
Mobile Communication with Virtual Network Address Translation
Gong Su and Jason Nieh

Technical Report CUCS-003-02
Department of Computer Science

Columbia University
February 2002

Abstract
Virtual Network Address Translation (VNAT) is a novel architecture that allows transparent migration of end-to-end live
network connections associated with various computation units. Such computation units can be either a single process, or
a group of processes, or an entire host. VNAT virtualizes network connections perceived by transport protocols so that
identification of network connections is decoupled from stationary hosts. Such virtual connections are then remapped into
physical connections to be carried on the physical network using network address translation. VNAT requires no modifi-
cation to existing applications, operating systems, or protocol stacks. Furthermore, it is fully compatible with the existing
communication infrastructure; virtual and normal connections can coexist without interfering each other. VNAT func-
tions entirely within end systems and requires no third party services. We have implemented a VNAT prototype with the
Linux 2.4 kernel and demonstrated its functionality on a wide range of popular real-world network applications. Our per-
formance results show that VNAT has essentially no network performance overhead except when connections are
migrated, in which case the overhead of our Linux prototype is less than 7 percent over a stock RedHat Linux system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons
1 Introduction
Ubiquitous mobile computing is a coming reality, fueled in
part by continuing advances in wireless transmission tech-
nologies and handheld computing devices. As computations
are increasingly networked, mobility in data networks is be-
coming a growing necessity. Examples of this demand in-
clude laptop users who would like to roam around the
network without losing their existing connections, system
administrators of network service providers who would like
to move running server processes from one machine to an-
other due to maintenance or load balancing requirements
without service disruption, and scientific users who would
like to move their long-running distributed computations off
to another machine due to faulty processor or power failure
without having to restart the computation all over again.
However, data networks today offer very limited support for
mobility among communicating devices. One cannot move
either end of a live network connection without severing the
connection.

The lack of system support for mobile data communication
today is due to the fact that the current de facto worldwide
data network protocol standards, the Internet Protocol (IP)
suite, were designed with the assumption that devices at-
tached to the network are stationary. In addition, higher lay-
er protocols such as TCP/UDP inherit this assumption. The
key problem is that network connection properties are
shared among many entities, across network protocols,
transport protocols, and applications. For example, TCP/
UDP uses IP addresses to identify its connection endpoints;
and applications use sockets, which are typically bound to
IP addresses and TCP/UDP port numbers, for their network
I/O. Clearly, such information sharing makes it very diffi-
cult to change the network protocol endpoints without dis-
rupting the transport protocols and/or the applications. A

large amount of research has been conducted in an effort to
overcome this deficiency [BP93, IDM91, MB98-2, Perk01,
Perk96, QYB97, SB00, TYT91, ZD95]. However, previous
approaches either require changes to network or transport
layer protocols, or suffer from substantial performance pen-
alties [ZM01], which limit their deployment.

To effectively support efficient transparent migration of
end-to-end live network connections without any changes to
existing network protocols, we introduce Virtual Network
Address Translation (VNAT). VNAT is a novel mobile
communication architecture that enables connection mobil-
ity for a spectrum of computation units, ranging from a sin-
gle process to the entire host. VNAT utilizes three key
mechanisms to enable transparent live connection mobility:
connection virtualization, connection translation, and con-
nection migration. VNAT connection virtualization virtual-
izes end-to-end transport connection identification by using
virtual endpoints rather than physical endpoints (e.g., IP ad-
dresses and port numbers). As a result, connection identifi-
cations no longer depend on lower layer network endpoints
and are no longer affected by the movement of network end-
points. VNAT connection translation translates virtualized
connection identifications into physical connection identifi-
cations to be carried on the physical network. As connec-
tions migrate across the network, their virtual identifications
never change. Instead, they are mapped into appropriate
physical identifications according to the endpoints’ attach-
ment to the physical network. VNAT connection migration
keeps states and uses protocols to automate tasks for con-
nection migration such as keeping connection alive, estab-
lishing a security key, locating migrated endpoint(s), and
updating virtual-physical endpoints mappings.

VNAT is fully compatible with and does not require any
modifications to existing networking protocols, operating
1

https://core.ac.uk/display/161437215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

systems, or applications. It can be incrementally deployed
and operates entirely within communicating end systems
without any reliance on third party services or proxies. If
necessary, however, VNAT itself can also be installed and
run on a proxy to avoid any modification to the servers be-
hind it. VNAT assumes no specific transport protocol se-
mantics and therefore can be easily adapted to any transport
protocol. It also supports both client and server mobility and
does not put any restriction on the mobility scope. We have
implemented VNAT as a loadable kernel module in Linux
2.4. Our experience with VNAT shows that it works effec-
tively with a wide range of popular real world applications.
Our experimental results on an unoptimized VNAT proto-
type show that VNAT imposes almost no virtualization or
translation overhead except when connections are migrated,
in which case the overhead of our prototype is between 2 to
7 percent for the applications tested.

This paper describes the VNAT architecture with a focus on
the VNAT connection migration mechanism and is orga-
nized as follows. Section 2 surveys related work. Section 3
presents the main VNAT architecture concepts and con-
structs and illustrates how VNAT can be used in a few ex-
ample connection migration scenarios. Section 4 describes
the implementation of our VNAT prototype in Linux 2.4.
Section 5 shows experimental results that measures the per-
formance overhead of our VNAT prototype. Finally, we
present some concluding remarks.

2 Related Work
A variety of approaches have been taken in previous work
in providing communication mobility in current (IP) data
networks. These approaches can be loosely classified as net-
work layer mobility mechanisms, transport layer mobility
mechanisms, proxy-based mechanisms, and socket library
wrapper mechanisms. We discuss these approaches and also
describe related work in process migration.

MobileIP is the most well-known network layer mobility
mechanism, recent versions [JP02, Perk01] have consolidat-
ed various improvements to the original proposals [BP93,
IDM91, Perk96, TYT91]. MobileIP allows a host to move
freely across the Internet without having to change its as-
signed “home” IP address. As a result, the movement of the
host is transparent to layers above network layer. However,
MobileIP only provides communication mobility at the
granularity of an entire host. It does not provide finer gran-
ularity mobility of individual end-to-end connection be-
tween two applications because network protocols are
indifferent to higher layer “connections”. Unlike VNAT,
MobileIP uses a residual home agent that is a single point of
failure and causes “triangle routing” where traffic destined
to a mobile host must all go through its home agent when the
mobile node is away from its home. Triangle routing incurs
high traffic delay and wastes network resources. Although it
can be alleviated by routing optimization [PJ01], the solu-

tion requires additional changes to the non-migrating nodes.
While VNAT incurs almost no overhead for new connec-
tions started after migration, MobileIP incurs tunneling
overhead for all traffic between the mobile node and the
non-migrating node. Unlike VNAT, MobileIP requires net-
work layer protocol and infrastructure changes that are cost-
ly and make it very difficult to deploy. [MB97] proposed an
interesting approach that exploits the similarity between
mobility and multicasting, but it relies on a scalable multi-
cast infrastructure which does not yet exist today.

Migrate [SAB01, SB00] is a transport layer mobility archi-
tecture that allows migration of individual end-to-end con-
nections between two applications. Since traditional
transport protocols are not built with mobility in mind, Mi-
grate introduces a new TCP option to support suspending
and resuming TCP connections. Migrate does not support
migration of TCP connections for which both endpoints
move simultaneously. Unlike VNAT, Migrate is TCP-spe-
cific and requires transport layer protocol changes which
make it difficult to deploy.

MobileIP and Migrate also provide mechanisms for mobile
host location. MobileIP uses the notion of home and foreign
agents to also provide mobile host location technologies.
Migrate uses dynamic DNS updates [SB00]. Our work on
VNAT focuses on the “tracking” (preserving an end-to-end
connection once it is established) aspect of connection mo-
bility while being compatible with and taking advantage of
existing mobile host location technologies, such as those
used in MobileIP and Migrate.

MSOCKS [MB98-2] is a proxy-based mobility architecture
based on the TCP Splice [MB98-1] technique. Essentially,
a single TCP connection between a mobile client and a sta-
tionary server is spliced by a proxy in the middle into two
separate TCP connections. The proxy handles the discon-
necting and reconnecting of the client-proxy half of the TCP
connection when the mobile client moves and makes the
single TCP connection between the mobile client and the
stationary server appear to be intact. Due to its reliance on
TCP Splice, MSOCKS assumes TCP as the transport proto-
col. MSOCKS is designed to allow client mobility only; and
the mobility is usually confined within the subnet for which
the proxy is acting as the gateway. The use of a proxy avoids
transport protocol changes but can limit scalability and per-
formance.

Higher layer approaches such as [QYB97, ZD95] modify
the socket library to introduce another layer between the ap-
plication and the transport protocol. This layer maintains a
location-independent 5-tuple connection identification in-
variant to applications and “switches” the invariant onto an
appropriate real 5-tuple to maintain the TCP connection be-
tween two applications when one or both applications move.
The invariant 5-tuple idea is similar to VNAT's connection
virtualization idea. However, similar to the proxy in
2

MSOCKS, the extra layer is tied to the TCP transport proto-
col and has to deal with TCP specific issues to maintain the
semantics of TCP when the application moves. Due to the
duplicated functions of the transport protocol, the extra lay-
er creates substantial performance overhead as shown in
[ZM01].

Much work has been done in the area of process migration
[MDW99]. Kernel-level and user-level mechanisms have
been previously developed that can migrate processes or
groups of processes from one machine to another. Although
there is limited work in this area on supporting networked
processes using a stub mechanism similar to the home agent
idea used in MobileIP, the work on process migration most-
ly focuses on non-networked processes instead of commu-
nication mobility and is complementary to our work on
VNAT.

3 The VNAT Architecture
The VNAT architecture is based on the surprisingly simple
idea of introducing a virtual address to identify a connection
endpoint. In current IP networks, it is impossible to keep
end-to-end transport connections alive when one or both
connection endpoints move because physical network pro-
tocol endpoints are used by transport protocol to identify its
connections. VNAT uses virtual addresses to break this tie
between the transport protocol and network protocol by vir-
tualizing the transport endpoint identification. Once the
transport endpoint identification is made independent of
network endpoint identification, the lifetime of a transport
connection is no longer limited by changes in network end-
points.

The VNAT architecture can be decomposed into three com-
ponents, as shown in Figure 3-1. VNAT connection virtual-
ization is the mechanism used to allow virtual rather than
physical addresses to be used for the connection endpoints.
VNAT connection translation is the mechanism used to
maintain proper association and mapping between the virtu-
al and the physical identifications because only real network
endpoints can be used on the physical network to carry
packets. VNAT connection migration facilitates the auto-
mation of securing the migrating connection, keeping alive
connections during migration, and updating virtual-physical
address mapping after migration. As discussed in Section 4,
these components can be implemented in a single module
that is simply downloaded, installed and executed on end
systems without any need to modify or reconfigure the net-
work infrastructure. We describe the function of these three
components in more detail in the following sections.

3.1 VNAT connection virtualization

The function of VNAT connection virtualization is to virtu-
alize the endpoints used by the transport protocol to identify
its end-to-end connections. An endpoint is virtualized by
identifying it with a virtual identification, which is a ficti-

tious identification not tied to any real physical endpoint.
We refer to an end-to-end transport connection identified by
a pair of virtual endpoint identifications as a virtual connec-
tion, while a connection identified by a pair of physical end-
point identifications a physical connection. In VNAT,
virtual endpoint identifications do not change during the
lifetime of a virtual connection, even if the physical end-
points of the underlying physical connection change. Since
a virtual connection is not tied to specific physical end-
points, it can be moved freely among physical endpoints
without changing its virtual endpoint identifications.

Depending on the specific transport protocol, a virtual iden-
tification may take different forms. For example, with TCP/
UDP, a virtual identification is the combination of a net-
work IP address and a transport port number, both of which
are virtualized by VNAT. Throughout the paper, we use the
generic term “virtual address” to refer to a virtual identifica-
tion of a combined virtual IP address and virtual port num-
ber. However, for the examples used in this paper, we leave
out the virtual port number for simplicity. The same holds
for the term “physical address”, which is the combination of
a physical IP address and a physical port number.

Let us use an example to explain the virtual connection idea.
Although VNAT is designed to be independent of any par-
ticular transport protocol, throughout the paper we use TCP
as the transport protocol to illustrate various functions of
VNAT. Figure 3-2 illustrates how VNAT virtualizes a TCP
connection. VNAT intercepts connection setup requests
from the application to the transport protocol and replace the
physical addresses supplied by the application with virtual
addresses. For example, a server typically calls bind with
the address INADDR_ANY to indicate that it’s willing to accept
incoming connections from any of the physical addresses
assigned to the host. VNAT intercepts the bind call and re-
places INADDR_ANY with a virtual address 2.2.2.2. Similarly,
a client typically calls connect with the physical address,
20.20.20.20, of the server. VNAT intercepts the connect call
and replaces 20.20.20.20 with the virtual address 2.2.2.2.
Note that connect usually does an “autobind” for the client.
This is also handled by VNAT so that the client is bound to

Figure 3-1: VNAT architecture overview

connection virtualization

co
nn

ec
tio

n
m

ig
ra

tio
n

connection translation

transport layer

network layer

NIC device driver

process process process

to
peer

...

socket layer
3

a virtual address 1.1.1.1 rather than the physical address
10.10.10.10.

Without explaining how such a virtualized connection can
actually be established across the physical network, which
is described in Section 3.2, we can see the end result is that
the TCP on both the client and the server will perceive a vir-
tual connection {1.1.1.1,2.2.2.2} rather than a physical
connection {10.10.10.10,20.20.20.20} (note we ignore the
order of source and destination address pair in our discus-
sion). This virtual connection identification will stay un-
changed for the life of the connection no matter where the
client or the server moves. For example, should the client
later decide to move to another host with physical address
30.30.30.30, the virtual connection perceived by both the
client and the server will stay as {1.1.1.1,2.2.2.2} rather
than change to {30.30.30.30,20.20.20.20}.

VNAT connection virtualization provides a simpler ap-
proach than previous mobility approaches such as proxy-
based mechanisms and socket library wrappers. All VNAT
does is to convince TCP to use virtual IP addresses and ports
rather than physical IP addresses and ports for connection
identification. TCP treats a virtual connection exactly the
same as any other physical connections. In fact, TCP does
not even know the connection is virtualized. All TCP se-
mantics apply equally to the packet flow on a virtual con-
nection. Also note that the virtualization is done completely
transparently to both the application and the transport proto-
col and requires no modification to either party. Unlike pre-
vious approaches that strive to hide physical IP address
changes from applications when connections migrate, the
philosophy behind VNAT is to avoid such transport layer
changes in the first place.

Although theoretically the virtual addresses can be anything
that is accepted by the transport protocol (e.g., 1.1.1.1 and
2.2.2.2 in our example), careful selection of the virtual ad-
dresses can greatly simplify the system. Since both parties
to a connection must be aware of the same virtual address
pair, there needs to be some way for each party to inform the
other of its virtual address. If an arbitrary choice of virtual
addresses is used as in our example with virtual addresses
1.1.1.1 and 2.2.2.2, additional communication and delay

will be incurred for every connection so that both parties to
a connection can learn the virtual address chosen by the oth-
er side. This extra delay would be excessive if it was re-
quired for all connections, especially for short-lived
connections in wide-area networks that never migrate.

This extra delay can be avoided by simply selecting the vir-
tual addresses to be the initial physical addresses associated
with a connection. In this way, no extra communication is
required because the virtual addresses are essentially known
beforehand. In effect, VNAT treats all physical connections
as initially “implicitly” virtualized, with the virtual address-
es for the connections being the same as the physical ad-
dresses. Note that when a connection endpoint moves to a
different physical endpoint, the virtual address for the end-
point does not change and is still the same as the initial phys-
ical address, not the new physical address. This selection of
virtual addresses also has benefits for connection transla-
tion, as discussed in Section 3.2.

3.2 VNAT connection translation

Once a TCP connection is virtualized, it is ready to be mi-
grated anywhere without paying any attention to the physi-
cal IP addresses to which the connection endpoints are
attached. But connection virtualization alone is not yet suf-
ficient to allow packets to flow over a virtual connection.
Recall in Figure 3-2 that a packet with header {1.1.1.1,
2.2.2.2} sent by a client using TCP is never going to go any-
where on the physical network; and the server using TCP is
never going to receive a packet with header {1.1.1.1,
2.2.2.2} from the physical network.

VNAT connection translation makes it possible to commu-
nicate over virtual connections by translating a set of virtual
addresses associated with virtual transport endpoints to and
from a physical address associated with a physical network
endpoint. VNAT connection virtualization creates the virtu-
al addresses while VNAT connection translation maintains
the proper association and mapping between the virtual ad-
dresses and the physical network addresses. VNAT connec-
tion translation is done using well-known Network Address
Translation (NAT) technology [EF94, SE01], which is com-
monly used in the network layer today. However, instead of
translating a set of “private” addresses on the LAN side to

Figure 3-2: VNAT connection virtualization

server
bind[INADDR_ANY]1

TCP
IP

3

client
connect[20.20.20.20]

TCP
IP

9 bind[2.2.2.2]

8

{10.10.10.10, 20.20.20.20}

{1.1.1.1, 2.2.2.2}

connection
virtualization

NIC(virtual)
10.10.10.10

NIC
1.1.1.1

NIC(virtual)
20.20.20.20

NIC
2.2.2.2

connection
virtualizationsocket socket

autobind[1.1.1.1] connect[2.2.2.2]
4

and from a “public” address on the WAN side, VNAT uses
NAT concept to translate between virtual and physical ad-
dresses. Note that VNAT connection translation is done
transparently below the transport protocol and therefore re-
quires no modification to the transport protocol. Further-
more, because VNAT works completely within endpoints, it
does not suffer from the limitations associated with NAT
[Hain00, HS01, Seni02] that result from introducing con-
nection states outside the two connection endpoints. In par-
ticular, VNAT has no need to use NAT Application Level
Gateways (ALGs) to parse a connection stream with appli-
cation-specific functions to create additional connection
states. As a result, VNAT is compatible with protocols that
do not work with ALGs such as IPsec.

We illustrate VNAT connection translation by continuing
with our example from Figure 3-2. In Figure 3-3, it is clear
that a packet with header {1.1.1.1,2.2.2.2} sent by the cli-
ent TCP must be translated into a packet with header
{10.10.10.10, 20.20.20.20} for it to reach the intended
server. Similarly, a packet with header {10.10.10.10,

20.20.20.20} must be translated back into a packet with
header {1.1.1.1,2.2.2.2} for it to be accepted by the server
TCP.

Using the initial physical addresses of a connection as its
virtual addresses has benefits for VNAT connection transla-
tion as well. Because the virtual and physical addresses are
the same for a connection that does not migrate, there is no
need to perform connection translation for connections that
have not migrated. As a result, no translation overhead will
ever be imposed on a connection so long as it does not
move. Connection translation is only necessary for connec-
tions after they migrate, so only migrated connections will
incur any connection translation overhead.

3.3 VNAT connection migration

VNAT connection migration builds on VNAT connection
virtualization and translation to provide the mechanisms
necessary to actually move a connection from one machine
to another. VNAT connection virtualization and translation
make an end-to-end transport connection “migratable” (can
be freely moved) and “alive” (packets can flow). VNAT
connection migration enables connections to be suspended

at one location and resumed at another. To suspend a con-
nection, VNAT does not need to do anything at all except
when used with process migration [MDW99], when indi-
vidual connections are being migrated along with a migrat-
ing process. But it does provide optional functionality to
establish a secret key for security protection and to activate
mechanisms (called connection migration helpers) that keep
the migrating connection alive. To resume a suspended con-
nection, VNAT verifies the security protection key if it is
available, updates the appropriate virtual-physical endpoint
mappings, and deactivates the connection migration helper.
The protocol messages used by VNAT connection migra-
tion to perform its various functions are collectively called
the VNAT Connection Migration Protocol (VCMP). The
various functions in the timeline of a typical connection mi-
gration are described in further detail in the following sec-
tions.

3.3.1 Suspend a connection

VNAT is designed to work with a variety of mechanisms for
suspending and migrating a connection endpoint. A connec-
tion endpoint may move when the hardware associated with
the connection moves its network location or when the pro-
cess associated with the connection moves from one ma-
chine to another. For example, the connection endpoint may
move because its host laptop is suspended, disconnected
from the network, and moved and resumed in another place.
Alternatively, the endpoint may move with a process that
has been moved via an operating system process migration
mechanism. Yet another way in which a connection end-
point may move is to simply unplug the network cable of a
host and move the host. VNAT simply needs to be notified
of the event of suspending a connection. We have in fact in-
tegrated VNAT with APM for moving suspended laptops
and also built a process migration mechanism to operate
with VNAT to enable migration of various computation
units. However, a discussion of these systems is beyond the
scope of this paper.

Because a connection may be suspended and migrated with-
out any notification as in the case of unplugging the network
cable of a host and moving it, VNAT is designed to provide
connection migration without any required processing or

Figure 3-3: VNAT connection translation

server

1

TCP
IP

NIC(virtual)
20.20.20.20

3

client

TCP
IP

NIC(virtual)
10.10.10.10

9

NIC
2.2.2.2

NIC
1.1.1.1

{10.10.10.10, 20.20.20.20}

{1.1.1.1, 2.2.2.2}

connection
virtualization

connection
translation

connection
translation

connection
virtualization

NAT NAT{10.10.10.10, 20.20.20.20}

socket socket
5

saving of state at the time a connection is suspended. VNAT
can perform all of its necessary processing for connection
migration when a connection is resumed. However, VNAT
can provide additional benefits if it is able to perform some
functions when a connection is suspended. These optional
functions are discussed further below.

3.3.1.1 Establish security protection key

After a connection endpoint migrates, it needs to inform the
other endpoint to update the virtual-physical address map-
ping for a virtual connection. This potentially leaves the
door open for a malicious process to “hijack” the network
connection of another process. For example, the malicious
process can send a fake update message to a server, causing
the server to map a virtual connection to a physical connec-
tion that is destined to the malicious process. Thus traffic in-
tended for the original process is now being sent to the
malicious process.

This scenario is very similar to the security problem with
“binding updates” in MobileIP where a mobile node in-
forms its home agent or correspondent node about its new
care-of address. MobileIPv6 mandates the use of IPsec au-
thentication (IPsec AH) [KA98] for binding updates and
binding acknowledgements. In the absence of IPsec AH,
[OR01] has proposed a unilateral authentication protocol
(CAM) for MobileIPv6 binding messages. Although VNAT
can make use of these solutions, both IPsec AH and CAM
(which is specifically designed for IPv6) are not yet widely
deployed.

To address the problem of connection hijacking, VNAT
provides the ability to protect each virtual-physical address
mapping for a virtual connection by a secret key shared be-
tween the two endpoints. The key is established between the
two endpoints at the time when a connection is suspended
for migration. Note again that the key exchange only hap-
pens if a connection is to be migrated. VNAT is designed to
use existing techniques, such as Diffe-Hellman [DH79], to
establish the key. Diffe-Hellman is particularly suited for
VNAT because the secret key can be established over a pub-
lic network without any prior shared knowledge between
the two endpoints. At the time of resuming a migrated con-
nection, exchange of virtual-physical address mapping up-
date messages is protected by the mutual authentication of
the two endpoints through the secret key. We assume that
the secret key is part of the connection state saved and trans-
ported by the migration mechanism used.

3.3.1.2 Keep the migrating connection alive

When one endpoint of a live network connection is suspend-
ed for migration, it may be necessary to provide additional
functionality at the non-migrating endpoint in order to pre-
serve the migrating connection. Both the transport protocol
and the application may have their own mechanism to keep
alive what they perceive as a “connection”. These mecha-
nisms may need to be disabled if a connection is suspended

for a long time in order to preserve the connection beyond
the timeout limit of these mechanisms.

To handle these cases, VNAT introduces a connection mi-
gration helper. A connection migration helper is a function
that can be defined by the user which “hooks” into the
VNAT system through a well-defined interface. When the
helper is activated for a connection whose other end is sus-
pended and being migrated, the helper can monitor potential
outgoing traffic on the connection and can buffer and/or re-
spond to the traffic. While a connection migration helper
can be tailored to the needs of a specific application, VNAT
provides two application-independent helpers that are suffi-
cient for the vast majority of cases: disabling transport kee-
palive, and stopping the non-migrating endpoint.

VNAT provides a helper for disabling transport keepalive
mechanisms. For instance, most TCP implementations pro-
vide a TCP keepalive timer mechanism. The timer is used
by popular applications such as TELNET to detect and close
idle connections. When a connection is being suspended,
VNAT allows the peers to optionally negotiate the TCP kee-
palive timer for the duration of the migration or to simply
disable the timer to keep the connection open indefinitely.
Note that the timer is set for the migrating connection only
and does not affect the timer for other connections between
the peers.

Many applications, such as FTP, choose to implement their
own timeout mechanism to detect idle connections. Still
other applications such as SSH, while relying on TCP kee-
palive timer to detect idle connection, have certain functions
such as the rekey request that periodically exchange packets
between the peers. For these applications, simply disabling
the TCP keepalive timer is not enough to keep the connec-
tion alive since the applications themselves will timeout.

For these applications, VNAT provides an alternative mi-
gration helper for stopping the non-migrating endpoint. This
helper works for any multi-process application, which is
typically structured such that a subprocess is forked by a
master server process to handle a connection. For such ap-
plications, VNAT simply uses a standard OS mechanism
such as a signal to stop the flow of time for the subprocess
that is handling the migrating connection, and to wake up
the subprocess when the connection is resumed. Our expe-
rience indicates that this helper works very well as the vast
majority of today's well-known server applications are
multi-process, including (but not limited to):

• Database: Oracle, postgreSQL, mySQL
• File transfer: wu.ftpd, in.ftpd
• Interactive: sshd, in.telnetd
• Mail: sendmail, in.qpopper
• News: innd
• NFS: rpc.mountd, smbd (samba)
• Proxy: squid
• Web: httpd (apache)
• Remote display: VNC server
6

While most applications can be supported using these two
simple VNAT connection migration helpers, there are still a
small number of applications which may need to use more
application-specific helpers to preserve their connections if
they are suspended for a long time. A notable example of
this type of application is the IRC (Internet Relay Chat)
server. IRC server has its own “ping” mechanism to detect
dead clients so disabling TCP keepalive timer will not work.
Common IRC server implementations are also not multi-
process, which means that we cannot simply stop the server
when one of its client suspends and moves. In this case, an
IRC connection migration helper would be needed when
IRC clients are suspended and moved to monitor the con-
nection and respond to IRC server's “ping” probe until it is
deactivated. The VNAT connection migration helper keeps
the core VNAT architecture application-independent while
still being able to handle rare application-specific cases such
as IRC.

3.3.2 Resume a connection

Resuming a connection is the reverse of suspending a connection.
If a connection endpoint is migrated by checkpointing a process,
the saved the process states are restored and the process is restart-
ed. If an entire host was suspended, the states of the entire host are
restored and the host is resumed. If it is just the network cable that
was unplugged, one can simply just reconnect the network cable.
VNAT simply needs to be notified after the appropriate states
have been restored but before the process or host are resumed.

3.3.2.1 Verify security protection key

When only one endpoint of a connection migrates, it is triv-
ial for the migrated endpoint to find its peer because the ex-
isting connection states tell where its peer is. After the
migrated endpoints locate each other and before any virtual-
physical address mapping update for virtual connections can
happen, the two endpoints must verify, for every virtual
connection to be updated, the security protection key they
established at the time when the connection was suspended.
The exact process obviously depends on the particular secu-
rity mechanism in use. For example, when using Diffie-
Hellman, one endpoint can simply encrypt the update re-
quest message with the secret key; the other endpoint can
decrypt the request only if it possesses the same secret key.
Recall that the secret key is part of the connection states
saved and transported by the migration mechanism. If no se-
curity protection key was established when the connection
was suspended and if VNAT is not configured to guarantee
security, then there is no security key to verify and the con-
nection is simply resumed.

3.3.2.2 Update virtual-physical endpoints mapping

When a connection endpoint migrates to a new location, its
virtual address stays unchanged and therefore the virtual
connection will stay intact. However, this virtual address
now has to be mapped to and from a new physical address
for the continued flow of packets over the virtual connec-

tion. The virtual-physical address mapping is updated by ex-
changing two simple messages, VNAT_UPD and
VNAT_UPD_R.

(1) VNAT_UPD message

To resume a connection at a new location, the VNAT sys-
tem running at the new location sends a VNAT_UPD mes-
sage to notify the corresponding VNAT running on the
remote peer to update its virtual-physical address mapping
for a virtual connection. The format of the VNAT_UPD
message is shown in Figure 3-4. The message contains the
virtual addresses of both endpoints as well as the physical
address of the new location. For implementation efficiency,
the message format is aligned on a 32-bit address boundary.

• Version: VCMP version
• Command: VNAT_UPD
• R_Vir_Port: old remote virtual port
• R_Vir_Addr: old remote virtual address
• L_Vir_Addr: old local virtual address
• L_Phy_Addr: new local physical address
• L_Vir_Port: old local virtual port
• L_Phy_Port: new local physical port

Upon receiving a VNAT_UPD message, VNAT searches its
virtual-physical address mapping table for a virtual connec-
tion {L_Vir_Addr:L_Vir_Port, R_Vir_Addr:R_Vir_Port}. If
the virtual connection is found, its remote physical address
and physical port are updated by the L_Phy_Addr and
L_Phy_Port fields supplied in the message, and connection
translation NAT rules for the virtual connection is updated
accordingly.

(2) VNAT_UPD_R message

The VNAT_UPD_R message is sent by VNAT in response
to a VNAT_UPD message. It contains the new virtual-phys-
ical address mapping on the recipient side, if any, for a vir-
tual connection identified by the sender’s VNAT_UPD
message. The format of the VNAT_UPD_R message is
shown in Figure 3-5.

The fields in VNAT_UPD_R message are the same as those
in VNAT_UPD message except the fields used for identify-

Figure 3-4: VNAT_UPD message

Figure 3-5: VNAT_UPD_R message

Version VNAT_UPD R_Vir_Port

L_Vir_Addr

0 8 16 31

L_Phy_Addr

L_Vir_Port L_Phy_Port

R_Vir_Addr

Version VNAT_UPD_R Not Used

Not Used

0 8 16 31

L_Phy_Addr

Not Used L_Phy_Port

Not Used
7

ing the virtual connection are not used.

Upon receiving a VNAT_UPD_R message, VNAT updates
the remote physical address and physical port of the migrat-
ed virtual connection returned in the L_Phys_Addr and
L_Phy_Port fields, and updates the connection translation
NAT rules for the virtual connection accordingly.

3.3.2.3 Activate migrated connection

After successfully exchanging and updating the virtual-
physical address mapping for the migrated connection,
VNAT proceeds to activate the migrated connection. If a
connection migration helper was activated on the non-mi-
grated endpoint when the migrated connection was suspend-
ed, VNAT notifies the helper that the connection has been
restored. Depending on the helper used, the helper then re-
stores the TCP keepalive timer for the connection to its state
before the migration, wakes up the stopped subprocess that
was handling the migrated connection, or relinquishes the
connection it's monitoring to the original subprocess and de-
activate itself. At this point, the migrated connection is fully
restored back to its live state just before it migrated.

3.4 Other architectural issues

We consider, in this subsection, certain architectural issues
that, although orthorgonal to the VNAT architecture itself,
are nevertheless important ones and worth mentioning.

3.4.1 Support connectionless protocols

Our discussion so far has implicitly concentrated on connec-
tion-oriented transport protocols using TCP as our example
because the vast majority of network applications today are
based on TCP. It is also important to understand the relative
merit in how to support connectionless transport protocols
such as UDP, as used in increasingly popular multimedia
applications. Even though there is no concept of a “connec-
tion” with connectionless transport protocols, applications
using these protocols often maintain by themselves some
notion of a “connection” at the application level; although
the applications usually do not expect either end of the “con-
nection” to move.

Because the “connection” is maintained by the application
itself rather than the transport protocol, it is necessary to
hide from the application the current physical host location
in order to virtualize such application-level “connection”
without any modification to the application. VNAT pro-
vides such a mechanism as an option on a per application
basis. When the option is turned on, VNAT will hide from
the application the fact that its location or its peer's location
has changed. This is simply done by returning the unchang-
ing virtual address to the application instead of the physical
address; therefore enable transparent migration of such
UDP based “connections”. However, using this option vio-
lates the conventional transport protocol behavior, which is
to always tell applications the truth of the current host loca-

tion. VNAT is committed to be compatible with existing
networking protocols and therefore will not by default hide
host location change from applications.

3.4.2 Move both endpoints simultaneously

The design of VNAT focuses on the common case of mi-
grating one endpoint of a connection at a time. In this paper,
we have not addressed the problem of migrating both end-
points of a connection simultaneously, where the endpoints
are migrated to different locations. To do this, a mechanism
would be needed for the two endpoints to inform each other
their new location if neither one is aware where the other
party is migrating beforehand. There are several potential
solutions to the problem. For example, one approach can use
a well-known server that is consulted by both endpoints to
find out the new location of each other after migration. An-
other approach is for both endpoints to leave new location
states at their original location. Due to space constraints, a
detailed discussion of approaches to moving both connec-
tion endpoints simultaneously is beyond the scope of this
paper.

3.4.3 Resolve virtual address conflict

Since a virtual address migrates along with a connection
endpoint from host to host, it can happen that a virtual ad-
dress may be reused after it migrates. A conflict occurs
when a virtual address pair is used by two different connec-
tions which share at least one common physical endpoint. In
this case, the transport protocol at the common physical
endpoint(s) will not allow the two connections to coexist.

For example, after a virtual connection {ip1:p1, ip2:p2} mi-
grates from between {ip1, ip2} to between {ip3, ip2}, an-
other process on ip1 may attempt to reuse p1 to make a
connection to ip2 at p2. The attempt will fail as long as the
original virtual connection {ip1:p1, ip2:p2} is still alive
somewhere. Note that there is no conflict between two con-
nections sharing the same virtual address pair as long as the
two connections do not share a common physical endpoint.
For example, virtual connection {ip1:p1, ip2:p2} can be re-
used to make a new connection between {ip1, ip2} without
any problem after the original connection migrates to be-
tween {ip3, ip4}. However, if either endpoint of the two
connections were to “meet” at ip1/ip3 and/or ip2/ip4, there
would be a conflict.

One solution for this problem is to disallow reuse of virtual
address until the connection that is using the same virtual
address has been closed. This approach, however, requires
leaving state behind on the “original” host to keep track of
which virtual addresses have migrated away but are still in
use. It also overly restricts use of virtual addresses when it
is really harmless for two connections to share the same vir-
tual address pair because the sharing does not result in a
conflict.

The approach adopted by VNAT is to allow reuse of virtual
8

addresses but deal with conflicts as they occur. Because of
the condition for the conflict to occur, we believe that con-
flicts occur rarely under normal circumstance. When a vir-
tual address conflict does happen during a connection
migration, a policy can be set on a per-connection basis to
resolve the conflict by either aborting the migration or pre-
empting the existing virtual connection on the target host.

3.5 Incremental usability

An important underlying design principle in VNAT is the
idea of incremental usability. VNAT provides a core set of
functions to support connection mobility, but it also pro-
vides additional features which can be used incrementally.
For instance, developers and users do not need to do any-
thing to allow existing applications to work with VNAT
without modification. However, VNAT enables applica-
tions to provide richer functionality during connection mi-
gration by providing interfaces and mechanisms to support
application-specific helper functions. Similarly, VNAT pro-
vides other functions that can be used when a connection is
suspended to improve security and performance, but these
functions are optional and need not be used to provide con-
nection migration functionality.

VNAT also provides incremental usability in terms of de-
ployment. Not only does VNAT facilitate easy of deploy-
ment by not requiring changes to applications, operating
systems, or network protocols, but its architecture also facil-
itates deployment of its functions in an incremental fashion.
VNAT can be locally installed on any subset of systems to
provide connection mobility within those systems. It does
not need to be installed in an entire administrative domain
to operate and is compatible with existing network infra-
structures. Furthermore, not all aspects of the VNAT archi-
tecture need to be deployed when not all of its functionality
is required. For example, VNAT can be implemented as a
loadable kernel module that does not even require a system
to be rebooted when VNAT is installed, which makes it eas-
ier to deploy on shared servers that attempt to minimize
downtime. Furthermore because of how it selects the initial
virtual address, VNAT can be used to provide connection
mobility to connections that already exist even before
VNAT is installed.

VNAT further facilitates incremental usability in terms of
performance. The computational cost of additional func-
tionality in VNAT is only paid for by those users and appli-
cations that use it. In particular, non-migrating connections
do not require any connection translation or connection mi-
gration functionality, resulting in almost no extra VNAT
overhead for such connections.

3.6 Example Migration Scenario

Let’s now put all the pieces from previous sections together
and describe a typical migration scenario and see how
VNAT migrates a live network connection.

Assume a client on host 10.10.10.10 opens a TCP connec-
tion to a server on host 20.20.20.20. As shown in Figure 3-
6, the connection is virtualized by VNAT and perceived by
TCP on both the client and the server as {10.10.10.10,
20.20.20.20}. Note that here, unlike in Figure 3-2 and Fig-
ure 3-3, we are using the initial physical addresses as the vir-
tual addresses based on our discussion in Section 3.1. In this
example, we assume the client migrates and it doesn’t mat-
ter whether a process or the whole client host migrates.

At the time of suspending the connection, the client will at-
tempt to send a message to establish the secret key between
the client and the server. In addition, a connection migration
helper may be activated on the server for the migrating con-
nection. Note that all of the above steps are optional and the
suspension will work without any of them, but with the
drawback of not having the benefit of those VNAT func-
tions.

At the time of resuming the connection, the client VNAT at
the new location will trivially locate the server location us-
ing the existing connection state. After verifying the secret
key, the client will update the server with its new physical
address 30.30.30.30. And both the client and the server will
start translating the virtual connection {10.10.10.10,

20.20.20.20} to and from the physical connection
{30.30.30.30,20.20.20.20}. Note how the virtual connec-
tion {10.10.10.10,20.20.20.20} perceived by the client
TCP and the server TCP stays intact across the migration.
And either the client TCP or the server TCP is completely
unaware of the change of the underlying physical address of
the client. So with the addition cost of translating a virtual
connection to and from a physical connection, VNAT will
seamlessly migrate a transport end-to-end connection re-
gardless of where the client moves.

4 Implementation
We have implemented the VNAT system in the Linux oper-
ating system as a loadable kernel module. As a result,
VNAT can be easily installed and used without modifying
or recompiling the operating system kernel. The module can
be loaded at any time and will commence virtualizing and
translating connections as needed once it is loaded. Since
none of the connections will have migrated before VNAT is

Figure 3-6: Migrate one endpoint

TCP

10.10.10.10

9

8

server

TCP

20.20.20.20

9

client

TCP

30.30.30.30

9

{10.10.10.10, 20.20.20.20}

{10.10.10.10, 20.20.20.20}

client
9

installed, the virtual addresses used for those connections
will be the same as the respective physical addresses, requir-
ing no change in kernel state to virtualize those connections.
As a result, VNAT can be used to provide connection mo-
bility to connections that already exist even before VNAT is
installed. All that is required is the creation of some VNAT
internal state per connection, which can be easily obtained
by reading the existing network kernel state for each con-
nection.

In the following sections, we describe some of the imple-
mentation details of the connection virtualization, transla-
tion, and migration components of the VNAT system.
Section 4.1 describes how system calls are intercepted to
provide connection virtualization. Section 4.2 describes
how VNAT uses the Linux netfilter system for connection
translation. Section 4.3 describes how connection migration
is supported by the VNAT daemon that runs on each system.

4.1 Intercept socket system calls

VNAT connection virtualization is implemented at the ker-
nel socket layer by intercepting socket calls that open and
close connections. All system calls on Linux goes through
the entry routines in arch/i386/kernel/entry.S. These rou-
tines look up the system call number passed in a register and
jump to the value stored in the system call table, essentially
an array of function pointers. So the standard way of inter-
cepting system calls on Linux is to write a kernel module
that overwrites the relevant function pointer with a pointer
to one’s own code.

More specifically, we intercept three socket system calls:
accept, connect, close. When a connection is being setup
and before these calls reach the transport protocol, virtual
addresses states are saved for the virtual-physical address
mapping for the connection. VNAT saves a very small
amount of state about the virtual connection so that if the
virtual connection were to be suspended and migrated later,
its physical mapping and other related OS states can be
quickly looked up given its tuple. When the connection is
closed, its associated address mapping states are cleaned up.

In addition, we also intercept the getsockname and getpeer-
name calls, which may seem strange since these calls have
nothing to do with opening and closing a connection. Recall
in Section 3.4.1 we discussed VNAT’s optional support for
connectionless protocols which requires hiding physical
host location from the application. And the getsockname and
getpeername calls are what the applications use to find out
the physical host location. In addition to supporting connec-
tionless protocol, certain “strange” applications using con-
nection-oriented protocol, notably FTP, explicitly check the
connection endpoints (using getsockname and getpeername
calls) for its protocol interaction. As a result, applications
like FTP are either not willing or not prepared to be moved.
VNAT also provides support for transparently migrating
connections created by this type of application using the

same optional mechanism it uses for supporting connection-
less protocols. We note that applications like FTP are in the
minority of existing network applications and can be identi-
fied and dealt with on a case by case base using this option.
We emphasis again that the default behavior of VNAT is
completely compatible with existing transport protocol be-
havior.

4.2 Instrument netfilter hooks

VNAT connection translation is entirely done through the
netfilter system in the Linux 2.4 series kernel. Linux netfil-
ter system is a packet filtering and mangling system
[Russ01]. It instruments the IP protocol stack at well-de-
fined points during the traversal of the stack by a packet. It
provide hooks that invoke user-registered functions to pro-
cess the packet at these well-define points.

For outgoing traffic, the VNAT system use the hooks
NF_IP_LOCAL_OUT for destination address translation
(DNAT) and NF_IP_POSTROUTING for source address
translation (SNAT), respectively, to perform connection
translation. For incoming traffic, the VNAT system uses the
hooks NF_IP_PREROUTING for DNAT and
NF_IP_LOCAL_IN for SNAT, respectively, to perform
connection translation.

Using the same example as we used in Section 3.1, we will
illustrate how the translation is done. When the client tries
to send a packet, the TCP on the client side will construct a
packet with source address 1.1.1.1 and destination address
2.2.2.2 since the connection has been virtualized. At the
NF_IP_LOCAL_OUT hook, a DNAT is performed on the
packet to translate 2.2.2.2 into 20.20.20.20. This will allow
correct routing functions to be performed. Once the routing
decision for the packet has been made and before it is sent
out to the appropriate interface, an SNAT is performed at
the NF_IP_POSTROUTING hook to translate 1.1.1.1 into
10.10.10.10. This is necessary for the reply packet to come
back to the client. The process is illustrated in Figure 4-1.

On the server, the reverse translation is done at the hooks
NF_IP_PREROUTING (DNAT) and NF_IP_LOCAL_IN

Figure 4-1: Client side connection translation

Routing

4

5NF_IP_LOCAL_OUT

client TCP

1.1.1.1 2.2.2.2

2.2.2.2DNAT 20.20.20.20

SNAT 10.10.10.10

NF_IP_POSTROUTING

1.1.1.1 20.20.20.20

1.1.1.1 20.20.20.20
1.1.1.1

10.10.10.1020.20.20.20

data

data

data

data
10

(SNAT).

4.3 Automate migration tasks

All the VNAT connection migration related tasks are done
by the VNAT daemon vnatd using VCMP without any man-
ual intervention. Vnatd is a very simple kernel thread that
listens on a well-known port (2031) and functions exactly
the same as a normal server process except it runs entirely
within the kernel address space for performance reasons.

When vnatd is notified with a suspension event of a virtual
connection, it contacts the vnatd on the other end of the con-
nection and carries out the routine tasks for suspending a
connection. These tasks include establishing a secret key to
protect the virtual-physical address mapping update for the
migrating connection, negotiating migration roles to mini-
mize the message exchanges for locating the peer’s new lo-
cation after migration, and activating connection migration
helper to keep the connection alive during the migration.

After a virtual connection migrates, the vnatd will restore
the connection when it is notified with a resumption event.
After locating the peer’s new location, vnatd on both sides
will verify the secret key for the virtual connection estab-
lished at suspension time, and exchange VNAT_UPD and
VNAT_UPD_R messages to update their virtual-physical
address mapping for the migrated virtual connection.

5 Experimental Results
We present some experimental data measuring the perfor-
mance of our VNAT prototype implementation in Linux.
We measured the performance overhead of VNAT in terms
of throughput, latency, CPU utilization, and connection set-
up. We also measured the performance overhead associated
with resuming a migrated network connection in a typical
LAN environment. We have used VNAT with a suite of
popular real world applications and discuss some of our ex-
periences with the system.

To measure the performance overhead of VNAT, we com-
pared the performance of three different system configura-
tions: Vanilla, Netfilter, and VNAT. The Vanilla system is
a stock Linux system without either netfilter or VNAT load-
ed into the kernel. The Netfilter system is a system with net-
filter loaded into the kernel without any rules configured.
The VNAT system is a system with both netfilter and
VNAT loaded into the kernel. We measured the perfor-
mance of VNAT for two cases, which we refer to as VNAT1
and VNAT2. VNAT1 represents a VNAT system with all
connections not migrated and hence only performing con-
nection virtualization. VNAT2 represents a VNAT system
with all connections migrated and hence incurs both con-
nection virtualization and translation overhead.

Our experiments were conducted using two machines: an
IBM ThinkPad 760 (TP760) with a 150Mhz Pentium CPU,
80 MB RAM, and a Linksys PCMPC100 10/100 Ethernet

PC Card, and an IBM ThinkPad 770 (TP770) with a
266Mhz Pentium II CPU, 160 MB RAM, and a 3Com Fast
EtherLink XL 3C575-TX 10/100 Ethernet PC Card. To en-
sure that we were accurately measuring the performance
overheads of our systems as opposed to raw network link
performance, we intentionally choose slow machines for
our experiments so that the 100Mbps network link capacity
could not be saturated easily.

We measured throughput, latency, and connection setup
overhead using netperf [Jone96], a network performance
benchmarking program. To minimize any discrepancies that
might arise from using different tools, we used netperf as
our primary measurement tool for the results presented here
as it offers the types of measurements that were relevant in
a single tool package. We ran the netperf client on the
TP760 and the netperf server on the TP770. Three different
types of netperf experiments were conducted: throughput,
latency, and connection setup. The throughput experiment
simply measures the throughput achieved when sending
messages as fast as possible from client to server. The laten-
cy experiment measures the inverse of the transaction rate in
which a transaction is simply the exchange of a request mes-
sage and reply message of the same size. The connection
setup experiment is the same as the latency experiment ex-
cept that a new connection is used for every request/re-
sponse transaction. This experiment simulates the
interaction between a client and server in which many short-
lived connections are opened and closed. In the throughput
and latency experiment, we also measure the CPU utiliza-
tion. For each type of experiment, eight different message
sizes were used, ranging from 64 bytes to 8192 bytes and
doubling in size, for a total of 24 different runs. Each exper-
iment was run for 60 seconds with a given constant message
size. Since these measurements focused on processing over-
heads on the end systems, we used a 100Mbps cross-cable
between the machines to make sure that there were no other
external factors such as hub contention or switching delay
affecting the results.

We measured connection restoration overhead using a sim-
ple client and server program to represent typical TCP con-
nections created by real world applications. The program
opens a number of TCP connections and keeps these con-
nections open so that VNAT can be used to migrate them.
For this experiment, connections were migrated by simply
changing the physical network location of the machine. No
connection migration helper or security protection key was
used. In these experiments, the TP760 was used as the client
and the TP770 was used as the server. Since these measure-
ments are impacted by network round-trip latencies, we
conducted these measurements in a more realistic LAN en-
vironment by connecting the machines together through a
3Com OfficeConnect 3C16700 10Mbps hub. To suspend
and resume connections, the connections were initially cre-
ated over a separate 802.11b wireless LAN network using
11

an Orinoco Gold PC Card in the client. The NIC card was
then removed causing the connections to be suspended. The
Linksys NIC card was then inserted into the client, connect-
ing it in the new 10Mbps network test environment and
moving the client to a new network location.

5.1 Throughput overhead

Figure 5-1 shows the throughput measurements for running
the netperf throughput experiments. The results show that
the VNAT2 system has an overhead of around 9%-13% over
the Vanilla system. However, as indicated by the results
with the Netfilter system, about half of the overhead comes
from just loading netfilter itself without any rules config-
ured, which implies only about 4%-6% overhead is contrib-
uted by the VNAT system alone. The VNAT1 system
performs almost identically to the Netfilter system, indicat-
ing that connection virtualization requires almost no addi-
tional overhead.

Figure 5-2 shows the CPU utilization for the throughput ex-
periment. When using the VNAT2 system, the sender incurs
about 8%-15% overhead while the receiver incurs about
29%-44% overhead compared to the Vanilla system. How-
ever, as indicated by the results with the Netfilter system,
about half of the sender overhead and 94% of the receiver
overhead are contributed by just loading netfilter. This im-
plies that the overhead just due to VNAT is actually about
4%-7% for the sender and 2%-3% for the receiver. The
VNAT1 system CPU utilization is almost identical to the
Netfilter system, again indicating that connection virtualiza-
tion requires almost no additional overhead, as expected.

We argue that it is more fair to compare a VNAT system
with a Netfilter system rather than a Vanilla system. Due to
increased security concerns, major Linux distributions such
as RedHat are now shipped with a default setup of “medi-
um” firewall protection which requires netfilter to be load-
ed. As a result, we expect that an increasing number of
Linux hosts will have netfilter loaded by default.

5.2 Latency overhead

Figure 5-3 shows the latency measurements for running the
netperf latency experiments. The results show that the

VNAT2 system has an overhead of around 14%-20% over
the Vanilla system. However, as indicated by the results
with the Netfilter system, more than 70% of the overhead
comes from just loading netfilter itself without any rules
configured. So the VNAT2 system alone effectively contrib-
utes about 4%-6% overhead, similar to the result of through-
put measurement. We again notice that the VNAT1 system
performs identically to the Netfilter system, indicating that
connection virtualization requires almost no additional
overhead.

Figure 5-4 shows the CPU utilization for the latency exper-
iment. When using the VNAT2 system, the sender incurs
about 7%-20% overhead while the receiver incurs about
27%-34% overhead compared to the Vanilla system. How-
ever, as indicated by the results with the Netfilter system,
about 87%-95% of the sender overhead and 72%-79% of the
receiver overhead are contributed by just loading netfilter.
This implies that the overhead just due to VNAT is actually
about 2%-7% for the sender and 5%-6% for the receiver.
Again, the VNAT1 system incurs virtually no overhead over
a Netfilter system.

Figure 5-1: VNAT throughput overhead

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

64 128 256 512 1024 2048 4096 8192

T
hr

ou
gh

tp
ut

 (
K

by
te

s/
s)

Message Size (bytes)

VNAT Throughput Overhead

Vanilla

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

64 128 256 512 1024 2048 4096 8192

T
hr

ou
gh

tp
ut

 (
K

by
te

s/
s)

Message Size (bytes)

VNAT Throughput Overhead

Netfilter

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

64 128 256 512 1024 2048 4096 8192

T
hr

ou
gh

tp
ut

 (
K

by
te

s/
s)

Message Size (bytes)

VNAT Throughput Overhead

VNAT1

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

64 128 256 512 1024 2048 4096 8192

T
hr

ou
gh

tp
ut

 (
K

by
te

s/
s)

Message Size (bytes)

VNAT Throughput Overhead

VNAT2

Figure 5-2: Throughput CPU utilization overhead

Figure 5-3: VNAT latency overhead

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
K

by
es

)

Message Size (bytes)

VNAT CPU Utilization Overhead (throughput)

VNAT2 (sender)

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
K

by
es

)

Message Size (bytes)

VNAT CPU Utilization Overhead (throughput)

VNAT1 (sender)

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
K

by
es

)

Message Size (bytes)

VNAT CPU Utilization Overhead (throughput)

Netfilter (sender)

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
K

by
es

)

Message Size (bytes)

VNAT CPU Utilization Overhead (throughput)

Vanilla (sender)

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
K

by
es

)

Message Size (bytes)

VNAT CPU Utilization Overhead (throughput)

VNAT2 (receiver)

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
K

by
es

)

Message Size (bytes)

VNAT CPU Utilization Overhead (throughput)

VNAT1 (receiver)

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
K

by
es

)

Message Size (bytes)

VNAT CPU Utilization Overhead (throughput)

Netfilter (receiver)

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
K

by
es

)

Message Size (bytes)

VNAT CPU Utilization Overhead (throughput)

Vanilla (receiver)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

64 128 256 512 1024 2048 4096 8192

R
ou

nd
 T

rip
 T

im
e

(m
s)

Message Size (bytes)

VNAT Latency Overhead

VNAT2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

64 128 256 512 1024 2048 4096 8192

R
ou

nd
 T

rip
 T

im
e

(m
s)

Message Size (bytes)

VNAT Latency Overhead

VNAT1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

64 128 256 512 1024 2048 4096 8192

R
ou

nd
 T

rip
 T

im
e

(m
s)

Message Size (bytes)

VNAT Latency Overhead

Netfilter

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

64 128 256 512 1024 2048 4096 8192

R
ou

nd
 T

rip
 T

im
e

(m
s)

Message Size (bytes)

VNAT Latency Overhead

Vanila
12

5.3 Connection setup overhead

Figure 5-5 shows the latency measurements for running the
netperf latency experiments with a new connection for each
transaction to measure connection setup overhead. Since

connection setup in VNAT occurs before migration, there is
no translation overhead associated with connection setup, so
VNAT results are only shown for the VNAT1 system. The
results show that VNAT1 system has an overhead of about
11%-18% over the Vanilla system, of which about 80% is
contributed by just loading netfilter. So the VNAT system
alone contributes about 2%-3% of the overhead.

5.4 Connection restoration overhead

Table 1 shows the measurements for running the experi-
ments to measure connection restoration overhead. No com-
parisons with the Vanilla or Netfilter systems are shown
since they do not provide connection restoration functional-
ity. The results show that on average it takes about 47 milli-
seconds (including the round trip delay) to restore a
connection and the overhead stays fairly constant. Based on
the VCMP interaction and its implementation using TCP in
our prototype, we can infer that once the migrated end-
point(s) located each other, it would take two round trips

and some local processing to restore the connection. The
round trip time obviously depends on the actual physical
network condition, while the bulk of the local processing in-
volves searching a virtual connection given its “tuple”. The
results show that most of the time required to restore the
connection is due to local processing as opposed to network
latency. Depends on the particular implementation, the cost
of searching for a virtual connection could range from
O(log(n)) with a binary search to O(n) with a linear search,
where n is the total number of virtual connections. Our cur-
rent implementation uses a linear search and this is reflected
in the results.

5.5 Migrate popular network applications

We tested the migration capability of our VNAT system
with a suite of popular real world Linux applications, in-
cluding but not limited to:

• telnet client and server (standalone and via xinetd)
• ftp client and server (standalone and via xinetd), both active

and passive mode
• ssh client and server
• mozilla/netscape/opera and apache
• Ximian evolution and qpopper/sendmail
• slrn and innd
• VNC thin client and VNC server
• remote X client and X server

All the above applications worked over a virtualized con-
nection right out of the box. We were able to migrate live
connections created by all the above applications and the
connections stayed alive as if nothing had happened.
Among all the application we tested, FTP was the only one
that we had to turn on the special option we mentioned in
Section 4.1 in order to migrate its connections. We are glad
to see that the majority of today’s network applications be-
have as we have expected. Rather than relying on transport
connection properties for their application logic, they use
the transport protocol solely for the purpose of transporting
data.

6 Conclusions
We have introduced in this paper VNAT, a novel architec-
ture that enables transparent migration of live network con-
nections associated with a spectrum of computation units.
VNAT is based on the simple idea of virtual addresses and
employs connection virtualization, translation, and migra-
tion to achieve its goals. VNAT supports migration of live

Figure 5-4: Latency CPU utilization overhead

Figure 5-5: VNAT connection setup overhead

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
tr

an
sa

ct
io

n)

Message Size (bytes)

VNAT CPU Utilization Overhead (latency)

VNAT2 (sender)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
tr

an
sa

ct
io

n)

Message Size (bytes)

VNAT CPU Utilization Overhead (latency)

VNAT1 (sender)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
tr

an
sa

ct
io

n)

Message Size (bytes)

VNAT CPU Utilization Overhead (latency)

Netfilter (sender)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
tr

an
sa

ct
io

n)

Message Size (bytes)

VNAT CPU Utilization Overhead (latency)

Vanilla (sender)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
tr

an
sa

ct
io

n)

Message Size (bytes)

VNAT CPU Utilization Overhead (latency)

VNAT2 (receiver)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
tr

an
sa

ct
io

n)

Message Size (bytes)

VNAT CPU Utilization Overhead (latency)

VNAT1 (receiver)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
tr

an
sa

ct
io

n)

Message Size (bytes)

VNAT CPU Utilization Overhead (latency)

Netfilter (receiver)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

64 128 256 512 1024 2048 4096 8192

C
P

U
 U

til
iz

at
io

n
(m

s/
tr

an
sa

ct
io

n)

Message Size (bytes)

VNAT CPU Utilization Overhead (latency)

Vanilla (receiver)

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

64 128 256 512 1024 2048 4096

C
on

ne
ct

io
n

S
et

up
 (

tr
an

sa
ct

io
ns

/s
)

Message Size (bytes)

VNAT Connection Setup Overhead

Vanilla

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

64 128 256 512 1024 2048 4096

C
on

ne
ct

io
n

S
et

up
 (

tr
an

sa
ct

io
ns

/s
)

Message Size (bytes)

VNAT Connection Setup Overhead

Netfilter

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

64 128 256 512 1024 2048 4096

C
on

ne
ct

io
n

S
et

up
 (

tr
an

sa
ct

io
ns

/s
)

Message Size (bytes)

VNAT Connection Setup Overhead

VNAT1

Total number of
connections

Total restoration
time (seconds)

Restoration time
per connection
(milliseconds)

Average round
trip delay

(milliseconds)

10 0.434 43.4 3.104

50 2.374 47.5 3.134

100 4.856 48.6 3.159

500 24.657 49.3 3.147

Table 1: VNAT connection restoration overhead
13

end-to-end transport connections when either one or both
endpoints of the connections migrate. VNAT provides in-
cremental usability and does not require any modification to
existing applications, operating systems, or networking pro-
tocols, which enable the system to be more easily deployed
and used.

We have implemented a prototype of VNAT in the Linux
operating system and we have shown it performs with very
low overhead and works very well with a wide range of pop-
ular real world applications. Our results on an untuned pro-
totype show that there is no noticeable overhead for
connections that do not migrate, and a fairly constant and
small 2%-7% overhead on top of standard Linux distribu-
tions with netfilter loaded for migrated connections. These
results are due to the fact that VNAT connection virtualiza-
tion only introduces very small overhead at connection set-
up time and connection translation only performs simple
deterministic address translation functions.

With the rapid increase of distributed networked systems
and ubiquitous mobile computing devices, it is becoming a
pressing need for developing new networking functionality
to support these systems. However, developing and deploy-
ing new networking infrastructure is often a long and endur-
ing process. We hope that our work can give insight in how
such new networking functionality can be developed and
deployed while allowing existing legacy applications to take
advantage of the tremendous benefits offered by the coming
reality of ubiquitous mobile computing and communication.

7 References
[BP93] P. Bhagwat and C. Perkins, A Mobile Networking Sys-

tem based on Internet Protocol (IP), Proceedings of
USENIX Symposium on Mobile and Location Inde-
pendent Computing, Cambridge, MA, August 1993.

[DH79] W. Diffie and M. Hellman, Privacy and Authentica-
tion, Proc IEEE, 67(3):397-429, March 1979.

[EF94] K. Egevang and P. Francis, The IP Network Address
Translator (NAT), RFC1631, IETF, May 1994.

[Hain00] T. Hain, Architectural Implications of NAT, RFC2993,
IETF, November 2000.

[HS01] M. Holdrege and P. Srisuresh, Protocol Complications
with the IP Network Address Translator, RFC3027,
IETF, January 2001.

[IDM91] J. Ioannidis, D. Duchamp, and G. Q. Maguire, IP-
based Protocols for Mobile Internetworking, Proceed-
ings of ACM SIGCOMM, 1991.

[Jone96] R. Jones, Netperf: a Network Performance Bench-
mark, Information Networks Division, Hewlett-Pack-
ard Company, February 1996. http://www.netperf.org/
netperf/NetperfPage.html

[JP02] D. B. Johnson and C. Perkins, Mobility Support in
IPv6, draft-ietf-mobileip-ipv6-16.txt, IETF, March 22
March 2002.

[KA98] S. Kent and R. Atkinson, IP Authentication Header,

RFC2402, IETF, November 1998.

[MB97] J. Mysore and V. Bharghavan, A New Multicasting-
Based Architecture for Internet Host Mobility, Pro-
ceedings of ACM Mobicom, September 1997.

[MB98-1] D. Maltz and P. Bhagwat, TCP splicing for application
layer proxy performance, IBM Research Report 21139
(Computer Science/Mathematics), IBM Research Di-
vision, March 1998.

[MB98-2] D. A. Maltz and P. Bhagwat, MSOCKS: An Architec-
ture for Transport Layer Mobility, Proceedings of the
IEEE INFOCOM'98, San Francisco, CA, 1998.

[MDW99] D. Milojicic, F. Douglis, and R. Wheeler, Mobility,
ACM Press, 1999.

[OR01] G. O'Shea and M. Roe, Child-proof Authentication for
MIPv6 (CAM), ACM Computer Communication Re-
view, 31(2):4-8, 2001.

[Perk01] C. Perkings, IP Mobility Support for IPv4, revised,
draft-ietf-mobileip-rfc2002-bis-08.txt, Internet Draft,
September 2001.

[Perk96] C. Perkins, IP Mobility Support, RFC2002, IETF, Oc-
tober 1996.

[PJ01] C. Perkins and D. B. Johnson, Route Optimization in
Mobile IP, draft-ietf-mobileip-optim-11.txt, Internet
Draft, September 2001.

[QYB97] X. Qu, J. X. Yu, and R. P. Brent, A Mobile TCP Socket,
International Conference on Software Engineering
(SE ‘97), San Francisco, CA, November 1997.

[Russ01] R. Russell, Linux 2.4 Packet Filtering HOWTO, Linux
Netfilter Core Team, November 2001. http://netfil-
ter.samba.org/

[SAB01] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan,
Fine-Grained Failover Using Connection Migration,
Proceeding of the Third Annual USENIX Symposium
on Internet Technologies and Systems (USITS),
March 2001.

[SB00] A. C. Snoeren and H. Balakrishnan, An End-to-End
Approach to Host Mobility, Proceedings of 6th Inter-
national Conference on Mobile Computing and Net-
working (MobiCom'00), Boston, MA, August 2000.

[SE01] P. Srisuresh and K. Egevang, Traditional IP Network
Address Translator (Traditional NAT), RFC3022,
IETF, January 2001.

[Seni02] D. Senie, Network Address Translator (NAT)-Friendly
Application Design Guidelines, RFC3235, IETF, Jan-
uary 2002.

[TYT91] F. Teraoka, Y. Yokote, and M. Tokoro, A Network Ar-
chitecture Providing Host Migration Transparency,
Proceedings of ACM SIGCOMM, September 1991.

[ZD95] Y. Zhang and S. Dao, A “Persistent Connection”
Model for Mobile and Distributed Systems, 4th Inter-
national Conference on Computer Communications
and Networks (ICCCN), Las Vegas, NV, September
1995.

[ZM01] V. C. Zandy and B. P. Miller, Reliable Sockets, Un-
published, June 2001.
14

	1 Introduction
	2 Related Work
	3 The VNAT Architecture
	Figure 3-1 : VNAT architecture overview
	3.1 VNAT connection virtualization
	Figure 3-2 : VNAT connection virtualization

	3.2 VNAT connection translation
	Figure 3-3 : VNAT connection translation

	3.3 VNAT connection migration
	3.3.1 Suspend a connection
	3.3.1.1 Establish security protection key
	3.3.1.2 Keep the migrating connection alive

	3.3.2 Resume a connection
	3.3.2.1 Verify security protection key
	3.3.2.2 Update virtual-physical endpoints mapping

	(1) VNAT_UPD message
	Figure 3-4 : VNAT_UPD message
	(2) VNAT_UPD_R message

	Figure 3-5 : VNAT_UPD_R message
	3.3.2.3 Activate migrated connection

	3.4 Other architectural issues
	3.4.1 Support connectionless protocols
	3.4.2 Move both endpoints simultaneously
	3.4.3 Resolve virtual address conflict

	3.5 Incremental usability
	3.6 Example Migration Scenario
	Figure 3-6 : Migrate one endpoint

	4 Implementation
	4.1 Intercept socket system calls
	4.2 Instrument netfilter hooks
	Figure 4-1 : Client side connection translation

	4.3 Automate migration tasks

	5 Experimental Results
	5.1 Throughput overhead
	Figure 5-1 : VNAT throughput overhead
	Figure 5-2 : Throughput CPU utilization overhead

	5.2 Latency overhead
	Figure 5-3 : VNAT latency overhead
	Figure 5-4 : Latency CPU utilization overhead

	5.3 Connection setup overhead
	Figure 5-5 : VNAT connection setup overhead

	5.4 Connection restoration overhead
	Table 1: VNAT connection restoration overhead

	5.5 Migrate popular network applications

	6 Conclusions
	7 References
	Mobile Communication with Virtual Network Address Translation
	Gong Su and Jason Nieh
	Technical Report CUCS-003-02
	Department of Computer Science
	Columbia University
	February 2002
	Abstract

