
Determining Interfaces using Type Inference

Stephen A. Edwards? and Chun Li

Columbia University, Computer Science Department
New York, USA

sedwards@cs.columbia.edu

Abstract. Porting software usually requires understanding what library
functions the program being ported uses since this functionality must be
either found or reproduced in the ported program’s new environment.
This is usually done manually through code inspections. We propose a
type inference algorithm able to infer basic information about the library
functions a particular C program uses in the absence of declaration infor-
mation for the library (e.g., without header files). Based on a simple but
efficient inference algorithm, we were able to infer declarations for much
of the PalmOS API from the source of a twenty-seven-thousand-line C
program. Such a tool will aid in the problem of program understand-
ing when porting programs, especially from poorly-documented or lost
legacy environments.

1 Introduction

Good software inevitably outlasts hardware and even operating systems, so there
will always be a need to port software between environments. The challenges of
porting software, which we define as reproducing the behavior of a program in
a new environment1, are legion, but most boil down to mismatches between
assumptions in the original source code and the new environment. These as-
sumptions take two forms. Expectations about the programming language are
the most fundamental. For example, the expression “a = 1” is an assignment in
C and a comparison in ML. The other expectation is about the existence and
behavior of external entities such as libraries and operating systems. This paper
proposes an analysis technique that helps to identify these expectations as a
prelude to porting.

We propose a technique that infers the interfaces to C library functions from
how they are used. It is designed for when header files declaring the functions are
not available, although it also performs the useful function of identifying which
functions could be called and therefore must be considered during a port. Our
goal is to bring a more formal methodology to the porting process by quickly
providing an abstract summary of the assumptions made by the source program.

? Edwards and his group are supported by an nsf career award, a grant from Intel
corporation, an award from the src, and from New York State’s nystar program.

1 In particular, we do not consider substantial algorithmic changes such as those re-
quired to “port” a compiler to a new processor.



Armed with this information, the person responsible for the port can begin
evaluating how to proceed, e.g., by writing new library functions or wrappers
for library functions in the new environment.

The information supplied by our technique is most helpful when the program
being ported uses only a small fraction of a very large library that does not exist
in the new environment and must be recreated. By identifying which parts of
the library are actually used, our technique help a programmer avoid having
to recreate the entire library. For example, suppose a program that uses the
svgalib library (a medium-sized library with over 100 calls) is being ported to
a pda that does not have it. Our tool can quickly report, for example, that the
program calls vga drawline, that vga drawline has four integer arguments, and
that it does not need vga waitretrace.

f(g());

h(g());

f(4);

extern void f(int);

extern int g(void);

extern void h(int);

(a) (b)

Fig. 1. (a) Three function calls. (b) The declarations inferred by our type infer-
ence procedure.

Our algorithm performs type inference through deduction. Consider the three
function calls in Figure 1a. The first call suggests the function f takes an integer
argument, although C’s promotion rules would also allow it to take a different
numerical type. Assuming this is true, the second call then suggests g returns an
integer, so that the third call suggests h takes a single integer argument. Using
such reasoning, our procedure produces the declarations shown in Figure 1b.

2 The Type Inference Procedure

Our procedure is based on the ideas of type inference used in, for example,
ML [1,2], but deviates from this ideal because of details in C’s type system,
notably implicit conversions and functions with a variable number of arguments.

C’s basic types are fluid and expressions involving these types often imply
conversions, typically promotions. For example, a char is automatically pro-
moted to an int whenever it “interacts” with an int, such as when a char and
an int are added. Similarly, adding an int to a float causes both to be promoted
to double. Our algorithm addresses this problem by assuming the more general
type when faced with two possibilities for a particular argument.

C’s somewhat ad-hoc support for variable-length argument lists also presents
a challenge. In C, it is legal to call a function with argument lists of completely
different types and lengths provided the function is declared with ellipses in its
argument list.



>

long double

double

float

unsigned long

long

unsigned

int

char short

unsigned char unsigned short

void *

t1 * t2 * · · ·

struct s1 struct s2 · · · union u1 union u2 · · ·

⊥

Fig. 2. The Hasse diagram for C’s basic types, assuming char is signed and long
int is larger than unsigned. The symbols t1 and t2 represent arbitrary non-void
types (e.g., ints, structs, etc.), and the s and u represent arbitrary structs and
unions.

2.1 Type Lattices

After a careful reading of the C language specification, we adopted the ordering
of C’s types depicted in Figure 2. This diagram was constructed so the least
common ancestor of two nodes is the most restrictive type that can capture
them both (i.e., the join operation, written t). For example, if a function f is
called in one place with a single unsigned short argument and in another with a
single char argument, the least common ancestor of these two types is unsigned,
which we use as the guess for the true type of its argument because it is the
most restrictive type to which both char and unsigned short can be converted.

With the exception of void *, all pointer types are treated as distinct. This fol-
lows directly from a statement in the C reference manual, “when both operands
[of the = operator] are pointers of any kind, no conversion ever takes place.”
Similarly, although it is safe to cast a pointer, for example,

from

struct foo {

int a;

float b;

int c;

}

to

struct bar {

int a;

float b;

}

C considers an assignment from such a pointer type to another to be erroneous.
Two members of this lattice are special. The ⊥ element represents an un-

known type, which we use to represent arguments whose types we have not yet
deduced. The > element represents multiple, conflicting types for an argument,
which might arise if an one-argument function is called with a number at one
site and a pointer at another. Thus, arguments passed through ellipses (“...”)
such as the second and later arguments to printf, can be represented with >.



The type of a function is simply a vector of basic types taken from the lattice
in Figure 2. To perform our type inference procedure, we need to define the join
operation on two function types. This operation answers the following question:
given two call sites for a function f and the types of its arguments at both sites,
we want to find the most conservative guess for types of the arguments of f .

For two argument lists of the same size, the type of each argument is the join
of the corresponding argument types in the two argument lists. For example,

(int, int, char *) t (int, double, int *) = (int, double, void *)

(⊥, float, char *) t (long, double, int) = (long, double,>).

The third argument in the second example is odd: is it ever correct to pass
a function a char * in one case and int in another? It is, provided the function
declaration contains an ellipsis (i.e., “...”). In C, the signature resulting from the
second example would mean (long,double,...).

One final possibility remains: two calls to the same function with a different
number of arguments. Again, this is permissible with variable argument lists.
Our solution is to >-extend the shorter argument list to the length of the longer
one and then perform a normal component-wise join operation. We write

(int, int) t (int, double, int) = (int, double,>)

This rule always produces signatures of the form

(t1, . . . , tk,>, . . . ,>).

We interpret the first k non-> arguments as usual C types and the first > as
representing an ellipsis, i.e., as a variable-argument function.

f(g());

h(’a’, g());

h(’b’, q());

i(q());

f(1);

extern void f(int);

extern void h(char, int);

extern void i(int);

extern int q(void);

extern int g(void);

(a) (b)

Fig. 3. (a) Five function calls with a transitive constraint. (b) The declarations
our procedure infers.

2.2 The Unification Algorithm

We employ a straightforward relaxation-based type unification algorithm built
around the join operation described earlier. The main challenge is dealing with
transitive constraints, such as those presented by the example in Figure 3. We



1: procedure resolve-all-types
2: Clear all type signatures
3: Clear all constraints
4: for each call t0 = f(t1, . . . , tk) of function f do

5: if there is no type signature for f then

6: Set f ’s signature to t0 = f(t1, . . . , tk)
7: else

8: Let u0 = f(u1, . . . , uj) be the signature for f

9: if t0 exists (i.e., the result of f is assigned) then

10: u0 = u0 t t0
11: if k > j then

12: Set uj+1, . . . , uk = >

13: Set j = k

14: else if k < j then

15: Set tk+1, . . . , tj = >

16: for i = 1, . . . , j do

17: Set ui = ui t ti

18: if ui = ⊥ and ti is the return type of g then

19: Add a constraint f(g)
20: for each function f do

21: resolve-arguments(f)

22: procedure resolve-arguments(f)
23: Let u0 = f(u1, . . . , uj) be the current signature for f

24: for i = 1, . . . , j do

25: for each g that is ever an ith argument of f do

26: ui = ui t return-type(g)
27: Set the return type of g to ui

28: function return-type(g)
29: for each constraint of the form f(g) do

30: Remove the constraint f(g)
31: resolve-arguments(f)
32: return the current guess for the return type of g

Fig. 4. The unification algorithm.



handle this by maintaining a graph of such dependencies and traversing it as
part of the relaxation procedure.

Figure 4 shows our type unification algorithm, which operates in two phases.
The first phase, lines 2–19, handles all the simple inferences and prepares the
constraints for the second phase, which consists of the loop in lines 20–21, the
resolve-arguments procedure and the return-type function.

The first pass starts by initializing all type signatures to effectively nothing
and clearing all constraints. Such constraints, created in line 19, indicate that
the result of a function g is passed as an argument to a function f , thereby
constraining the return type of g to match the type of the argument. We write
such a constraint f(g), where f and g are function names.

The main loop of the first pass, lines 4–19, iterates over each call of an
undeclared function (in the sequel, only undeclared functions will be considered)
and guesses the types of its arguments based on the actual parameters passed
to it. If the function has not been seen before, the guess is initialized to have
the types of arguments to the call (line 6). Otherwise, if the result of the call
is assigned to a variable, that type is used to refine the guess of the function’s
return type (lines 9–10).

Next, if the function has been seen before and the number of arguments
passed at the current call (k) exceeds how many were seen before, the function
must necessarily have a variable number of arguments so the current guess is
extended with >s out to k (lines 11–13). Another possibility—that the current
call has fewer arguments than previously seen—is handled in lines 14–15 by
>-extending the call arguments.

When control reaches the for loop in lines 16–19, the number of arguments
in the current signature and the call match. In line 17, the loop performs the join
between the types of the actual arguments and those in the signature. Finally, if
the type is still unresolved (i.e., the join was ⊥ and the type is the return type
of a function g, a constraint is added that indicates that the return type of g

depends on the type of some argument to f .

This completes the first pass, which resolves all simple types but not transi-
tive constraints. Running the procedure to this point on the example in Figure 1a
gives the signatures ⊥ = f(int), ⊥ = h(⊥) and ⊥ = g(). Similarly, the signatures
for Figure 3a would be ⊥ = f(int), ⊥ = g(), ⊥ = h(char,⊥), and ⊥ = i(⊥).

The second pass resolves type signatures that derive from constraints, such
as that for h in Figure 1a. It consists of the loop in lines 20–21, which resolves
the arguments for every undeclared function by calling resolve-arguments, which
calls itself recursively through the return-type function to establish the return
types of any functions that ever appear as arguments.

The resolve-arguments procedure steps through each of the arguments to f

(the highest number of arguments ever seen has been resolved by this point)
and computes the join of the return types of all the functions that ever appear
as arguments (line 26). It calls return-type to compute these, which recursively
calls resolve-arguments to handle complex cases such as the one in Figure 3a.



The return-type function calls resolve-arguments for each function that ever
takes the function g as an argument (i.e., that constraints the return type of g).
It removes the constraint first to avoid circular dependencies.

For the example in Figure 1, when resolve-arguments is first called on function
f , the type signature from the first pass is ⊥ = f(int). The loop in lines 25–27
only finds one function that is an argument to f , namely g. So return-type(g)
is called in line 26. Return-type finds the constraint f(g), removes it, and calls
resolve-arguments(f) again, the second invocation of resolve-arguments(f). The
second one also calls return-type(g), but because the f(g) constraint was re-
moved, return-type immediately returns ⊥, a guess for the return type of g.

After return-type(g) returns ⊥, it computes the join of int and ⊥ in line 26,
giving int, and assigns it to the return type of g in line 27. The signature of g is
now int = g().

3 Experimental Results

We implemented our system on top of Necula et al.’s CIL [3], a C front end
written in ocaml designed for analysis and source-to-source translations.

We tested our tool on two real-world programs: iSSL, an open-source net-
work cryptographic service2, and Pilot-DB3, an open-source database system
for PalmOS. These were chosen because we had prior experience with iSSL [4]
and also wanted something designed for a different operating system (i.e., one
for which we did not have the header files). The iSSL distribution consists of
roughly 13 000 lines of source code, and Pilot-DB contains roughly 27 000 lines.

The entire analysis, including two invocations of the C preprocessor to iden-
tify missing header files (an inefficient technique that should be replaced with
a modified version of the preprocessor that does not fail on missing #include
files), took less than three seconds for the Pilot-DB program and less than two
for iSSL on a 1.7 GHz Pentium 4 machine running Linux.

The iSSL package compiles fine on our Linux machine, so to test our algo-
rithms we removed the multi-precision arithmetic library and headers from the
iSSL code (it was taken from gnupg, which had adapted it from the gnu mp

library) and asked our tool to reconstruct the prototypes. Figure 5 illustrates
the results. Our procedure was able to deduce most prototypes correctly from
context; a few differences came from assuming an integer instead of an unsigned
long. Another interesting effect: mpi get nlimbs is implemented as a macro, but
our tool inferred the types of its argument and return type. The few other dif-
ferences arose from things like typedef s (struct IO FILE * instead of FILE *)
and const char *s.

The Pilot-DB example was more interesting. We did not have the PalmOS
header files when we ran our tool, so we did not need to modify its source. Not

2 The author of iSSL is a German who refers to himself (herself?) as “Mixter.” The
sources reside on sourceforge.net.

3 Originally by Tom Dyas, now developed and maintained by Marc Chalain and Scott
Wallace. The source is also on sourceforge.net



MPI mpi_alloc_set_ui(int);

void mpi_set(MPI, MPI);
void mpi_mul_ui(MPI, MPI, int);
void mpi_mul(MPI, MPI, MPI);

void mpi_add_ui(MPI, MPI, unsigned int);
unsigned int mpi_get_nbits(MPI);

void log_mpidump(char * , MPI);

MPI mpi_copy(MPI);
unsigned int mpi_get_nlimbs(MPI);
void mpi_sub_ui(MPI, MPI, int);

void mpi_set_ui(MPI, int);
void mpi_print(struct _IO_FILE *, MPI, int);

MPI mpi_alloc_set_ui(unsigned long u);

void mpi_set(MPI w, MPI u);
void mpi_mul_ui(MPI w, MPI u, ulong v);
void mpi_mul( MPI w, MPI u, MPI v);

void mpi_add_ui(MPI w, MPI u, ulong v );
unsigned mpi_get_nbits( MPI a );

void g10_log_mpidump( const char *text, MPI a );
#define log_mpidump g10_log_mpidump

MPI mpi_copy( MPI a );
#define mpi_get_nlimbs(a) ((a)->nlimbs)
void mpi_sub_ui(MPI w, MPI u, ulong v );

void mpi_set_ui( MPI w, ulong u);
int mpi_print( FILE *fp, MPI a, int mode );

(a) (b)

Fig. 5. (a) Some of the prototypes inferred by our tool from the iSSL source.
(b) The corresponding declarations from the actual header file. A few argu-
ments are actually unsigned longs where our tool tought they were ints. Also,
mpi get nlimbs is actually a macro—our tool assumed it was a function and
produced a prototype for it.

UInt16 TblGetRowHeight(void *,
int);

void WinDrawLine(Coord, Coord,

Coord, Coord);
UInt16 TblGetLastUsableRow(TablePtr);

UInt16 TblGetRowID(...);

void FrmUpdateScrollers(FormPtr___0,
UInt16, UInt16,
Boolean,

Boolean);
UInt16 TblGetNumberOfRows(TablePtr);

void TblSetRowUsable(TablePtr, UInt16,
int);

void TblSetRowSelectable(TablePtr,

UInt16,
int);

void TblSetRowHeight(TablePtr, UInt16,
int);

Coord TblGetRowHeight(const TableType *tableP,
Int16 row);

void WinDrawLine(Coord x1, Coord y1,

Coord x2, Coord y2);
Int16 TblGetLastUsableRow(const TableType *tableP);

UInt16 TblGetRowID(const TableType *tableP,
Int16 row);

void FrmUpdateScrollers(FormType *formP,
UInt16 upIndex, UInt16 downIndex,
Boolean scrollableUp,

Boolean scrollableDown);
Int16 TblGetNumberOfRows(const TableType *tableP);

void TblSetRowUsable(TableType *tableP, Int16 row,
Boolean usable);

void TblSetRowSelectable(TableType *tableP,

Int16 row,
Boolean selectable);

void TblSetRowHeight(TableType *tableP, Int16 row,
Coord height);

(a) (b)

Fig. 6. (a) Some prototypes inferred from the Pilot-DB source. (b) The true
declarations from the Palm OS SDK header files. Some inconsistencies stem
from sloppily-written code.



surprisingly, the program makes extensive use of PalmOS GUI calls, a few of
which are listed in Figure 6. Our program largely succeeded at inferring the
right types, but there are a few inconsistencies.

The true first argument of TblGetRowHeight is a pointer to TableType, but
our tool inferred a void *. The culprit was a function in which the developers
were type-sloppy:

static void

DrawPopupIndicator(void * table, Int16 row, Int16 col, RectangleType *b)

{

/* ... */

y = b->topLeft.y + (TblGetRowHeight(table, row) - (width / 2)) / 2;

We also inferred a seemingly incorrect return type for TblGetRowHeight, but
it turns out that PalmOS.h typedef s the Coord type as Int16. It inferred UInt16,
though, again because of poorly chosen types in another file. Figure 2 shows that
unsigned dominates signed.

UInt16 oldHeight;

/* .. */

oldHeight = TblGetRowHeight(table, row);

Our procedure inferred a variable number of arguments for TblGetRowID,
which is clearly a mistake. The source of the problem is an incomplete type, i.e.,
a function passes a field from an incomplete type to TblGetRowID :

Boolean SortEditor_HandleEvent(EventPtr event)

{

/* .. */

UInt16 entry = TblGetRowID(event->data.tblSelect.pTable,

event->data.tblSelect.row);

Our tool currently does not infer the type of EventPtr (a pointer to a struct
containing data.tblSelect.pTable), and as such, misinterprets it to the point where
no information is returned about the function’s arguments.

These results suggest another application of our tool: as a lint-like checker
that flags suspicious implicit typecasts.

4 Related Work

Our type inference algorithm follows in the footsteps of Milner’s work on ML [1,2].
C’s type system, of course, is much less disciplined and as a result, our type in-
ference system is not exact. Nevertheless, our procedure does produce useful
information.

The AnnoDomini system [5] uses reasoning similar to ours to both identify
and modify cobol source code that suffers from the Y2K problem (i.e., repre-
senting years as two decimal digits).



O’Callahan and Jackson’s Lackwit [6] tool bears the closest resemblance to
ours, but they have a different objective. They, too, use type inference, but their
goal is to catch type-related errors, such as adding a number representing a
weight to a height.

Wright and Cartwright [7] similarly use type inference for checking the cor-
rectness of a program, but their goal is mainly to eliminate run-time type checks
in an otherwise dynamically-typed language—Scheme in their case.

Van Deursen and Moonen [8] apply type inference to the problem of under-
standing cobol programs, which have the unique problem of not actually defin-
ing types (e.g., to declare the equivalent of two variables of the same structural
type, the details of their structure must be repeated). They use observations
about how variables are actually used to infer what types the program actually
uses to assist people maintaining programs.

Ramalingam et al. [9] also apply type inference to cobol programs to elim-
inate unused fields in aggregate structures, but also strive to identify when oth-
erwise unrelated variables are manipulated as a group.

The inspiration for this work came from our earlier experience with porting
iSSL to an embedded eight-bit processor [4]. It turned out that understanding
exactly which facilities the source code was using was fairly difficult and ul-
timately surprising. For example, we were surprised to find that an apparently
pure networking application wanted to use a filesystem (for an unwanted logging
feature, it turned out) and it took a while to enumerate all such dependencies.
An automatic tool would have been very useful.

5 Conclusions and Future Work

We presented a practical tool able to infer useful function prototype information
from C source code whose environment was missing. As a side effect, our pro-
cedure identifies what part of an API a program actually uses, a useful piece of
information when a developer is faced with having to reimplement a library in
a new environment.

Header files often contain more than just function type declarations. In par-
ticular missing type declarations (i.e., typedef s) play havoc on most C front ends.
Because of C’s odd declaration syntax, most front ends, including CIL’s, require
type names to be known at parsing time. As a result, missing type information
usually causes a non-recoverable syntax error that makes the front end terminate
prematurely.

We worked around this problem by simply creating a header file that included
dummy definitions for all the missing types that were causing syntax errors, but
this is not an adequate solution in general. In the future, we intend to modify
the C front end to allow missing types to be inferred as well, perhaps using some
of the techniques developed by Van Deursen and Moonen [8] and Ramalingam
et al. [9] to infer aggregate structures. A very difficult problem would be to
distinguish between C structs and unions, since they are syntactically similar
and only differ semantically.



Another obvious direction for future work would be applying these same ideas
to object-oriented languages such as C++ and Java. C++’s ability to overload
functions and operators promises to make this a difficult problem.

Finally, we plan to explore extracting more information about the behavior of
the library elements, such as observing the order in which particular functions
can be invoked. This would also have applications to program verification—a
too-liberal model of invocation order would suggest a bug.

References

1. Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17 (1978) 348–375

2. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: ACM
Symposium on Principles of Programming Languages (POPL), Albuquerque, New
Mexico (1982) 207–212

3. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: Proceedings of the
International Conference on Compiler Construction (CC). Volume 2304 of Lecture
Notes in Computer Science., Grenoble, France (2002) 212–228

4. Jan, S., de Dios, P., Edwards, S.A.: Porting a network cryptographic service to
the RMC2000: A case study in embedded software development. In: Designers’
Forum: Design Automation and Test in Europe Conference and Exhibition, Munich,
Germany (2003) 150–155

5. Eidorff, P.H., Henglein, F., Mossin, C., Niss, H., Sørensen, M.H., Tofte, M.: Ann-
oDomini: from type theory to Year 2000 conversion tool. In: ACM Symposium on
Principles of Programming Languages (POPL), San Antonio, Texas (1999) 1–14

6. O’Callahan, R., Jackson, D.: Lackwit: A program understanding tool based on type
inference. In: Proceedings of the International Conference on Software Engineering
(ICSE), Boston, Massachusetts (1997) 338–348

7. Wright, A.K., Cartwright, R.: A practical soft type system for Scheme. ACM
Transactions on Programming Languages and Systems 19 (1994) 87–152

8. van Deursen, A., Moonen, L.: Understanding COBOL systems using inferred types.
In Woods, S., ed.: Proceedings of the 7th International Workshop on Program Com-
prehension, Pittsburgh, Pennsylvania, IEEE Computer Society Press (1999)

9. Ramalingam, G., Field, J., Tip, F.: Aggregate structure identification and its ap-
plication to program analysis. In: ACM Symposium on Principles of Programming
Languages (POPL), San Antonio, Texas (1999) 119–132


