of a pixel when the pixel is copied from one coordinate to another

1 When using 32 bit pixels, 1 byte is typically dedicated to each of the Red, Green, Blue and
Alpha components. A format with 10 bits for each of the Red, Green and Blue components
and 2 bits for the Alpha component may also be supported by the GPU.



or when bytes are read in from system memory to be converted to pixels in the GPU.
A color map can be enabled individually for each of the RGBA components. The color
map is a static table of floating point numbers between 0 and 1. Internal to the GPU, the
value of the pixel component being mapped is converted to an integer value which is
used as the index into the table and the pixel component is replaced with the value from
the table. For example, if the table consists of 256 entries, as in our implementation, and
we apply the map to the red component of a pixel, we treat the 8 bits of the red value
as an integer between 0 and 255, and update the red value with the corresponding entry
from the table.

OpenGL requires support for at least a front buffer (image is visible) and a back
buffer (image is not visible) but does not require support for the Alpha pixel component
in the back buffer. This limits us to three bytes per pixel (the Red, Green, Blue compo-
nents) when performing operations in the back buffer. It is worth mentioning that while
a 32 bit pixel format is used, the 32 bits cannot be operated on as a single 32 bit value,
but rather is interpreted in terms of pixel components. For example, it is not possible
to add or multiply two 32 bit integers by representing them as pixels. In general, z bit
pixels cannot be used to operate on z bit integers.

Due to limitations of current APIs, algorithms performing certain byte and bit-level
operations are not suitable for GPUs. While simple logical operations can be performed
efficiently in GPUs on large numbers of bytes, the byte and bit-level operations typi-
cally found in symmetric key ciphers, such as shifts and rotates, are not available via the
APIs to GPUs. Modular arithmetic operations, which are required by AES, are also not
available (we note that it is possible to implement AES as a series of copies with color
maps and logical operations enabled [14]). While shifts and rotates can be performed on
single bytes by defining color maps and using multiple copy commands, shifts across
multiple bytes and table lookups based on specific bits, prove to be more difficult. For
example, there is no straightforward way to implement in OpenGL the data dependent
rotations found in RC6 [30] and MARS [15]. Also consider the DES S-Boxes [2]. The
index into the S-Box is based on key bits XORed with data bits. Masks of pixels copied
onto the data can be used to “extract” the desired bits, but to merely XOR the key bits
with data bits requires copying the pixel containing the desired key bits onto the pixel
containing the mask with XOR turned on, doing the same for the data pixel, then copy-
ing the two resulting pixels to the same position. Color maps are required to emulate
the S-Box. Overall, even when it may be technically possible to implement a symmetric
key cipher in OpenGL, a larger number of less efficient operations are required than in
a C implementation.

When using OpenGL for graphics programming, the more common aspects of ver-
tex processing are utilized. Shapes are defined as sets of vertices, with colors or textures
applied. In addition to defining the basic image, various parameters (such as the view-
point, projection, lighting, fog and orientation) can be set. Rotations and translations
can be applied to shapes to produce movement. It is these typical aspects of graphics
processing that are of interest when creating a stream cipher suitable for a GPU. Recent
GPUs offer programmable vertex and fragment units. However, these new capabilities
apply only to vertex processing and do not remove any of the limitations encountered
when trying to implement ciphers within a GPU.



3 Motivation

Applications to which our work is relevant include remote desktops (a thin-client sce-
nario) and video conferencing displays. In a thin-client scenario, the client connects to
a server which fulfills all of the client’s computing needs [26]. Since all application
logic is executed in the server, the client is completely stateless, and does little more
than display updates sent by the server and forward local user input events. Current
thin-client systems provide secure sessions by encrypting the display protocol before it
is transferred over the network. However, in scenarios where the client terminal is un-
trusted, such as public computers, it may not be desirable for the host operating system
to have access to the unencrypted display updates. For example, consider the system
presented by Koller et al[22]. In this case, access to sensitive 3D data was controlled by
manipulating the content sent to the remote display client. However, since the display
data on the client could not be secured, a number of additional mechanisms had to be
devised to prevent the actual client application from being used as an attack tool on the
system. On the other hand, if the display is only in decrypted form within the GPU, we
only need to block reads of the current display by other applications.

In video conferencing, we wish to prevent clients from copying the conference dis-
plays. How to secure video recorded at the client and audio is beyond the scope of this
paper, although the concept we demonstrate with GPUs can also be applied to digi-
tal cameras and digital signal processors. While there are existing digital rights man-
agement (DRM) architectures aimed at preventing unauthorized copying of video, the
images are still decrypted within the remote and untrusted OS. DRM includes how to
manage the usage and trade of material [29] and must protect against both unauthorized
access and unauthorized copying. An example is Microsoft’s Windows Media Player
DRM 9 Series, which includes the capability of authenticating and remotely-keying the
media player [1]. The images are decrypted within the operating system by the media
player then sent to the GPU. This architecture’s security depends on using a specific
closed-source media player and no program being able to access the memory utilized
when decrypting the data. Alternative models of using trusted GPUs have been consid-
ered [7], but none has been implemented to our knowledge. The Trusted Computing
Group’s scope includes untrusted clients but its proposed architecture utilizes distinct
trusted platform modules (TPMs), which may be hardware or software, to address mul-
tiple needs and provide a generic solution [45]. For graphical applications, our approach
can be considered as an alternative that avoids specialized system components, or as a
companion to TPMs. In particular, one possibility is for the TPM to handle key negoti-
ation with the remote server, and then provide the session key to the GPU. We should
note that similar concerns arise when handling voice traffic, as noted in [47].

Our main goal in moving decryption of graphics into the GPU is to prevent the
underlying operating system or other software from gaining access to the unencrypted
data. Specifically, we consider malacious software running on the client’s operating
system which attempts to read or modify displays and responses transmitted between
the server and the client. We do not address modifications to the client’s hardware, such
as altering of the GPU. Furthermore, security of the client’s surroundings (e.g, a camera
recording the client’s display) is a separate problem outside the scope of our work.



4 Prototype
4.1 Architecture

Figure 1 depicts our overall architecture. A server encrypts the data and sends it to the
client. The data remains encrypted until it enters the GPU where it is decrypted and
displayed. The GPU’s buffer is locked to prevent the display from being read by other
processes or the operating system, effectively turning the frame buffer into a write-only
memory. The decryption is performed via software running on the client’s operating
system which issues commands to the GPU (as opposed to a compiled program existing
and executing entirely within the GPU’s memory), with the operations performed within
the GPU. This software does not have access to the keys and data contained inside the
GPU; rather, it specifies the transformations (i.e., decryptions steps) that the GPU must
undertake. Ideally, any intermediate data produced by the decryption program, such as
the keystream, are confined to the GPU. We explain in Section 5 why this is currently
not possible due to the GPU’s API.

Program on client issues
OpenGL commands to GPU
to generate key stream.

Client i
Encrypted images/display updates GPU ==
Images or framebuffer < § 'é
display updates Establish secure session, server é’ g,’
secret key(s) 1 CErtifi/ci[e

Client transmits GPU’s
certificate to proxy.
Proxy sends secret key

to GPU.
Proxy

(card reader) T

Insert smartcard

Fig. 1. Architecture for Remotely Keyed Decryption in the GPU

The decryption key changes on a per-session and application basis (and may even
change within a session). Thus, the key must be conveyed to the GPU in a manner that
prevents the client’s operating system from gaining access to it. One way to achieve this
is to remotely key the GPU and decrypt the key therein. The key is used to generate the
keystream directly within the GPU, exposing neither the key nor the keystream to the
OS. The decryption of the key and generation of the keystream can be performed in a
non-visible buffer (back buffer) on the GPU, to avoid visually displaying the key and
key stream. Reading the encrypted image into the back buffer with the logical operation
of XOR enabled results in the image being decrypted. The result is then swapped to the
front buffer to display the decrypted image to the user. None of these operations require
us to copy the image (plaintext) to the system’s main memory.

There are a few possibilities for how the entities involved are authenticated and
how the key is sent to the GPU, depending on which components are trusted. In each



case, it is assumed that the GPU contains a pre-installed certificate and private key. The
certificate may be issued by the manufacturer and hardwired in the GPU. Another option
is to allow writing the certificate to the GPU under circumstances when the client’s OS
is trusted, such as when the GPU is first being installed on a newly configured client.
The first and simplest option for authentication covers the case when the server sending
the images is trusted and there is no need to verify the person viewing the images
(i.e., it is assumed that the fact the viewer was able to start the process on the client
indicates it is safe to send the images) and/or the server is capable of authenticating a
GPU based on its certificate. The server, either by establishing a session key with the
GPU or using the GPU’s public key, encrypts the secret key and sends it to the GPU
via the client. The second, more general scenario, also assumes the server is trusted but
requires verification of the user viewing the images through a proxy entity, such as a
smartcard reader. The user will activate the proxy by inserting a card into the smartcard
reader attached to the untrusted system. The proxy will then establish sessions with
both the server and remote system with the GPU. The server will convey the secret key
to the GPU via the proxy, as shown in Figure 2. The process of converting the key from
being encrypted under server-proxy session key to being encrypted under the proxy-
GPU session key requires that the key be exposed only on the smartcard. The proxy
and the GPU treat the underlying system, including the OS, as part of the network
connecting them to each other and the server, and that the links between these entities
denote logical connections. A third scenario assumes that neither the server nor the
client OS are trusted. When the images are encrypted, the encryption key is recorded on
a smartcard. The encrypted images can then be stored on any server. This scenario is not
applicable to the real time applications in which we are interested. To view the images
on an untrusted system, the smartcard is inserted into a card reader (the proxy) or the
key can be manually recorded and entered into the proxy. The proxy, using the GPU’s
public key, encrypts the secret key and sends it to the GPU via the client. The proxy
does not have to be collocated with the client, but only has to be capable of exchanging
information with the client. In all cases, if a secret key only works for n. blocks (such as
n frames) of data, the remote keying will occur as needed to provide the key for each
data segment.

The protocols used for the remote keying are not new. Refer to [18] and [24] for
a discussion on authentication using smartcards. The novel component of our work is
implementing one in a manner that avoids exposing the secret key outside the GPU.
Any protocol used for the remote keying requires utilizing an asymmetric encryption
algorithm to either encrypt the secret key directly with the GPU’s public key or to es-
tablish a session key which is then used to encrypt the secret key when sending it to the
GPU. Obstacles arise due to the lack of supportin GPU APIs for the operations required
for public key ciphers, such as modular arithmetic for large integers, as mentioned in
Section 2. Furthermore, the GPU’s certificate must be placed in the GPU without ex-
posing the private key to the operating system. We discuss the limitations of the GPU
in regards to public key cryptography when describing our prototype.

4.2 Implementation

To determine the feasibility of our scheme, we implemented the general scenario with
three entities: a server, a proxy and the client. We use a stream cipher, RC4, to encrypt



the images (as opposed to a block cipher) because of the rate of encryption required for
streaming video. The prototype implemented as many operations as possible in the GPU
via OpenGL, with the remaining operations restricted to a C' program and which would
be moved into the GPU with an improved API as we discuss in Section 5. Specifically,
computation of the keystream cannot be efficiently implemented entirely in OpenGL
for a cipher such as RC4. In our description of the prototype, we use the following
notation:

— K = k1, ka...ky, is the set of secret keys used to encrypt the data. &; encrypts the
ith subset of data. These keys may be individually pre-determined, or computed
through a master key using a pseudo-random function (PRF).

— A frame refers to one frame of video or one display update, depending on the
application.

— Rekeying refers to obtaining the next k;. The interval at which rekeying occurs
depends on either the number of frames displayed or the elapsed time.

— r = is the number of frames or requests after which rekeying is required.

— t = is the amount of time before rekeying is required.

— sk = the session key used for communication between the server and proxy.

— kPubk — the GPU’s public RSA key component.

— kPrivk — the GPU’s private RSA key component.

— m = the GPU’s RSA modulus.

Figure 2 illustrates the steps for the remote keying and decryption of images in our
prototype. A certificate containing a RSA [33] key is stored in the GPU’s memory. For
our prototype, a program on the client uses OpenGL to write the certificate to the GPU
then deletes it from the operating system’s memory to simulate having a certificate
within the GPU. Entering a certificate into the GPU in this manner requires that the
process be monitored to ensure that no program on the client gains access to the private
key component of the RSA key while it is being written to the GPU. The certificate
includes a public parameter containing an indication that the device is a GPU. When
the application is started, the client’s OS reads the public information from the GPU’s
certificate and sends it in a request to the proxy. The proxy, which requires activation
either by entering a one-time password or inserting a smartcard, authenticates the GPU
based on the information encoded in its certificate.

The client also sends a connection request to the server. The server contacts the
proxy and a secure session is established between them. This can be accomplished
using any protocol designed for secure session establishment. A single session key may
be used for the entire session, or the session key can be changed periodically, depending
on the protocol. In our prototype, the proxy authenticates the server based on the latter’s
certificate, and uses a single session key, sk. When contacting the proxy, the server
sends a random nonce and its certificate containing its public key for RSA. The proxy
generates a random nonce, encrypts it with the server’s public key and sends it to the
server. The server and proxy both concatenate the two nonces and use a hash of the
result as sk. The server sends k; encrypted with AES using key sk to the proxy. The
proxy decrypts &y, encrypts it with the GPU’s public key and forwards the result, k{’”b’“
mod m, to the client. The client issues the OpenGL command to turn color mapping
on then writes the value received from the proxy to a specific pixel location in the
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Fig. 2. Remotely Keyed Decryption in GPU Protocol Shown: logical links (i.e., the proxy
communicates with the server through the client).

GPU. The color map corresponds to zP"#* mod m, where z is the value being written,
and results in decrypting the value from the proxy to obtain k;. The write operation
is performed to the GPU’s back buffer to avoid visually exposing the resulting pixels
(and annoy the user with unnecessary interference). As we explain later, we use a series
of one-byte values for each k;. The resulting pixels are used as the key to the stream
cipher.

The client then signals to the server that it is ready to receive data or, for thin-client
applications, makes a request to update a display. The server sends the encrypted data to
the client. Ideally, the GPU computes the keystream, writing the resulting bytes directly
to the GPU’s back buffer. As explained in Section 5, when using RC4 some C code
is used to represent operations that will be performed in the GPU if improvements are
made to the GPUs API. The client issues the OpenGL command to turn the logical
operation of XOR on in the GPU, then writes the data received to the back buffer.
The result is the data XORed with the keystream. The buffers are then swapped so the
unencrypted image appears on the display. It is common practice to create an image in
the back buffer then swap it to the front buffer in order to create a smooth transition
between frames. After n frames or ¢ time, the client must signal to the server that it
needs the next secret key, sk;1, which is conveyed via the proxy as before.

Our prototype uses images encoded with 24 bits per pixel using 8 bits for each
of the Red, Green and Blue components. No Alpha component is encoded since the
image is written to the back buffer (which may not support the Alpha component) to
be decrypted. The pixel format is a parameter used by certain OpenGL commands,
such as the Draw command for writing data to the GPU, and can easily be changed to
accommodate other pixel formats.



5 Design Decisions

We now discuss some of our design and implementation decisions that were guided by
the constraints of existing GPUs. We first describe the limitations on programming a
GPU to perform general keying and decryption operations, and then discuss the current
inability to provide data compression.

As we mentioned in Section 2, GPUs are not designed to perform general arithmetic
and byte-level operations. There are no APl commands for common operations such
as addition, multiplication, shifts and rotates. Some operations can be performed by a
sequence of other commands under certain circumstances, such as limiting values to a
single byte and reading intermediate results from the GPU to the operating system to
allow the result to be a parameter in a subsequent command. We describe how these
limitations impact the ability to remotely key the GPU and decrypt data within the
GPU, and the workarounds we used to create our prototype. We conclude that three
enhancements to OpenGL are necessary to fully realize our architecture. First, a means
of performing modular multiplication on values of magnitude typical of those used
for public key ciphers is required to securely implement the remote keying. Second,
a mechanism for using the contents of a pixel (or pixel component) as a parameter to
an OpenGL command without first reading the pixel value from the GPU is required
for the remote keying and keystream generation. Third, the ability to perform modular
arithmetic using values less than 256 directly (this can currently by done using color
maps) is desirable to efficiently implement certain ciphers, such as RC4, within the
GPU.

5.1 Remote Keying

The lack of modular arithmetic and limitations on the range of values in GPUs impacts
the implementation of the asymmetric cipher used in the remote keying. The proxy
conveys the secret keys to the GPU via the client’s OS using an asymmetric key cipher.
Since existing public-key algorithms require exponentiation and/or modular arithmetic,
the operations required cannot be emulated in the GPU with existing APls, except when
trivially small values are used, or when the values involved can be viewed as a series
of 8 bits values. For example, the exponents and modulus in RSA must each fit within
8 bits, making them entirely unsuitable for a security application. The remote keying
of the GPU requires only that the GPU be able to perform the decryption function of
the asymmetric algorithm. We note that unless the proxy and GPU share a secret key
in advance, any protocol used to exchange information, whether by merely having the
proxy encrypt information with the GPU’s public key or by establishing a session key
between them, requires use of an asymmetric cipher.

We considered two options for our prototype. First, similar to what was done for
RC4, the operations can be implemented in C' code to represent a function that should be
in the GPU. Second, restrictions can be imposed on the size of the asymmetric cipher’s
components to allow it to be implemented to run in the GPU. However, in the case of
RSA this requires that plaintext and ciphertext each be restricted to fit in within a single
byte, thus requiring the modulus and exponents also each fit within a single byte and
resulting in key components too small to be secure, since an exhaustive search for the



private key and data is easily performed. In order to illustrate the concept of decryption
using public key cryptography within the GPU, we used “toy” values less than 256 in
the prototype for the private exponent, public exponent and modulus. We used a series
of 8-bit values to represent the data, in our case the secret key for RC4, encrypted with
RSA. Each is encrypted with mini-RSA by the proxy and sent to the GPU. When using
RC4 as the keystream generator, up to 256 single-byte values can be in the series for
RC4’s secret key.

A third possibility that we intend to explore in future work is the integration of a
decrypting GPU with a trusted platform module (TPM) such as the one proposed by the
Trusted Computing Group. This chip could handle certificate storage and handling, as
well a remote attestation and key negotation. Our GPU can then handle image decryp-
tion using the TPM-negotiated session key.

5.2 Decryption of Data in the GPU

To decrypt the images received from the server, the GPU on the client must run a sym-
metric key cipher; as we described previously, we use a stream cipher. We consider two
options for the stream cipher: using an existing stream cipher and designing a stream
cipher suitable for a GPU. With respect to running an existing cipher within a GPU,
operations typically found in symmetric key ciphers make this infeasible either due to
the nature and number of OpenGL commands required to emulate the operations or due
to the infeasibility to convert the operations to execute within the GPU given limita-
tions of the API. All the common stream ciphers, such as LILI [40], RC4, SEAL [28],
SOBER [31], and SNOW [42], are unsuitable for implementation in a GPU. We chose
to use RC4 because it is possible to implement using OpenGL, though not practical due
to the specific OpenGL commands required resulting in poor performance. The use of
irregularly clocked feedback shift registers in LILI and SOBER, and 32-bit words in
SNOW and SEAL, among other operations such as 9-bit rotations in SEAL, make these
either less attractive than implementing RC4 or impossible to implement in OpenGL.
The operations in RC4 consist entirely of adding two bytes, modulo 256 and swap-
ping two bytes. Thus, the only operation required of RC4 which is lacking in a GPU
is modular arithmetic. Since the modulus is 256, all values can be represented by sin-
gle bytes and can be stored as individual pixel components. Given two integers, a, b in
the range [0,255], a + b mod 256 can be computed using a color map. This requires
knowing either a or b in advance to determine which color map to activate. For each
integer, a, in the range [0,255], create a color map where the it* entry corresponds
to a + ¢ mod 256. To compute a + b mod 256, b is stored as a pixel component, the
color map for a is activated, then the pixel containing b is copied to a new location.
The result written to the new location will be the b entry of the color map. This poses
two problems. First, while OpenGL is used, the command to activate a color map must
be issued by a program running on the operating system, requiring a to be exposed to
the operating system. While this does not expose the keystream to the OS, it does pro-
vide partial information to the operating system, which may be helpful in determining
keystream values. Second, the copying of pixels between locations in the buffer is one
of the slowest operations within GPUs. In addition to the copy needed to compute the
sum, copies are needed to update the indices and move bytes into the appropriate pixel



components and locations. As a result, implementing RC4 in OpenGL is not a practi-
cal option. Therefore, we opted to implement the keystream generator of RC4 in C to
represent a function that will eventually be moved into the GPU. The keystream bytes
are written to the GPU as they are computed. This requires the C' function computing
the keystream to read the secret key from the GPU. We initially wrote each byte of out-
put from RC4 directly to the GPU as it was generated. However, the number of writes
required (750,000 for a 500x500 image) resulted in poor performance. We changed our
prototype to compute the keystream bytes for an entire row of pixels before writing
them to the GPU, reducing the number of writes to the height of the image with the
tradeoff that a segment of the keystream is temporarily stored in the operating system’s
memory.

Due to the inability to efficiently generate a keystream within a GPU by using an
existing stream cipher, we are investigating designing a stream cipher utilizing graphics
operations for which GPUs are designed. We briefly describe the concept here. By
mapping a texture exhibiting sufficient randomness to a continuously morphing image
while changing certain variables, such as viewpoint and lighting, and extracting pixels
from the image, a keystream is generated. The keystream is never within the client’s
memory in this case. We experiment with an initial version in order to estimate the
time to compute the keystream, with the results shown in Section 6. We point out that
while creation of a new stream cipher suitable for current GPUs is feasible (and in fact
may have wider applicability than our applications), the same is not true for public-key
ciphers, since this would require devising a new one-way function that does not require
exponentiation and modular arithmetic on numbers larger than a single byte.

While the proposed approach protects the secrecy of the images sent to the untrusted
system, the integrity of these images is not protected. This could allow an attacker to
change parts of the image, although this would be immediately detectable by the user,
as it would produce corrupt output on the screen (since the attacker does not know the
session key). Adding a message authentication code (MAC) to our scheme is not cur-
rently feasible, as the computation model of modern GPUs does not efficiently support
secure MAC constructs.

6 Experiments

To determine the feasibility of our architecture, we conducted two sets of experiments to
measure the ability of current GPUs to sustain decryption rates compatible with our ex-
ample applications. We used OpenGL as the API to the graphics card driver. We did not
use any vendor-specific OpenGL extensions, making our prototype GPU-independent.
We used GLUT to open the display window. The only requirement is that the GPU must
support 32-bit “true color” mode, as the routine for decrypting the secret key requires
representing bytes in a single-pixel component. The code for the client consists of C,
OpenGL and GLUT, compiled using Visual C++ version 6.0. The processes for the
server and proxy are written in JAVA, using version 1.4.2_03 with the JAVA Cryptogra-
phy Extension.

The experiments utilized three different clients in order to test different GPUs. The
environments were selected to represent a fairly current computing environment, a lap-



top and a low-end GPU. In all cases, the display was set to use 32-bit true color with
full hardware acceleration. The clients are:

1. A Pentium 1V 1.8 GHz PC with 256KB RAM and an Nvidia GeForce3 Ti200
graphics card with 64MB of memory, running MS Windows XP. The GPU driver
uses OpenGL version 1.4.0.

2. APentium Centrino 1.3 GHz laptop with 256 KB RAM and an ATI Mobility Radeon
7500 graphics card with 32MB of memory, running MS Windows XP. The GPU
driver uses OpenGL version 1.3.425.

3. A Pentium I11 800 Mhz PC with 256KB RAM and an Nvidia TNT32 M64 graph-
ics card with 32MB of memory, running MS Windows 98. The GPU driver uses
OpenGL version 1.4.0.

We simulated streaming video applications, such as NetMeeting, by sending a stream
of images from the server to the client. We tested with frame sizes of 320x240 and
500x500 pixels. The frames were encrypted and stored in individual files on the server
prior to starting the application. A small number of unique frames were created and the
server repeatedly cycled through the set. To measure thin-client performance, we used
the average update size of 2,112 pixels (a 16x132 pixel area). The average is from the
distribution of update sizes in the standard i-Bench [20] web benchmark for thin-clients.
The update sizes in i-Bench range from 1x1 areas to 1,007x622 areas (626,354 pixels).
All tests used images encoded as 24-bit RGB pixels, with 8-bits per color component.
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For each image size, two types of tests were run. The first set of tests determined the
delay due to the additional computation needed for the remote keying and decryption,
compared to sending unencrypted images. In these tests, all three entities (server, proxy;,
and GPU) were run on the same PC or laptop. Each of the three clients was tested. The
results of the first set of tests are shown in Figure 3.
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The second set of tests involved running each entity on separate systems on a LAN
to determine the overall performance when the data arrival rate was impacted by net-
work delay. The first client with the Nvidia GeForce3 GPU was used for these tests.
Figures 4 and 5 show the results of these experiments. Two tests were run using two
different LANSs. In one case, the server and proxy were dedicated to the experiment and
there was no traffic leaving the server and proxy aside from that due to our experiment.
In the second case, we ran our tests on shared servers used for general purpose com-
puting. In both cases, each element had a 100Mbps connection to the LAN. There were
three hops between the client and server, and between the client and proxy; there are
two hops from the proxy to the server.

For all tests, the number of frames per second for both encrypted and unencrypted
frames are provided. In video conferencing applications, the number of frames sup-
ported per second is important: a minimum rate of 10 fps is required to obtain tolerable
video and is typical in such applications, with 24 fps and higher rates required for better
quality. In contrast, the rate of updates in thin-client applications is dependent on user
requests and will be sporadic. The frames per second reflects the maximum burst rate
supported.

We note that it was not our intention to build a robust streaming video application
using RTP which accounted for delay, rate of transmission and lost packets, but rather
we focus on the remote keying and decryption within the GPU, and determine the re-
sulting overhead. Therefore, TCP was used for all communication between the entities.
When testing streaming images over the LAN, it was necessary for the client to signal
the server when it was ready for the next frame to avoid synchronization problems.

At least 99% of the delay when decrypting frames with RC4, compared to using
unencrypted images, is due to the writing of the keystream bytes to the GPU. The
keystream was written to the GPU one row at a time. When the test is run with the
write eliminated (all other operations for the decryption are still performed), the aver-
age time is the same as that for the unencrypted images. The actual computation of the
keystream per frame, enabling the logical operation of XOR in the GPU and swapping
of buffers takes less than 1ms for the 500x500 frames on all clients. When testing the
average thin-client display size update (2,112 pixels), the times for the encrypted up-



dates were the same as for the unencrypted updates because the keystream required only
16 writes to the GPU. In contrast, the 320x240 and a500x500 pixel frames required 240
and 500 writes per frame, respectively.

The limiting factor in the processing of the 2,112-pixel updates is the time for the
server to create the update (read the update from a file in our experiment). To determine
the rate at which the client can process 2,112-pixel updates if creation of updates is
not a limiting factor, an array containing 2,112 pixels was stored in memory on the
server and repeatedly sent to the client. The server and client were running on the same
system to eliminate network delays and bandwidth restrictions. The client can process
over 500 updates per second on each of the three platforms, indicating that decryption
overhead and the GPU are not limiting factors for small updates. For larger updates in
thin-client applications, we do not consider an increased delay, e.g., when the entire
display changes, to be an issue since such updates are typically infrequent and, from a
human factors perspective, are no worse than loading of some web pages or opening of
applications.

When sending images over a LAN, the decreased rate for the 320x240 and 500x500
pixel frames compared to the case when all processes were on the same PC is due to the
rate at which images are sent from the server to the client being limited by the band-
width. Even if no bandwidth is consumed by protocols, a maximum of 16.66 uncom-
pressed 500x500 RGB frames can be transmitted per second on a 100Mbps interface.

To estimate the time required for computing a keystream designed for the GPU as
described at the end of Section 5, we loaded an initial image in the GPU and measured
the time to execute all of the OpenGL operations under consideration. After each series
of executions, the resulting image is the keystream and XORed with the current en-
crypted frame. The execution per frame is less then 1ms, indicating that any differences
in the time to process encrypted frames versus the time to process unencrypted frames
will be imperceivable.

The time for the remote keying is mainly dependent on the time to enter the pass-
word or insert the smartcard into the proxy, and may take up to a few seconds if a pass-
word must be entered. Aside from this, the time is dependent on the protocol used and
on the transport delay between the entities. Using a public-key encryption algorithm,
generating random nonces and encrypting the secret key with AES added approximately
two seconds to the processing in each environment.

7 Other Considerations

7.1 Encryption at the Server and Client

Our prototype focuses on the securing of images sent to the untrusted client. We briefly
mention here three additional items. The first two apply directly to the remote client and
video broadcast scenarios which we have been considering. They concern encryption
of images on the server and encryption of user input on the client. The third item is
an observation on the encryption of audio, and applies to protecting the audio in video
broadcasts and remote conferencing applications.

First, in proposing to design a new stream cipher suitable for executing within
GPUs, we must ensure that the cipher can also be efficiently implemented on the server.



With respect to using a new cipher suited for GPUs, the server can write images to its
own GPU for encryption before sending them to the client. In video conferencing ap-
plications, the images being encrypted likely appear on the monitor of the speaker and
can be encrypted in the GPU before the server sends the frames to the clients of the
conference’s other participants. In thin-client applications, if the encryption algorithm
is such that it must run in a GPU, the server can encrypt the update by writing the image
to its GPU and reading the result; otherwise, the server can perform the encryption in
its operating system.

Second, a complete system must include protection of any user input on the client
which is sent to the server. The user responses on the untrusted client pose an interesting
problem in that they require preventing input from the keyboard and mouse from being
available to the untrusted OS. The user’s inputs must be encrypted before they reach
the client’s OS and until they reach the server. One potential solution is to encrypt the
keyboard inputs inside the keyboard itself (e.g., on the keyboard’s USB controller). This
can be done on a portable folding keyboard (as is available for several PDA devices)
that connects to USB. The mouse may be directly connected to the keyboard (e.g.,
a TrackPoint device, as is common with several laptops) or input may only be taken
from the keyboard. Another option is to allow a user’s PDA to be the keyboard and
communicate to the client using Bluetooth. A pin can be used as the key to the cipher
used for encrypting the inputs. The pin can be of sufficient length to thwart a brute force
attack. The server may either choose a pin for the user (displaying it securely to the user
using our scheme), have the user select a pin from a keypad displayed on the GPU or
pre-establish a pin between the user and server.

If the server selects the pin, it merely sends it as an encrypted image to the client’s
GPU, where it is decrypted and presented to the user. The pin can be a relatively small,
unpredictable area of the image. An attacker or malware attempting to modify the pin
will at best have access to the encrypted image. The user can select a pin if the server
displays a keypad to the user via the client’s GPU. The user will select characters from
the keypad by clicking on or entering a series of squares from the keypad, with the
coordinates of the selections sent to the server. Even though the client’s OS will see
the coordinates of the user’s selections (since keyboard and mouse inputs are not yet
encrypted), it does not have access to the unencrypted keypad, making this information
useless to an attacker. To avoid guessing attacks based on the relative locations of the
mouse pointer, the keypad configuration is changed every time a digit is selected. If an
attacker or malware on the client attempts to alter the coordinates sent to the server, the
altered values may not correspond to valid positions on the keypad. Other possibilities
include the use of graphical passwords [16, 44] and shoulder-surfing-resistant PIN-entry
methods [32], which we intend to investigate in future work.

Finally, we note that encrypting and decrypting audio within a digital signal pro-
cessor (DSP) is more easily realized than encryption in a GPU. Programmable DSPs
exist which support typical byte-level operations [43], allowing for existing ciphers to
be implemented within the DSP. This will allow us to extend our concept to include
audio.



7.2 Proxy Attacks

Our scheme, as described thus far, is susceptible to a proxy attack: since the proxy,
server, and client are assumed to communicate over an untrusted network (which in-
cludes the client’s operating system), it is possible for an attacker to perform a man
in the middle attack using another system (which has a GPU with a valid certificate)
to perform the key exchange with the proxy device. The encrypted data stream can be
displayed on the attacker’s system (whose GPU has been given the session key by the
proxy), and then transmitted to the user’s system for displaying. This attack is feasible
because the proxy cannot verify that the GPU it is communicating with resides on the
same system that the user is using. However, the attacker cannot extract the encrypted
image from his GPU’s frame-buffer and thus cannot relay it to the target system, mak-
ing the attack obvious to the end user. Another possibility we intend to investigate in
the future is the use of packet leashes [19] in the context of the communication between
the proxy and the GPU, although this would likely increase the cost of the GPU and the
smartcard to unacceptable levels.

7.3 Data Compression

Traditionally, remote display and videoconferencing systems have made extensive use
of data compression in order to maximize network utilization and allow use in bandwidth-
limited environments. Since encrypted data cannot be compressed, a system that pro-
vides secure remote access must compress its data traffic before encrypting it. Clearly,
this approach imposes a limitation in our architecture: In order to provide data compres-
sion, the client GPU must be able to uncompress data. Uncompressing the data within
the client process would expose unencrypted display updates to the host operating sys-
tem.

A straightforward solution would be to add hardware decompression abilities to
the GPU. This could be accomplished by using widely available data decoding chips,
such as MPEG hardware decoders; indeed, several DVD-ready GPUs contain such logic
already. An alternative approach, in particular for thin-client scenarios, would be to
tailor the display protocol and its compression to use operations available in the GPU.
More recent thin-client systems have proposed remote display protocols that employ
different types of commands and compression algorithms for different kinds of display
updates [37]. The advantage of this approach derives from the characteristics of the
protocol commands that provide inherent compression, negating the need for additional,
specialized compression algorithms. For example, a command that instructs the client
to fill a rectangular region with a particular color consumes very little bandwidth, while
compressing a potentially large region of the screen. Execution of such a command is
clearly within the operations available in existing GPUs. By appropriately designing the
remote display protocol to utilize similar operations, we believe it is possible to improve
our architecture to consume reasonable bandwidth without compromising security.

8 Conclusions

We address the feasibility of decrypting images and displays within a graphics process-
ing unit as a way of combating the rising threat of spyware. Our primary insight is that



a suitably modified GPU can serve as a minimal trusted computing base for displays
in certain types of widely used applications, such as video conferencing and remote
desktop display access. The main mechanism in our scheme is decryption of frames
exclusively inside the GPU, without storing either the key material or the plaintext on
the system’s main memory. Our technique can protect against many types of spyware,
as well as several attacks aimed at the human interface layer [23].

We explained why this scheme cannot fully be realized due to current limitations
of GPU APIs. We identified three straightforward enhancements to GPU APIs that can
overcome these limitations. With our prototype, we demonstrated that the concept is
feasible for thin-client applications and the video broadcast in conferencing applica-
tions. Due to the need to generate the keystream in the client, the overhead is almost en-
tirely due to writing the keystream to the GPU as it is computed. Designing a keystream
which takes advantage of typical graphics operations to move keystream generation en-
tirely inside the GPU will eliminate this overhead. To further improve performance in
these applications, image compression facilities will need to be implemented inside the
GPU, a trend which is already occurring. In addition, our numbers show that for typical
video conferencing frame rates and web browsing using thin-clients, the lack of com-
pression is not a bottleneck for the performance of the system. Future work includes
creating a stream cipher that runs entirely within a GPU and takes advantage of graph-
ics operations, developing prototypes that fully integrate the concept into thin-client
applications and expanding the prototype to include encryption within DSPs.
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Appendix A: OpenGL Pixel Proccessing Pipeline

The following figure shows the components of the OpenGL pipeline which are relevant
to pixel processing when pixels are treated as floating point values. While GPU imple-
mentations are not required to adhere to the pipeline, it serves as a general guideline for
how pixels are processed.



System

Memory |

»  Texture

Bias > map

to[0,1]

Memory
. ) !
nPack ™ pixel | Pixel Tranfer N o Per
i Rasterization —% —>
Storage Operations RGBA, Fragment Framebuffer
Pack Modes [~ andMap depth Operations|
Convert
to [0,1]
Convert
Convert
—» ——® Luminance>
to [0,1]
to RGBA
Convert to
” Luminance
(if required) Legend
___» sysemto
framebuffer
. framebuffer
—» Scde —» Color —» Clamp ~ tosystem

Fig. 6. OpenGL Pixel Processing Pipeline



