
Sequential Challenges in Synthesizing Esterel

Cristian Soviani Jia Zeng Stephen A. Edwards

December 2004

Abstract

State assignment is a formidable task. As designs
written in a hardware description language such as
Esterel inherently carry more high level information
that a register transfer level model, such information
can be used to guide the encoding process. A ques-
tion arises if the high level information alone is strong
enough to suggest an efficient state assignment, al-
lowing low-level details to be ignored.

This report suggests that with Esterel’s flexibility,
most optimization potential is not within the high-
level structure. It appears effective state assignment
cannot rely solely on high level information.

Contents

1 Introduction 2

1.1 Synthesizing Esterel 2
1.2 The Question We Address 2

2 Experimental Setup 2

2.1 Overview 2
2.2 Blifopt 2
2.3 Methodology 3

3 Experiments 3

3.1 abcdef.strl 3
3.2 greycounter.strl 4
3.3 memory-controller.strl 4
3.4 Tcint.strl 6

4 High-Level Synthesis Issues 10

4.1 Early samples 10
4.2 Real Samples and Limitations 10
4.3 A Curious Signal in Tcint 10
4.4 VHDL-to-Esterel: A Bad Idea 11
4.5 HDL Abstraction 11

5 Conclusions 11

5.1 Compiler-flavored Optimizations . . . 11
5.2 Exploiting Sequential DCs 12
5.3 Future directions 12

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

While the use of hardware description languages such
as Verilog and VHDL have become the de facto ap-
proach to circuit design, the natural trend is to-
ward more abstract HDLs. The key issue is the
performance penalty this introduces. As general
approaches—at this moment—do not produce satis-
factory results, a compromise can be found in domain
specific languages, which can minimize this penalty
at the price of less generality: such a language can
handle a limited range of problems very well.

Esterel is a synchronous language developed by
Gérard Berry et al. [2] to handle reactive systems. Its
imperative (C-like) semantics makes Esterel a good
choice for designing controllers, as they usually con-
sist of several interconnected (more or less sequential)
processes.

1.1 Synthesizing Esterel

Given its synchronous semantics (i.e., signal timing
is specified exactly with respect to a global clock), an
Esterel program is in fact an RTL specification; so
the resulting circuit is a FSM in the exact sense.

A syntactic translation of Esterel into a circuit [1,
4] gives a hierarchical structure of inter-connected
sub-machines; so the circuit (i.e., product machine)
state transition graph is represented implicitly. Even
for medium Esterel programs, building the explicit
STG is impossible due to its size, so any synthesis
technique can not rely directly on classical state min-
imization, assignment, etc.

The current synthesis technique (as implemented
in Esterel v5 and our compiler CEC [5, 3]) starts by
a trivial encoding, using the high level structure of
the circuit. After this step, a sequence of powerful
sequential algorithms is run on the highly redundant
flattened network (see “blifopt” below); though much
cheaper than synthesizing from the STG, these algo-
rithms are impractical for medium to large circuits,
so a compromise has to be carefully chosen.

Network sequential optimization is a mature field;
to alleviate the inherently complexity of the problem,
many sophisticated techniques are used in present
tools. However, sequential optimization is a major

bottleneck in logic synthesis; it would be very in-
teresting if we can bypass (some of) these expensive
techniques and obtain the same network quality by
exploiting the high level information provided by the
HDL.

1.2 The Question We Address

Given the complexity of the issue, we proposed to
answer a simpler question: starting from an Esterel
program, can we generate an initial state assignment
such that the resulting network can be successfully
optimized using only combinational optimization?

2 Experimental Setup

2.1 Overview

In this this study we used CEC (Columbia Esterel
Compiler) and Esterel v5 (the Esterel release by
Berry et al.). Both have the ability to generate BLIF,
which can be optimized, verified, and benchmarked
within the SIS and VIS environments.

In generating a network from an Esterel source,
CEC builds an abstract representation of the circuit
state as a tree structure, which closely follows the
syntactic structure of the source. The output and
next state functions are constructed independently,
so it is possible to encode the state in various ways
while preserving the circuit functionality.

When one hot-encoding is used, CEC generates a
circuit almost identical to Esterel v5. In addition to
this trivial encoding, CEC can heuristically choose
different encodings [5], trying to exploit some avail-
able high level information. However, no heuristic
was found to consistently improve the circuit perfor-
mance.

2.2 Blifopt

Esterel v5 does not output an optimized circuit. In-
stead, a SIS script named “blifopt” is provided, which
is a powerful sequential tool, adapted to the v5 out-
put (i.e., one hot encoding). It targets FPGAs, so
the result is a k-feasible network; the main goal is
performance (i.e., the number of logic levels, as the

2

unit delay model is used). Even if more advanced se-
quential tools may be available, “blifopt” didactically
illustrates the general idea.

The secret of “blifopt” consists in extracting the
sequential don’t-care information from the network
and running a sequence of algorithms which can
take advantage of it: “full-simplify” (ala espresso),
“equiv nets”, and “remove latches”.

The “remove latches” step is the most interesting
to us, as it does some local re-encoding [6]. Briefly,
due to the one hot original encoding, there is a lot
of register redundancy. In this case, the algorithm
can remove some registers if their function can be
easily recomputed using the remaining ones. Some
generalizations were proposed, but the trick remains
an incremental optimization, instead of a complete
re-synthesis (like nova, jedi, etc.).

The result of this algorithm can be far from what
could be done by hand. This may be partially due
to the combinational tools in the SIS package; it
would be interesting to compare the results after us-
ing state-of-the-art FPGA synthesis.

2.3 Methodology

For a set of four sample programs, we first ran Esterel
v5 followed by blifopt.

Next, we ran CEC using a state encoding we chose
by hand. Note that we do not manually optimize the
circuit; the transition functions remain unchanged,
and the new encoding has to match more or less the
high level structure (see Section 2.1).

Given these constraints, we chose the new encoding
carefully; no given algorithmic steps were imposed,
and several variants were tried, and we report only
the best one we could find.

The resulting circuit is optimized by using SIS
without computing any sequential don’t cares. Fi-
nally, the blifopt FPGA mapping subroutine (also
100% combinational) is invoked to produce the 4-
feasible network.

3 Experiments

3.1 abcdef.strl

This simple Esterel program is included in almost all
Esterel benchmark set. Its complexity can be con-
trolled by varying the number of buttons it describes;
our test uses 6 (i.e., abcdef).

Each button (source in Figure 1) runs a four-state
FSM; the circuit is build from six such FSMs, running
in parallel; note that they are tightly inter-connected
by internal signals (the inputoutput ones).

As the six FSMs are not independent, not all com-
binations of states are possible. The sequential anal-
ysis shows that—for each FSM—the four states can
be “divided” into two classes: “L” and “R,” each
of which contain two states. The key point is that
the six FSMs have to be either all in an “L” state
or either all in an “R” state. The original one-hot
encoding (Figure 2) does not take advantage of this
fact; the red dots show a sample of such an unreach-
able state (note that some buttons (a,b,c,d,e) are in
a “L” class state while f is in an “R” class one).

Our encoding follows from this observation. We
use one bit to select between “L” and “R” states, one
bit for each FSM to select between the two possible
states (inside “L” or “R” classes); and one bit for the
boot state (Figure 3). The new encoding has very lit-
tle sequential redundancy; the few existing sequential
don’t cares were manually added to the BLIF file.

This is a “lucky” example, as a very efficient encod-
ing could be found manually. Moreover, it fits easily
into the existing high level structure.

The results in Table 1 show this new encoding
helped. However, the key in finding it was the manual
analysis of the whole circuit, including the reachable
states pattern; the circuit symmetry made the anal-
ysis much easier, but it is questionable if that kind of
human reasoning can be automatically reproduced.

levels # LUTs # latches
v5 + blifopt 5 114 25
manual enc 3 128 8

Table 1: Synthesis results for abcdef.strl

3

BOOT

A B F

L

R

C D E

these 6 flip flops can’t

be 1 in the same time

the state is unreachable

sample of sequential redundancy

Figure 2: Default one-hot encoding for abcdef.strl, requiring twenty-five latches.

3.2 greycounter.strl

This six-bit grey counter with alarm was designed
by one of us (Soviani) while learning Esterel. The
design uses carry chains both for counting and alarm
generation, so the trivial translation has relatively
deep logic; this implies slower operation compared to
a state-of-the-art grey counter.

In the source, each counter bit runs a four-state
FSM (Figure 4), except the last one, which needs only
two states. The alarm sub-circuit uses a two-state
FSM for each bit, which stores the alarm pattern.

The alarm FSMs were trivially encoded by single
flip-flops (i.e., one bit each). Note that the counter
state could be encoded on only six bits, but that gen-
erated low performance. So we re-encoded the “bit”
FSMs from one hot (four bits) to “grey” (two bits)
(Figure 5).

The remaining sequential don’t-cares were com-
puted manually and added to the BLIF file. The
results (Table 2) look better; like in the previous ex-
ample, the circuit is highly regular, which made the
manual re-encoding much easier.

3.3 memory-controller.strl

This is a very simple version of a memory controller
for IBM’s on-chip peripheral bus (OPB) used on a
Xilinx Spartan-II prototyping board; it was written

by a student who tried to copy the functionality of an
existing VHDL design. He was not very proficient in
Esterel at that point, making the sample even more
interesting for our analysis (see Section 4.4).

The circuit is very simple: it is mainly a sequential
FSM. However, the designer did not see this from
the VHDL code. He analyzed various behaviors of
the circuit (i.e., traces) and put them together (see
Figure 6). He appeared to cover all the cases, a po-
tential pitfall with this approach, but the sequential
redundancy is huge. For example, the two FSMs run-
ning in parallel in the code sample can not be active
in the same time. Similar constructs are present in
the rest of the code.

The straightforward encoding uses seventeen
latches. As the controller has actually only twelve
states, most of the codes are either unreachable or
equivalent. Note that at some point the designer was
fully aware of that (see the comments).

Our manual re-encoding tried to exploit that re-
dundancy. Even if some improvement can be noticed
(Table 3), the quality is far from the original VHDL

levels # LUTs # latches
v5 + blifopt 5 66 27
manual enc 4 51 17

Table 2: Synthesis results for greycounter.strl

4

module ONE_BUTTON:

input BUTTON;

input LOCK, UNLOCK;

output BUTTON_PRESELECTED_ON;

output BUTTON_PRESELECTED_OFF;

output BUTTON_LOCKED_ON;

output BUTTON_LOCKED_OFF;

inputoutput PRESELECTED;

inputoutput LOCKED, UNLOCKED;

emit BUTTON_PRESELECTED_OFF;

emit BUTTON_LOCKED_OFF;

loop

trap BACK_TO_MAIN_LOOP in

trap PRESELECTED in

loop

do

await BUTTON do

exit PRESELECTED

end await

upto LOCKED;

await UNLOCKED

end loop

end trap;

loop

emit PRESELECTED;

emit BUTTON_PRESELECTED_ON;

do

await

case BUTTON

case PRESELECTED

end await;

emit BUTTON_PRESELECTED_OFF;

exit BACK_TO_MAIN_LOOP

watching [LOCK] timeout

emit BUTTON_PRESELECTED_OFF;

emit LOCKED;

emit BUTTON_LOCKED_ON;

await UNLOCK do

emit BUTTON_LOCKED_OFF;

emit UNLOCKED

end await

end timeout

end loop

end trap

end loop

end module

Figure 1: abcdef.strl: Esterel source for a single but-
ton. The complete example contains six of these.

BOOT L / R’

A B C D E F

Figure 3: Compact encoding for abcdef.strl, requiring
eight latches.

module Bit:

input CLK;

output B, CY;

loop

await CLK;

abort

sustain B;

when CLK;

emit CY;

abort

sustain B;

when CLK;

await CLK;

emit CY

end loop

end module

Figure 4: Simplified Esterel code for a counter bit in
greycounter.strl.

g0

D Q

D Q

g1

D Q

D Q

D Q

D Q

h3

h2

h1

h0

one-hot grey
h3 h2 h1 h0 g1 g0
1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 1
0 0 0 1 1 0

Figure 5: Bit-grey re-encoding for greycounter.strl.

5

...

||

present [not rnw and onecycle] then

% now in xfer state

pause;

emit xfer;

emit rres;

end present

||

present [not rnw and not onecycle] then

% now in w state

await [not vreq];

% now in xfer state

pause;

emit xfer;

emit rres;

end present

...

Figure 6: memory-controller.strl: Fragment of Es-
terel source.

design, which in turn was a lousy encoding of the
almost trivial STG.

Unfortunately, it is very hard to detect this kind
of sequential redundancy by high-level inspection, as
the high-level structure in the above fragment sug-
gests two independent machines. Only a Boolean
analysis would detect that they are mutually exclu-
sive and that the last two states in each machine
(xfer) are equivalent.

3.4 Tcint.strl

Tcint is one of the few available medium-size Esterel
programs designed for hardware implementation. It
implements a TurboChannel bus interface.

Briefly, while in a “selection” cycle, the circuit
checks which of the eleven available submodules is

levels # LUTs # latches
v5 + seq 3 24 16

manual enc 2 31 13

Table 3: Synthesis results for memory-controller.strl

selected (mainly looking at the ADDR*, SEL, and
WRITE inputs) and activates it accordingly. A new
“selection” cycle occurs after the selected module fin-
ishes its task. Otherwise, if no module is selected, the
cycle is “idle” and the next cycle becomes a valid “se-
lection” one (source in Figure 7).

This process is time-critical as it takes a long time
to know whether a particular cycle is a valid “selec-
tion” one, and a lot of logical (decoding) operations
are done to decide which device is selected. Note that
the DMA operations have priority over the regular
I/O ones.

The main selection module together with the
eleven sub-modules, can be seen as a large sequen-
tial FSM, as it is impossible for two of them to
be active in the same time. Several auxiliary small
FSMs exchange internal signals with this main FSM;
some of these are also critical (note for example the
signals DMAWriteAddressReady and DMAReadAd-
dressReady).

Initially, we attempted the alleviate these critical
paths in our manual re-encoding.

First, we could see that a lot of states in the main
sequential FSM were equivalent (Figure 8); briefly,
they are the last states of the various sub-modules;
as it can be seen, the “red” states are responsible for
detecting a valid “selection” cycle. They were merged
together. This we did carefully to avoid creating new
critical paths while fighting to optimize the existing
ones. Note that in this simple case the transformation
is a simple retiming; exploiting equivalent states may
be more complicated in the general case.

A lot of local equivalent states were also found
in various points in the auxiliary FSMs; they were
present due to suboptimal—but valid—Esterel con-
structs (Figure 9).

Some of the small FSMs were also re-encoded
by finding states equivalent to the boot state (Fig-
ure 10). In this short sample, equivalent states could
be found by inspecting the circuit reachability; as
ConflictOnSEL is not active in the boot state, the
machine is guaranteed to remain in the desired state
after the first cycle.

It was also noticed that detecting a valid “selec-
tion” state, which can never occur in the boot cycle,
had an incoming false path from the boot register.

6

await tick; % to avoid problems at boot time!

loop

await % First of all, wait for DMA request or SEL

case immediate [Fo_HF and DMAWriteAddressReady] do

run DMA_WRITE;

case immediate [not Fi_HF and DMAReadAddressReady] do

run DMA_READ;

case immediate SEL do % SEL : decode opcode

emit TagFlag;

trap ReadSharedEnd, WriteSharedEnd in

present [SEL and WRITE and not ADB24 and ADB23 and not ADB22] then

run WPOM

else present [SEL and not WRITE and not ADB24 and ADB23 and not ADB22] then

run RPOM; exit ReadSharedEnd

else present [SEL and WRITE and ADB24] then

run WPAM

else present [SEL and not WRITE and ADB24] then

run RPAM; exit ReadSharedEnd

else present [SEL and WRITE and not ADB24 and ADB23 and ADB22] then

run WFIFO

else present [SEL and not WRITE and not ADB24 and ADB23 and ADB22] then

run RFIFO; exit ReadSharedEnd

else present [SEL and not WRITE and not ADB24 and not ADB23 and not ADB22] then

run RROM; exit ReadSharedEnd

else present [SEL and WRITE and not ADB24 and not ADB23 and ADB22] then

run WLCA

else present [SEL and not WRITE and not ADB24 and not ADB23 and ADB22] then

run RLCA; exit ReadSharedEnd

else

halt

end end end end end end end end end

handle ReadSharedEnd do

% drive final data word on next cycle

emit pDriveTBC;

await tick;

% send RDY and pHostDrives and wait one cycle

emit RDY;

emit pHostDrives;

await tick

end trap

end await

end loop

Figure 7: tcint.strl : Esterel source for the selection cycle

7

BOOT

IDLE

4ADDR
SEL
WRITE

DMARDxx

DMAWRITExx

2
2

Decoders

selection cycle

Figure 8: The tcint selection cycle. States with the same color are equivalent.

An explicit don’t-care was manually added, and SIS
removed the useless signal(s) from the critical paths.

At that point, the critical paths ceased to involve
the main selection logic; but the timing problem re-
mained for a small auxiliary Moore FSM (DRIVE,
whose source is shown in Figure 11), which was driven
by many internal signals generated by the main FSM
(pPamDrives, pRomDrives, pLcaDrives and pHost-
Drives).

To begin with, we re-encoded parts of the main
FSM to provide the mentioned internal signals ear-
lier. This was easy since the paths were not critical
at these points, but the result did not improve sub-
stantially.

The key observation was that the “guilty”
(DRIVE) FSM runs in perfect lockstep with the main
FSM (Figure 12). As the colors suggest, for each state
of the main FSM, DRIVE can be in only a certain
state.

As a result, many control signals are irrelevant in
various states. The observation was not trivial, given
the Esterel source that suggested an independent
operation between the machines. After manually
adding the corresponding don’t cares, we achieved

the desired three levels of logic almost immediately
(Table 4).

This design is mostly responsible for the conclu-
sions in the following section.

Sequential analysis is critical in tcint, as there are
many unreachable and equivalent states, false paths,
etc. Some of these optimization opportunities are
easy to see in the Esterel source (i.e., from purely
high-level analysis); but some are not, and—this is
the bad news—many of these are critical.

To emphasize the quantity of “tcint” sequential re-
dundancy, note that only 2282 state codes are reach-
able (v5 plus blifopt optimized output). That is a lit-
tle bit strange for a fifty-two latch network. However,
the real surprise was finding that there are only 231
distinct states after state minimization.

levels # LUTs # latches
v5 + blifopt 5 93 52
manual enc 3 118 52

Table 4: Synthesis results for tcint.strl

8

R

W WB

R
R

B

B

W

W
W

W

R

Moore machine

(asserts time critical POs)

W

G

R, B, G, W " control signals

G

W

Figure 12: The DRIVE machine running in lockstep w/ the main one

trap AckReceived in

await tick;

sustain TCRegOutCkDis

||

await immediate ACK do

exit AckReceived

end

end trap;

X=1

X=1

X=1

await tick;

sustain X;

Figure 9: Simple Esterel construct generating equiv-
alent states and the STG for a fraction of the above
code

loop

await ConflictOnSEL;

do

every immediate SEL do

emit RejectSEL

end

watching AcceptSEL

end loop

BOOT

C

C’

A

A’

C

C’

A

A’

BOOT

X=1 X=1

seq d/c : BOOT => C’

C = ConflictOnSEL

A = AcceptSEL

Figure 10: Equivalent boot state found using the se-
quential don’t-care, ConflictOnSEL is never asserted
in the BOOT state.

9

loop

trap EndOfHostDrives in

await tick;

[

sustain TCRegInOE

||

sustain ExtBufDir

||

sustain ExtBufOE

]

||

await [pPamDrives or

pRomDrives or

pLcaDrives] do

exit EndOfHostDrives

end

end trap;

present pPamDrives then

trap EndOfPamDrives in

await tick;

sustain ExtBufOE

||

await pHostDrives do

exit EndOfPamDrives

end

end trap

else present pRomDrives then

trap EndOfRomDrives in

await tick;

sustain RomOE

||

await pHostDrives do

exit EndOfRomDrives

end

end trap

else present pLcaDrives then

trap EndOfLcaDrives in

await tick;

sustain LcaOE

||

await pHostDrives do

exit EndOfLcaDrives

end

end trap

end end end present

end loop

Figure 11: tcint.strl : Esterel source (fragment) for
DRIVE FSM

4 High-Level Synthesis Issues

4.1 Early samples

Early experiments were done on self-designed sam-
ples. As the authors are familiar with VHDL design,
and we were aware of the Esterel tool internals, CEC
could generate good designs even without sequential
optimization. We even occasionally felt the desire
to specify an encoding for various FSMs (a common
practice in VHDL). As a result, suspected that the
tool might be able to find such an encoding itself,
based on the high level information.

4.2 Real Samples and Limitations

The “real” Esterel code examples we used differ sub-
stantially from the samples we wrote to begin with.

Most people have experience with C or other se-
quential imperative languages, so they are much more
comfortable with sequencing than concurrency. This
problem is not particular to Esterel, but Esterel’s
support of an imperative style tends to encourage
that style of problem solving.

This is not intrinsically a bad practice—after all
the Esterel basic blocks are sequential constructs—
but we did notice a dangerous tendency toward abus-
ing the language’s sequential features.

Note that for certain problems, a “nice” Esterel
program may not exist, given that Esterel is a DSL
and not a general purpose language.

4.3 A Curious Signal in Tcint

As seen above, the tcint main machine runs in lock-
step with the DRIVE machine; one internals signal
is totally useless and can be ignored. This signal is
asserted in the DMAWRITE submodule; a more de-
tailed view is shown in Figure 13.

The red “R” is the guilty signal; the Esterel code
generating it is shown in Figure 14; our signal is
asserted by the “emit pPamDrives” statement. It
comes one cycle after “emit pLcaDrives”, so it’s
useless (when the module starts, DRIVE is in the
“white” state). However, it has a clear comment; it
should be useful.

10

R

W
W

B

B

W

R
?

?

?

?

?

?

W

G pLcaDrives : B
pPamDrives : R

pHostDrives : W

pRomDrives : G

Figure 13: tcint.strl: DMAWRITE : red or blue?

module DMA_WRITE:

...

% prepare Lca drive for next cycle

% Note: nice comment, not my style

emit pLcaDrives;

await tick;

% setup data path from pam to host

% Note: this, too

emit pPamDrives;

...

emit pHostDrives;

...

Figure 14: Fragment of tcint.strl: DMAWRITE

According to Esterel semantics, everything is clear;
the signal is ignored, and the states following it are
“blue.” But according to the comment, maybe the
following states should be “red.” Or maybe “both”
states have to be active, which is obviously not pos-
sible using the existing DRIVE FSM.

4.4 VHDL-to-Esterel: A Bad Idea

Going back to the “memory-controller.strl” sample,
we noticed that it is not sequentially equivalent to
the original VHDL design. At some point, an extra
cycle was added, which was sufficient to render the
circuit useless.

We rewrote it from scratch, ignoring both the ex-
isting sample and the original VHDL code.

This gave better results (Table 5), even without
sequential optimization. The author of the original
Esterel code had no idea of what the circuit was sup-
posed to do. On the other hand, we knew the desired
functionality very precisely, and we trust our Esterel

code more than we trust our original VHDL, as is is
shorter and more expressive.

Notice that our redesign does not depend much
on optimization; even a simple combinational script
gives nice results.

4.5 HDL Abstraction

As Esterel is deterministic, any semantically correct
code leads to an exact RTL description. So there
is theoretically an optimum (good) implementation
which is sequentially equivalent to the original. How-
ever, the original is not the source code, but the
model inside designer’s mind.

Each HDL presents its own model of computation.
If one formulates the problem in terms of that model,
the code is likely both correct and efficient. Other-
wise, the code may lead to incorrect circuits even
more easily than to inefficient ones. We consider this
issue critical.

Reality shows that very popular HDLs (such as
Verilog, VHDL, or—in the software world—C) are a
scandal from the theoretical point of view; they lack
even a deterministic semantics. This is highly regret-
table; the fact that they are so widespread, despite of
this major drawback, implies that the HDL success
depends more on human than mathematical issues.
Ignoring the former but concentrating exclusively on
the later will not provide viable real-world solutions.
We strongly believe that the CAD community has to
seriously consider this.

5 Conclusions

5.1 Compiler-flavored Optimizations

Small local optimizations are possible in many cases.
Most of them are trivial (and a lot of such techniques
are already employed in CEC) but a handful of more
advanced ones can be implemented.

Even if such optimizations usually cannot solve the
“interesting” problems, they can safely be done in a
greedy manner, and—given the large number of op-
portunities to apply them—the burden on the ex-
pensive steps that may follow significantly decreases.

11

src(bytes) # levels # LUTs # latches
Third-party Esterel 80 v5 + seq 3 24 16

auto: no seq 3 52 17
auto: seq 3 27 15

manual enc 2 31 13
Our Esterel 36 v5 + seq 2 17 8

auto: no seq 2 23 9
auto: seq 2 18 8

manual enc 2 14 3

Table 5: memory-controller.strl: comparison of two versions

Moreover, it is more likely that the main algorithm
will perform better on a “noiseless” input, which ex-
poses the real design challenges.

It is unfair to consider these optimizations as an op-
tional preprocessing step; they have to be performed
as aggressively as possible, given that they do not
compromise the potential for further optimization.

5.2 Exploiting Sequential DCs

The main conclusion drawn from the samples we ana-
lyzed is that a directly translated Esterel specification
leads to a circuit with a lot of sequential redundancy.
Many state codes are unreachable, many states are
equivalent, and critical paths span several hierarchi-
cal modules and include false paths.

However, this is not necessarily due to poor de-
sign. As Esterel has a different abstraction model
than VHDL, it may be unfair to ask the designer to
write Esterel with the structure of the resulting net-
work in mind. On the contrary, the idea is to let the
designer ignore these details and let him or her focus
on describing the circuit in a coherent, natural way.

Optimizing circuits without sequential analysis has
little chance of succeeding. We had hoped that im-
portant sequential redundancy would be localized,
but instead most sequential redundancy and critical
paths cross hierarchical boundaries. Because of this,
analysis and optimization process has to cross such
boundaries, too. Effective state assignment cannot
therefore rely solely on high level information.

On the other hand, running brute force sequential
optimization on the flattened network is not feasible,

and may generate very suboptimal circuits for large
samples. General techniques such as circuit partition-
ing or approximate reachability are present in current
tools, but they are based on heuristics. We may not
want to discard the high level information; even if it
alone is not sufficient to generate a good circuit, it
may be a very precious resource to exploit further.

5.3 Future directions

The critical consequence is that Esterel synthesis can
not be easily split into two separate steps: high and
low level. It would be very attractive to simplify the
problem in this way; moreover, a constructive ap-
proach for the high-level layer would make the syn-
thesis scale very well.

This may be feasible for large circuits where big
modules can be optimized independently. But on the
scale of our examples, the designs proved to be more
tightly connected than expected.

We expect that on the mentioned medium scale
the main computational burden will remain on ex-
pensive sequential algorithms, which can be seen as
search programs. Given the performance of today’s
computers and the advances in dealing with specific
intractable problems, this kind of algorithms perform
pretty well on medium-sized and well defined prob-
lems, but they completely lack a “horizon,” i.e., a
pertinent view of the global problem.

The challenge would be to use the high-level struc-
ture to drive these algorithms, feeding them with
moderate-sized data and asking for results that are
relevant to improving overall circuit performance.

12

References

[1] Gérard Berry. A hardware implementation of
pure Esterel. In Proceedings of the International
Workshop on Formal Methods in VLSI Design,
Miami, Florida, January 1991.

[2] Gérard Berry and Georges Gonthier. The Esterel
synchronous programming language: Design, se-
mantics, implementation. Science of Computer
Programming, 19(2):87–152, November 1992.

[3] Stephen A. Edwards. High-level synthesis from
the synchronous language Esterel. In Proceedings
of the International Workshop on Logic Synthesis
(IWLS), New Orleans, Louisiana, June 2002.

[4] Klaus Schneider. A verified hardware synthesis
for Esterel programs. In Proceedings of the In-
ternational IFIP Workshop on Distributed and
Parallel Embedded Systems (DIPES), Paderborn,
Germany, 2000.

[5] Cristian Soviani, Jia Zeng, and Stephen A. Ed-
wards. Improved controller synthesis from esterel.
Technical Report CUCS–015–04, Columbia Uni-
versity, Department of Computer Science, New
York, NY, 2004.

[6] Horia Toma, Ellen Sentovich, and Gérard Berry.
Latch optimization in circuits generated from
high-level descriptions. In Proceedings of the
IEEE/ACM International Conference on Com-
puter Aided Design (ICCAD), pages 428–435, San
Jose, California, November 1996.

13

