
Combining visual layout and lexical cohesion features

for text segmentation

Min-Yen Kan

January 29, 2001

1 Abstract

We propose integrating features from lexical cohesion with elements from lay-
out recognition to build a composite framework. We use supervised machine
learning on this composite feature set to derive discourse structure on the
topic level. We demonstrate a system based on this principle and use both
an intrinsic evaluation as well as the task of genre classi�cation to assess its
performance.

2 Introduction

A document structure tree1 can be de�ned as a data structure that allows
navigation of a document by sections. These trees can be hierarchically
organized, having subsections of sections and may embed special items, such
as �gures, tables or hyperlinks. They may be used directly by an end user
for document access, or indirectly through other applications.

This paper describes a strategy to compute document structure using a
framework that deals both with rich, semi-structured documents with layout
features as well as impoverished, text stream-like documents. Our system,
the Combined Layout And Segmentation Preprocessor (CLASP), performs

1or variously, logical structure tree (Summers, 1995), or document map (Zizi and Beaudouin-
Lafon, 1995).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

this task by computing visual layout and lexical cohesion features, and then
combining them using supervised machine learning.

3 System Architecture

In previous systems for text segmentation (Kozima, 1993; Hearst, 1993;
Beeferman et al., 1997), section breaks were determined solely by linguis-
tic means, such as lexical cohesion. However, text today is often more than
a stream of words. It is often presented to the reader with document access
structures (e.g., headers and lists) and formatting to make the material eas-
ier to �nd; these layout features also contribute to segmentation. We believe
that the combination of layout recognition and lexical cohesion techniques
allows for a wider range of texts to be dealt with. The two streams of infor-
mation are independent of each other, and can be represented by orthogonal
sets of features. Our hypothesis is that in many texts these two streams
would complement each other, reinforcing decisions on section breaks. With
certain data sources, one of these streams may not be present (i.e. no layout
information in some emails), and the system could then rely on the other to
provide information.

Thus, one of the design goals of CLASP is to provide a framework to combine
and balance these data. We use machine learning to decide what types of
information are salient. Machine learning allows the system to be customized
automatically for a particular domain, and allows for training over a general
collection to establish reasonable default rules.

Since lexical cohesion works best on content-oriented structures2 (e.g., prose)
and presumably not as well on layout-oriented structures (e.g., section head-
ers or captions), CLASP provides lexical analysis only for content-oriented
prose text. Thus, the layout preprocessing module (Layser) makes a �rst-
pass decision on whether lines of the text are layout- or content-oriented.
Content-oriented lines and layout-oriented lines are analyzed separately by
the lexical cohesion module (Coheser) and by the header analysis module
(Header), respectively. The two streams of information are rejoined in the

2Content-oriented and layout-oriented structures are relative ends of a single scale, discussed
in (Summers, 1995).

2

nesting
training data

line style
training data

document
structure tree

Layser

Combiner

(feature combiner)

Coheser

(line style
annotator)

features)
(lexical cohesion

layout features)
(header−specific

Header

input documents
(line by line basis)

H
ea

de
r

 L
in

es

C
on

te
nt

 L
in

es

Figure 1: CLASP system architecture

�nal machine learning module (Combiner), which determines the document
structure tree, as shown in Figure 1.

Another design goal in CLASP is wide applicability. For this reason, we
use plain ASCII documents as input. Plain text is used as an original text
form (e.g., in email) and as a lowest common denominator, and thus any
type of textual data can be transformed into it. These transformations can
be lossy (e.g., font sizes and weights are lost), and with richer original for-
mats, CLASP's performance may not be optimal. However, modules can be
built to provide additional features that represent the enriched formatting,
as shown in Figure 2. Other researchers have enumerated additional factors
that contribute to document structure in these enriched input formats (e.g.,
with document block information (Chen et al., 1999), or font information
(Klein and Fankhauser, 1997)).

For simplicity, we choose the line as the unit of granularity. We chose lines
instead of sentences or paragraphs because it is easily accessible, robust, and
not dependent on linguistic processing.

3

t
x
t

CLASP

h
t
m
l

htmlFeaturer
r
t
f rtfFeaturer

L
a
T
e
X laTeXfeaturer

Figure 2: Extending CLASP system architecture to work with richer text
formats.

We will now describe CLASP's modules in order of execution.

3.1 Line style annotator module (Layser)

The development of information retrieval methods that query structured data
(Loe�en, 1994) has increased the importance of both understanding the ef-
fects of layout as well as generating it. In CLASP, layout properties that are
available in plain text are translated into features by the Layser module.
Layser outputs an application-driven logical style (explained later) for each
non-blank line.

Input Features. Layser's machine learning features represent the visual
cues available in plain text documents. We categorize the features into �ve
groups similar to (Esposito et al., 1994), all shown in Table 1 with example
values:

1. Spacing (4 features): Both intra- and interline spacing are given as
separate features. We also include alignment features such as the left
and right margins, which are normalized against the widest values found
in the document.

2. Marking (1 feature): Orthographic case (e.g., upper or lower case)
is our sole marking category feature. Font family, size and weight would
be included here when CLASP is extended to handle more enriched text
formats. It is calculated as the average value of the individual words'

4

case.

3. Punctuation (4 features): These features capture di�erent types of
line-�nal punctuation (marking prose text) as well as line-initial ones
(marking list items). To capture embedded headers (e.g., headers in-
line with content), we also record the position of the �rst occurrence of
a sentence-like punctuation.

4. Word (1 feature): Just the bag of words contained in the line. These
can be used to �nd speci�c cue words that mark a particular logical style.

5. Document (4 features): These features address the overall charac-
teristics of the document. We encode the approximate position of the
line in the document, the document length, the document's average or-
thographic case, and the document's average number of interline blanks.
This provides a method for passing exception information to the machine
learner (e.g., when the entire document is in uppercase, it is essentially
caseless and rules that use case should be dropped).

To model local context dependencies, Layser computes the �rst four feature
categories for each line and for its neighboring previous and next non-blank
lines. These (4 + 1 + 4 + 1 � 3 =) 30 features are added to the 4 document
features to make the �nal 34-dimensional feature vector used by Layser.

Output classes. Layser makes a �rst pass decision on the line's logical
style, and categorizes the line as one of 11 styles in Table 2. The line styles we
use are motivated from the viewpoint of prospective applications: what types
of logical styles might applications like to treat di�erently? For example,
(Luc et al., 1999) showed that the syntax and style of enumerated list items
have semantic meaning (i.e. bulleted items versus ordered items) and should
be processed with the understanding of these semantics. Similarly, page
information lines should be discarded in content processing but can help
determine meta information about the text.

Motivating the output categories from the perspective of a client application
a�ects what we consider a logical style. Attribute/Value pairs are often
regarded as a speci�c kind of list item, but in CLASP have been given their
own logical style because they can be directly inserted into a database. Since

5

 Input Features. Layser's machine learning features represent the visual cues available in

Name Description Sample Value
Spacing Features

intraSpace average space between words (* 100) 13
12

* 100 = 108
interSpace number of blank lines after 0
leftMargin normalized to min left margin (widest: 0) 1

100
* 1000 = 10

rightMargin normalized to min right margin (widest: 1000) 90
100

* 1000 = 900
Marking Features

case orthographic case (300 � all words uppercase) (3�2)+(9�1)
12

* 100 = 125
Punctuation Features

initPunct type of line initial punctuation 0
listNext for lists; 1 if looks like next expected item 0
embedPunct percentage position of �rst non-initial punctuation 14

89 * 1000 = 157
endPunct type of line �nal punctuation 0
Word Features

words bag of words in the line \input" \features" ...

Table 1: Sample line and calculated Layser feature values. Document cate-
gory features not shown.

styles are motivated from the perspective of a generic application, we exclude
genre- and domain-speci�c logical styles, such as Bibliography or Salutation.

With our classi�cation scheme, some lines could be classi�ed as belonging to
multiple classes: such as when List Item information is presented in Tables.
To avoid this problem, we asked annotators to label each line's most salient
logical style with respect to the end application. We made an exception in
adding the Embedded Header tag, which marks a line as containing normal
discourse text prefaced with an in-line header, since headers are needed to
correctly infer segmentation structure.

At this point, Layser creates the features and then applies its machine
learned model to produce a �rst pass classi�cation of each line. Layout-
oriented lines are passed to the Header module for further layout analysis,
while content-oriented lines are passed to the Coheser module for lexical
cohesion analysis.

6

Line Style Class Abbreviated Description
Table part of the body of a table
Separator rulelines, lines to separate sections
Attribute/Value left half of line has value in right half
List Item (non-section like) list item
Embedded Header headers on same line as content text
Header headers, titles, subheaders
Caption text attached to a picture, �gure or table
Page Information document openers, trailers, ToCs, page numbering
Auxillary Text secondary content (not main: bibliography, abstract, sideboxes)
Main Content Text Content-oriented prose text
Unknown default tag, used for error checking

Table 2: The inventory of logical line styles in the Layser and Combiner

modules.

3.2 Header priority module (Header)

This module receives Header and Embedded Header lines from Layser, and
produces a feature set targeted at classifying the segment nesting depth of
these lines. The initial feature set used in this task is similar to Layser:
case, spacing, and punctuation features are all used. We add an additional
feature, representing header scope, giving the percentage of the document
that the header has immediate scope over (i.e. until the next line with a
header line style).

Section headers may not manifest themselves in the same manner across
documents; in one document the title may be centered, but in another it
may be in boldface type. The relative di�erence between these features across
headers within a document seems to dictate their nesting depth. Header thus
computes its �nal feature set based on the di�erences in the values of these
initial features in adjacent headers, shown in Table 3. This corresponds to
learning whether one header dominates, is dominated by, or is on parity with
an adjacent header. These pairwise features are Header's output and are
passed on to the Combiner �nal machine learning module.

7

Previous Header
 Line style annotator module (Layser)

Current Header
 Input Features. Layser's machine learning features represent the visual cues available in

Name Description Value (prev. header - this header)

di�Scope lines header has immediate scope over 2�28
658

* 100 - = -4
di�Case line's orthographic case 140 - 108 = 32
di�PrevBlank blank lines before header 1 - 1 = 0
di�NextBlank blank lines after header 1 - 0 = 1
di�Position position in text 228 - 242 = -14
di�EndPunct end punctuation type 2 - 0 = 2
di�AvgSpace average intraline space between words 100 - 108 = -8
di�EmbedPunct intraline punctuation 914 - 157 = 757
di�LftMargin left margin 40 - 10 = 30
di�RgtMargin right margin 390 - 900 = -510

Table 3: Final Header features, calculated as the di�erence between initial
Layser features.

3.3 Lexical cohesion module (Coheser)

Relationships between words of a document are known factors contributing
to its structure. This factor has been used widely in discourse structure
segmentation in the form of thesaural relations (Morris and Hirst, 1991;
Kozima, 1993), cue phrases (Littman, 1996), word association (Pereira et
al., 1993), as well as with di�erent types of token repetition (Hearst, 1993;
Kan et al., 1998).

Lines containing prose (i.e. Main Content Text and Embedded Headers)
by Layser are fed into the Coheser module for lexical cohesion analysis.
In documents without formatting, the entire document will be passed to
Coheser as content text, and the system behaves like similar lexical cohesion
based segmentation systems. Like the Header module, Coheser generates a
set of features, and leaves the learning to the �nal module.

Input lines are �rst assigned part of speech tags from COMLEX (Grishman
et al., 1994), and closed class words are discarded. We use the remaining
content words per line as a bag of words, maintaining the same granularity

8

as in Layser. We compute a set of normalized similarity values between
the source line's words and its neighboring non-blank lines (the target). To
model the variance in cohesion strength over distance, we compute the same
set of features between the source line's words and varying sized neighboring
targets (1, 2 and 3 adjacent lines, both before and after the source line).

The machine learning features we compute are based on a battery of shallow
indicators that have proved e�ective in detecting cohesion. We categorize
these features into four groups:

1. Repetition (4 features): These include term type and stem form
repetition. The term type features model noun repetition but are sub-
classed for di�erent types (e.g., pronouns, common nouns and proper
nouns), as they have been shown (Kan et al., 1998) to possess di�erent
cohesion strengths.

2. Thesaural relations (8 features): Similarity scores is calculated via
wsim (Resnik, 1995) for the two transitive, tree-structured relationships:
noun and verb is-a (hypernym/hyponym) and noun part-of (holonym/meronym).
Normalized counts provide separate features for the other WordNet re-
lations.

3. Word association (1 feature): WordNet only captures word simi-
larity when the words participate in a structured relationship. To �nd
other non-structural relationships, we use a word association feature
which measures the Dice coeÆcient of correlation between grammatical
subject noun heads in a large corpus (Schi�man and McKeown, 2000).

4. Cue word (1 feature): This feature �nds cue words at the beginning
of the source line. The feature has seven possible values, corresponding
to the six categories of cue words listed in (Cohen, 1984): 1) parallel 2)
detail, 3) inference, 4) summary, 5) reformulation, 6) contrast, plus a
value for no cue word.

Table 4 gives an example source line with adjacent target window along with
sample values.

9

3.4 Feature weighter (Combiner)

For each line, we string together all the vectors that have been computed.
Null �elds are inserted for lines that do not have Header and/or Coheser fea-
tures, ensuring that all vectors have the same length. To build the document
structure tree, we run the two tasks in series: we re-run the line annotation
task with the combined features and then run the hierarchical segmentation
task.

We used the Ripper (Cohen, 1995) machine learner to generate the two
classi�ers. Ripper outputs a human readable hypothesis �le, which we used
to validate whether certain common sense rules were learned by the system.
Figure 3 shows some sample rules.

Sample logical style rules:
- if the next line is indented and looks like a list, then it's a List Item.
- if the average intraline spacing is high and it's not in the first 40% of the document, then it's
a Table.
- if the line is preceded by blank lines and the line length is short and within the first 60% of
the document, then it's a Header.

Sample segmentation rule for documents with headers:
- if the difference in the embedded punctuation feature is greater than 77, then the nesting level
is increased by one.

Sample segmentation rule for documents without headers:
- if the previous line is blank and the next line's word association score on a window of five
lines is small and the previous line's noun hypernym word similarity on a window of three lines is
high, then this line is a header at the same priority as the last one.

Figure 3: 5 translated rules from Combiner.

4 Evaluation

We used seven documents, all from the medical domain (journal papers,
health information book chapters and patient medical records), either con-
verted from HTML or originally text, containing a total of 2515 non-blank
lines. Eleven human subjects, all graduate students, given standardized in-
structions and no time limit, provided annotations for these documents. For
logical line style, annotators categorized input text lines as one of the 11
logical styles. For hierarchical segmentation, subjects added nesting depth
annotations to lines that they marked as Headers or Embedded Headers.

10

We also evaluated CLASP's performance on the task of linear segmentation,
judged at paragraph boundaries. To do this while reusing the human judg-
ments, we removed all headers from the corpus to create a new headerless
corpus, and reassociated the nesting annotations with the lines after headers
as segment breaks.

The gold standard was established for all lines that had a majority of an-
notators agree on the line style or nesting depth. Average human precision,
Kappa agreement, and baselines (all Main Content lines for the logical style
task, all sections at the same level for the hierarchical segmentation task, no
segment break for the linear segmentation task) were calculated for all gold
standard lines. We then ran CLASP using 5-fold cross validation to �nd the
system's performance. Table 5 gives �gures for this glass box evaluation of
the system.

The results are very promising. With respect to the gold standard majority,
CLASP performs above the level of the average human annotator, except for
in the linear segmentation task. To further analyze CLASP's performance,
we assess the features used by Ripper, since it implicitly does feature selec-
tion when constructing its hypothesis. In the line style task, many of the
lexical cohesion features replaced layout ones as more accurate indicators
of logical style, making up 17% of the Combiner learned conditions, while
shrinking the ruleset by 8% over the initial Layser one while increasing pre-
cision. Document features were not used much, as the corpus did not contain
any exceptional documents (ones without certain features, such as a caseless
email), but all other layout features targeted speci�c logical styles such that
they proved useful.

In hierarchical segmentation, CLASP relies heavily on the di�erence fea-
tures provided by Header, accounting for 10 of 24 conditions. Remaining
conditions used hypernym and holonym word similarity as well as lemma
repetition. The linear segmentation task is more diÆcult, since headers were
removed. The rule base for this task is smaller (4 rules, 11 conditions), and
word association and line position substitute for the unavailable Header fea-
tures. As the system's performance is worse than in the task with headers,
we can assume Header di�erence information is more valuable than lexical
cohesion, which in turn is more useful than word association. Cue words and
other count-based repetition features were pruned, due to sparse data.

11

The architecture of CLASP splits the document map task into two di�er-
ent subtasks, that of line style and nesting. This distinction is real and is
evidenced by the di�erence in Kappa. Also, annotation of hierarchical seg-
mentation is more diÆcult and less certain on deeper levels: 91% agreement
on level 1 headers, and 81% agreement on level 2, 3, 4 headers. For the hier-
archical segmentation, Kappa indicates only weak agreement (.35), but when
we conate all segment breaks into a single category in linear segmentation,
Kappa rises to a strong .90. This is a stronger level of agreement than other
reported work, but here we have access to headers.

We also performed a task based evaluation of CLASP, using its resulting
document structure trees to assist genre classi�cation. The CLASP system
was trained using the seven training documents in the intrinsic evaluation,
and then applied to new documents from the Heart Information Network3.
These documents are classi�ed into one of the eight resource types: newslet-
ters, questions, resources, articles, recipe listings, directories, educational and
newsgroups. We took �ve documents from each category and ran CLASP to
derive all (5 * 8) = 40 document structure trees. We converted the document
structure tree into features suitable for machine learning by taking the logi-
cal line styles and hierarchical segmentation and converting them into simple
percentages, as shown in Figure 4. The performance of these features were
compared to both using a bag of words as a feature (BoW), and to Karlgren
and Cutting's (1994) features (KC) to perform classi�cation. Table 6 shows
the results of the di�erent learning methods using n-fold cross validation.

Percentage of Document

Header L.0 (Introduction)

 Page Information L.23 (2)

 Page Information L.715 (19)

 Page Information L.723 (20)

. . .

. . .

Features in Vector

Header: (1+1+...)/723 = 10/723 = .01383
Aux. Text: (3+...+7)/723 = 56/723 = .07745

Main Text: (10+8+...) = 583/732 = .80636
8063, ... , 0774,0138, article

Document Structure Tree

 Main Content Text L.1-10 (A docume...)
Header L.11 (System Architecture)
 Main Content Text L.12-19 (In previo...)
 Auxillary Text L.20-22 (1 or variously...)

 Auxillary Text L.716-722 (Philip Resn...)

Figure 4: Converting a document structure tree to features.

3http://www.heartinfo.org/reviews/

12

The results are not conclusive, but the CLASP seems to outperform the other
techniques. Human annotators agreed with the site's classi�cation scheme
much better on less ambiguous categories (e.g., recipe listings, newsgroups)
than for more vague ones (e.g., educational, articles, resources). Surpris-
ingly, using just the transformed document structure tree worked best. The
conditions learned by CLASP's only model the vague classes which indicates
that there is de�nite room to improve on the more concrete classes. Un-
fortunately, augmenting either the word based features or the Kalgren and
Cutting inventory with CLASP features failed to improve performance.

4.1 Future Work

We currently do not deal with oating �gures, tables and captions that are
semantically related to a part of the text but which don't actually appear
there (e.g., when a table is put at the end of an article as an appendix). To
associate these items with their proper place, we can employ lexical cohesion
to look for similarity between the �gure and its referring text.

Style Catalog. CLASP represents a system to induce logical structure from
physical markup, which makes it an analytical process. Reversing this process
produces a logical to physical mapping that can be used in a text generation
process. Given an ASCII document with a known document structure tree,
we are working on inferring the feature values that are used within a docu-
ment for a particular logical style (e.g., paragraph text is indented one tab
and justi�ed). The resulting style catalog can format new text, or reformat
an existing document from one source to look like another.

5 Conclusion

We have integrated features from lexical cohesion and document recogni-
tion to produce document structure trees. CLASP extends the reach of text
segmentation research by combining di�erent paradigms in lexical cohesion,
while adding additional features from layout when available. The base frame-
work allows the system to deal seamlessly with documents with or without
formatting information, and permits the eventual incorporation of additional
features from richer sources of formatting markup than in plain text. In cases

13

without formatting, we have shown that the system falls back to using lexical
cohesion to perform segmentation.

In addition, in the task-based evaluation of CLASP, we demonstrated how
document structure trees are directly applicable to current topics such as
genre classi�cation.

As richer formatted data becomes the norm in text processing, applica-
tions should make use of their input documents' structure, especially in sub-
document processing; such as question-answering, document navigation and
text summarization. CLASP allows applications to do this, and uses con-
sistent framework and simple and robust design choices for granularity and
extensibility.

References

Doug Beeferman, Adam Berger, and John La�erty. 1997. Text segmentation using expo-
nential models. In Proceedings of the Second Conference on Empirical Methods in Natural
Language Processing, pages 35{46.

Hao Chen, Jianying Hu, and Richard W. Sproat. 1999. Integrating geometrical and
linguistic analysis for e-mail signature block parsing. ACM Transactions on Information
Systems (TOIS), October.

Robin Cohen. 1984. A computational theory of the function of clue words in argument
understanding. In Proceedings of the 1984 International Computational Linguistics Con-
ference (COLING 84), pages 251{255, California, USA.

William W. Cohen. 1995. Fast e�ective rule induction. In Proc. 12th International
Conference on Machine Learning, pages 115{123. Morgan Kaufmann.

Floriana Esposito, Donato Malerba, and Giovanni Semararo. 1994. Multistrategy learning
for document recognition. Applied Arti�cial Intelligence, 8:33{84.

Ralph Grishman, Catherine Macleod, and Adam Meyers. 1994. Comlex syntax: Building
a computational lexicon. In Proceedings of COLING '94, Kyoto, Japan.

Marti Hearst. 1993. Text tiling: A quantitative approach to discourse segmentation.
Technical report, University of California, Berkeley, Sequoia.

Min-Yen Kan, Judith L. Klavans, and Kathleen R. McKeown. 1998. Linear segmentation
and segment relevence. In WVLC6, pages 197{205, Montr�eal, Qu�ebec, Canada, August.
ACL.

14

Bertin Klein and Peter Fankhauser. 1997. Error tolerant document structure analysis.
International Journal on Digital Libraries, 1(4).

Hideki Kozima. 1993. Text segmentation based on similarity between words. In Proceed-
ings of the 31th Annual Meeting of the Association for Computational Linguistics, pages
286{288, Columbus, OH, USA.

Diane J. Littman. 1996. Cue phrase classi�cation using machine learning. Journal of
Arti�cial Intelligence Research, 5:53{94.

A. Loe�en. 1994. Text databases; a survey of text models and systems. SIGMOD Record,
23(1):97{106.

Ch. Luc, M. Mojahid, J. Virbel, Cl. Garcia-Debanc, and M.-P. Pery-Woodley. 1999. A
linguistic approach to some parameters of layout: A study of enumerations. In Using Lay-
out for the Generation, Understanding or Retrieval of Documents, AAAI Fall Symposium,
pages 20{29, North Falmouth, Massachusetts, November. AAAI.

Jane Morris and Graeme Hirst. 1991. Lexical cohesion computed by thesaural relations
as an indicator of the structure of text. Computational Linguistics, 17(1):21{48.

Fernando Pereira, Natalie Tishby, and Lillian Lee. 1993. Distributional clustering of en-
glish words. In Proceedings of the 31st Annual Meeting of the Association of Computational
Linguistics, pages 183{190, Columbus, Ohio, USA. ACL.

Philip Resnik. 1995. Using information content to evaluate semantic similarity in a taxon-
omy. In Proceedings of the 14th International Joint Conference on Arti�cial Intelligence
(IJCAI).

Barry Schi�man and Kathleen R. McKeown. 2000. Experiments in automated lexicon
building for text searching. To appear in the Proceedings of the International Conference
on Computational Linguistics (Coling 2000).

Kristen Summers. 1995. Toward a taxonomy of logical document structures. Technical
report, Cornell University, Ithaca, New York.

Mountaz Zizi and Michel Beaudouin-Lafon. 1995. Hypermedia exploration with interac-
tive dynamic maps.

15

Source Line input features layser machine learning features represent visual cues

available

Target Window
(2 lines before
and after)

translated features supervised learning layser module layser outputs

application driven logical style explained later blank line source line plain

text documents categorize features five groups similar esposito shown table

example values

Name Description Sample Value
Repetition

termPronoun Pronoun repetition 0
termCommonN Common noun repetition 4

10+29 * 1000 = 102

termProperN Proper noun repetition 2
10+29 * 1000 = 51

lemmaRep Simple token repetition (for all non-noun classes) 0
Thesaural

wnSimIsA Hyper/holonym similarity tree (using Resnik's Wsim) 2821
wnSimPart Holo/meronym similarity tree (again, via Wsim) 155
wnAnt Antonym (all classes) count 0
wnVerbCause Verb \cause to" count 0
wnVerbEntail Verb entailment count 0
wnNounAttr Noun attribute count 0
wnPertain Adjective pertaining to nouns count 0
Word Association

wordAssoc Word association (by Dice coeÆcient) 0
Cue Words

cueWord Type of cue word present at beginning of unit? 0 (no cue word)

Table 4: Lexical cohesion features and values calculated for sample source
and target words used in the Coheser module.

Module Task Type Kappa Baseline human (�xn) 5-fold C. V.
Layser Line Style 91.8% � 0.6%
Combiner Line Style

.84 81.7% 90.1% (8.0%)
93.2% � 0.6%

Combiner Hierarchical Segmentation .31 50.0% 53.4% (16.0%) 79.1% � 6.6%
Combiner Linear Seg. (at Ps only) .90 70.0% 92.2% (6.4%) 74.3% � 1.6%

Table 5: Glass-box, intrinsic evaluation of CLASP. Figures reect precision
versus group majority.

16

(n = 40) fold C. V.
Baseline Kappa human (�xn) BoW KC CLASP
12.5% .53 65.8% (2.7%) 20% � 6.5% 17.5 � 6.1% 22.5 � 6.8%

Table 6: Black-box, extrinsic evaluation of CLASP via genre classi�cation.
Figures reect precision versus group majority. BoW and KC �gures are for
both with and without the addition of CLASP features.

17

